
Received May 7, 2019, accepted June 6, 2019, date of publication July 16, 2019, date of current version August 15, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2929221

Efficient Implementation of Density Evolution
for Punctured Polar Codes

CHRISTOPHER SCHNELLING 1,2, MARKUS ROTHE2, NIKLAS KOEP2,
RUDOLF MATHAR 2, AND ANKE SCHMEINK1,2
1Research Group (Information Theory and Systematic Design of Communication Systems), RWTH Aachen University, 52062 Aachen, Germany
2Institute for Theoretical Information Technology, RWTH Aachen University, 52062 Aachen, Germany

Corresponding author: Christopher Schnelling (schnelling@ti.rwth-aachen.de)

ABSTRACT Polar codes asymptotically achieve the symmetric capacity of arbitrary binary-input discrete

memoryless channels under low-complexity sequential decoding algorithms such as successive cancellation

decoding. However, in their original formulation, the block length of polar codes is limited to integer powers

of the dimension of the underlying polarization kernel used, thus imposing strict constraints on possible

application scenarios. While leeway in the choice of kernel or concatenation with other codes mitigates

this drawback to a certain extent, puncturing presents a promising approach to specify the target length

of a polar code with much greater flexibility. In this paper, we present an efficient implementation of the

construction of punctured polar codes based on density evolution, a crucial tool in the construction of both

regular, i.e., unpunctured, as well as punctured polar codes. Our implementation of density evolution covers

the construction of both regular and punctured polar codes and allows for treating the construction of both

code classes in a unified framework. Using our implementation, we achieve substantial reductions in the

number of density convolutions necessary for the construction of punctured polar codes and obtain tight

upper bounds on the block error rates.

INDEX TERMS Polar codes, puncturing, density evolution.

I. INTRODUCTION

Polar codes present the first channel coding scheme prov-

ably achieving the symmetric capacity of arbitrary binary-

input discrete memoryless channels (BDMCs). As they build

on explicit low-complexity encoding and decoding methods

providing this favourable asymptotic behaviour, polar codes

(PCs) give a constructive solution to a long-standing open

problem in information theory. Thus, PCs have received a

lot of attention since their introduction [1]. These properties

come at the cost of restricting possible block lengths to integer

powers of two due to the original PC construction based on

the two-dimensional polarization kernel [1]

F =

[

1 0

1 1

]

. (1)

Several options have been explored to increase the length

flexibility of PCs as required in modern communication sys-

tems. Concatenated coding schemes including PCs as inner

The associate editor coordinating the review of this manuscript and
approving it for publication was Zilong Liu.

or outer codes present a natural option to achieve this

goal. Several such schemes have been presented in the lit-

erature, concatenating PCs with, e.g., low-density parity-

check (LDPC) codes [2], Reed-Solomon (RS) codes [3], [4],

or Bose-Chaudhuri-Hocquenghem (BCH) codes [5]. Alter-

natively, the two-dimensional kernel F as in (1) may be

replaced by other kernelsK ∈ F
m×m
2 [6], which yields PCs of

lengths mn when constructing a polarizing matrix from K⊗n,

the n-th Kronecker power of K, where F2 := {0, 1} denotes

the binary finite field.

These approaches facilitate greater length flexibility, but

come with substantially complex encoder and decoder struc-

tures, and do not promote length flexibility of PC schemes

to the desired extent. To overcome this, both puncturing and

shortening of PCs based on the standard kernel F have been

considered, targeting length adaptions of PCs as granular as

possible, e.g., [2], [7], [8], and [9].

In this work, we focus on efficiently implementing the con-

struction of punctured PCs. Such a code is defined by a PC C

of length N = 2n, n ∈ N, commonly referred to as the mother

code, and a puncturing patternP defining the positions of the

codewords of C which are punctured, that is, omitted upon

VOLUME 7, 2019
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 105909

https://orcid.org/0000-0002-6450-2865
https://orcid.org/0000-0002-9585-605X

C. Schnelling et al.: Efficient Implementation of Density Evolution for Punctured Polar Codes

transmission over the channel. This results in a punctured PC

C′ of lengthM = N−|P|. Albeit allowing for arbitrary target

lengths M < N , puncturing codeword positions changes the

properties of the coordinate channels, i.e. the virtual channels

based on which individual information bits are decoded when

using a successive cancellation (SC) decoder.

The changes to the channel polarization induced by punc-

turing codeword positions necessitate evaluation to construct

an information index set for a punctured PC. A tool of

paramount importance to assess the error performance of

potential information positions under SC decoding is given by

a modified version of density evolution (DE). Based on these

individual error probability estimates, such index set may be

selected in order to minimize the union bound on the block

error rate (BLER) under SC decoding. As no information

is received for punctured positions, corresponding channel

output log-likelihood ratios (LLRs) are set to zero at the SC or

successive cancellation list (SCL) decoder [10], [11], hence

treating such positions as random bits. Consequently, punc-

tured positions are treated as erasures, which is accounted for

by replacing corresponding LLR densities accordingly, thus

resulting in a modified version of the DE construction pro-

posed for regular, that is, unpunctured PCs, in [12]. Selecting

the index set for a punctured PC containing the indices of

the information positions for a given puncturing pattern via a

modified DE was first proposed in [7] and [13].

In this work, we present an efficient implementation for the

construction of both regular and punctured PCs based on a

DE, which allows treating the practical construction problem

for both classes of PCs in a unified framework. In general,

DE builds on convolutions of probability density functions,

viz., densities, of inboundmessage values, in order to quantify

densities of message values produced at both variable and

check nodes of a factor graph (FG) representation of a given

code. Consequently, the cost of performing a DE is mainly

driven by the complexity of these convolution operations. As

any practical implementation of DE performs these opera-

tions on quantized densities, a large number of samples is

necessary to produce accurate results [14]. For any given

implementation of the convolution operations, we present an

algorithm which efficiently reuses convolution expressions,

resulting in a drastic reduction of the number of convo-

lutions necessary for code construction. Depending on the

puncturing patterns used, we report significant reductions of

the number of convolutions, hence verifying the efficiency

of our approach. For puncturing patterns chosen uniformly

at random, we observe savings in terms of the number of

necessary convolutions between 35% and almost 70%, while

for quasi-uniform puncturing (QUP), the savings amount to

up to 90%, depending on the length of the mother code.

Furthermore, we present simulation results for both regular

and punctured PCs with corresponding upper bounds on the

respective BLERs obtained by our implementation of DE.We

note that these bounds are extremely tight and hence provide

empirical evidence that our implementation is suitable to

predict the BLERs of both punctured and regular PCs.

This paper is structured as follows. In Section II, we briefly

discuss the preliminaries of both regular as well as punctured

PCs to provide the background and notation used over the

course of this work. Section III presents our implementation

of a DE for the construction of both punctured and regular

PCs. To do so, we present an in-depth discussion of the

implicit assumptions such a DE rests on, and formalize the

effects of the modifications implied by puncturing certain

codeword positions on the convolution operations neces-

sary for a DE. These steps facilitate drastic reductions of

the total number of convolutions necessary for constructing

such a code. Section IV discusses the complexity of our

approach and bounds the number of convolutions. Further-

more, we show how the framework may be extended using

Gaussian approximations (GAs) of the message densities.

Numerical examples for two popular puncturing approaches,

namely, quasi-uniform puncturing as well as uniform ran-

dom puncturing, are provided in Section V. Furthermore,

we present simulation results for both punctured and regular

PCs alongside corresponding upper bounds on the respective

BLERs, obtained by our DE implementation. The tightness

of these bounds confirms the predictive power of our imple-

mentation, that is, resulting empirical BLERs are observed

to closely match the performance bounds obtained by the

proposed DE implementation. We conclude the paper in

Section VI.

II. PRELIMINARIES

A. POLAR CODES

In his seminal work [1], Arıkan presents a phenomenon

referred to as channel polarization (CP) and devises a chan-

nel coding scheme based on it. To do so, he shows how

to combine N = 2n, n ∈ N, independent copies of a

given BDMC W : X → Y , with input alphabet X = {0, 1},

and output alphabet Y , into a set of N (virtual) channels
{

WN ,i : i ∈ [N]
}

, where we write [N] := {1, . . . ,N } ⊂ N.

These channels

WN ,i : X → YN × X i−1, (2)

also referred to as coordinate channels, polarize in the sense

that as N approaches infinity, the fraction of indices i for

which I
(

WN ,i

)

neither approaches 0 (useless channels) nor 1

(perfect channels) vanishes, where I
(

WN ,i

)

denotes the sym-

metric capacity of channel WN ,i, i.e. its mutual informa-

tion assuming uniformly distributed channel inputs. In the

limit, the fraction of indices i such that I
(

WN ,i

)

→ 1

is arbitrarily close to I (W) [1]. If W is output-symmetric,

i.e. a binary-input memoryless output-symmetric channel

(BMSC), the symmetric capacity I (W) is equal to the

Shannon capacity. As the proposed SC decoding algorithm

exploits the polarization of the coordinate channels, PCs

present a capacity-achieving coding scheme for the family of

BMSCs with discrete output alphabets.

To induce CP given N independent copies of a basic

channelW used for transmission, these copies are combined

recursively. This recursion implies a linear code C, which

105910 VOLUME 7, 2019

C. Schnelling et al.: Efficient Implementation of Density Evolution for Punctured Polar Codes

FIGURE 1. Factor graph of B8F
⊗3, used here to exemplify construction of

a punctured PC of length M = 6, by puncturing positions x4 and x6 of
every codeword x of a mother PC of length N = 8. Consequently, these
positions are initalized with an L-density δ, as punctured positions
correspond to erasures for a DE.

forms codewords containing N linear combinations

x = (x1, . . . , xN) = uAGN ,A (3)

of u ∈ F
N
2 . We follow the subvector notation used in [1]

and let uA = (ui)i∈A denote a subvector of u containing

the information bits, where A ⊂ [N] provides the indices of

these information positions. This implies a generator GN ,A

of the code formed by selecting rows gi, i ∈ A from the

matrix GN = BNF
⊗n, where BN is a bit-reversal permu-

tation, and F as in (1) is the binary polarization kernel [1].

This sets the remaining elements uAc which are referred to

as frozen bits to zero, where Ac = [N] \ A denotes the

complement of A with respect to [N]. Selecting an informa-

tion index set A of cardinality |A| = K , we obtain a code of

rate R = K
N
.

By SC decoding, Arıkan suggests a sequential algorithm to

decode PCs. Such a decoder exploits the structure of the FG

representation of GN given in Figure 1 to compute LLRs

LN ,i

(

yN1 , û
i−1
1

)

:= log
WN ,i

(

yN1 , û
i−1
1 | 0

)

WN ,i

(

yN1 , û
i−1
1 | 1

) (4)

for all information bits ui, i ∈ A, recursively based on the

received channel output yN1 and i−1 previous estimates û
i−1
1 .

These estimates are obtained by hard-decisions on the cor-

responding LLRs. Using random vectors
(

UN
1 ,YN1

)

taking

values
(

uN1 , yN1

)

∈ XN × YN according to a distribution

implied by the channel transition probabilities W and the

prior of UN
1 , [1] gives an upper bound for the block error

probability under SC decoding. To do so, [1] defines events

Bi :=
{(

uN1 , yN1

)

∈ XN × YN :

ui−11 = û
i−1
1 , ui 6= h

(

LN ,i

(

yN1 , û
i−1
1

))}

, (5)

where
(

uN1 , yN1

)

are realizations of the random vectors
(

UN
1 ,YN1

)

, and h denotes the probabilistic hard-decision

function acting on the LLR LN ,i, that is, h returns an equally

likely random bit if LN ,i = 0. We have

Bi =
{(

uN1 , yN1

)

∈ XN × YN :

ui−11 = û
i−1
1 , ui 6= h

(

LN ,i

(

yN1 ,ui−11

))}

⊆
{(

uN1 , yN1

)

∈ XN × YN :

ui 6= h
(

LN ,i

(

yN1 ,ui−11

))}

=: Ai , (6)

which we give here relying on notation used in [12]. An upper

bound on the block error probability under SC decoding is

then given by

P
[

û 6= u
]

=
∑

i∈A

P
[

Bi

]

≤
∑

i∈A

P
[

Ai

]

, (7)

where the probabilities P
[

Ai

]

, i ∈ [N], may be

upper-bounded by the Bhattacharyya parameter of the cor-

responding coordinate channel WN ,i, cf. [1].

B. PUNCTURED POLAR CODES

A punctured PC C′ of length M < N is defined by a

puncturing pattern P ⊂ [N] such that |P| = N − M , and

then obtained from a mother PC C of length N by puncturing

codeword positions indexed byP after encoding. It is an open

problem to find the optimal puncturing pattern of a desired

cardinality |P| = N − M [8], [15]. Consequently, several

heuristics have been proposed.

Puncturing of PCs was first considered in [2]. In this work,

the authors suggest puncturing positions connected to the

fewest number of stopping trees in order to optimize per-

formance of the punctured code under belief propagation

(BP) decoding. Another straightforward heuristic for con-

structing P is given by choosing N −M positions from [N]

uniformly at random, which we refer to as uniform random

puncturing (URP) over the course of this work. This approach

has been employed in [7], [8], and [9].

As an alternative, a deterministic method referred to as

QUP is presented in [13]. To construct a QUP pattern P of

cardinality |P| = N − M , an incidence vector p of P is

constructed as [13]

p = (pi)i∈[N] = (1, . . . , 1
︸ ︷︷ ︸

first N−M positions

, 0, . . . , 0) · BN . (8)

Hence, we have

P = {i : pi = 1} ⊂ [N] . (9)

VOLUME 7, 2019 105911

C. Schnelling et al.: Efficient Implementation of Density Evolution for Punctured Polar Codes

III. EFFICIENT DENSITY EVOLUTION FOR PUNCTURED

POLAR CODES

In this section, we will present an efficient implementation

of DE which unifies the construction of both regular, i.e.

unpunctured, as well as punctured PCs in a single algorithm.

To do so, we describe DE to introduce concepts relevant to

our work, and establish relevant notation. Other construc-

tion approaches such as Arıkan’s explicit recursion in the

Bhattacharyya parameters valid for binary erasure channels

(BECs) or Monte Carlo (MC) constructions [1], as well as

constructions by faithful estimations of the coordinate chan-

nels [16], [17], go beyond the scope of this work. We then

inspect the adaptions required to allow for a DE-based con-

struction of punctured PCs. Based on this, we present an

algorithm reducing the number of convolution operations

necessary to perform such construction. As these operations

are the predominant source of cost in such implementa-

tions, the construction effort can be reduced drastically. Exact

reductions depend on the given puncturing patterns, and are

characterized in Sections IV and V. Numerical examples

reported in Section V give examples of the savings obtained

when puncturing with URP and QUP.

A. CONSTRUCTING POLAR CODES BY DENSITY

EVOLUTION

Constructing a PC of a desired lengthN translates to selecting

an index set A ⊆ [N], indicating the positions used for

information bits, such that the upper bound on the BLER

under SC decoding given in (7) is minimized. To facili-

tate construction of PCs for arbitrary BMSCs, in [12] Mori

and Tanaka propose to use DE to evaluate the probabilities

P
[

Ai

]

, i.e. the probability of decision error in the i-th position

of û under SC decoding, assuming previous positions given

by û
i−1
1 = (u1, . . . , ui−1) correctly supplied by a genie. The

all-zero codeword x = 0 is assumed to be transmitted, which

does not impose a loss of generality, as the channel assumed

is output-symmetric [14]. Let w ∈ L denote the density of

the channel output LLR assuming the input X = 0, where X

is the random channel input. We write L to denote the space

of L-densities, and refer to [14] for more details.

Inspecting the message schedule used in SC decoding,

Mori and Tanaka note that SC decoding on the FG given in

Figure 1 may be considered as an instance of BP decoding on

a tree, whose leaves correspond to channel output LLRs. This

structure hence allows for evaluating the message densities

via DE. To see this, we inspect the message updates at a single

processing element (PE) of the FG as given in Figure 2.

Initially, we have β1 = β2 = 0, which represent LLRs of

either linear combinations of information bits to be estimated

(b1), or of future information bits (b2), considered random for

decoding b1. Given LLRs α1 and α2, the decoder forwards the

message α1 ⊞ α2. The box-plus operator ⊞ : R× R→ R is

given by

a, b 7→ 2artanh

(

tanh
(a

2

)

tanh

(
b

2

))

, (10)

FIGURE 2. Message schedule of SC decoding at a processing element of
the factor graph.

whereR = R∪{−∞,∞} denotes the extended reals, while⊕

denotes mod-2 addition over F2. Upon receiving β1 ∈ {±∞},

or equivalently, a bit b1 ∈ F2, the SC decoder computes

α1 ⊞ β1 + α2 = α1(1− 2b1)+ α2 (11)

based on which information bits linearly combined to form b2
are decoded. Finally, β1 ⊞ β2 and β2, or equivalently, corre-

sponding hard-decisions b1 ⊕ b2 and b2 are propagated.

Thus, in the event Ai, i.e. decoding the i-th information

position ui assuming correct bits ui−11 = 0 supplied by

a genie, the corresponding β1-messages take values fixed

to +∞. Furthermore, the β2-messages corresponding to ran-

dom future positions uj, j ∈ [N] \ [i], are initialized to

zero. As a result, when assessing Ai, corresponding edges

incident to the check and repetition nodes involved do

not affect decoding of ui, which is hence decoded on a

tree.

The central idea of DE is to consider all messages

exchanged on the FG as random variables (RVs). Assuming

incoming messages to be independent, tracking the evolution

of the densities under the operations is facilitated by convo-

lutions ∗ and � of these densities, which replicate the effects

of the operations + and ⊞ performed at repetition nodes and

check nodes, respectively.

We inspect the PE again and write a1, a2 ∈ L to denote

the densities of the LLRs α1 and α2, respectively. As all β

messages are either equal to +∞ or zero, message densities

are thus evaluated by performing the convolutions

a1 � a2 and a1 ∗ a2, (12)

to obtain the densities resulting from check node and repeti-

tion node operations, respectively. Hence, on the FG repre-

sentation of a PC, given in Figure 1 for N = 8, a DE may

be computed column-wise from right to left, starting at the

channel level

w0 = (w, . . . , w) ∈ L
N . (13)

Let wj = (wi,j)i∈[2n−j], wi,j ∈ L
2j denote the densities

available after performing the convolutions at the PEs in the

j-th column. Given wj−1, by the structure of the FG for each

i ∈
[

2n−j
]

we compute wi,j ∈ L
2j by

wi,j[2k − 1] = w2i−1, j−1[k] � w2i, j−1[k] , (14)

wi,j[2k] = w2i−1, j−1[k] ∗ w2i, j−1[k] , (15)

105912 VOLUME 7, 2019

C. Schnelling et al.: Efficient Implementation of Density Evolution for Punctured Polar Codes

k ∈
[

2j−1
]

, to form wj for each j ∈ [n]. We write W =

[wj] ∈ L
N×(n+1) to denote thematrix containing all evaluated

densities.

However, to construct an (unpunctured) PC using DE,

the number of convolutions to perform may be reduced sig-

nificantly. As all densities in w0 are equal to w, there are only

2j different densities in each wj, j ∈ [n]. By the structure of

the FG, these may be given by evaluating the recursion

vj[2k − 1] = vj−1[k] � vj−1[k] , (16)

vj[2k] = vj−1[k] ∗ vj−1[k] , (17)

k ∈
[

2j−1
]

, j ∈ [n], starting from v0 = (w) [12]. Note that

in this simplified formulation, we have vj ∈ L
2j , whereas

in the general approach presented above, wj ∈ L
2n for all

j ∈ {0, . . . , n}. Starting from w0 as in (13), we have wn = vn,

that is, both approaches result in the same set of densities for

the n-th column of the FG corresponding to the information

bit level.

Given the densities wn = (di)i∈[N], we consider the LLRs

LN ,i as in (4) as RVs given u = 0 and û
i−1
1 correctly supplied

by a genie. By construction, we have LN ,i ∼ di. Hence,

the probabilities P
[

Ai

]

are given by [12]

P
[

Ai

]

= P
[

LN ,i ≤ 0
]

= lim
ǫ→0

(∫ −ǫ

−∞

di(x) dx +
1

2

∫ +ǫ

−ǫ

di(x) dx

)

(18)

for all i ∈ [N]. As P
[

Ai

]

only depends on di, we define the

corresponding error probability of a hard-decision based on

the LLR LN ,i ∼ di as

Pe(di) := P
[

LN ,i ≤ 0
]

. (19)

B. DENSITY EVOLUTION FOR PUNCTURED POLAR CODES

To decode a punctured PC of length M < N derived from

a mother PC of length N using an SC decoder, a regular

SC decoder for a PC of length N is used, treating punctured

positions as erasures. To do so, channel LLRs corresponding

to punctured positions yi, i ∈ P , are initialized with zero, cf.,

e.g., [7] or [13].

Thus, to evaluate the message densities for a punctured PC

decoded by an SC decoder, two LLR densities have to be

considered. In addition to the channel L-density w, we con-

sider the density δ, modeling the erasures corresponding to

punctured positions. As these LLRs take zero values with

probability 1, we have

δ(x) =

{

1, if x = 0,

0, otherwise,
(20)

i.e. the Dirac delta function with a single point mass located

at x = 0.

In Figure 1, we give an example for the construction of

a punctured PC of length M = 6, by puncturing code-

word positions xi for i ∈ {4, 6} of a mother PC of length

N = 8. Consequently, for the DE, we initialize w0[4] =

w0[6] = δ, while all other positions in w0 take the channel

L-density w. After performing the DE, we obtain densities

di, i ∈ [8], based on whichAmay be selected as described in

Section III-A.

To evaluate the densities in a column-wise implementation

as given in (14) and (15), the number of convolutions is given

by N log2 N = n · 2n, attained by evaluating every convolu-

tion. As convolutions are expensive for fine-grained quanti-

zations necessary for the desired accuracy of the results [14],

we strive for minimizing the number of convolutions at the

expense of a minimum overhead.

Inspecting the column update equations, we note that the

number of distinct convolution expressions to evaluate may

be significantly smaller than the number of updates implied

by a verbatim implementation of (14) and (15) for j ∈ [n]. To

see this, we observe that the number of distinct expressions

to evaluate when constructing wj from wj−1 depends on

both the number of distinct expressions in wj−1, as well as

their arrangement within wj−1. As for w0 corresponding to

the channel level, we only have two distinct input densities,

namely, w and δ, the number of distinct expressions grows

slowly in j.

To operationalize this approach, we analyze the effects

of δ on the convolution operators ∗ and �, implementing

convolutions at repetition and check nodes, respectively. In

a subsequent step, we inspect how the commutativity of

the operators affects the number of convolutions. Both steps

result in a drastic reduction of the number of convolutions

necessarywhen performing a column update fromwj−1 towj.

We conclude this section by presenting an algorithmic imple-

mentation which exploits both phenomena, implementing a

DE for construction of punctured PCs at a massively reduced

number of convolutions. Furthermore, the algorithm devel-

oped includes DE as in [12] as a special case, thus presenting

a unified implementation to construct both regular as well as

punctured PCs efficiently.

C. CONVOLVING DENSITIES WITH δ

Densities are invariant under repetition node convolution ∗

with δ, that is, for a given density d ∈ L we have

d ∗ δ = d, (21)

as δ represents the identity element of the binary operation ∗

on the space of L-densities [14].

Furthermore, the density δ is the zero element of the oper-

ation �, i.e. for a given density d, we have

d � δ = δ. (22)

Usually, in implementations of DE, as a first step of imple-

menting the operation a � b, the operand L-densities a and

b are transformed into G-densities, defined on F2× [0,+∞]

[14, p. 180 ff.]. However, to show (22), technicalities may be

avoided by interpreting a � b as an L-density resulting from

transforming both a and b into G-densities, performing the

convolution � on the group F2× [0,+∞], and transforming

the resulting G-density into an L-density.

VOLUME 7, 2019 105913

C. Schnelling et al.: Efficient Implementation of Density Evolution for Punctured Polar Codes

As a result, the effect of convolving an L-density d with δ

at a check node using the operation � may be interpreted

probabilistically by inspecting the operation ⊞ performed at

a check node. For this, we assume random LLRs P ∼ d and

D ∼ δ, and inspect the random output of the check node

C = P⊞ D. (23)

As P[D = 0] = 1, by the definition of ⊞ given

in (10), we obtain P[C = 0] = 1, as we have artanh(0) =

tanh(0) = 0. Hence, we conclude C ∼ δ.

As a result, both properties (21) and (22) of the convolution

operators allow for immediate reductions of the number of

convolutions to perform. Check node convolutions � with δ

reproduce δ, while convolutions p ∗ δ performed at repetition

nodes reproduce the operand density p. Hence, for either

check or repetition nodes, no additional convolution needs to

be performed in the presence of at least one operand equal

to δ.

D. EXPLOITING COMMUTATIVITY OF THE CONVOLUTIONS

In addition to the reduction of convolutions implied by the

effects of convolving δ by ∗ or � as given in Section III-C,

exploiting the fact that both ∗ and � are commutative oper-

ations results in additional savings. Formally, for L-densities

a, b ∈ L, we have [14]

a ∗ b = b ∗ a, and

a � b = b � a.

By induction, this extends to slices of length greater

than one, computed according to the update equations (14)

and (15). When performing the convolutions column-wise as

in (14) and (15), we note that for each pair of two consecutive

slices w2i−1,j, w2i,j ∈ L
2j of wj = (wh,j)h∈[2n−j], where i ∈[

2n−j−1
]

, the order in which these slices appear in such a pair

does not change the resulting slice wi,j+1 of wj+1 [18]. This

will allow for additional savings in the algorithm presented

in the following.

E. ALGORITHMIC IMPLEMENTATION

In order to construct a punctured PC for a given puncturing

pattern P , we compute the probabilities of decision error

under genie-aided SC decoding, given by P
[

Ai

]

, for i ∈ [N].

Algorithm 1 presents our approach, exploiting the simplifica-

tions given above.

We determine the necessary convolutions for a given

length N and a puncturing pattern P by performing the

column-wise DE symbolically, representing expressions

di = di1 ⋄ di2 (24)

for ⋄ ∈ {∗, �} by tuples

ei = (i1,⋄, i2, i) ∈ N× {∗, �} × N× {i}, (25)

identifying expressions with a unique index i ∈ N.

To keep track of the symbolic convolution operations,

we construct a matrix D ∈ N
N×(n+1), initializing its first

Algorithm 1 Density Evolution for a Punctured PC

input: code length N = 2n, puncturing pattern P ⊂ [N],
target channel LLR density w.
output: probabilities

(

P
[

Ai
])

i∈[N]
∈ [0, 1]N

function DENSITYEVOLUTION(n,P, w)

global L← ∅ ⊲ associative container for expressions
global D← {δ, w} ⊲ densities, D[0] = δ,D[1] = w

N ← 2n ∈ N

d← IN

(

Pc
)

∈ N
N

D← [d 0] ∈ N
N×(n+1) ⊲ expression indices

for all j ∈ [n] do
(

ai
)
⊺

i∈
[

2n−j
] ← 0 ⊲ ai ∈ N

2j

(

di
)
⊺

i∈
[

2n−j+1
] ← D[:, j] ⊲ di ∈ N

2j−1

for all i ∈
[

2n−j
]

do
if for some l ∈ [i− 1]
(d2i−1,d2i) = (d2l−1,d2l) or
(d2i,d2i−1) = (d2l−1,d2l) then
ai ← al

else
for all k ∈

[

2j−1
]

do

ai[2k − 1]← EXPR(d2i−1[k] , �,d2i[k])

ai[2k]← EXPR(d2i−1[k] , ∗,d2i[k])

D[:, j+ 1]←
(

ai
)
⊺

i∈
[

2n−j
]

return
(

Pe
(

D
[

di,n+1
]))

i∈[N]
⊲ D = [di,j] ∈ N

N×n+1

column d = (di)i∈[N] corresponding to channel level with

the incidence vector of Pc = [N] \ P , which is obtained

by IN : P([N]) → {0, 1}N for arbitrary sets S ⊆

[N], where P([N]) denotes the power set of [N]. Hence,

we have di = 1 if i /∈ P , and di = 0, otherwise. Doing

so, we define

d0 := δ and d1 := w. (26)

Note that we maintain our convention of one-based index-

ing for vectors andmatrices here, thusD[:, 1] denotes the first

column of D containing the indices of densities correspond-

ing to the channel level. To accommodate for the density

indexing scheme as in (26), the containerD holding densities

obtained via convolutions is maintained using zero-based

indexing, and we have D[0] = δ and D[1] = w.

We then construct the remaining columns of D using the

update rules given in (14) and (15). Whenever possible,

we exploit the commutativity of slices as described above. As

both operations are commutative, we require i1 ≤ i2 and store

tuples representing expressions in an associative container L

of lists indexed by i1, such that

L[i1] = {(i1,⋄, i2, i) : ⋄ ∈ {∗, �}, i2, i ∈ N} (27)

represents the list of tuples ei having i1 as its first operand,

in order to facilitate cheap look-ups for existing expressions.

These look-ups and, if necessary, new convolutions and corre-

sponding insertions of expression tuples are performed by the

method EXPR given in Algorithm 2. Finally, by applying (19)

105914 VOLUME 7, 2019

C. Schnelling et al.: Efficient Implementation of Density Evolution for Punctured Polar Codes

Algorithm 2 Evaluate an Expression

input: operand indices i1, i2 ∈ N, operator ⋄ ∈ {∗, �}

output: density index d ∈ N

function EXPR(i1, ⋄, i2)

if i1 > i2 then

j← i2, i2← i1, i1← j

if i1 = 0 then

if ⋄ = ∗ then

return i2
else

return 0

if (i1,⋄, i2, j) /∈ L[i1] for some j ∈ N then

i← |D| ⊲ D uses zero-based indexing

D← D ∪ {D[i1] ⋄D[i2] }

L[i1]← L[i1] ∪ {(i1,⋄, i2, i)}

return i ⊲ index of new expression

else

return j ⊲ index of existing expression

to the densities indexed by column D[:, n+ 1], we obtain the

desired probabilities.

IV. CONSTRUCTION COMPLEXITY

The number of convolutions necessary to construct a regular,

i.e. unpunctured, PC of length N = 2n is given by

CPC =

n
∑

i=1

2i − 1 = 2n+1 − 2 = 2N − 2, (28)

such that an equal number of repetition node convolutions

∗ and check node convolutions � is performed. To see this,

we note that the update rules given in (16) and (17) construct

a binary tree of convolutions. On the other hand, for a punc-

tured PC, a trivial upper bound is given by

CPPC ≤ N log2 N = n · 2n, (29)

attained by a verbatim implementation of the column-wise

update equations (14) and (15).

While the exact number of convolutions necessary to con-

struct a punctured PC using the approach presented above

depends on the choice of P , we give an upper bound for

CPPC depending on the cardinality of P , that is, the number

of punctured positions. Therefore, we bound the number of

potential density expressions, outline a strategy for tightening

this bound, and exploit structural properties of the FG to pro-

vide an upper bound on the number of necessary convolutions

for constructing a punctured PC.

A. BOUNDING THE NUMBER OF EXPRESSIONS

The following theorem provides an upper bound onCPPC for a

mother code length ofN = 2n, obtained by a characterization

of the set of possible density expressions after performing

the column-wise density updates of n columns reflecting the

corresponding FG.

Theorem 1: The number of convolutions CPPC ∈ N neces-

sary to construct a punctured PC of length N = 2n via DE is

upper-bounded by

CPPC ≤ 2+

n
∑

i=2

|Di|

(

2

i−2
∑

k=0

|Dk | + |Di−1| − 1

)

,

where Dj is the set of densities newly obtained by the con-

volutions corresponding to the PEs in the j-th column of

the FG.

Proof: To prove the bound, we define Dj as the set of

densities that become newly available as operands for future

convolutions after performing the convolutions in the j-th

column of PEs in the FG when using the approach presented

in Section III-B. By initialization, we have D0 = {δ, w},

where w denotes the channel L-density.

The set of all densities available after processing the con-

volutions of the first j columns is then given by

D̄j =

j
⋃

i=0

Di . (30)

Hence, the number of convolutions necessary to construct

a punctured PC for a given length N = 2n and a puncturing

pattern P is upper-bounded by |D̄n|−|D0| = |D̄n|−2, asD0

is given. To assess the cardinality of D̄n, we note that

Dj+1 ⊆
{

u ⋄ v ∈ D̄j × {∗, �} × D̄j

}

, (31)

and

D1 = {w � w, w ∗ w}. (32)

Given D̄j, we construct Dj+1 for j ≥ 1 accounting for the

commutativity of the convolutions, and obtain

Dj+1 =
⋃

⋄∈{∗,�}

({

u ⋄ u : u ∈ Dj

}

∪

{

u ⋄ v : (u, v) ∈ D2
j , u 6= v

}

∪
{

u ⋄ v : u ∈ Dj, v ∈ Di, i ∈ [j− 1]
}

∪
{

u ⋄ v : u ∈ Dj, v = w
})

, (33)

and note that [k] = ∅ if k = 0. Thus, we have

|Dj+1| = 2

(

|Dj| +

(
|Dj|

2

)

+ |Dj| · |D̄j−1 \D0| + |Dj|

)

= 2

(

2|Dj| +
|Dj|(|Dj| − 1)

2
+ |Dj|

(

|D̄j−1| − 2
)
)

= |Dj|
(

2|D̄j−1| + |Dj| − 1
)

, (34)

where

|D̄j| =

j
∑

i=0

|Di| (35)

by (30). Noting that |D1| = 2, and by combining (34)

and (35), the claim follows. �

VOLUME 7, 2019 105915

C. Schnelling et al.: Efficient Implementation of Density Evolution for Punctured Polar Codes

B. ACCOUNTING FOR THE STRUCTURE OF THE FACTOR

GRAPH

The bound given by Theorem 1 may be evaluated explicitly

for any n > 1 by determining the cardinalities of the sets

Dj and D̄j successively for j ∈ {2, . . . , n}. However, we note

that this bound may be tightened substantially. To see this,

we build on the applicability of the commutativity of the

operations ∗ and � as described in Section III-D. Similar to

the proof of Theorem 1, we inspect the number of possible

convolutions, but consider the structure of the FG and the

commutativity of slices of densities.

To that end, we define sets Uj and Vj for j ∈ [n] which

contain all possible slices u, v ∈ L
2j available before and

after performing the convolutions at the j-th column of PEs.

That is, the j-th column of densitieswj as in Section III-Amay

be composed of combinations of v ∈ Vj. These result from

convolutions of u = (v1, v2) ∈ Uj ⊆ Vj−1 × Vj−1 according

to (14) and (15). As both u as well as u′ = (v2, v1) result

in the same v, only u is taken into account for construction

of Uj. In addition to that, we write Wj ⊆ L to denote the set

of densities that become newly available after performing the

convolutions at the j-th column of PEs. For a punctured PC,

we have

V0 =W0 = {d0 = δ, d1 = w}, (36)

where w denotes the L-density of the channel considered.

Similar to the proof of Theorem 1, the total number of

convolutions necessary to construct a punctured PC of block

length N = 2n is upper-bounded by

|W̄n| − 2 =

n
∑

j=0

|Wj| − |W0|, (37)

where W̄n =
⋃n

j=0Wj denotes the set of all densities

potentially available after performing the convolutions for

constructing a punctured PC of length N = 2n.

As an example, we give the sets for j ∈ {1, 2} in Table 1,

given the initial sets V0 =W0 as in (36). We note that

|W̄2| − 2 = 8 < 10 = |D̄2| − 2, (38)

where we use D̄2 as in (30). Hence, by constructing the sets

Wj, j ∈ [n] as described, the bound provided by Theorem 1

may be tightened.

However, as both approaches characterize upper bounds

on CPPC via bounding the cardinality of the set of den-

sity expressions available after a certain number of column

updates, it is non-trivial to establish a dependency on the

given puncturing pattern. To provide an explicit bound on

CPPC depending on P , we establish the following properties

of our construction with respect to the FG structure exempli-

fied for a length of N = 8 in Figure 1. We point out that [7]

presents the fact that exactly P information positions become

incapable, and we hence have exactly P corresponding LLRs

in the leftmost column of the FG representation of GN . Fur-

thermore, the following lemma in this form has been obtained

in [18]. We state it for completeness and transfer its statement

TABLE 1. Possible Combinations of Densities at the j-th Column of
Processing Elements.

in order to highlight the aspects relevant to our work, and omit

the proof.

Lemma 2: [18] For any puncturing pattern P ⊂ [N]

given to construct a punctured PC of length M = N − |P|

from a mother PC C of length N = 2n, n ∈ N, the number of

densities equal to δ encountered in every column wj ∈ L
N ,

j ∈ {0, . . . , n}, of a corresponding DE performed as in

Algorithm 1, is constant and equal to |P|.

Using this lemma, we obtain the following result charac-

terizing the number of both variable and check node convo-

lutions performed at a DE-based construction of a punctured

PC.

Lemma 3: For any puncturing pattern P ⊂ [N] given to

construct a punctured PC C′ of length M = N − |P| from a

mother PC C of length N = 2n, n ∈ N, we have

C∗,PPC = C�,PPC,

where C∗,PPC and C�,PPC denote the number of non-trivial

repetition and check node convolutions, respectively, when

constructing C′ using the implementation of DE presented

above.

Proof: We inspect the process of obtainingwj fromwj−1

by the update rule (14) and (15), given w0, holding the L-

densities corresponding to channel level. Let an update using

densities a and b in wj−1 result in densities

c = a � b, (39)

d = a ∗ b, (40)

for inclusion inwj. By these rules and the principles exploited

in the algorithm presented above, for a, b 6= δ, i.e., non-

trivial convolutions, either both c and d have been computed

already, or neither of them. As this holds for any column

update, the total number of non-trivial convolutions is even,

and we have C∗,PPC = C�,PPC. �

Using these facts, we may establish the following theorem,

which provides an explicit upper bound on CPPC depending

on the cardinality of the puncturing pattern P .

Theorem 4: For any puncturing pattern P ⊂ [N] given

to construct a punctured PC C′ of length M = N − |P|

from a mother PC C of length N = 2n, n ∈ N, the total

number CPPC of convolutions necessary to construct C′ via

105916 VOLUME 7, 2019

C. Schnelling et al.: Efficient Implementation of Density Evolution for Punctured Polar Codes

DE is upper-bounded by

CPPC ≤ n ·

(

N − 2

⌈
|P|

2

⌉)

.

Proof: As in the proof of Lemma 3, we inspect a single

pair of updates on a and b in wj−1, resulting in densities c

and d for inclusion in wj, cf. (39) and (40). If either one of

the densities a and b is equal to δ, or both of them are equal

to δ, the number of convolutionsC∗,PPC andC�,PPC each will

decrease by one.

By Lemma 3, the number of densities equal to δ in each

column wj is equal to |P|. As the worst case, in a given

column all of them align in the sense that they result in

updates as in (39) and (40) such that a = b = δ. Hence,

at maximum, for construction of the j-th column wj, we have

to perform N − 2
⌈ |P |

2

⌉

convolutions in total. This applies to

every j ∈ [n], yielding the theorem. �

We note that Theorem 4 is generic in the sense that it

does not take into account the structure of the underlying

puncturing pattern. We expect that doing so would allow for

refined bounds. However, as our focus is on implementing

a DE-based construction efficiently, we consider the bound

provided by Theorem 4 as a baseline to compare the savings

in terms of the number of convolutions obtained by our imple-

mentation. In fact, the bound given in Theorem 4 presents

the worst-case number of convolutions, that is, the neces-

sary number of convolutions without applying any of the

modifications proposed in this work, but only exploiting the

properties of the convolutions with δ as an operand, given

in (21) and (22).

C. IMPLEMENTATIONAL ASPECTS

As a meta algorithm, the approach presented above relies

on implementations of the convolution operations. While

the repetition or variable node convolution ∗ may be imple-

mented by a regular convolution, easily accelerated by fast

Fourier transforms (FFTs) performing calculations in the

frequency domain, implementing the check node convolution

� is more involved.

A discretized version of � is presented in [19], which may

be approximated by precomputing quantization mappings

to form a lookup table [14], which we employ to obtain

the numerical results reported in the following. Another

approach, inspired by an FFT, is given in [20].

In the following, we will sketch the extension of the pre-

sented framework to Gaussian approximations of the densi-

ties.

D. GAUSSIAN APPROXIMATION

To construct a regular PC, Trifonov [5], [21] suggests approx-

imating the recursive DE as given in (16) and (17) using

GAs of the message densities as in [22]. Consequently, these

update equations turn into a recursion tracking the means of

the message densities, and are given as

E
[

Vj[2k − 1]
]

= φ−1
(

1−
(

1− φ
(

E
[

Vj−1[k]
]))2

)

, (41)

Algorithm 3 Evaluate Expressions for GA

input: expectations µ1, µ2 ∈ R, operator ⋄ ∈ {∗, �}

output: expectation µ ∈ N

function EXPRGA(µ1, ⋄, µ2)

if ⋄ = � then

if µ1 = 0 or µ2 = 0 then

return 0

else

return φ−1(1− (1− φ(µ1)) (1− φ(µ2)))

else

return µ1 + µ2

E
[

Vj[2k]
]

= 2E
[

Vj−1[k]
]

, (42)

for j ∈ [n], given in notation analogous to (16) and (17), using

the functions φ and φ−1 as defined in [22].

Assuming an additive white Gaussian noise (AWGN)

channel with one-sided power spectral density N0 used with

binary phase-shift keying (BPSK) modulation, the Gaus-

sian assumption is satisfied, as the corresponding channel

L-density is Gaussian and given by [14]

L ∼ N

(
2

σ 2
,
4

σ 2

)

, (43)

where σ 2 = N0
2

denotes the corresponding noise power. We

may thus start the recursion using

E[V0] =
2

σ 2
. (44)

The error probabilities of the virtual channels as given in (19)

are then approximated by computing

Pe(vi) ≈ Q
(√

E[Vn[i]]
)

, (45)

assuming

vi ≈ N (E[Vn[i]] , 2E[Vn[i]]) , (46)

that is, we assume that the L-density vi is well approximated

by a Gaussian density, and hence sufficiently characterized

by E[Vn[i]].

In a similar fashion, DE-based constructions of punctured

PCs may be translated to a GA. Using a GA to construct

punctured PCs has been considered in [18], interpreting chan-

nel output LLRs at punctured positions as Gaussian RVs

with zero mean and zero variance. Clearly, random LLRs

D ∼ δ corresponding to punctured positions have expectation

E[D] = 0, and so have random LLRs produced at check

nodes, if at least one operand message has expectation equal

to 0. The approach presented above in Algorithm 1 may be

consequently adapted by replacing the matrix D ∈ N
N×(n+1)

with a matrix E ∈ R
N×(n+1) that keeps track of the expecta-

tions corresponding to the respective densities. Initializing the

first column of E = 0 with means 2
σ 2 · IN (Pc), correspond-

ing to positions punctured according to a pattern P , density

expressions do not have to be evaluated symbolically, but

corresponding means may be tracked immediately, which is

VOLUME 7, 2019 105917

C. Schnelling et al.: Efficient Implementation of Density Evolution for Punctured Polar Codes

FIGURE 3. Left-hand side: Bounds and actual number of convolutions necessary to construct quasi-uniformly punctured PCs of lengths M = 5
8

N ,
where N = 2n, n ∈ {4, . . . , 13}, is the length of the mother code. Right-hand side: Savings in terms of necessary convolutions achieved by the
presented approach with respect to the bounds given.

FIGURE 4. Left-hand side: Bounds and actual number of convolutions necessary to construct uniformly random punctured PCs of lengths
M = 5

8
N , where N = 2n, n ∈ {4, . . . , 13}, is the length of the mother code. Right-hand side: Savings in terms of necessary convolutions achieved by

the presented approach with respect to the bounds given.

implemented by replacing the method EXPR with EXPRGA as

given in Algorithm 3. Finally, approximations of the desired

error probabilities are evaluated as in (45) based on the expec-

tations in the last column of E = [Ei,j], and obtained for each

i ∈ [N] as

P
[

Ai

]

≈ Q

(√

E
[

Ei,n+1
]
)

. (47)

V. NUMERICAL EXAMPLES

In this section, we provide numerical examples for construc-

tion of punctured PCs to exemplify the computational savings

of the presented implementation of DE. We do so for two

popular puncturing approaches, QUP and URP, described in

Section II-B.

For both puncturing schemes, we use the DE approach

presented above to construct punctured PCs from a mother

PC of dimension K = 1
2
N , i.e. rate R = 1

2
. Using patterns of

length

|P| ∈

{
1

4
N ,

3

8
N

}

, (48)

we obtain punctured codes of lengths

M = N − |P| ∈

{
3

4
N ,

5

8
N

}

(49)

and effective rates

R̃ =
K

M
∈

{
2

3
,
4

5

}

. (50)

Results are given in Figures 3 and 4, while

in Tables 2 and 3, we provide additional details for certain

values of N . In Figure 3, we provide the results for punctured

PCs of lengthM = 5
8
N , obtained by QUP of a mother PC of

length N = 2n for n ∈ {4, . . . , 13}. In particular, we give

bounds as in (29), given as (), and Theorem 4 (),

as well as the length N (), the cardinality |P| (),

and CPPC (), the number of convolutions necessary to

construct the codes using the approach presented in this work.

Due to the high regularity of the puncturing pattern obtained

by QUP, CPPC is much lower than n · N . The right-hand plot

in Figure 3 confirms this observation by reporting savings

in terms of necessary convolutions with respect to n · N well

above 75% for most values of n, given as (). In fact, when

constructing a code obtained as described from a mother

code of length N = 213, by the approach presented above

105918 VOLUME 7, 2019

C. Schnelling et al.: Efficient Implementation of Density Evolution for Punctured Polar Codes

FIGURE 5. Simulation results for a regular PC of length 256, rate 3
8

, and a quasi-uniformly punctured PC of length 192, rate 1
2

,
both under SC decoding. Dashed lines give corresponding upper bounds on the BLERs, obtained via DE and GA by the
implementation presented in this work.

TABLE 2. Numerical Examples for QUP.

we may save 90.39% of the convolutions compared to an

implementation performing n · N convolutions. Additional

numerical values are provided in Table 2.

In a similar fashion, Figure 4 and Table 3 give results

for constructing punctured PCs via URP, averaging over 103

draws of P for each N . While the general trends agree with

those identified for QUP, the necessary number of convo-

lutions is considerably higher, which may be attributed to

the puncturing patterns used here, which, on average, are

less structured than those obtained by QUP. Nevertheless,

savings of more than 35% are obtained with respect to either

bound.

As a remark, we point out that regardless of the tar-

get rate, the savings in terms of necessary convolutions

depend only on the length of the mother code N , the target

length of the punctured code M , as well as on the struc-

ture of the puncturing pattern P . Given parameters N and

M , the rate of the punctured code only depends on the

dimension of the mother code K ∈ N, which may take

any value such that 1 ≤ K < M to obtain reasonable

rates.

TABLE 3. Numerical Examples for URP.

Finally, in Figure 5, we provide simulation results and

corresponding bounds obtained by the DE implementation

presented in this work.We present BLERs under SC decoding

of an unpunctured mother PC of length 256, as well as a

quasi-uniformly punctured PC of length 192. Both codes

are of dimension 96, and employ index sets selected based

on the respective DEs. Hence, the first code is of rate 3
8
,

while the latter is of rate 1
2
. For transmission, we assume

an AWGN channel with one-sided power spectral density

N0 used with BPSK modulation, and hence a channel L-

density given by (43). For construction, both codes target

such a channel at Eb
N0
= 1.5 dB. For construction as well as

evaluation of the bounds, all densities are sampled on the

range [−20, 20] with equidistant sampling points to obtain

a resolution of 0.01.

As evident from the figure, the bounds obtained are

extremely tight for both the unpunctured as well as the punc-

tured PC. We hence provide empirical evidence that for both

classes of PCs, a DE with the parameters given above is

a precise yet efficient tool for predicting code performance

in terms of BLER under SC decoding. In addition to the

VOLUME 7, 2019 105919

C. Schnelling et al.: Efficient Implementation of Density Evolution for Punctured Polar Codes

bounds obtained via DE, we present the bounds resulting

from corresponding GAs of the message densities, and note

that the bounds are very close to those obtained via DE.

VI. CONCLUSION

In this work, we present an efficient implementation for con-

structing punctured PCs using DE. To do so, we establish DE

assuming an SC decoder for both regular, i.e. unpunctured,

as well as punctured PCs in a unified framework.

To minimize the number of convolutions necessary for

the construction of a punctured PC, we analyze how punc-

tured positions, treated as erasures, affect the convolutions

and exploit these observations in the algorithm presented. In

addition, the presented approach allows for the construction

of regular PCs via DE as well, resulting in a unified way to

construct both regular and punctured PCs using DE. In order

to analyze the reduction in construction complexity achieved

by our method, we provide upper bounds on the number

of unique density expressions to compute, and consequently

on the number of convolutions necessary for constructing a

punctured PC.

Empirical investigations validate our approach. Using

puncturing patterns obtained via both QUP as well as URP,

we are able to save a substantial number of the convolutions

with respect to an implementation that performs all con-

volutions, thereby evaluating identical density expressions

multiple times. In particular, when using random puncturing

patterns obtained via URP, we save more than 40 % of the

convolutions on average for mother codes shorter than 213,

while for QUP patterns and mother code lengths greater

than 29, these savings amount to well above 80 % of the

convolutions.

As a result, the method presented allows for greatly

accelerating the construction of punctured PCs using DE,

and, as a meta algorithm, facilitates these speed-ups for

arbitrary implementations of the convolution operations.

Finally, we present simulation results for both regular as

well as punctured PCs and corresponding upper bounds on

the respective BLERs obtained by the implementation pre-

sented in this work. For both classes of codes, we observe

extremely tight bounds, and hence provide empirical evi-

dence for the predictive power of the bounds obtained by our

implementation.

REFERENCES

[1] E. Arıkan, ‘‘Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,’’ IEEE

Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] A. Eslami and H. Pishro-Nik, ‘‘A practical approach to polar codes,’’ in

Proc. IEEE Int. Symp. Inf. Theory, Jul./Aug. 2011, pp. 16–20.

[3] M. Bakshi, S. Jaggi, andM. Effros, ‘‘Concatenated polar codes,’’ Jan. 2010,

arXiv:1001.2545. [Online]. Available: http://arxiv.org/abs/1001.2545

[4] H. Mahdavifar, M. El-Khamy, J. Lee, and I. Kang, ‘‘On the construction

and decoding of concatenated polar codes,’’ in Proc. IEEE Int. Symp. Inf.

Theory, Jul. 2013, pp. 952–956.

[5] P. Trifonov and P. Semenov, ‘‘Generalized concatenated codes based on

polar codes,’’ in Proc. IEEE 8th Int. Symp. Wireless Commun. Syst.,

Nov. 2011, pp. 442–446.

[6] S. Korada, E. Şaşoğlu, and R. Urbanke, ‘‘Polar codes: Characterization of

exponent, bounds, and constructions,’’ IEEE Trans. Inf. Theory, vol. 56,

no. 12, pp. 6253–6264, Dec. 2010.

[7] D. Shin, S.-C. Lim, andK.Yang, ‘‘Design of length-compatible polar codes

based on the reduction of polarizing matrices,’’ IEEE Trans. Commun.,

vol. 61, no. 7, pp. 2593–2599, Jul. 2013.

[8] V. Miloslavskaya, ‘‘Shortened polar codes,’’ IEEE Trans. Inf. Theory,

vol. 61, no. 9, pp. 4852–4865, Sep. 2015.

[9] J. Kim, J.-H. Kim, and S.-H. Kim, ‘‘An Efficient search on puncturing

patterns for short polar codes,’’ in Proc. Int. Conf. Inf. Commun. Technol.

Converg. (ICTC), Oct. 2015, pp. 182–184.

[10] I. Tal and A. Vardy, ‘‘List decoding of polar codes,’’ in Proc. IEEE Int.

Symp. Inf. Theory (ISIT), Aug. 2011, pp. 1–5.

[11] I. Tal and A. Vardy, ‘‘List decoding of polar codes,’’ May 2012,

arXiv:1206.0050. [Online]. Available: http://arxiv.org/abs/1206.0050

[12] R. Mori and T. Tanaka, ‘‘Performance and construction of polar codes on

symmetric binary-input memoryless channels,’’ in Proc. IEEE Int. Symp.

Inf. Theory, Jun. 2009, pp. 1496–1500.

[13] K. Niu, K. Chen, and J.-R. Lin, ‘‘Beyond turbo codes: Rate-compatible

punctured polar codes,’’ in Proc. IEEE Int. Conf. Commun. (ICC),

Jun. 2013, pp. 3423–3427.

[14] T. Richardson and R. Urbanke, Modern Coding Theory. New York, NY,

USA: Cambridge Univ. Press, 2008.

[15] L. Chandesris, V. Savin, and D. Declercq, ‘‘On puncturing strategies for

polar codes,’’ in Proc. IEEE Int. Conf. Commun. Workshops (ICC Work-

shops), May 2017, pp. 766–771.

[16] I. Tal and A. Vardy, ‘‘How to construct polar codes,’’ IEEE Trans. Inf.

Theory, vol. 59, no. 10, pp. 6562–6582, Oct. 2013.

[17] C. Schnelling and A. Schmeink, ‘‘Construction of polar codes exploiting

channel transformation structure,’’ IEEE Commun. Lett., vol. 19, no. 12,

pp. 2058–2061, Dec. 2015.

[18] L. Zhang, Z. Zhang, X. Wang, Q. Yu, and Y. Chen, ‘‘On the puncturing

patterns for punctured polar codes,’’ in Proc. IEEE Int. Symp. Inf. Theory,

Jun./Jul. 2014, pp. 121–125.

[19] S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, ‘‘On the

design of low-density parity-check codes within 0.0045 dB of the Shannon

limit,’’ IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.

[20] H. Jin and T. Richardson, ‘‘A new fast density evolution,’’ in Proc. IEEE

Inf. Theory Workshop-ITW Punta Del Este, Mar. 2006, pp. 183–187.

[21] P. Trifonov, ‘‘Efficient design and decoding of polar codes,’’ IEEE Trans.

Commun., vol. 60, no. 11, pp. 3221–3227, Nov. 2012.

[22] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, ‘‘Analysis of sum-

product decoding of low-density parity-check codes using a Gaussian

approximation,’’ IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 657–670,

Feb. 2001.

CHRISTOPHER SCHNELLING received the Diploma degree in computer

engineering and the master’s degree in management, business, and eco-

nomics fromRWTHAachen University, Germany, in 2014 and 2016, respec-

tively. He is currently pursuing the Ph.D. degree in electrical engineering. His

research interests include channel coding and polar codes.

MARKUS ROTHE received the Diploma and Ph.D. degrees in electrical

engineering from RWTH Aachen University, Germany, in 2011 and 2018,

respectively. His research focuses on optimization.

NIKLAS KOEP received the B.Sc. and M.Sc. degrees in electrical

engineering from RWTH Aachen University, Germany, in 2010 and 2013,

respectively, where he is currently pursuing the Ph.D. degree in electrical

engineering with the Institute for Theoretical Information Technology. His

research interests include the broad areas of statistical signal processing,

compressed sensing, as well as nonlinear optimization.

105920 VOLUME 7, 2019

C. Schnelling et al.: Efficient Implementation of Density Evolution for Punctured Polar Codes

RUDOLF MATHAR received the Ph.D. degree

from RWTH Aachen University, in 1981. His pre-

vious positions include Lecturer positions with

Augsburg University and with the European Busi-

ness School. In 1989, he joined the Faculty of Nat-

ural Sciences, RWTH Aachen University. He has

held the International IBM Chair in computer

science with Brussels Free University, in 1999.

In 2004, he was appointed the Head of the Institute

for Theoretical Information Technology, Faculty

of Electrical Engineering and Information Technology, RWTH Aachen Uni-

versity. Since 1994, he has been holding numerous visiting professor posi-

tions with the University ofMelbourne, Canterbury University, Christchurch,

Johns Hopkins University, Baltimore, and others. In 2002, he was a recip-

ient of the prestigious Vodafone Innovation Award. In 2010, he was an

Elected Member of the NRW Academy of Sciences and Arts. He is the

co-founder of two spin-off enterprises. From October 2011 to July 2014,

he has served as the Dean of the Faculty of Electrical Engineering and

Information Technology. In April 2012, he was an Elected Speaker of the

Board of Deans, RWTHAachen University. Since August 2014, he is serving

as Prorector for the research and structure with RWTH Aachen University.

His research interests include information theory, mobile communication

systems, particularly optimization, resource allocation, and access control.

ANKE SCHMEINK received the Diploma degree

in mathematics, with a minor in medicine, and the

Ph.D. degree in electrical engineering and infor-

mation technology from RWTH Aachen Univer-

sity, Germany, in 2002 and 2006, respectively.

She was a Research Scientist for Philips Research

before joining RWTHAachen University, in 2008,

where she has been an Associate Professor, since

2012. She has spent several research visits with

the University of Melbourne, and with the Uni-

versity of York. She is a member of the Young Academy at the North

Rhine-Westphalia Academy of Science. Her research interests include infor-

mation theory, systematic design of communication systems, and bioinspired

signal processing.

VOLUME 7, 2019 105921

	INTRODUCTION
	PRELIMINARIES
	POLAR CODES
	PUNCTURED POLAR CODES

	EFFICIENT DENSITY EVOLUTION FOR PUNCTURED POLAR CODES
	CONSTRUCTING POLAR CODES BY DENSITY EVOLUTION
	DENSITY EVOLUTION FOR PUNCTURED POLAR CODES
	CONVOLVING DENSITIES WITH
	EXPLOITING COMMUTATIVITY OF THE CONVOLUTIONS
	ALGORITHMIC IMPLEMENTATION

	CONSTRUCTION COMPLEXITY
	BOUNDING THE NUMBER OF EXPRESSIONS
	ACCOUNTING FOR THE STRUCTURE OF THE FACTOR GRAPH
	IMPLEMENTATIONAL ASPECTS
	GAUSSIAN APPROXIMATION

	NUMERICAL EXAMPLES
	CONCLUSION
	REFERENCES
	Biographies
	CHRISTOPHER SCHNELLING
	MARKUS ROTHE
	NIKLAS KOEP
	RUDOLF MATHAR
	ANKE SCHMEINK

