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Efficient Implementation of
Adaptive P1-FEM in Matlab
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Abstract — We provide a Matlab package p1afem for an adaptive P1-finite element
method (AFEM). This includes functions for the assembly of the data, different error
estimators, and an indicator-based adaptive mesh-refining algorithm. Throughout, the
focus is on an efficient realization by use of Matlab built-in functions and vectoriza-
tion. Numerical experiments underline the efficiency of the code which is observed to
be of almost linear complexity with respect to the runtime. Although the scope of
this paper is on AFEM, the general ideas can be understood as a guideline for writing
efficient Matlab code.
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1. Introduction

In recent years, Matlab has become a de facto standard for the development and prototyp-
ing of various kinds of algorithms for numerical simulations. In particular, it has proven to
be an excellent tool for academic education, e.g., in the field of partial differential equations,
cf. [22, 23]. In [1], an educational Matlab code for the P1-Galerkin FEM is proposed which
was designed for shortness and clarity. Whereas the given code seems to be of linear com-
plexity with respect to the number of elements, the measurement of the computational time
proves quadratic dependence instead. Since this is mainly due to the internal data structure
of Matlab, we show how to modify the existing Matlab code so that the theoretically
predicted complexity can even be measured in computations.

Moreover and in addition to [1], we provide a complete and easy-to-modify package
called p1afem for adaptive P1-FEM computations, including three different a posteriori
error estimators as well as an adaptive mesh-refinement based on a red-green-blue strategy
(RGB) or newest vertex bisection (NVB). For the latter, we additionally provide an efficient
implementation of the coarsening strategy from Chen and Zhang [12, 15]. All parts can
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easily be combined with Matlab implementations of other finite elements, cf. e.g. [2, 5,
8, 10, 26]. p1afem is implemented in a way, we expect to be optimal in Matlab as a
compromise between clarity, shortness, and use of Matlab built-in functions. In particular,
we use full vectorization in the sense that for -loops are eliminated by use of Matlab vector
operations.

The complete Matlab code of p1afem can be downloaded from the web [19], and the
technical report [20] provides a detailed documentation of the underlying ideas.

The remaining content of this paper is organized as follows: Section 2 introduces the
model problem and the Galerkin scheme. In Section 3, we first recall the data structures
of [1] as well as their Matlab implementation. We discuss the reasons why this code leads
to quadratic complexity in practice. Even simple modifications yield an improved code which
behaves almost linearly. We show how the occurring for -loops can be eliminated by use of
Matlab’s vector arithmetics which leads to a further improvement of the runtime. Section 4
gives a short overview on the functionality provided by p1afem, and selected functions are
further discussed in the remainder of the paper: Section 5 is focused on local mesh-refinement
and mesh-coarsening based on NVB. Section 6 provides a realization of a standard adaptive
mesh-refining algorithm steered by the residual-based error estimator due to Babuška and
Miller [4]. Section 7 concludes the paper with some numerical experiments and, in partic-
ular, comparisons with other Matlab FEM packages like AFEM [16, 17] or iFEM [13, 14].

2. Model example and P1-Galerkin FEM

2.1. Continuous problem

As model problem, we consider the Laplace equation with mixed Dirichlet-Neumann bound-
ary conditions. Given f ∈ L2(Ω), uD ∈ H1/2(ΓD), and g ∈ L2(ΓN), we aim to compute an
approximation of the solution u ∈ H1(Ω) of

−∆u = f in Ω,

u = uD on ΓD,

∂nu = g on ΓN .

(2.1)

Here, Ω is a bounded Lipschitz domain in R
2 whose polygonal boundary Γ := ∂Ω is split into

a closed Dirichlet boundary ΓD with positive length and a Neumann boundary ΓN := Γ\ΓD.
On ΓN , we prescribe the normal derivative ∂nu of u, i.e. the flux. For theoretical reasons,
we identify uD ∈ H1/2(ΓD) with some arbitrary extension uD ∈ H1(Ω). With

u0 = u− uD ∈ H1
D(Ω) := {v ∈ H1(Ω) : v = 0 on ΓD}, (2.2)

the weak form reads: Find u0 ∈ H1
D(Ω) such that

∫

Ω

∇u0 · ∇v dx =

∫

Ω

fv dx+

∫

ΓN

gv ds−

∫

Ω

∇uD · ∇v dx for all v ∈ H1
D(Ω). (2.3)

Functional analysis provides the unique existence of u0 in the Hilbert space H1
D(Ω), whence

the unique existence of a weak solution u := u0+uD ∈ H1(Ω) of (2.1). Note that u does only
depend on uD|ΓD

so that one may consider the easiest possible extension uD of the Dirichlet
trace uD|ΓD

from ΓD to Ω.
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2.2. P1-Galerkin FEM

Let T be a regular triangulation of Ω into triangles, i.e.,

• T is a finite set of compact triangles T = conv{z1, z2, z3} with positive area |T | > 0,

• the union of all triangles in T covers the closure Ω of Ω,

• the intersection of different triangles is either empty, a common node, or a common edge,

• an edge may not intersect both, ΓD and ΓN , such that the intersection has positive
length.

In particular, the partition of Γ into ΓD and ΓN is resolved by T . Furthermore, hanging
nodes are not allowed, cf. Figure 3.1 for an exemplary regular triangulation T . Let

S1(T ) := {V ∈ C(Ω) : ∀T ∈ T V |T affine} (2.4)

denote the space of all globally continuous and T -piecewise affine splines. With N =
{z1, . . . , zN} the set of nodes of T , we consider the nodal basis B = {V1, . . . , VN}, where
the hat function Vℓ ∈ S1(T ) is characterized by Vℓ(zk) = δkℓ with Kronecker’s delta. For the
Galerkin method, we consider the space

S1
D(T ) := S1(T ) ∩H1

D(Ω) = {V ∈ S1(T ) : ∀zℓ ∈ N ∩ ΓD V (zℓ) = 0}. (2.5)

Without loss of generality, there holds N ∩ ΓD = {zn+1, . . . , zN}. We assume that the
Dirichlet data uD ∈ H1(Ω) are continuous on ΓD and replace uD|ΓD

by its nodal interpolant

UD :=

N∑

ℓ=n+1

uD(zℓ)Vℓ ∈ S1(T ). (2.6)

The discrete variational form
∫

Ω

∇U0 · ∇V dx =

∫

Ω

fV dx+

∫

ΓN

gV ds−

∫

Ω

∇UD · ∇V dx for all V ∈ S1
D(T ) (2.7)

then has a unique solution U0 ∈ S1
D(T ) which provides an approximation U := U0 + UD ∈

S1(T ) of u ∈ H1(Ω). We aim to compute the coefficient vector x ∈ R
N of U ∈ S1(T ) with

respect to the nodal basis B

U0 =

n∑

j=1

xjVj, whence U =

N∑

j=1

xjVj with xj := uD(zj) for j = n+ 1, . . . , N. (2.8)

Note that the discrete variational form (2.7) is equivalent to the linear system

n∑

k=1

Ajkxk = bj :=

∫

Ω

fVj dx+

∫

ΓN

gVj ds−
N∑

k=n+1

Ajkxk for all j = 1, . . . , n (2.9)

with stiffness matrix entries

Ajk =

∫

Ω

∇Vj · ∇Vk dx =
∑

T∈T

∫

T

∇Vj · ∇Vk dx for all j, k = 1, . . . , N. (2.10)

For the implementation, we build A ∈ R
N×N
sym with respect to all nodes and then solve (2.9)

on the n× n subsystem corresponding to the free nodes.



Efficient Implementation of Adaptive P1-FEM in Matlab 463

3. MatlabMatlabMatlab implementation of P1-Galerkin FEM

In this section, we recall the Matlab implementation of the P1-FEM from [1] and explain,
why this code leads to a quadratic growth of the runtime with respect to the number of
elements. We then discuss how to write an efficient Matlab code by use of vectorization.

3.1. Data structures and visualization of discrete functions
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1 −1.0 −1.0
2 0.0 −1.0
3 −0.5 −0.5
4 −1.0 0.0
5 0.0 0.0
6 1.0 0.0
7 −0.5 0.5
8 0.5 0.5
9 −1.0 1.0

10 0.0 1.0
11 1.0 1.0

elements

1 1 2 3
2 2 5 3
3 5 4 3
4 4 1 3
5 4 5 7
6 5 10 7
7 10 9 7
8 9 4 7
9 5 6 8

10 6 11 8
11 11 10 8
12 10 5 8

dirichlet

1 1 2
2 2 5
3 5 6
4 6 11

neumann

1 11 10
2 10 9
3 9 4
4 4 1

Figure 3.1. Exemplary triangulation T of the L-shaped domain Ω = (−1, 1)2\([0, 1] × [−1, 0]) into 12

triangles specified by the arrays coordinates and elements . The Dirichlet boundary, specified by the

array dirichlet , consists of 4 edges which are plotted in red. The Neumann boundary is specified by the

array neumann and consists of the remaining 4 boundary edges. The nodes N ∩ΓD = {z1, z2, z5, z6, z11} are

indicated by red squares, whereas free nodes N\ΓD = {z3, z4, z7, z8, z9, z10} are indicated by black bullets

For the data representation of the set of all nodesN = {z1, . . . , zN}, the regular triangulation
T = {T1, . . . , TM}, and the boundaries ΓD and ΓN , we follow [1]: We refer to Figure 3.1 for
an exemplary triangulation T and corresponding data arrays, which are formally specified
in the following:

The set of all nodes N is represented by the N × 2 array coordinates . The ℓ-th row of
coordinates stores the coordinates of the ℓ-th node zℓ = (xℓ, yℓ) ∈ R

2 as

coordinates( ℓ,:) = [ xℓ yℓ ].

The triangulation T is represented by the M × 3 integer array elements . The ℓ-th
triangle Tℓ = conv{zi, zj , zk} ∈ T with vertices zi, zj, zk ∈ N is stored as

elements( ℓ,:) = [ i j k ],

where the nodes are given in counterclockwise order, i.e., the parametrization of the boundary
∂Tℓ is mathematically positive.

The Dirichlet boundary ΓD is split into K affine boundary pieces, which are edges of
triangles T ∈ T . It is represented by a K × 2 integer array dirichlet . The ℓ-th edge
Eℓ = conv{zi, zj} on the Dirichlet boundary is stored in the form

dirichlet( ℓ,:) =[ i j ].



464 Stefan Funken et al.

It is assumed that zj − zi gives the mathematically positive orientation of Γ, i.e.,

nℓ =
1

|zj − zi|

(
yj − yi
xi − xj

)
,

gives the outer normal vector of Ω on Eℓ, where zk = (xk, yk) ∈ R
2. Finally, the Neumann

boundary ΓN is stored analogously within an L× 2 integer array neumann.
Using this data structure, we may visualize a discrete function U =

∑N
j=1 xjVj ∈ S1(T )

by

trisurf (elements,coordinates(:,1),coordinates(:,2),x, 'facecolor' , 'interp' )

Here, the column vector xj = U(zj) contains the nodal values of U at the j-th node zj ∈ R
2

given by coordinates(j,:) .
Listing 3.1. An educational but inefficient Matlab implementation

1 function [x,energy] = solveLaplace(coordinates,elements,dirich let,neumann,f,g,uD)
2 nC = size (coordinates,1);
3 x = zeros (nC,1);
4 %*** Assembly of stiffness matrix
5 A = sparse (nC,nC);
6 for i = 1: size (elements,1)
7 nodes = elements(i,:);
8 B = [1 1 1 ; coordinates(nodes,:)'];
9 grad = B \ [0 0 ; 1 0 ; 0 1];

10 A(nodes,nodes) = A(nodes,nodes) + det (B) * grad * grad'/2;
11 end
12 %*** Prescribe values at Dirichlet nodes
13 dirichlet = unique (dirichlet);
14 x(dirichlet) = feval (uD,coordinates(dirichlet,:));
15 %*** Assembly of right −hand side
16 b = −A* x;
17 for i = 1: size (elements,1)
18 nodes = elements(i,:);
19 sT = [1 1 1] * coordinates(nodes,:)/3;
20 b(nodes) = b(nodes) + det ([1 1 1 ; coordinates(nodes,:)']) * feval (f,sT)/6;
21 end
22 for i = 1: size (neumann,1)
23 nodes = neumann(i,:);
24 mE = [1 1] * coordinates(nodes,:)/2;
25 b(nodes) = b(nodes) + norm([1 −1] * coordinates(nodes,:)) * feval (g,mE)/2;
26 end
27 %*** Computation of P1 −FEM approximation
28 freenodes = setdiff (1:nC, dirichlet);
29 x(freenodes) = A(freenodes,freenodes) \b(freenodes);
30 %*** Compute energy | | grad(uh) | | ˆ2 of discrete solution
31 energy = x' * A* x;

3.2. An educational but inefficient MatlabMatlabMatlab implementation (Listing 3.1)

This section essentially recalls the Matlab code of [1] for later reference. We emphasize
that the implementation of [1] put the focus on shortness and clarity to explain the ideas on
how to implement finite elements in Matlab.

• Line 1: As input, the function solveLaplace takes the description of a triangulation T
as well as functions for the volume forces f , the Neumann data g, and the Dirichlet data
uD. According to the Matlab 7 standard, these functions may be given as function
handles or as strings containing the function names. Either function takes n evaluation
points ξj ∈ R

2 in form of a matrix ξ ∈ R
n×2 and returns a column vector y ∈ R

n of the
associated function values, i.e., yj = f(ξj). Finally, the function solveLaplace returns
the coefficient vector xj = U(zj) of the discrete solution U ∈ S1(T ), cf. (2.8), as well as

its energy ‖∇U‖2L2(Ω) =
∑N

j,k=1 xjxk

∫
Ω
∇Vj · ∇Vk dx = x ·Ax.
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• Lines 5–11: The stiffness matrix A ∈ R
N×N
sym is built elementwise as indicated in (2.10).

We stress that, for Ti ∈ T and piecewise affine basis functions, a summand
∫

Ti

∇Vj · ∇Vk dx = |Ti| ∇Vj|Ti
· ∇Vk|Ti

vanishes if not both zj and zk are nodes of Ti. We thus may assemble A simultaneously
for all j, k = 1, . . . , N , where we have a (3 × 3)-update of A per element Ti ∈ T . The
matrix B ∈ R

3×3 in Line 8 provides |Ti| = det(B)/2. Moreover, grad( ℓ,:) from Line 9
contains the gradient of the hat function Vj |Ti

for j-th node zj , where j=elements(i, ℓ) .

• Lines 13–14: The entries of the coefficient vector x ∈ R
N which correspond to Dirichlet

nodes, are initialized, cf. (2.8).

• Lines 16–26: The load vector b ∈ R
N from (2.9) is built. It is initialized by the

contribution of the nodal interpolation of the Dirichlet data (Line 16), cf. (2.7) resp. (2.9).
Next (Lines 17–21), we elementwise add the volume force

∫

Ω

fVj dx =
∑

T∈T

∫

T

fVj dx ≈
∑

T∈T

|T |f(sT )Vj(sT ).

Again, we stress that, for T ∈ T , a summand
∫
T
fVj dx vanishes if zj is not a node of

T . Each element T thus enforces an update of three components of b only. The integral
is computed by a 1-point quadrature with respect to the center of mass sT ∈ T , where
Vj(sT ) = 1/3. Finally (Lines 22–26), we elementwise add the Neumann contributions

∫

ΓN

gVj ds =
∑

E⊆ΓN

∫

E

gVj ds ≈
∑

E⊆ΓN

hEg(mE)Vj(mE).

Again, for each edge E on the Neumann boundary, only two components of the load
vector b are effected. The boundary integral is computed by a 1-point quadrature with
respect to the edge’s midpoint mE ∈ E, where Vj(mE) = 1/2 and where hE denotes the
edge length.

• Lines 28–29: We first compute the indices of all free nodes zj 6∈ ΓD (Line 28). Then, we
solve the linear system (2.9) for the coefficients xj which correspond to free nodes zj 6∈ ΓD

(Line 29). Note that this does not effect the coefficients xk = uD(zk) corresponding to
Dirichlet nodes zk ∈ ΓD so that x ∈ R

N finally is, in fact, the coefficient vector of the
P1-FEM solution U ∈ S1(T ), cf. (2.8).

On a first glance, one might expect linear runtime of the function solveLaplace with
respect to the number M of elements — at least up to the solution of the linear system in
Line 29. Instead, one observes a quadratic dependence, cf. Fig. 7.1.

Listing 3.2. Assembly of stiffness matrix in almost linear complexity (intermediate implementation)

1 %*** Assembly of stiffness matrix in linear complexity
2 nE = size (elements,1);
3 I = zeros (9 * nE,1);
4 J = zeros (9 * nE,1);
5 A = zeros (9 * nE,1);
6 for i = 1:nE
7 nodes = elements(i,:);
8 B = [1 1 1 ; coordinates(nodes,:)'];
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9 grad = B \ [0 0 ; 1 0 ; 0 1];
10 idx = 9 * (i −1)+1:9 * i;
11 tmp = [1;1;1] * nodes;
12 I(idx) = reshape (tmp',9,1);
13 J(idx) = reshape (tmp,9,1);
14 A(idx) = det (B)/2 * reshape (grad * grad',9,1);
15 end
16 A = sparse (I,J,A,nC,nC);

3.3. Reasons for MatlabMatlabMatlab’s inefficiency and some first remedy (Listing 3.2)

A closer look on the Matlab code of the function solveLaplace in Listing 3.1 reveals
that the quadratic runtime is due to the assembly of A ∈ R

N×N (Lines 5–11): In Matlab,
sparse matrices are internally stored in the compressed column storage format (or: Harwell-
Boeing format), cf. [7] for an introduction to storage formats for sparse matrices. Therefore,
updating a sparse matrix with new entries, necessarily needs the prolongation and sorting
of the storage vectors. For each step i in the update of a sparse matrix, we are thus led to
at least O(i) operations, which results in an overall complexity of O(M2) for building the
stiffness matrix, where M = #T .

As has been pointed out by Gilbert, Moler, and Schreiber [21], Matlab provides
some simple remedy for the otherwise inefficient building of sparse matrices: Let a ∈ R

n and
I, J ∈ N

n be the vectors for the coordinate format of some sparse matrix A ∈ R
M×N . Then,

A can be declared and initialized by use of the Matlab command

A = sparse (I,J,a,M,N)

where, in general, Aij = aℓ for i = Iℓ and j = Jℓ. If an index pair, (i, j) = (Iℓ, Jℓ) appears
twice (or even more), the corresponding entries aℓ are added. In particular, the internal reali-
zation only needs one sorting of the entries which appears to be of complexity O(n log n).

For the assembly of the stiffness matrix, we now replace Lines 5–11 of Listing 3.1 by
Lines 2–16 of Listing 3.2. We only comment on the differences of Listing 3.1 and Listing 3.2
in the following and stress that the remaining for loop is finally avoided by vectorization in
Listing 3.3 below.

• Lines 2–5: Note that the elementwise assembly of A in Listing 3.1 uses nine updates
of the stiffness matrix per element, i.e. the vectors I, J , and a have length 9M with
M = #T the number of elements.

• Lines 10–14: Dense matrices are stored columnwise inMatlab, i.e., a matrix V ∈ R
M×N

is stored in a vector v ∈ R
MN with Vjk = vj+(k−1)M . For fixed i and idx in Lines 10–14,

there consequently hold

I(idx) = elements(i,[1 2 3 1 2 3 1 2 3]);

J(idx) = elements(i,[1 1 1 2 2 2 3 3 3]);

Therefore, I(idx) and J(idx) address the same entries of A as has been done in Line
10 of Listing 3.1. Note that we compute the same matrix updates a as in Line 10 of
Listing 3.1.

• Line 16: The sparse matrix A ∈ R
N×N is built from the three coordinate vectors.



Efficient Implementation of Adaptive P1-FEM in Matlab 467

A comparison of the assembly times for the stiffness matrix A by use of the naive code
(Lines 5–11 of Listing 3.1) and the improved code (Lines 2–16 of Listing 3.2) in Fig. 7.1
below reveals that the new code has almost linear complexity with respect to M = #T . A
further improvement by vectorization is discussed in the following section, and we also refer
to [13, 26] for the idea of vectorizing Matlab codes. Moreover, the work [26] puts emphasis
on the unifying vectorization of the matrix assembly for elliptic PDEs and isoparametric
elements in 2D and 3D, which is an interesting approach.

Listing 3.3. A fully vectorized and efficient Matlab implementation

1 function [x,energy] = solveLaplace(coordinates,elements,dirich let,neumann,f,g,uD)
2 nE = size (elements,1);
3 nC = size (coordinates,1);
4 x = zeros (nC,1);
5 %*** First vertex of elements and corresponding edge vectors
6 c1 = coordinates(elements(:,1),:);
7 d21 = coordinates(elements(:,2),:) − c1;
8 d31 = coordinates(elements(:,3),:) − c1;
9 %*** Vector of element areas 4 * |T |

10 area4 = 2 * (d21(:,1). * d31(:,2) −d21(:,2). * d31(:,1));
11 %*** Assembly of stiffness matrix
12 I = reshape (elements(:,[1 2 3 1 2 3 1 2 3])',9 * nE,1);
13 J = reshape (elements(:,[1 1 1 2 2 2 3 3 3])',9 * nE,1);
14 a = ( sum(d21. * d31,2)./area4)';
15 b = ( sum(d31. * d31,2)./area4)';
16 c = ( sum(d21. * d21,2)./area4)';
17 A = [ −2* a+b+c;a −b;a −c;a −b;b; −a;a −c; −a;c];
18 A = sparse (I,J,A(:));
19 %*** Prescribe values at Dirichlet nodes
20 dirichlet = unique (dirichlet);
21 x(dirichlet) = feval (uD,coordinates(dirichlet,:));
22 %*** Assembly of right −hand side
23 fsT = feval (f,c1+(d21+d31)/3);
24 b = accumarray (elements(:), repmat (12 \area4. * fsT,3,1),[nC 1]) − A* x;
25 if ∼ isempty (neumann)
26 cn1 = coordinates(neumann(:,1),:);
27 cn2 = coordinates(neumann(:,2),:);
28 gmE = feval (g,(cn1+cn2)/2);
29 b = b + accumarray (neumann(:), ...
30 repmat (2 \sqrt ( sum((cn2 −cn1).ˆ2,2)). * gmE,2,1),[nC 1]);
31 end
32 %*** Computation of P1 −FEM approximation
33 freenodes = setdiff (1:nC, dirichlet);
34 x(freenodes) = A(freenodes,freenodes) \b(freenodes);
35 %*** Compute energy | | grad(uh) | | ˆ2 of discrete solution
36 energy = x' * A* x;

3.4. Further improvement by vectorization (Listing 3.3)

In this section, we further improve the overall runtime of the function solveLaplace of
Listing 3.1 and 3.2. All of the following techniques are based on the empirical observation
that vectorized code is always faster than the corresponding implementation using loops. Be-
sides sparse discussed above, we shall use the following tools for performance acceleration,
provided by Matlab:

• Dense matrices A ∈ R
M×N are stored columnwise in Matlab, and A(:) returns the

column vector as used for the internal storage. Besides this, one may use

B = reshape (A,m,n)

to change the shape into B ∈ R
m×n with MN = mn, where B(:) coincides with A(:) .
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• The coordinate format of a (sparse or even dense) matrix A ∈ R
M×N is returned by

[I,J,a] = find (A) .

With n ∈ N the number of nonzero-entries of A, there holds I, J ∈ N
n, a ∈ R

n, and
Aij = aℓ with i = Iℓ and j = Jℓ. Moreover, the vectors are columnwise ordered with
respect to A.

• Fast assembly of dense matrices A ∈ R
M×N is done by

A = accumarray (I,a,[M N])

with I ∈ N
n×2 and a ∈ R

n. The entries of A are then given by Aij = aℓ with i = Iℓ1 and
j = Iℓ2. As for sparse , multiple occurrence of an index pair (i, j) = (Iℓ1, Iℓ2) leads to
the summation of the associated values aℓ.

• For a matrix A ∈ R
M×N , the rowwise sum a ∈ R

M with aj =
∑N

k=1Ajk is obtained by

a = sum(A,2) .

The columnwise sum b ∈ R
N is computed by b = sum(A,1) .

• Finally, linear arithmetics is done by usual matrix-matrix operations, e.g., A+B or A* B,
whereas nonlinear arithmetics is done by pointwise arithmetics, e.g., A. * B or A.ˆ2 .

To improve the runtime of the function solveLaplace, we first note that function calls
are generically expensive. We therefore reduce the function calls to the three necessary calls
in Line 21, 23, and 28 to evaluate the data functions uD, f , and g, respectively. Second, a
further improvement can be achieved by use of Matlab’s vector arithmetics which allows
to replace any for -loop.

• Line 10: Let T = conv{z1, z2, z3} denote a non-degenerate triangle in R
2, where the

vertices z1, z2, z3 are given in counterclockwise order. With vectors v = z2 − z1 and
w = z3 − z1, the area of T then reads

2|T | = det

(
v1 w1

v2 w2

)
= v1w2 − v2w1.

Consequently, Line 10 computes the areas of all elements T ∈ T simultaneously.

• Line 12–18: We assemble the stiffness matrix A ∈ R
N×N
sym as in Listing 3.2. However, the

coordinate vectors I, J , and a are now assembled simultaneously for all elements T ∈ T
by use of vector arithmetics.

• Lines 23–30: Assembly of the load vector, cf. Lines 16–26 in Listing 3.1 above: In
Line 23, we evaluate the volume forces f(sT ) in the centers sT of all elements T ∈
T simultaneously. We initialize b with the contribution of the volume forces and of
the Dirichlet data (Line 24). If the Neumann boundary is non-trivial, we evaluate the
Neumann data g(mE) in all midpoints mE of Neumann edges E ∈ EN simultaneously
(Line 28). Finally, Line 29 is the vectorized variant of Lines 22–26 in Listing 3.1.

In Figure 7.1 below, the fully vectorized implementation of Listing 3.3 is observed to be
10 times faster than the intermediate implementation of Listing 3.2. All further implemen-
tations of p1afem are thus fully vectorized.
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4. Overview on functions provided by P1AFEM-package

Our software package p1afem provides several modules. To abbreviate the notation for the
parameters, we write C (coordinates), E (elements), D (dirichlet), and N (neumann). For
theMatlab functions which provide the volume data f and the boundary data g and uD, we
assume that either function takes n evaluation points ξj ∈ R

2 in form of a matrix ξ ∈ R
n×2

and returns a column vector y ∈ R
n of the associated function values, i.e., yj = f(ξj).

Altogether, p1afem provides 14 Matlab functions for the solution of the Laplace equa-
tion (solveLaplace , solveLaplace0 , solveLaplace1 ), for local mesh-refinement
(refineNVB , refineNVB1 , refineNVB5 , refineRGB , refineMRGB ), for local
mesh-coarsening (coarsenNVB ), for a posteriori error estimation (computeEtaR ,
computeEtaH , computeEtaZ ). Furthermore, it contains an implementation of a standard
adaptive algorithm (adaptiveAlgorithm ) and an auxiliary function
(provideGeometricData ) which induces a numbering of the edges. For demonstration
purposes, the package is complemented by two numerical experiments contained in subdi-
rectories (example1/ , example2/ ).

4.1. Solving the 2D Laplace equation

The vectorized solver solveLaplace is called by

[x,energy] = solveLaplace(C,E,D,N,f,g,uD);

Details are given in Section 3.4. The functions solveLaplace0 and solveLaplace1 are
called with the same arguments and realize the preliminary solvers from Section 3.2–3.3.

4.2. Local mesh refinement for triangular meshes

The function for mesh-refinement by newest vertex bisection is called by

[C,E,D,N] = refineNVB(C,E,D,N,marked);

where marked is a vector with the indices of marked elements. The result is a regular triangu-
lation, where all marked elements have been refined by three bisections. Our implementation
is flexible in the sense that it only assumes that the boundary Γ is partitioned into finitely
many boundaries (instead of precisely into ΓD and ΓN). Details are given in Section 5.2.

In addition, we provide implementations of further mesh-refining strategies, which are
called with the same arguments: With refineNVB1 , marked elements are only refined by
one bisection. With refineNVB5 , marked elements are refined by five bisections, and the
refined mesh thus has the interior node property from [24]. Finally, refineRGB provides
an implementation of a red-green-blue strategy which is discussed in detail in the technical
report [20, Section 5.3], and refineMRGB provides a modified red-green-blue refinement
from [9] which mathematically guarantees stability of the L2-projection. As stated above,
all these additional mesh-refinement procedures are part of the current p1afem library which
can be downloaded from the web [19].

4.3. Local mesh coarsening for NVB-refined meshes

For triangulations generated by newest vertex bisection,

[C,E,D,N] = coarsenNVB(N0,C,E,D,N,marked);
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provides the implementation of a coarsening algorithm from [15], where marked is a vector
with the indices of elements marked for coarsening and where N0 denotes the number of
nodes in the initial mesh T0. Details are given in Section 5.3.

4.4. A posteriori error estimators

The residual-based error estimator ηR due to Babuška and Miller [4] is called by

etaR = computeEtaR(x,C,E,D,N,f,g);

where x is the coefficient vector of the P1-FEM solution. The return value etaR is a vector
containing the local contributions which are used for element marking in an adaptive mesh-
refining algorithm. One focus of our implementation is on the efficient computation of the
edge-based contributions. Details are found in Section 6.2.

Moreover, computeEtaH is called by the same arguments and returns the hierarchical
error estimator ηH due to Bank and Smith [6]. An error estimator ηZ based on the gradient
recovery technique proposed by Zienkiewicz and Zhu [31] is returned by

etaZ = computeEtaZ(x,C,E) ;

For the implementations of ηH and ηZ , we refer to the technical report [20, Section 6.3–6.4].

4.5. Adaptive mesh-refining algorithm

We include an adaptive algorithm called by

[x,C,E,etaR] = adaptiveAlgorithm(C,E,D,N,f,g,uD,nEmax ,theta);

Here, θ ∈ (0, 1) is a given adaptivity parameter and nEmax is the maximal number of ele-
ments. The function returns the adaptively generated mesh, the coefficient vector for the
corresponding P1-FEM solution and the associated refinement indicators to provide an upper
bound for the (unknown) error. Details are given in Section 6.1.

4.6. Auxiliary function

Our implementation of the error estimators computeEtaR and computeEtaH and the local
mesh-refinement (refineNVB , refineNVB1 , refineNVB5 , refineRGB , refineMRGB ) needs
some numbering of edges. This information is provided by call of the auxiliary function

[edge2nodes,element2edges,dirichlet2edges,neumann2e dges]
= provideGeometricData(E,D,N);

Details are given in Section 5.1.

4.7. Examples and demo files

The implementation for the numerical experiments from Section 7 are provided in subdirec-
tories example1/ and example2/ .
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5. Local mesh refinement and coarsening

The accuracy of a discrete solution U of u depends on the triangulation T in the sense
that the data f , g, and uD as well as possible singularities of u have to be resolved by the
triangulation. With the adaptive algorithm of Section 6, this can be done automatically by
use of some (local) mesh-refinement to improve T . In this section, we discuss our Matlab

implementation of mesh-refinement based on newest vertex bisection (NVB). Moreover, in
parabolic problems the solution u usually becomes smoother if time proceeds. Since the
computational complexity depends on the number of elements, one may then want to remove
certain elements from T . For NVB, this (local) mesh coarsening can be done efficiently
without storing any further data. Although the focus of this paper is not on time dependent
problems, we include an efficient implementation of a coarsening algorithm from [15] for the
sake of completeness.

Listing 5.1. Fast computation of geometric data concerning element edges

1 function [edge2nodes,element2edges, varargout ] ...
2 = provideGeometricData(elements, varargin )
3 nE = size (elements,1);
4 nB = nargin −1;
5 %*** Node vectors of all edges (interior edges appear twice)
6 I = elements(:);
7 J = reshape (elements(:,[2,3,1]),3 * nE,1);
8 %*** Symmetrize I and J (so far boundary edges appear only once)
9 pointer = [1,3 * nE, zeros (1,nB)];

10 for j = 1:nB
11 boundary = varargin {j };
12 if ∼ isempty (boundary)
13 I = [I;boundary(:,2)];
14 J = [J;boundary(:,1)];
15 end
16 pointer(j+2) = pointer(j+1) + size (boundary,1);
17 end
18 %*** Create numbering of edges
19 idxIJ = find (I < J);
20 edgeNumber = zeros ( length (I),1);
21 edgeNumber(idxIJ) = 1: length (idxIJ);
22 idxJI = find (I > J);
23 number2edges = sparse (I(idxIJ),J(idxIJ),1: length (idxIJ));
24 [foo {1:2 },numberingIJ] = find ( number2edges );
25 [foo {1:2 },idxJI2IJ] = find ( sparse (J(idxJI),I(idxJI),idxJI) );
26 edgeNumber(idxJI2IJ) = numberingIJ;
27 %*** Provide element2edges and edge2nodes
28 element2edges = reshape (edgeNumber(1:3 * nE),nE,3);
29 edge2nodes = [I(idxIJ),J(idxIJ)];
30 %*** Provide boundary2edges
31 for j = 1:nB
32 varargout {j } = edgeNumber(pointer(j+1)+1:pointer(j+2));
33 end

5.1. Efficient computation of geometric relations (Listing 5.1)

For many computations, one needs further geometric data besides the arrays coordinates ,
elements , dirichlet , and neumann. For instance, the mesh-refinement provided below is
edge-based. In particular, we need to generate a numbering of the edges of T . In addition,
we need the information which edges belong to a given element and which nodes belong to
a given edge.
The necessary data is generated by the function provideGeometricData of Listing 5.1,
where we build two additional arrays: For an edge Eℓ, edge2nodes( ℓ,:) provides the num-
bers j, k of the nodes zj , zk ∈ N such that Eℓ = conv{zj , zk}. Moreover, element2edges(i, ℓ)

returns the number of the edge between the nodes elements(i, ℓ) and elements(i, ℓ+ 1) ,
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where we identify the index ℓ + 1 = 4 with ℓ = 1. Finally, we return the numbers of the
boundary edges, e.g., dirichlet2edges( ℓ) is the absolute number of the ℓ-th edge on the
Dirichlet boundary.

• Line 1: The function is usually called by

[edge2nodes,element2edges,dirichlet2edges,neumann2e dges] ...
= provideGeometricData(elements,dirichlet,neumann)

where the partition of Γ into certain boundary conditions is hidden in the optional
arguments varargin and varargout . This allows to handle any partition of Γ into
finitely many boundary conditions (instead of precisely two, namely ΓD and ΓN).

• Lines 6–7: We generate node vectors I and J which describe the edges of T : All directed
edges E = conv{zi, zj} of T with zi, zj ∈ N and tangential vector zj − zi of T appear in
the form (i, j) ∈ {(Iℓ, Jℓ) : ℓ = 1, 2, . . . } =: G.

• Lines 9–17: Note that a pair (i, j) ∈ G is an interior edge of T if and only if (j, i) ∈ G.
We prolongate G by adding the pair (j, i) to G whenever (i, j) is a boundary edge. Then,
G is symmetrized in the sense that (i, j) belongs to G if and only if (j, i) belongs to G.

• Lines 19–26: Create a numbering of the edges and an index vector such that the vector
edgeNumber( ℓ) returns the edge number of the edge (Iℓ, Jℓ): So far, each edge E of
T appears twice in G as pair (i, j) and (j, i). To create a numbering of the edges, we
consider all pairs (i, j) with i < j and fix a numbering (Lines 19–21). Finally, we need
to ensure the same edge number for (j, i) as for (i, j). Note that G corresponds to a
sparse matrix with symmetric pattern. We provide the coordinate format of the upper
triangular part of G, where the entries are the already prescribed edge numbers (Line
23). Next, we provide the coordinate format of the upper triangular part of the transpose
GT , where the entries are the indices with respect to I and J (Line 25). This provides
the necessary information to store the correct edge number of all edges (j, i) with i < j
(Line 26).

• Lines 28–29: Generate arrays element2edges and edge2nodes .

• Lines 31–33: Generate, e.g. dirichlet2edges , to link boundary edges and numbering
of edges.

Listing 5.2. NVB refinement

1 function [coordinates,newElements, varargout ] ...
2 = refineNVB(coordinates,elements, varargin )
3 markedElements = varargin {end };
4 nE = size (elements,1);
5 %*** Obtain geometric information on edges
6 [edge2nodes,element2edges,boundary2edges {1: nargin −3}] ...
7 = provideGeometricData(elements, varargin {1: end−1});
8 %*** Mark edges for refinement
9 edge2newNode = zeros ( max( max(element2edges)),1);

10 edge2newNode(element2edges(markedElements,:)) = 1;
11 swap = 1;
12 while ∼ isempty (swap)
13 markedEdge = edge2newNode(element2edges);
14 swap = find ( ∼markedEdge(:,1) & (markedEdge(:,2) | markedEdge(:,3)) );
15 edge2newNode(element2edges(swap,1)) = 1;
16 end
17 %*** Generate new nodes
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18 edge2newNode(edge2newNode ∼= 0) = size (coordinates,1) + (1: nnz (edge2newNode));
19 idx = find (edge2newNode);
20 coordinates(edge2newNode(idx),:) ...
21 = (coordinates(edge2nodes(idx,1),:)+coordinates(edge 2nodes(idx,2),:))/2;
22 %*** Refine boundary conditions
23 for j = 1: nargout −2
24 boundary = varargin {j };
25 if ∼ isempty (boundary)
26 newNodes = edge2newNode(boundary2edges {j });
27 markedEdges = find (newNodes);
28 if ∼isempty (markedEdges)
29 boundary = [boundary( ∼newNodes,:); ...
30 boundary(markedEdges,1),newNodes(markedEdges); ...
31 newNodes(markedEdges),boundary(markedEdges,2)];
32 end
33 end
34 varargout {j } = boundary;
35 end
36 %*** Provide new nodes for refinement of elements
37 newNodes = edge2newNode(element2edges);
38 %*** Determine type of refinement for each element
39 markedEdges = (newNodes ∼= 0);
40 none = ∼markedEdges(:,1);
41 bisec1 = ( markedEdges(:,1) & ∼markedEdges(:,2) & ∼markedEdges(:,3) );
42 bisec12 = ( markedEdges(:,1) & markedEdges(:,2) & ∼markedEdges(:,3) );
43 bisec13 = ( markedEdges(:,1) & ∼markedEdges(:,2) & markedEdges(:,3) );
44 bisec123 = ( markedEdges(:,1) & markedEdges(:,2) & markedE dges(:,3) );
45 %*** Generate element numbering for refined mesh
46 idx = ones (nE,1);
47 idx(bisec1) = 2; %*** bisec(1): newest vertex bisection of 1st edge
48 idx(bisec12) = 3; %*** bisec(2): newest vertex bisection of 1st and 2nd edge
49 idx(bisec13) = 3; %*** bisec(2): newest vertex bisection of 1st and 3rd edge
50 idx(bisec123) = 4; %*** bisec(3): newest vertex bisection of all edges
51 idx = [1;1+ cumsum(idx)];
52 %*** Generate new elements
53 newElements = zeros (idx( end) −1,3);
54 newElements(idx(none),:) = elements(none,:);
55 newElements([idx(bisec1),1+idx(bisec1)],:) ...
56 = [elements(bisec1,3),elements(bisec1,1),newNodes(bi sec1,1); ...
57 elements(bisec1,2),elements(bisec1,3),newNodes(bise c1,1)];
58 newElements([idx(bisec12),1+idx(bisec12),2+idx(bise c12)],:) ...
59 = [elements(bisec12,3),elements(bisec12,1),newNodes( bisec12,1); ...
60 newNodes(bisec12,1),elements(bisec12,2),newNodes(bi sec12,2); ...
61 elements(bisec12,3),newNodes(bisec12,1),newNodes(bi sec12,2)];
62 newElements([idx(bisec13),1+idx(bisec13),2+idx(bise c13)],:) ...
63 = [newNodes(bisec13,1),elements(bisec13,3),newNodes( bisec13,3); ...
64 elements(bisec13,1),newNodes(bisec13,1),newNodes(bi sec13,3); ...
65 elements(bisec13,2),elements(bisec13,3),newNodes(bi sec13,1)];
66 newElements([idx(bisec123),1+idx(bisec123),2+idx(bi sec123),3+idx(bisec123)],:) ...
67 = [newNodes(bisec123,1),elements(bisec123,3),newNode s(bisec123,3); ...
68 elements(bisec123,1),newNodes(bisec123,1),newNodes( bisec123,3); ...
69 newNodes(bisec123,1),elements(bisec123,2),newNodes( bisec123,2); ...
70 elements(bisec123,3),newNodes(bisec123,1),newNodes( bisec123,2)];

Figure 5.1. For each triangle T ∈ T , there is one fixed reference edge, indicated by the double line (left,

top). Refinement of T is done by bisecting the reference edge, where its midpoint becomes a new node.

The reference edges of the son triangles are opposite to this newest vertex (left, bottom). To avoid hanging

nodes, one proceeds as follows: We assume that certain edges of T , but at least the reference edge, are

marked for refinement (top). Using iterated newest vertex bisection, the element is then split into 2, 3, or 4

son triangles (bottom)
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Figure 5.2. Refinement by newest vertex bisection only leads to finitely many interior angles for the family

of all possible triangulations. To see this, we start from a macro element (left), where the bottom edge is

the reference edge. Using iterated newest vertex bisection, one observes that only four similarity classes of

triangles occur, which are indicated by the coloring. After three levels of bisection (right), no additional

similarity class appears

Remark 5.1. In Lines 24–25 of Listing 5.1 and the listings below, we use the variable foo

to store additional return values of Matlab functions which are not used by our implemen-
tation. Since Matlab Release 2009b, one could also use the symbol ∼ which then avoids
unnecessary memory allocation and computations to build the corresponding return values.

5.2. Refinement by newest vertex bisection (Listing 5.2)

Before discussing the implementation, we briefly describe the idea of NVB. To that end, let
T0 be a given initial triangulation. For each triangle T ∈ T0 one chooses a so-called reference

edge, e.g., the longest edge. For NVB, the (inductive) refinement rule reads as follows, where
Tℓ is a regular triangulation already obtained from T0 by some successive newest vertex
bisections:

• To refine an element T ∈ Tℓ, the midpoint xT of the reference edge ET becomes a new
node, and T is bisected along xT and the node opposite to ET into two son elements T1

and T2, cf. Fig. 5.1.

• As is also shown in Fig. 5.1, the edges opposite to the newest vertex xT become the
reference edges of the two son triangles T1 and T2.

• Having bisected all marked triangles, the resulting partition usually has hanging nodes.
Therefore, certain additional bisections finally lead to a regular triangulation Tℓ+1.

A moment’s reflection shows that the latter closure step, which leads to a regular triangu-
lation, only leads to finitely many additional bisections. An easy explanation might be the
following, which is also illustrated in Fig. 5.1:

• Instead of marked elements, one might think of marked edges.

• If any edge of a triangle T is marked for refinement, we ensure that its reference edge is
also marked for refinement. This is done recursively in at most 3 ·#Tℓ recursions since
then all edges are marked for refinement.

• If an element T is bisected, only the reference edge is halved, whereas the other two
edges become the reference edges of the two son triangles. The refinement of T into 2,
3, or 4 sons can then be done in one step.

Listing 5.2 provides our implementation of the NVB algorithm, where we use the following
convention: Let the element Tℓ be stored by

elements( ℓ,:) = [ i j k ].
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In this case zk ∈ N is the newest vertex of Tℓ, and the reference edge is given by E =
conv{zi, zj}.

• Lines 9–10: Create a vector edge2newNode , where edge2newNode( ℓ) is nonzero if and
only if the ℓ-th edge is refined by bisection. In Line 10, we mark all edges of the marked
elements for refinement. Alternatively, one could only mark the reference edge for all
marked elements. This is done by replacing Line 10 by

edge2newNode(element2edges(markedElements,1)) = 1;

• Lines 11–16: Closure of edge marking: For NVB-refinement, we have to ensure that if
an edge of T ∈ T is marked for refinement, at least the reference edge (opposite to the
newest vertex) is also marked for refinement. Clearly, the loop terminates after at most
#T steps since then all reference edges have been marked for refinement.

• Lines 18–21: For each marked edge, its midpoint becomes a new node of the re-
fined triangulation. The number of new nodes is determined by the nonzero entries
of edge2newNode .

• Lines 23–35: Update boundary conditions for refined edges: The ℓ-th boundary edge is
marked for refinement if and only if newNodes( ℓ) is nonzero. In this case, it contains the
number of the edge’s midpoint (Line 26). If at least one edge is marked for refinement,
the corresponding boundary condition is updated (Lines 27–34).

• Lines 37–44: Mark elements for certain refinement by (iterated) NVB: Generate ar-
ray such that newNodes(i, ℓ) is nonzero if and only if the ℓ-th edge of element Ti is
marked for refinement. In this case, the entry returns the number of the edge’s midpoint
(Line 37). To speed up the code, we use logical indexing and compute a logical array
markedEdges whose entry markedEdges(i, ℓ) only indicates whether the ℓ-th edge of
element Ti is marked for refinement or not. The sets none , bisec1 , bisec12 , bisec13 ,
and bisec123 contain the indices of elements according to the respective refinement
rule, e.g., bisec12 contains all elements for which the first and the second edge are
marked for refinement. Recall that either none or at least the first edge (reference edge)
is marked.

• Lines 46–51: Generate numbering of elements for refined mesh: We aim to conserve the
order of the elements in the sense that sons of a refined element have consecutive element
numbers with respect to the refined mesh. The elements of bisec1 are refined into two
elements, the elements of bisec12 and bisec13 are refined into three elements, the
elements of bisec123 are refined into four elements.

• Lines 53–70: Generate refined mesh according to NVB: For all refinements, we respect
a certain order of the sons of a refined element. Namely, if T is refined by NVB into two
sons Tℓ and Tℓ+1, Tℓ is the left element with respect to the bisection procedure. This
assumption allows the later coarsening of a refined mesh without storing any additional
data, cf. [15] and Section 5.3 below.

In numerical analysis, constants usually depend on a lower bound of the smallest interior
angle that appears in a sequence Tℓ of triangulations. It is thus worth noting that newest
vertex bisection leads to at most 4 ·#T0 similarity classes of triangles [29] which only depend
on T0, cf. Fig. 5.2. In particular, there is a uniform lower bound for all interior angles in Tℓ.
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5.3. Coarsening of refined meshes (Listing 5.3)

OurMatlab function coarsenNVB is a vectorized implementation of an algorithm from [16].
However, our code generalizes the implementation of [16] in the sense that a subset of
elements can be chosen for coarsening and redundant memory is set free, e.g., nodes which
have been removed by coarsening. Moreover, our code respects the boundary conditions
which are also affected by coarsening of T .

We aim to coarsen T by removing certain nodes added by refineNVB : Let T1, T2 ∈ T be
two brothers obtained by newest vertex bisection of a father triangle T0, cf. Figure 5.1. Let
z ∈ N denote the newest vertex of both T1 and T2. According to [16], one may coarsen T1

and T2 by removing the newest vertex z if and only if z is the newest vertex of all elements
T3 ∈ ω̃z := {T ∈ T : z ∈ T} of the patch. Therefore, z ∈ N\N0 may be coarsened if and
only if its valence satisfies #ω̃z ∈ {2, 4}, where N0 is the set of nodes for the initial mesh T0

from which the current mesh T is generated by finitely many (but arbitrary) newest vertex
bisections. In case #ω̃z = 2, there holds z ∈ N ∩ Γ, whereas #ω̃z = 4 implies z ∈ N ∩ Ω.

We stress that coarsenNVB only coarsens marked leaves of the current forest generated
by newest vertex bisection, i.e., coarsenNVB is not inverse to refineNVB , cf. Fig. 5.3.
However, the benefit of this simple coarsening rule is that no additional data structure as,
e.g., a refinement tree has to be built or stored.

T0
T1

T2 T3

T4

T12 T34

Figure 5.3. Coarsening is not fully inverse to refinement by newest vertex bisections: Assume that all

edges of a triangle are marked for refinement (left). Refinement then leads to 4 son elements (middle). One

application of the coarsening algorithm only removes the bisections on the last level (right)

• Lines 5–12: Build data structure element2neighbours containing geometric informa-
tion on the neighbour relation: Namely, k=element2neighbours(j, ℓ) contains the
number of the neighbouring element Tk along the ℓ-th edge of Tj, where k = 0 for a
boundary edge.

• Lines 14–19: We mark nodes which are admissible for coarsening (Lines 17–19). How-
ever, we consider only newest vertices added by refineNVB , for which the corresponding
elements are marked for coarsening (Lines 14–16).

Listing 5.3. Coarsening of NVB refined meshes

1 function [coordinates,elements, varargout ] = coarsenNVB(N0,coordinates,elements, varargin )
2 nC = size (coordinates,1);
3 nE = size (elements,1);
4 %*** Obtain geometric information on neighbouring elements
5 I = elements(:);
6 J = reshape (elements(:,[2,3,1]),3 * nE,1);
7 nodes2edge = sparse (I,J,1:3 * nE);
8 mask = nodes2edge >0;
9 [foo {1:2 },idxIJ] = find ( nodes2edge );

10 [foo {1:2 },neighbourIJ] = find ( mask + mask. * sparse (J,I,[1:nE,1:nE,1:nE]') );
11 element2neighbours(idxIJ) = neighbourIJ − 1;
12 element2neighbours = reshape (element2neighbours,nE,3);
13 %*** Determine which nodes (created by refineNVB) are deleted by coarsening
14 marked = zeros (nE,1);
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15 marked( varargin {end}) = 1;
16 newestNode = unique (elements((marked & elements(:,3) >N0),3));
17 valence = accumarray (elements(:),1,[nC 1]);
18 markedNodes = zeros (nC,1);
19 markedNodes(newestNode((valence(newestNode) == 2 | valence(newestNode) == 4))) = 1;
20 %*** Collect pairs of brother elements that will be united
21 idx = find (markedNodes(elements(:,3)) & (element2neighbours(:,3 ) > (1:nE)'))';
22 markedElements = zeros (nE,1);
23 markedElements(idx) = 1;
24 for element = idx
25 if markedElements(element)
26 markedElements(element2neighbours(element,3)) = 0;
27 end
28 end
29 idx = find (markedElements);
30 %*** Coarsen two brother elements
31 brother = element2neighbours(idx,3);
32 elements(idx,[1 3 2]) = [elements(idx,[2 1]) elements(bro ther,1)];
33 %*** Delete redundant nodes
34 activeNodes = find (∼markedNodes);
35 coordinates = coordinates(activeNodes,:);
36 %*** Provide permutation of nodes to correct further data
37 coordinates2newCoordinates = zeros (1,nC);
38 coordinates2newCoordinates(activeNodes) = 1: length (activeNodes);
39 %*** Delete redundant elements + correct elements
40 elements(brother,:) = [];
41 elements = coordinates2newCoordinates(elements);
42 %*** Delete redundant boundaries + correct boundaries
43 for j = 1: nargout −2;
44 boundary = varargin {j };
45 if ∼ isempty (boundary)
46 node2boundary = zeros (nC,2);
47 node2boundary(boundary(:,1),1) = 1: size (boundary,1);
48 node2boundary(boundary(:,2),2) = 1: size (boundary,1);
49 idx = ( markedNodes & node2boundary(:,2) );
50 boundary(node2boundary(idx,2),2) = boundary(node2boun dary(idx,1),2);
51 boundary(node2boundary(idx,1),2) = 0;
52 varargout {j } = coordinates2newCoordinates(boundary( find (boundary(:,2)),:));
53 else
54 varargout {j } = [];
55 end
56 end

• Lines 21–29: Decide which brother elements Tj , Tk ∈ T are resolved into its father
element: We determine which elements may be coarsened (Line 21) and mark them
for coarsening (Lines 22–23). According to the refinement rules in refineNVB , the
former father element T has been bisected into sons Tj , Tk ∈ T with j < k. By defini-
tion, Tj is the left brother with respect to the bisection of T , and the index k satisfies
k=element2neighbours(j,3) . We aim to overwrite Tj with its father and to remove
Tk from the list of elements later on. Therefore, we remove the mark on Tk (Lines 24–28)
so that we end up with a list of left sons which are marked for coarsening (Line 29).

• Lines 31–32: We replace the left sons by its father elements.

• Lines 34–38: We remove the nodes that have been coarsened from the list of coordinates
(Lines 34–35). This leads to a new numbering of the nodes so that we provide a mapping
from the old indices to the new ones (Lines 37–38).

• Lines 40–41: We remove the right sons, which have been coarsened, from the list of
elements (Line 40) and respect the new numbering of the nodes (Line 41).

• Lines 43–56: Correct the boundary partition: For each part of the boundary, e.g. the
Dirichlet boundary ΓD, we check whether some nodes have been removed by coarsening
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(Line 49). For these nodes, we replace the respective two boundary edges by the father
edge. More precisely, let zj ∈ N ∩ Γ be removed by coarsening. We then overwrite the
edge with zj as second node by the father edge (Line 50) and remove the edge, where zj
has been the first node (Lines 51–52).

Listing 5.4. Adaptive algorithm

1 function [x,coordinates,elements,indicators] ...
2 = adaptiveAlgorithm(coordinates,elements,dirichlet,n eumann,f,g,uD,nEmax,theta)
3 while 1
4 %*** Compute discrete solution
5 x = solveLaplace(coordinates,elements,dirichlet,neuma nn,f,g,uD);
6 %*** Compute refinement indicators
7 indicators = computeEtaR(x,coordinates,elements,diric hlet,neumann,f,g);
8 %*** Stopping criterion
9 if size (elements,1) >= nEmax

10 break
11 end
12 %*** Mark elements for refinement
13 [indicators,idx] = sort(indicators, 'descend' );
14 sumeta = cumsum(indicators);
15 ell = find (sumeta >=sumeta( end) * theta,1);
16 marked = idx(1:ell);
17 %*** Refine mesh
18 [coordinates,elements,dirichlet,neumann] = ...
19 refineNVB(coordinates,elements,dirichlet,neumann,ma rked);
20 end

6. A posteriori error estimators and adaptive mesh-refinement

In practice, computational time and storage requirements are limiting quantities for numer-
ical simulations. One is thus interested to construct a mesh T such that the number of
elements M = #T 6 Mmax stays below a given bound, whereby the error ‖u − U‖H1(Ω) of
the corresponding Galerkin solution U is (in some sense) minimal.

Such a mesh T is usually obtained in an iterative manner: For each element T ∈ T , let
ηT ∈ R be a so-called refinement indicator which (at least heuristically) satisfies

ηT ≈ ‖u− U‖H1(T ) for all T ∈ T . (6.1)

In particular, the associated error estimator η =
(∑

T∈T
η2T

)1/2
then yields an error estimate

η ≈ ‖u − U‖H1(Ω). The main point at this stage is that the refinement indicators ηT might
be computable, whereas u is unknown and thus the local error ‖u− U‖H1(T ) is not.

6.1. Adaptive algorithm (Listing 5.4)

Given some refinement indicators ηT ≈ ‖u−U‖H1(T ), we mark elements T ∈ T for refinement
by the Dörfler criterion [18], which seeks to determine the minimal set M ⊆ T such that

θ
∑

T∈T

η2T 6
∑

T∈M

η2T , (6.2)

for some parameter θ ∈ (0, 1). Then, a new mesh T ′ is generated from T by refinement of
(at least) the marked elements T ∈ M to decrease the error ‖u − U‖H1(Ω) efficiently. Note
that θ → 1 corresponds to almost uniform mesh-refinement, i.e. most of the elements are
marked for refinement, whereas θ → 0 leads to highly adapted meshes.
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• Line 1–2: The function takes the initial mesh as well as the problem data f , g, and uD.
Moreover, the user provides the maximal number nEmax of elements and the adaptivity
parameter θ from (6.2). After termination, the function returns the coefficient vector x
of the final Galerkin solution U ∈ S1

D(T ), cf. (2.8), the associated final mesh T , and the
corresponding vector indicators of elementwise error indicators.

• Line 3–20: As long as the number M = #T of elements is smaller than the given bound
nEmax, we proceed as follows: We compute a discrete solution (Line 5) and the vector
of refinement indicators (Line 7), whose j-th coefficient stores the value of η2j := η2Tj

.
We find a permutation π of the elements such that the sequence of refinement indicators
(η2π(j))

M
j=1 is decreasing (Line 13). Then (Line 14), we compute all sums

∑ℓ
j=1 η

2
π(j) and

determine the minimal index ℓ such that θ
∑M

j=1 η
2
j = θ

∑M
j=1 η

2
π(j) 6

∑ℓ
j=1 η

2
π(j) (Line

15). Formally, we thus determine the set M = {Tπ(j) : j = 1, . . . , ℓ} of marked elements
(Line 16), cf. (6.2). Finally (Lines 18–19), we refine the marked elements and so generate
a new mesh.

In the current state of research, the Dörfler criterion (6.2) and NVB refinement are used to
prove convergence and optimality of AFEM [11], and convergence for general mesh-refining
strategies is observed in [3]. In [25], the authors, by others, prove convergence of AFEM for
the bulk criterion, which marks elements T ∈ T for refinement provided

ηT > θ max
T ′∈T

ηT ′. (6.3)

To use it in the adaptive algorithm, one may simply replace Lines 13–16 of Listing 5.4 by

marked = find (indicators >=theta * max(indicators));

For error estimation (Line 7) and mesh-refinement (Line 19), also other functions of p1afem
can be used, cf. Section 4.

6.2. Residual-based error estimator (Listing 6.1)

We consider the error estimator ηR :=
(∑

T∈T η2T
)1/2

with refinement indicators

η2T := h2
T‖f‖

2
L2(T ) + hT‖Jh(∂nU)‖2L2(∂T∩Ω) + hT ‖g − ∂nU‖2L2(∂T∩ΓN ). (6.4)

Listing 6.1. Residual-based error estimator

1 function etaR = computeEtaR(x,coordinates,elements,dirichlet,n eumann,f,g)
2 [edge2nodes,element2edges,dirichlet2edges,neumann2e dges] ...
3 = provideGeometricData(elements,dirichlet,neumann);
4 %*** First vertex of elements and corresponding edge vectors
5 c1 = coordinates(elements(:,1),:);
6 d21 = coordinates(elements(:,2),:) − c1;
7 d31 = coordinates(elements(:,3),:) − c1;
8 %*** Vector of element volumes 2 * |T |
9 area2 = d21(:,1). * d31(:,2) −d21(:,2). * d31(:,1);

10 %*** Compute curl(uh) = ( −duh/dy, duh/dx)
11 u21 = repmat (x(elements(:,2)) −x(elements(:,1)), 1,2);
12 u31 = repmat (x(elements(:,3)) −x(elements(:,1)), 1,2);
13 curl = (d31. * u21 − d21. * u31)./ repmat (area2,1,2);
14 %*** Compute edge terms hE * (duh/dn) for uh
15 dudn21 = sum(d21. * curl,2);
16 dudn13 = −sum(d31. * curl,2);
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17 dudn32 = −(dudn13+dudn21);
18 etaR = accumarray (element2edges(:),[dudn21;dudn32;dudn13],[ size (edge2nodes,1) 1]);
19 %*** Incorporate Neumann data
20 if ∼ isempty (neumann)
21 cn1 = coordinates(neumann(:,1),:);
22 cn2 = coordinates(neumann(:,2),:);
23 gmE = feval (g,(cn1+cn2)/2);
24 etaR(neumann2edges) = etaR(neumann2edges) − sqrt ( sum((cn2 −cn1).ˆ2,2)). * gmE;
25 end
26 %*** Incorporate Dirichlet data
27 etaR(dirichlet2edges) = 0;
28 %*** Assemble edge contributions of indicators
29 etaR = sum(etaR(element2edges).ˆ2,2);
30 %*** Add volume residual to indicators
31 fsT = feval (f,(c1+(d21+d31)/3));
32 etaR = etaR + (0.5 * area2. * fsT).ˆ2;

Here, Jh(·) denotes the jump over an interior edge E ∈ E with E 6⊂ Γ. For neighbouring
elements T± ∈ T with respective outer normal vectors n±, the jump of the T -piecewise
constant function ∇U over the common edge E = T+ ∩ T− ∈ E is defined by

Jh(∂nU)|E := ∇U |T+ · n+ +∇U |T−
· n−, (6.5)

which is, in fact, a difference since n+ = −n−. The residual-based error estimator ηR is
known to be reliable and efficient in the sense that

C−1
rel ‖u− U‖H1(Ω) 6 ηR 6 Ceff

[
‖u− U‖H1(Ω)+‖h(f − fT )‖L2(Ω)+‖h1/2(g − gE)‖L2(ΓN )

]
,

(6.6)

where the constants Crel, Ceff > 0 only depend on the shape of the elements in T as well
as on Ω, see [30, Section 1.2]. Moreover, fT and gE denote the T -elementwise and E-
edgewise integral mean of f and g, respectively. Note that for smooth data, there holds
‖h(f − fT )‖L2(Ω) = O(h2) as well as ‖h1/2(g − gE)‖L2(ΓN ) = O(h3/2) so that these terms are
of higher order when compared with error ‖u− U‖H1(Ω) and error estimator ηR.

For the implementation, we replace f |T ≈ f(sT ) and g|E ≈ g(mE) with sT the center of
mass of an element T ∈ T and mE the midpoint an edge of E ∈ E . We realize

η̃2T := |T |2 f(sT )
2 +

∑

E∈∂T∩Ω

h2
E

(
Jh(∂nU)|E

)2
+

∑

E∈∂T∩ΓN

h2
E

(
g(mE)− ∂nU |E

)2
(6.7)

Note that shape regularity of the triangulation T implies

hE 6 hT 6 C hE as well as 2|T | 6 h2
T 6 C |T |, for all T ∈ T with edge E ⊂ ∂T,

(6.8)

with some constant C > 0, which depends only on a lower bound for the minimal interior
angle. Up to some higher-order consistency errors, the estimators η̃R and ηR are therefore
equivalent.

The implementation from Listing 6.1 returns the vector of squared refinement indicators
(η̃2T1

, . . . , η̃2TM
), where T = {T1, . . . , TM}. The computation is performed in the following

way:

• Lines 5–9 are discussed for Listing 3.3 above, see Section 3.4.
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• Lines 11–13: Compute the T -piecewise constant (curlU)|T = (−∂U/∂x2, ∂U/∂x1)|T ∈
R

2 for all T ∈ T simultaneously. To that end, let z1, z2, z3 be the vertices of a triangle
T ∈ T , given in counterclockwise order, and let Vj be the hat function associated with
zj = (xj , yj) ∈ R

2. With z4 = z1 and z5 = z2, the gradient of Vj reads

∇Vj |T =
1

2|T |
(yj+1 − yj+2, xj+2 − xj+1). (6.9)

In particular, there holds 2|T | curlVj|T = zj+1 − zj+2, where we assume zj ∈ R
2 to be a

row-vector. With U |T =
∑3

j=1 ujVj , Lines 11–13 realize

2|T | curlU |T = 2|T |
3∑

j=1

uj curlVj |T = (z3 − z1)(u2 − u1)− (z2 − z1)(u3 − u1). (6.10)

• Lines 15–18: For all edges E ∈ E , we compute the jump term hE Jh(∂U/∂n)|E if E is
an interior edge, and hE (∂U/∂n)|E if E ⊆ Γ is a boundary edge, respectively. To that
end, let z1, z2, z3 denote the vertices of a triangle T ∈ T in counterclockwise order and
identify z4 = z1 etc. Let nj denote the outer normal vector of T on its j-th edge Ej of
T . Then, dj = (zj+1 − zj)/|zj+1 − zj | is the tangential unit vector of Ej . By definition,
there holds

hEj
(∂U/∂nT,Ej

) = hEj
(∇U · nT,Ej

) = hEj
(curlU · dj) = curlU · (zj+1 − zj).

Therefore, dudn21 and dudn13 are the vectors of the respective values for all first edges
(between z2 and z1) and all third edges (between z1 and z3), respectively (Lines 15–16).
The values for the second edges (between z3 and z2) are obtained from the equality

−(z3 − z2) = (z2 − z1) + (z1 − z3)

for the tangential directions (Line 17). We now sum the edge-terms of neighbouring
elements, i.e. for E = T+∩T− ∈ E (Line 18). The vector etaR contains hE Jh(∂U/∂n)|E
for all interior edges E ∈ E as well as hE (∂U/∂n)|E for boundary edges.

• Lines 20–29: For Neumann edges E ∈ E , we subtract hEg(mE) to the respective entry
in etaR (Lines 20–25). For Dirichlet edges E ∈ E , we set the respective entry of etaR

to zero, since Dirichlet edges do not contribute to η̃T (Line 27), cf. (6.7).

• Line 29: Assembly of edge contributions of η̃T . We simultaneously compute
∑

E∈∂T∩Ω

h2
E

(
Jh(∂nU)|E

)2
+

∑

E∈∂T∩ΓN

h2
E

(
g(mE)− ∂nU |E

)2
for all T ∈ T .

• Line 31–32: We add the volume contribution
(
|T |f(sT )

)2
and obtain η̃2T for all T ∈ T .

7. Numerical experiments

To underline the efficiency of the developed Matlab code, this section briefly comments on
some numerical experiments. Throughout, we used the Matlab version 7.8.0.347 (R2009a)
on a common dual-board 64-bit PC with 3 GB of RAM and two AMD Athlon(tm) II X3 445
CPUs with 512 KB cache and 3.1 GHz each running under Linux.
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7.1. Stationary model problem

For the first experiment, we consider the Poisson problem

−∆u = 1 in Ω (7.1)

with mixed Dirichlet-Neumann boundary conditions, where the L-shaped domain as well
as the boundary conditions are visualized in Figure 3.1. The exact solution has a singular
behaviour at the re-entrant corner. Before the actual computations, the plotted triangulation
given in Figure 3.1 is generally refined into a triangulation T1 with M1 = 3.072 similar
triangles. Throughout, the triangulation T1 is used as initial triangulation in our numerical
computations.

We focus on the following aspects: First, we compare the computational times for six
different implementations of the adaptive algorithm described in Section 6.1. Second, we plot
the energy error over the total runtime for the adaptive algorithm and a uniform strategy.
The latter experiment indicates the superiority of the adaptive strategy compared to uniform
mesh refinements.

For all the numerical experiments, the computational time is measured by use of the
built-in function cputime which returns the CPU time in seconds. Moreover, we take
the mean of 11 iterations for the evaluation of these computational times, where the first
execution is eliminated to neglect the time used by theMatlab precompiler for performance
acceleration.

In Figure 7.1, we plot the runtime of one call of the adaptive algorithm from List-
ing 5.4 over the number of elements for which the algorithm is executed. In this experiment,
we use six different versions of the algorithm: the implementations ”slow” (Listing 3.1),
”medium” (Listing 3.2) and ”optimized” (Listing 3.3) as well as the vectorized assembly
from [26, 27] only differ in the method of assembly of the Galerkin data. All of these
implementations use the routine computeEtaR from Section 6.2 to compute the error indi-
cators and the function refineNVB from Section 5.2 for mesh refinement. For the remaining
two implementations shown in Figure 3.4, we replace solveLaplace , computeEtaR and
refineNVB by the corresponding functions from the AFEM package [16, 17] and the iFEM
package [13, 14], respectively.

We compute the total runtime for the adaptive algorithm from M = 3.072 up to M =
2.811.808 elements. As can be expected from Section 3.2–3.3, the naive assembly (slow)
of the Galerkin data from [1] yields quadratic dependence, whereas all remaining codes are
empirically proven to be of (almost) linear complexity. The third implementation, which
uses all the optimized modules, is approximately 6 times faster than AFEM [16, 17]. At
the same time, iFEM [16, 17] and [27] are approximately 40% resp. 20% slower than our
implementation. Note that for the maximal number of elements M = 2.811.808, one call of
the optimized adaptive algorithm takes approximately 17 seconds.

Further numerical experiments show that the Matlab \ operator yields the highest
non-linear contribution to the overall runtime. Consequently, the runtime of the optimized
adaptive algorithm is dominated by solving the sparse system of equations for more than
200.000 elements. For the final run with M = 2.811.808, approximately half of the total
runtime is contributed by Matlab’s backslash operator. The assembly approximately takes
20% of the overall time, whereas the contribution of computeEtaR and refineNVB both
account for 15% of the computation. For a detailed discussion of the numerical results, we
refer to [20].
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Figure 7.1. Computational times for various implementations of the adaptive algorithm from Listing 6.1

for Example 7.1 over the number of elements M . We stress that the version which uses the assembly from

Listing 3.1 (slow) has quadratic growth, while all the other implementations only lead to (almost) linear

growth of the computational time. In all cases, the algorithm using the optimized routines is the fastest

In the second numerical experiment for the static model problem, we compare uniform
and adaptive mesh-refinement. In Fig. 7.3, we plot the error in the energy norm ‖∇(u −
U)‖L2(Ω) and the residual error estimator ηR over the computational time for the adaptive
algorithm from Section 6.1 and a uniform strategy. The error is computed with the help of
the Galerkin orthogonality which provides

‖∇(u− U)‖L2(Ω) =
(
‖∇u‖2L2(Ω) − ‖∇U‖2L2(Ω)

)1/2
. (7.2)

Let T be a given triangulation with associated Galerkin solution U ∈ S1(T ). If A denotes
the Galerkin matrix and x denotes the coefficient vector of U , the discrete energy reads

‖∇U‖2L2(Ω) = x ·Ax. (7.3)

Since the exact solution u ∈ H1(Ω) is not given analytically, we used Aitkin’s ∆2 method to
extrapolate the discrete energies obtained from a sequence of uniformly refined meshes with
M = 3.072 to M = 3.145.728 elements. This led to the extrapolated value

‖∇u‖2L2(Ω) ≈ 1.06422 (7.4)
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Figure 7.2. Galerkin error and error estimator ηR in Example 7.1 with respect to the number of elements:

We consider uniform mesh-refinement as well as the adaptive algorithm from Listing 5.4. One observes that

adaptive mesh-refinement is clearly superior and that the optimal convergence order is retained

which is used to compute the error (7.2) for uniform as well as for adaptive mesh-refinement.
In the adaptive process the elements were marked by use of the Dörfler marking (6.2) with
θ = 0.5 and refined by the newest vertex bisection (NVB).

For a fair comparison with the adaptive strategy, the plotted times are computed as
follows: For the ℓ-th entry in the plot, the computational time tunifℓ corresponding to uniform
refinement is the sum of

• the time for ℓ− 1 successive uniform refinements,

• the time for one assembly and solution of the Galerkin system,

where we always start with the initial mesh T1 with M1 = 3.072 elements and tunif1 is the
time for the assembly and solving for T1. Contrary to that, the adaptive algorithm from
Listing 5.4 with θ = 0.5 constructs a sequence of successively refined meshes, where Tℓ+1 is
obtained by local refinement of Tℓ based on the discrete solution Uℓ. We therefore define the
computational time tadapℓ for adaptive mesh-refinement in a different way: We again set tadap1

to the time for one call of solveLaplace on the initial mesh T1. The other computational
times tadapℓ are the sum of

• the time tadapℓ−1 already used in prior steps,
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Figure 7.3. Galerkin error and error estimator ηR in Example 7.1 with respect to computational time: We

consider uniform mesh-refinement as well as the adaptive algorithm from Listing 5.4. For the uniform strat-

egy, we only measure the computational time for ℓ successive uniform mesh-refinements plus one assembly

and the solution of the Galerkin system. For the adaptive strategy, we measure the time for the assembly

and solution of the Galerkin system, the time for the computation of the residual-based error estimator ηR

and the refinement of the marked elements, and we add the time used for the adaptive history. In any case,

one observes that the adaptive strategy is much superior to uniform mesh-refinement

• the time for the computation of the residual-based error estimator ηR,

• the time for the refinement of the marked elements to provide Tℓ,

• the time for the assembly and solution of the Galerkin system for Tℓ.

Within 100 seconds, our Matlab code computes an approximation with accuracy ‖∇(u−
Uadap)‖L2(Ω) ≈ 1/1000, whereas uniform refinement only leads to ‖∇(u−Uunif)‖L2(Ω) ≈ 1/100
within roughly the same time. This shows that not only from a mathematical, but even from
a practical point of view, adaptive algorithms are much superior.

7.2. Quasi-stationary model problem

In the second example, we consider a homogeneous Dirichlet problem (2.1) with ΓD = ∂Ω
on the domain Ω = (0, 3)2 \ [1, 2]2, cf. Fig. 7.4. The right-hand side f(x, t) := exp(−10 ‖x−
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Set n := 0, t := 0 Initialization
Do while t 6 tmax Time loop

Set k := 0 and Tn,1 := Tn Initial mesh for refinement loop
Do Loop for adaptive mesh-refinement

Update k 7→ k + 1
Compute discrete solution Un,k on mesh Tn,k
For all T ∈ Tn,k compute error indicators ηT Refinement indicator

and estimator η2n,k :=
∑

T∈Tn,k
η2T Error estimator

If ηn,k > τ Adaptive mesh-refinement
Use Dörfler criterion (6.2) to mark

elements for refinement
Refine marked elements by NVB to

obtain a ’finer’ triangulation Tn,k+1

End If
While ηn,k > τ Solution Un,k is accurate enough
Set Tn := Tn,k and Un := Un,k

Set T ∗
n,k := Tn Initial mesh for coarsening loop

Do Loop for adaptive mesh-coarsening
Update k 7→ k − 1
Mark elements T for coarsening

provided η2T 6 σ τ2/#T ∗
n,k+1

Generate a ’coarser’ triangulation T ∗
n,k

by coarsening marked elements
If #T ∗

n,k < #T ∗
n,k+1

Compute discrete solution Un,k on mesh T ∗
n,k

For all T ∈ T ∗
n,k compute error indicators ηT Refinement (resp. coarsening) indicator

End if
While k > 1 and #T ∗

n,k < #T ∗
n,k+1 Mesh cannot be coarsened furthermore

Set T ∗
n := T ∗

n,k

Set Tn+1 := T ∗
n

Update n := n+ 1, t := t+∆t Go to next time step
End Do

Table 7.1. Adaptive algorithm with refinement and coarsening used for the quasi-stationary Example 7.2

x0(t)‖2) is time dependent with x0(t) := (1.5+cos t, 1.5+ sin t). The initial mesh T0 consists
of 32 elements obtained from refinement of the 8 squares along their diagonals.

In the following, we compute for n = 0, 1, 2, . . . , 200 and corresponding time steps tn :=
nπ/100 ∈ [0, 2π] a discrete solution Un such that the residual-based error estimator ηR =
ηR(Un) from Section 6.2 satisfies ηR 6 τ for a given tolerance τ > 0. Instead of starting
always from the coarsest mesh T0, we use the adaptive algorithm from Table 7.1 which allows
adaptive mesh-refinement as well as mesh-coarsening. For the refinement, we use the Dörfler
criterion (6.2) with parameter θ ∈ (0, 1). For the coarsening process, we mark those elements
T ∈ T , which satisfy η2T 6 σ τ 2/#T for some given parameter σ ∈ (0, 1). This criterion is
heuristically motivated as follows: For an optimal mesh T with ηR = τ , we expect an equi-
distribution of the residual, i.e. ηT = η0 for all T ∈ T . Then, τ 2 = η2R =

∑
T∈T η2T = (#T )η20,

whence η20 = τ 2/#T . Consequently, our criterion marks those elements T for which the
contribution ηT seems to be too small with respect to the equi-distribution of the residual.
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# Elements = 2987 # Elements = 3138 # Elements = 3165

# Elements = 2990 # Elements = 2849 # Elements = 2217

Figure 7.4. Adaptively generated meshes Tn at different time steps n = 1, 11, 21, 31, 41, 51 for the quasi-

stationary Example 7.2, where we used the adaptive algorithm from Table 7.1 with tolerance τ = 0.03 and

parameters σ = 0.25 and θ = 0.25

We stop our coarsening process if none of the marked elements can be modified by our
procedure described in Section 5.3.

For our numerical experiment, we choose the tolerance τ = 0.03 as well as the parameters
σ = 0.25 for adaptive mesh-coarsening and θ = 0.25 for adaptive mesh-refinement. A
sequence of adapted meshes is shown in Figure 7.4 at times t1 = 0, t11, t21, t31, t41, and t51.
We see that the refinement follows mainly the source term f . Moreover, we observe a certain
refinement at reentrant corners, and elements ’behind’ the source are coarsened.

In Fig. 7.5 we plot the evolution of the number of elements. The upper curve shows the
number #Tn of elements to satisfy the condition ηR 6 τ for each time step, while the lower
graph gives the number #T ∗

n of elements after coarsening of the fine triangulation. Both
curves show oscillations. This is in agreement with the theory due to the character of the
source term f , since more degrees of freedom are needed for the same accuracy when the
source density increases at one of the reentrant corners.

Finally, we compare the performance of the proposed adaptive algorithm with two naive
strategies which avoid coarsening, but only use adaptive mesh-refinement. First, we start
the adaptive computation in each time step tn with the initial mesh T0, i.e., Tn := T0

for all n = 0, . . . , 200. Second, we always use the preceding mesh to start the adaptive
computation, i.e., Tn+1 := Tn. Note that in the second case, the number #Tn of elements
is always increasing with n. However, up to the time step n = 45, the latter strategy is
the most efficient with respect to the overall computational time. For n > 45, the proposed
adaptive algorithm from Table 7.1 becomes the most efficient strategy. Until the final time
step n = 200, the other two naive strategies become three times slower, and this gap is even
increasing with n. Hence, a refinement-coarsening strategy as considered here, is generically
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Figure 7.5. On the left, number #Tn of elements in quasi-stationary Example 7.2 after refinement (left)

resp. number #T ∗

n of elements after coarsening (left, dashed) for all time steps n = 1, 2, 3, . . . , 200, where

we used the adaptive algorithm from Table 7.1 with tolerance τ = 0.03 and parameters σ = 0.25 and

θ = 0.25. On the right, we compare different strategies with respect to the overall computational time.

First, the proposed algorithm from Table 7.1, where Tn+1 := T ∗

n (right). Second, the same algorithm

without coarsening and computation from the scratch, i.e., Tn+1 := T0 (right, dashed). Third, the same

algorithm without coarsening and Tn+1 := Tn (right, dotted). For later time steps tn, we observe that the

algorithm from Table 7.1 is much more efficient than the other two naive strategies

much faster than naive approaches.
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