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The dynamics of geometrically nonlinear flexible filaments play an important role

in a host of biological processes, from flagella-driven cell transport to the polymeric

structure of complex fluids. Such problems have historically been computationally expen-

sive due to numerical stiffness associated with the inextensibility constraint, as well as

the often nontrivial boundary conditions on the governing high-order PDEs. Formulating

the problem for the evolving shape of a filament via an integral equation in the tangent

angle has recently been found to greatly alleviate this numerical stiffness. The contribution

of the present manuscript is to enable the simulation of nonlocal interactions of multiple

filaments in a computationally efficient manner using the method of regularized stokeslets

within this framework. The proposed method is benchmarked against a nonlocal bead

and link model, and recent code utilizing a local drag velocity law. Systems of multiple

filaments (1) in a background fluid flow, (2) under a constant body force, and (3)

undergoing active self-motility are modeled efficiently. Buckling instabilities are analyzed

by examining the evolving filament curvature, as well as by coarse graining the body

frame tangent angles using a Chebyshev approximation for various choices of the relevant

nondimensional parameters. From these experiments, insight is gained into how filament-

filament interactions can promote buckling, and further reveal the complex fluid dynamics

resulting from arrays of these interacting fibers. By examining active moment-driven

filaments, we investigate the speed of worm- and spermlike swimmers for different

governing parameters. The MATLAB® implementation is made available as an open-source

library, enabling flexible extension for alternate discretizations and different surrounding

flows.

DOI: 10.1103/PhysRevFluids.4.113101

I. INTRODUCTION

Flexible filaments are ubiquitous in the natural world, and thus a clear understanding of their

behavior is paramount in many biological problems. Models for simulating the dynamics of

these filaments, while plentiful, have historically been mathematically complex and numerically

expensive, with even simple computational experiments taking in the order of hours or even days to

solve (see Moreau et al. for detailed benchmarking [1]).

Micro-scale filament problems have been previously tackled using other modeling approaches

which can be broadly separated into those based upon (a) a nonlinear PDE in the filament position

(such as the method by Schoeller et al. [2]) or (b) a discretization into simpler elements, such

as beads with connecting springs [3] or interlocking gears [4]. For category (a), inextensibility is

enforced using Lagrange multipliers of tension, which are often costly to compute. For the discrete
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approaches in category (b), other ways of enforcing this condition are used. For example, the bead

model of Jayaraman et al. [3] prescribes large spring constants between each bead, contributing to

the numerical stiffness of the system. Equivalently, the gears model of Delmotte et al. [4] imposes a

nonholonomic constraint to ensure nonpenetrability between adjacent beads, but as a result requires

large numbers of points to represent a single filament.

A recent promising development via Moreau et al. [1], referred to as coarse graining, is based on

reformulating the problem via an integral equation with the filament tangent angle as the dependent

variable. The method, initially developed using a local hydrodynamic drag law, provides an efficient

framework for simulating noninteracting filament dynamics. This approach builds upon the early

studies of Brokaw [5,6] and Hines and Blum [7] and contrasts with Cartesian formulations [8,9].

The contribution of the present manuscript is to enable efficient and accurate simulation of

multiple, nonlocally interacting, passive and active filaments in ambient flows by incorporating

recent developments in the regularized stokeslet method [10,11] with the integral formulation in

terms of the tangent angle of Moreau et al. [1].

The potential applications for a fast and accurate filament modeling framework are numerous.

There has long been interest in understanding the mechanics and regulation of sperm flagellar

movement, in particular problems relating to understanding the mechanical structure and motor

regulation [5,12–14], investigating the response of the flagellar beat to its rheological environ-

ment [15–17], understanding the dynamics of sperm due to surrounding solid walls [18,19], and

studying the effect of viscosity on sperm swimming [20]. For a detailed review surrounding the

importance of the sperm flagellum see Gallagher et al. [21]. Furthermore, such a method could be

used to investigate phenomena associated with epithelial cilia-driven flows such as cilia waveform

modulation by length [5], the effects of flow induced by cilia on embryonic development [22],

studying the physical limits of flow sensing [23], and investigating the mechanical structure of

the axoneme in cilia [24]. Another avenue of active-filament research to which the proposed

framework could be applied is magnetic swimmers [25]. These models have wider relevance in

the field of synthetic biology, with particular application to microscopic bacteriophage-based fiber

sensors [26–28] and flexible filament microbots [29]. The proposed framework could be used to

further investigate the dynamics of bundles of filaments [30] and additionally has applications in

the multiscale studies of complex polymeric fluids and flagellar movement through them [31,32].

We will extend the framework introduced by Moreau et al. [1], augmenting and reformatting

their formulation with the method of regularized stokeslets of Cortez et al. [33,34]. These methods

have proven to be accurate and effective in modeling the hydrodynamics in various multiple-

fiber scenarios [35,36]. The method of regularized stokeslets enables the modeling of nonlocal

hydrodynamics within and between filaments, and between filaments and surrounding structures.

The method is implemented in a numerically efficient manner, retaining the computational economy

and low hardware requirements inherited from the Moreau et al. formulation.

The structure of this paper is as follows: in Sec. II the elastohydrodynamic integral formulation

(EIF) for a single filament is proposed. In Sec. III alterations to the EIF for various single- and multi-

filament scenarios are presented. Verification and benchmarking of the method is given in Sec. IV.

Simulation results of the problems formulated in Sec. III are then presented in Sec. V, followed by

discussion of the results and of further possible applications in Sec. VI. The MATLAB® code for the

methods described within this report are provided in the associated GitLab repository [37].

II. MODEL FORMULATION

The dynamics of elastic filaments in Stokes flow will be modeled by constructing integral opera-

tor formulations of the governing fluid and elastodynamic equations. Each filament is described by

the time-evolving tangent angle θ (s, t ) along its arclength. Taking X 0(t ) to be the leading point at

time t , the filament geometry is then given by

X (s, t ) = X 0(t ) +

∫ s

0

[cos θ (s′, t ), sin θ (s′, t ), 0]T ds′, (1)
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where s ∈ [0, 1] and θ ∈ [−π, π ) are the dimensionless arclength (scaled by the filament length L)

and tangent angle, respectively. The velocity of a point on the filament is given by differentiating

Eq. (1) with respect to dimensionless time, scaled by τ . The behavior of planar filaments in a

Newtonian fluid is considered, which can be described by the three-dimensional dimensionless

Stokes flow equations,

0 = −∇p + ∇2u + F, ∇ · u = 0, (2)

where u(x,t) is fluid velocity, p(x, t ) is pressure, and F(x, t ) is a force exerted by the body onto

the fluid. As shown by Cortez [34], an approximate solution to Eq. (2) is given by the regularized

stokeslet integral,

u j (x, t ) =
1

8π

∫ 1

0

Sε
jk (x, X (s′, t )) fk (s′, t ) ds′ + O(εr ), (3)

where f (s, t ) is the force per unit length exerted by the filament on the fluid, nondimensionalized

with the scaling μL/τ for a given fluid dynamic viscosity μ, and X (s, t ) denotes the filament

position as a function of arclength and time. The error arises from the regularization of the stokeslet,

for a chosen regularization parameter 0 < ε ≪ 1, where r = 1 or 2 in the near and far field,

respectively. The combined process of solving Eq. (3) for the unknown force densities f (s, t ) will

result in errors of order ε everywhere [38]. Summation convention dictates that repeated indices are

summed over and unrepeated indices range over {1, 2, 3}. The kernel of the integral in Eq. (3) is

known as the regularized stokeslet, defined

Sε
jk (x, X ) = δ jk

|x − X | + 2ε2

(|x − X |2 + ε2)3/2
+

(x j − X j )(xk − Xk )

(|x − X |2 + ε2)3/2
. (4)

Applying the no-slip condition u(X (s, t ), t ) = ∂t X (s, t ) on the boundary of the filament yields

the regularized stokeslet integral equation

∂t X j (s, t ) =
1

8π

∫ 1

0

Sε
jk (X (s, t ), X (s′, t )) fk (s′, t ) ds′, 0 � s � 1, t � 0. (5)

Inertialess dynamics requires that the filament is force and moment free at each instant, giving
∫ 1

0

− f (s, t ) ds = 0, (6)

∫ 1

0

X (s, t ) × [− f (s, t )] ds = 0. (7)

The integral formulation for the hydrodynamic problem thus comprises Eqs. (5), (6), and (7). Next,

the elastic behavior of the filaments is considered.

The integral operator for the elastodynamic behavior is formulated by considering the force and

moment balance over an infinitesimal segment of a filament. We denote by N(s, t ) and M(s, t ) the

contact force and contact moment respectively exerted by a distal segment of filament [s, 1] on a

proximal segment [0, s). Constitutively linear elasticity and bending in the xy plane implies that the

dimensional contact moment relates to the curvature via

M(s, t ) = EI ∂s θ (s, t ), (8)

where EI is the bending modulus of the filament. The fluid dynamic force density f (s, t ) and N(s, t )

are related by

∂s N(s, t ) = f (s, t ). (9)

Under the assumption of free boundary conditions, the contact force and moment are zero at each

end of a filament. Moment balance over the infinitesimal segment reveals that the contact force and
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moment are related as

0 = ∂s M(s, t ) + e3 · ∂sX (s, t ) × N(s, t ). (10)

Integration of Eq. (10) over a distal segment [s, 1] yields, on application of the moment-free

boundary condition and Eq. (9),

0 = −M(s, t ) + e3 ·

{

[X (s′, t ) − X (s, t )]
∣

∣

1

s
−

∫ 1

s

[X (s′, t ) − X (s, t )] × f (s′, t ) ds′

}

. (11)

Application of the the force-free condition N(1, t ) = 0, the constitutive Eq. (8), and the choice of

timescale τ = μL4/EI , gives the nondimensionalized integral formulation for the filament tangent

angle evolution

∂s θ (s, t ) = −e3 ·

∫ 1

s

[X (s′, t ) − X (s, t )] × f (s′, t ) ds′, 0 � s � 1, t � 0. (12)

Combining Eqs. (1), (5), (6), (7), and (12), we obtain the elastohydrodynamic integral formulation

(EIF) for the evolution of a filament in Stokes flow

∂t X j (s, t ) =
1

8π

∫ 1

0

Sε
jk (X (s, t ), X (s′, t )) fk (s′, t ) ds′, (13)

0 =

∫ 1

0

− f (s, t ) ds, (14)

0 =

∫ 1

0

X (s, t ) × [− f (s, t )] ds, (15)

∂s θ (s, t ) = −e3 ·

∫ 1

s

[X (s′, t ) − X (s, t )] × f (s′, t ) ds′, 0 < s � 1, t � 0, (16)

where X (s, t ) = X 0(t ) +

∫ s

0

[cos θ (s′, t ), sin θ (s′, t ), 0]T ds′, (17)

and ∂t X (s, t ) = ∂t X 0(t ) +

∫ s

0

∂t θ (s′, t )[− sin θ (s′, t ), cos θ (s′, t ), 0]T ds′, (18)

with unknowns X 0(t ), θ (s, t ) and f (s, t ). In solving the EIF for a particular physical problem, we

must specify the initial position X 0(0) and tangent angle θ (s, 0).

Spatial discretization of the EIF

To solve the EIF, we spatially discretize filaments to obtain a set of integro-differential equations

which can be numerically evaluated. Dividing the arclength domain into Q segments of equal length

�s = 1/Q, the positions of the resulting segment endpoints are denoted as

X [n](t ) := X [(n − 1)�s, t], n = 1, . . . , Q + 1. (19)

The angle connecting X [n](t ) to X [n+1](t ) approximating θ [(n − 1)�s, t] is denoted θ̃ [n](t ), for

n = 1, . . . , Q. The positions of the endpoints are given in terms of the initial point X [1](t ) and

discretized tangent angle θ̃ [n](t ) as

X [m+1](t ) = X [1](t ) +

m
∑

n=1

�s[cos θ̃ [n](t ), sin θ̃ [n](t ), 0]T , m = 1, . . . , Q, (20)

with the segment midpoints

X̃
[m]

(t ) = X [1](t ) +

m−1
∑

n=1

�s[cos θ̃ [n](t ), sin θ̃ [n](t ), 0]T +
�s

2
[cos θ̃ [m](t ), sin θ̃ [m](t ), 0]T , (21)
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FIG. 1. Schematic illustrating the geometric discretization used in the EIF to model a continuous filament.

The arclength is split into Q segments of equal length �s, with tangent angles θ̃ [n] for n = 1, . . . , Q. Segment

midpoints are represented by blue nodes, and segment endpoints are in red.

for each m = 1, . . . , Q. An illustration of this discretization is displayed in Fig. 1. Differentiating

Eq. (20) with respect to time yields the kinematic equation for the segment velocities.

For the fluid dynamics, rather than using a conventional (and potentially expensive), quadrature

rule for evaluating the rapidly varying kernel Sε
jk , we employ the method of Smith [39]. By

approximating the force density in Eq. (13) as piecewise constant along each segment, the kernel

can be analytically integrated, reducing the level of quadrature needed to evaluate the slowly varying

force density (for higher-order force discretizations see Cortez [10]). Writing

f (s, t ) ≈ f̃
[m]

(t ) = f (s̃ [m], t ), (m − 1)�s � s < m�s, (22)

where s̃ [m] denotes the arclength at the midpoint of the mth segment, with a piecewise linear

discretization for the filament,

X (s, t ) ≈ X̃
[m]

(t ) + (s − s̃ [m])[cos θ (s̃ [m], t ), sin θ (s̃ [m], t ), 0]T , (23)

we obtain the spatially discrete equation,

∂t X̃
[m]
j (t ) =

1

8π

Q
∑

n=1

f̃
[n]

k
(t )

·

∫ n�s

(n−1)�s

Sε
jk{X̃

[m]
, X̃

[n]
(t ) + (s′ − s̃ [n])[cos θ (s̃ [n], t ), sin θ (s̃ [n], t ), 0]T }ds′. (24)

The integral in Eq. (24) can be calculated exactly by transforming to a local coordinate system in

which one axis is aligned with the segment tangent [details are given in Appendix B, Eqs. (B1)– (B3)

of Ref. [39], although note that the simplified form for the near-field integral in Eq. (B4) contains a

typographical error in the δs/ε fraction, which is upside-down]. For brevity we denote the integral

in Eq. (24) as I
[m,n]
jk

(t ; �s, ε), yielding the system of linear equations,

∂t X̃
[m]
j (t ) =

1

8π

Q
∑

n=1

I
[m,n]
jk

(t ; �s, ε) f̃
[n]

k
(t ), m = 1, . . . , Q, (25)

with the force and moment balance equations given in Eqs. (6) and (7) discretized via the midpoint

rule as

0 =

Q
∑

m=1

−�s f̃
[m]

(t ), (26)

0 =

Q
∑

m=1

�sX̃
[m]

(t ) × [− f̃
[m]

(t )]. (27)
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The semidiscrete form of the EIF is then

0 =

Q
∑

m=1

−�s f̃
[m]

(t ), (28)

0 =

Q
∑

m=1

�sX̃
[m]

(t ) × [− f̃
[m]

(t )], (29)

θ̃ [m+1](t ) − θ̃ [m](t )

�s
= −e3 ·

Q−1
∑

n=m

�s[X̃
[n+1]

(t ) − X [m+1](t )] × f̃
[n+1]

(t ), (30)

∂t X̃
[m]
j (t ) =

1

8π

Q
∑

n=1

I
[m,n]
jk

(t ; �s, ε) f̃
[n]

k
(t ), (31)

where X [m](t ) = X [1](t ) +

m−1
∑

n=1

�s[cos θ̃ [n](t ), sin θ̃ [n](t ), 0]T ,

X̃
[m]

(t ) = X [m](t ) +
�s

2
[cos θ̃ [m](t ), sin θ̃ [m](t ), 0]T , (32)

and ∂t X̃
[m]

(t ) = ∂t X [1](t ) +

m−1
∑

n=1

�s ∂t θ̃ [n](t )[− sin θ̃ [n](t ), cos θ̃ [n](t ), 0]T

+
�s

2
∂t θ̃ [m](t )[− sin θ̃ [m](t ), cos θ̃ [m](t ), 0]T , (33)

where m = 1, . . . , Q − 1 in Eq. (30) and m = 1, . . . , Q in Eqs. (31) and (33).

By using Eqs. (32) and (33), the variables X̃
[1]

(t ), . . . , X̃
[Q+1]

(t ) and X [2](t ), . . . , X [Q](t )

can be eliminated from Eqs. (29), (30), and (31). The resulting system is then linear

in ∂t X [1](t ), ∂t θ̃ [1], . . . , ∂t θ̃ [Q], f̃
[1]

(t ), . . . , f̃
[Q]

(t ). Hence, given the discrete configuration

X̃
[1]

(t ), θ̃ [1](t ), . . . , θ̃ [Q](t ), the rate of change of position and angle can be found by solving

a dense (3Q + 2) × (3Q + 2) system of linear equations. Thus, the semidiscrete system can be

expressed concisely as an autonomous nonlinear initial value problem,

Ẏ = F (Y ), Y (0) = Y 0, (34)

where Y (t ) := [X̃
[1]

(t ), θ̃ [1](t ), . . . , θ̃ [Q](t )] is a Q + 2 column vector and Ẏ (t ) = ∂t Y (t ). By

augmenting the problem with the unknown force densities, this can be written as the matrix system,

A

[

Ẏ

f̃

]

= b, (35)

with A =

[

0 AE

AK AH

]

, (36)

b =

[

0,
θ̃ [2](t ) − θ̃ [1](t )

�s
, . . . ,

θ̃ [Q](t ) − θ̃ [Q−1](t )

�s
, 0, 0, 0, . . . , 0

]T

, (37)

f̃ =
[

f̃
[1]

1 , . . . , f̃
[Q]

1 , f̃
[1]

2 , . . . , f̃
[Q]

2

]T
, (38)

where A is a (3Q + 2) × (3Q + 2) block matrix, b is a 3Q + 2 column vector, and f̃ is a 2Q

column vector, so that the concatenation [ Ẏ , f̃ ]T is a 3Q + 2 column vector. The matrix blocks

of A (AE , AK , and AH ) encode the elastodynamic, kinematic, and hydrodynamic equations given

by Eqs. (30), (33), and (31), respectively. In the vector b, the first entry corresponds to the moment

balance on the whole filament [Eq. (29)], the subsequent Q − 1 rows are the moment balances about

each interior joint [Eq. (30)], and the next two rows correspond to the total force balance [Eq. (28)].

The remaining zero entries correspond to the equivalence between the hydrodynamic and kinematic
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velocities [Eqs. (31) and (32)]. The matrix system given in Eq. (35) is solved for Ẏ and f̃ at each

time step using the MATLAB® backslash command, and the resulting rates vector Ẏ is integrated

using the built-in variable-step, variable-order ODE solver ode15s [40]. To demonstrate the ease

of application of the EIF framework, all simulations are performed using the MATLAB® R2019a

default settings for ode15s. In particular, the absolute and relative error tolerances are 10−6 and

10−3, respectively. While this IVP exhibits some stiffness, it is less stiff than the systems produced

by other methods, as the integral formulation avoids the need of additional Lagrange multipliers to

ensure filament inextensibility. At each time step, the filament is constructed according to Eq. (32)

with �s = 1/Q, ensuring that filament arclength is preserved over the course of the simulation.

III. SINGLE AND MULTIPLE FILAMENT PROBLEMS

In the following section, we apply the EIF framework described in Sec. II to problems involving

single or multiple filaments in the presence of body forces, surrounding flow, or undergoing self-

powered propulsion.

A. A single passive filament in shear flow

We investigate the dynamics of a single passive filament in a linear shear flow,

u∗
s (t∗) = γ̇ x∗

2 (s∗, t∗) e1, with shear rate γ̇ , where ∗ denotes a dimensionful variable. Nondimension-

alizing with respect to the length of the filament L, timescale τ = γ̇ −1, and force density scaling

μLγ̇ (where μ is the dynamic viscosity of the surrounding fluid), yields the nondimensionalized

equation for the hydrodynamic velocity

∂t X j (s, t ) =
1

8π

∫ 1

0

Sε
jk (X (s, t ), X (s′, t )) fk (s′, t ) ds′ + X2(s, t ) δ j1. (39)

Additionally, from the dimensional version of Eq. (16), together with the scalings defined above,

we obtain the nondimensionalized elastohydrodynamic integral equation

∂s θ (s, t ) = −e3 · V

∫ 1

s

[X (s′, t ) − X (s, t )] × f (s′, t ) ds′, (40)

where the dimensionless viscous-elastic parameter

V =
μγ̇ L4

EI
(41)

quantifies the ratio of viscous to elastic forces on a shear timescale, where EI is the bending rigidity

of the filament. The apparent flexibility of a filament is completely characterized using V , with

large values describing floppy fibers, and small values stiff fibers. The similarity between Eqs. (16)

and (40) results in a similarly discretized form as in Eq. (30).

The hydrodynamic shear flow equation [Eq. (39)] is semidiscretized following the steps in Sec. II

to obtain

∂t X̃
[m]
j (t ) =

1

8π

Q
∑

n=1

I
[m,n]
jk

(t ; �s, ε) f̃
[n]

k
(t ) + X̃

[m]
2 (t ) δ j1, m = 1, . . . , Q. (42)

The system of equations for a single passive filament in shear flow is thus given by Eq. (35) but

with the alterations

A =

[

0 VAE

AK AH

]

, (43)

b =

[

0,
θ̃ [2](t ) − θ̃ [1](t )

�s
, . . . ,

θ̃ [Q](t ) − θ̃ [Q−1](t )

�s
, 0, 0, X̃

[1]
2 (t ), . . . , X̃

[Q]
2 (t ), 0, . . . , 0

]T

, (44)

and where the vector of unknowns [ Ẏ , f̃ ]T remains unchanged from Eq. (35).
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B. A single passive filament sedimenting under gravity

The EIF method also allows for implementation of a body force to the system. In this section,

the simulation of passive filaments sedimenting under gravity is considered. Assuming uniform

mass per unit length ρ, the force per unit length due to gravity acting upon the filament is −ρge2.

Nondimensionalizing with respect to the filament length L, time scaling τ = μL4/EI , and force

density μL/τ , addition of the gravitational force density produces the force and moment balance

equations

∫ 1

0

[− f (s′, t ) − Ge2] ds′ = 0, (45)

∫ 1

0

[X (s′, t ) − X c(t )] × [− f (s′, t ) − Ge2] ds′ = 0, (46)

where X c(t ) is the center of gravity of the filament, f (s, t ) is the force per unit length the filament

exerts on the fluid, and G is the elastogravitational parameter

G =
ρgL3

EI
. (47)

Following a derivation similar to that presented in Sec. II, the elastohydrodynamic equation is found

as

∂s θ (s, t ) = −e3 ·

∫ 1

s

[X (s′, t ) − X (s, t )] × [ f (s′, t ) + Ge2] ds′, (48)

which, along with Eqs. (45) and (46), has spatially discretized form

0 =

Q
∑

m=1

�s[− f̃
[m]

(t ) − Ge2], (49)

0 =

Q
∑

m=1

�s [X̃
[m]

(t ) − X c(t )] × [− f̃
[m]

(t ) − Ge2], (50)

θ̃ [m+1](t ) − θ̃ [m](t )

�s
= −e3 ·

Q−1
∑

n=m

�s[X̃
[n+1]

(t ) − X [m+1](t )] × [ f̃
[m+1]

(t ) + Ge2]. (51)

As in Sec. II A, we form a matrix system encoding Eqs. (49)–(51) along with Eqs. (31) and (33),

Ag

[

Ẏ

f̃

]

= bg, (52)

which can be solved to find the filament velocities ∂t X 0(t ), ∂t θ̃ [m](t ) and force densities f̃
[m]

(t )

for m = 1, . . . , Q. The matrix Ag has the same block form as A, but with an alteration in the

first row of the elasticity block AE due to do the inclusion of the center of gravity in the total

moment balance equation [Eq. (50)]. The right-hand-side vector is constructed as bg = b + b̂, where

b̂ encodes all the changes required to the right-hand-side vector b [given in Eq. (37)] after expansion

and rearrangement of Eqs. (49), (50), and (51).

C. A single active filament

For the problems considered in Secs. III A and III B, we can consider active filaments by

including a time-dependent moment density term added to the elastodynamic formulation given

in Eq. (12). The moment balance in Eq. (10) is extended,

∂s M(s, t ) + e3 · [∂s X (s, t ) × N(s, t )] + m(s, t ) = 0, (53)
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where m(s, t ) is the moment per unit length that drives the actuation of the filament. Continuing

the nondimensionalization as in Sec. II, with time scaling τ = ω−1, yields the nondimensionalized

elastohydrodynamic equation for a single active filament,

∂s θ (s, t ) − S 4

∫ 1

s

m(s′, t ) ds′ = −e3 · S 4

∫ 1

s

[X (s′, t ) − X (s, t )] × f (s′, t ) ds′, (54)

where S is the dimensionless swimming number, defined

S = L
(μω

EI

)1/4

, (55)

with ω being the angular velocity of the swimming beat prescribed to the filament. Note that the

swimming parameter is different from the commonly used sperm number Sp, which has dependence

on a chosen resistance coefficient. Following work by Gadêlha et al. [8] and Montenegro-Johnson

et al. [18], the active moment m(s, t ) is set as a traveling wave with amplitude m0, wave number k

and angular frequency ω. The semidiscretized form of Eq. (54) is

θ̃ [m+1](t ) − θ̃ [m](t )

�s
− S 4

∫ 1

s̃ [m]

m(s′, t ) ds′

= −e3 · S 4

Q−1
∑

n=m

�s
[

X̃
[n+1]

(t ) − X [m+1](t )
]

× f̃
[n+1]

(t ), (56)

for m = 1, . . . , Q. In the following section, we consider the how the presented framework can be

extended to model systems of multiple filaments.

D. Systems of multiple filaments

The EIF can be used to simulate the dynamics of large groups of filaments, accounting for

the nonlocal hydrodynamic interactions between them. For each of the problems presented in

Secs. III A, III B, and III C, the kinematic and elastodynamic equations apply to each filament in

the system individually. The hydrodynamic equations are extended so that interactions between all

filaments are considered. For a system of N passively relaxing filaments, this equation reads

∂t X
{α}

j (s, t ) =
1

8π

N
∑

β=1

∫ 1

0

Sε
jk (X {α}(s, t ), X {β}(s′, t )) f

{β}

k
(s′, t ) ds′, β = 1, . . . , N, (57)

where the superscript {α} in this continuous equation refers to the {α}th filament in the system.

While three-dimensional hydrodynamic effects are computed, the kinematics and hence elasticity of

the multiple filament problem remains two-dimensional, ensuring planarity. Modification of Eq. (57)

to consider external flows or body forces follows from the single-filament derivations presented

in Secs. III A, III B, and III C, and nondimensionalizing yields the same governing dimensionless

parameters V , G, and S, respectively. Discretization of the resulting equations is performed in the

same manner, producing an N (3Q + 2) × N (3Q + 2) linear system similar in structure to those

presented in each of the single-filament problem descriptions. Full details of the equations as

well as the associated linear systems for each of the multiple-filament problems are given in the

Supplemental Material Sec. SII [41].

IV. MODEL VERIFICATION

To verify the accuracy and efficacy of the EIF, we compare the computed dynamics of a

single relaxing filament between the proposed method and a high-resolution bead and link method

(BLM) formulation. Based upon the work of Jayaraman et al. [3], the BLM accounts for nonlocal

hydrodynamic interactions, and when highly resolved, provides accurate solutions (details provided
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FIG. 2. Error convergence of three EIF methods against a very high resolution (Q = 200) bead and link

model (detailed in Sec. SIII of the associated Supplemental Material [41]). (a) The geometry of the relaxing

rod experiment is displayed, comparing the shape at t = 0 and t = 0.02 for the EIF-RSM with Q = 100 to

the high-resolution BLM with Q = 200. (b) The root-mean-squared error (RMSE) is calculated between the

Cartesian solution data for a relaxing filament at t = 0.02 modeled using a finely discretized BLM formulation

and (1) EIF-RSM, (2) EIF-RFT, i.e., the EIF method but using a resistive force approximation (see Sec. SIV of

the Supplemental Material [41]), and (3) MGG, the EIF method proposed by Moreau et al. [1]. (c) Total wall

time T against level of discretization Q for the EIF-RSM, MGG, and BLM methods.

in the Supplemental Material Sec. SIII [41]). For this reason, the BLM is used both to verify the

proposed EIF method and as a reliable point of comparison between other existing methods. We

consider the case of a filament, bent into a parabola, with initial condition Y constructed by sampling

symmetrically from the curve y = 0.5x2, and ensuring unit arclength. This filament is then allowed

to relax with no external forcing. Motion of the filament in this scenario is due to the constitutive

bending moments along the arclength, given in Eq. (30). This experiment is simulated using each

of four methods:

(1) EIF-RSM: the proposed EIF method, which uses regularized stokeslets to account for

nonlocal hydrodynamic interactions

(2) EIF-RFT: the EIF method, with resistive force theory in place of the method of regularized

stokeslets to model local hydrodynamic interactions (refer to the associated Supplemental Material

Sec. SIV [41] for full details)

(3) MGG: the original angle formulation method by Moreau, Giraldi, and Gadêlha [1], which

uses resistive force theory to model local hydrodynamic interactions

(4) BLM: the bead and link method, which accounts for nonlocal hydrodynamic interactions.

We include the EIF-RFT method to verify the equivalence of the present implementation with

that of Moreau et al. [1] under the reduction to local hydrodynamics. In all simulations in this paper

the regularization parameter for use in the method of regularized stokeslets is chosen as ε = 0.01.

The geometric configuration of the relaxing filament is simulated between t = 0 and t = 0.02,

using both a high-resolution (Q = 200) BLM formulation and the EIF-RSM method with Q = 100.

The initial and final filament shapes from each simulation are displayed in Fig. 2(a), which show

excellent agreement between these formulations. Quantitative comparison is shown in Fig. 2(b),

where we plot the root-mean-squared error (RMSE) between the position of the filament described

by each model against that of the high-resolution BLM. Here excellent convergence is evident,

with the RMSE being minimal for even small values of Q. Comparisons with MGG and EIF-RFT

are also presented in this figure. While it might be counterintuitive that the local hydrodynamic

models initially increase in error with Q, this is due to drift in the center of mass that the nonlocal

methods correctly capture. Increasing Q in the local methods leads to increasingly resolved shape

of the relaxing filament, leading to the convergence of this error. These comparisons highlight the

change in dynamics when considering the inclusion of nonlocal hydrodynamics for even a simple

single-filament problem.

Moreau et al. demonstrated the significant reduction in computational cost achieved when

formulating elastohydrodynamic problems as an integro-differential equation. With the added
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complexity of including nonlocal hydrodynamic modeling, the EIF-RSM still performs very well.

In Fig. 2(c) we plot logarithmic comparisons of the simulation runtime for each of EIF-RSM,

MGG, and BLM formulations. The wall time recorded is the total computational time for the

method including setup time. For the tangent angle formulation methods, the majority of this time

is accounted for by the linear solve at each time step.

It it unsurprising that the local hydrodynamic formulation (MGG) outperforms the methods with

nonlocal interactions due to reduced complexity of the problem. The EIF-RSM and BLM method

perform on par for increasing Q. However, the BLM method requires large numbers of beads

in order to accurately capture the correct filament dynamics (see Sec. SIII of the Supplemental

Material [41]), whereas the EIF-RSM can achieve similar accuracy with fewer than half of the

degrees of freedom required by the BLM [see Fig. 2(b)].

V. RESULTS

In the following section, results from the numerical experiments outlined in Sec. III are presented.

We begin by examining the dynamics of single passive filaments in shear flow and sedimenting

under gravity, and active filaments with prescribed internal moments. Additionally, we investigate

larger arrays of passive filaments, again in shear flow and undergoing sedimentation, and systems

of multiple swimming filaments. The regularization parameter is ε = 0.01 and, unless otherwise

stated, Q = 40, with segment lengths �s = 1/Q. This choice of Q is motivated by the convergence

results given in the Supplemental Material Sec. SI [41]. Simulations are run on a computer equipped

with an Intel i7-8750H processor and 16 GB of RAM.

A. Results: A single passive filament in shear flow

It is well known that for critical values of the characteristic parameter, a filament in shear flow

exhibits shape buckling [9,42] due to a stress difference across the fiber while under compression

by the fluid. Dynamics of a filament in shear flow are simulated by solving Eq. (35) with A and b

given by Eqs. (43) and (44), and characterized by parameter V [Eq. (41)].

We initialize our filament as a straight rod with a small perturbation following the method of

Young [43], writing the initial angular configuration as

θ̃ [n](0) = θ0 + �θ0

[

(s̃[n])3

3
−

(s̃[n])4

2
+

(s̃[n])5

5

]

, (58)

for initial angle θ0 and small perturbation parameter �θ0. As discussed by Tornberg and Shelley [9],

prescribing a small perturbation to a straight filament can drastically change the dynamics from

rotational Jeffery orbits to interesting buckling phenomena.

In Fig. 3 we demonstrate how changing the value of V affects the amount of buckling a filament

experiences. The fiber is perturbed with θ0 = 0.9π and �θ0 = 0.1. As the filament rotates, buckling

modes form, which are directly linked to the size of V and the choice of perturbation [Eq. (58)].

Large values produce high-order buckling modes, which can be seen in the fourth row of Fig. 3.

Conversely, comparatively small values produce no buckling and the filament rotates through a

standard Jeffery orbit. For V = 5 × 103, a first-order buckling mode begins to form, visible in

the first row of Fig. 3. The amplitude of the buckling increases as V increases until higher-order

modes are induced. Tornberg and Shelley [9] examined buckling governed by an effective viscosity

parameter μ̄ = 8πV , producing filament shapes akin to the second row of Fig. 3.

The buckling problem of a flexible filament in shear flow has multiple solutions [42,44]. As noted

by Tornberg and Shelley [9], the choice of initial perturbation to the filament shape can preferentially

lead to one of the solutions. For example, the particular initial condition considered in Ref. [9]

produces a reflected filament shape when changing the sign of the perturbation. Additionally, for the

high-order buckling modes, increasing values of Q must be chosen in order to resolve the filament

dynamics. However, given an initial condition that does not uniquely determine a specific solution
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FIG. 3. Dynamics of a single filament in shear flow. Each row displays the geometric configuration of the

filament, characterized by different values of V , as it rotates in a shear flow over time. Streamlines indicate

the direction of the surrounding fluid flow. In each case, the filament is modeled using Q = 40 segments,

with initial shape parameters θ0 = 0.9π and �θ0 = 0.1 [Eq. (58)]. For a given initial condition, the size of V

completely determines the level of buckling the filament exhibits as it is compressed during the rotation. For

large values, high-order buckling modes appear, as in the third and fourth rows of the above diagram.

branch (as for this problem with large values of V), the buckled solution becomes sensitive to the

choice of discretization. Details of the convergence of the method for this problem is contained in

Sec. SI.1 of the Supplemental Material [41].

At critical values of V , unstable buckling can occur. For example, when V = 3.4 × 104, a

higher-order buckling mode initially forms (row three of Fig. 3) but collapses into a lower-order

mode. In Fig. 4, the filament evolution highlighted in Fig. 3 is displayed as a curvature plot in

arclength and time. The unstable higher-order mode can be clearly seen collapsing into a lower-order
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FIG. 4. Time evolution of curvature for two choices of the dimensionless group V . (a) V = 3.4 × 104,

(b) V = 4 × 104. Note the collapse of a higher order mode to a lower order mode in the case of V = 3.4 × 104

[panel (a), with the red dashed lines indicating the zone of collapse].

configuration, indicated by the two dotted lines in Fig. 4(a). Increasing V further ensures that a

higher-order mode is stable throughout the compression phase [Fig. 4(b)].

The perturbation to the filament shape induced by buckling can be investigated by considering

the evolving body-frame tangent angles θ̃
[m]

body = θ̃ [m](t ) − θ (t ), where

θ (t ) =
1

Q

Q
∑

m=1

θ̃ [m](t ) (59)

is the mean filament angle. By fitting Chebyshev polynomials to θ̃
[m]

body along the filament at a time

t , allowing for 5% interpolation error, we can assess the evolution of both the order of Chebyshev

polynomials required and their associated magnitude. In Figs. 5(a) and 5(b), we show the results

of this fitting process for two choices of V . An increase in V requires a commensurate increase

in polynomial order required, illustrated by examining the Chebyshev coefficients in Figs. 5(c)

and 5(d).

B. Results: A single passive filament sedimenting under gravity

Following Sec. III B, simulations of a single passive filament sedimenting under gravity (with no

background flow) are considered. Filament dynamics in this case are simulated by solving Eq. (52)

and characterized by the dimensionless elastogravitational parameter G [Eq. (47)].

By sampling θ from the very-low-amplitude parabola y = 1 × 10−7x2, the filament geometry is

initialized with unit arclength, and presolved with a coarse discretization (Q = 10) until the shape

is sufficiently curved so that a higher-resolution representation can be employed (full details are

provided in the Supplemental Material Sec. SI.2 [41]). In the following results, Q = 40 is used for

the upscaled initial condition.

For different choices of G, various sedimentary buckling modes can be observed. In Fig. 6 a

stable “U” filament configuration emerges over time. For large values of G > 3000, a metastable

“W” configuration forms, which transitions into a stable “U” horseshoe shape (see Fig. 7, in which

G = 3500). Such behavior has previously been observed by Delmotte et al. [4] and Cosentino

Lagomarsino et al. [45], who witnessed buckling at the same threshold value for their identical

elastogravitational parameter. This transition shifts the filament’s center of gravity to the left,

creating an asymmetry which is then partially resolved as the horseshoe equilibrium configuration

is reached.
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FIG. 5. Analysis of the buckling modes of a filament in shear flow via polynomial interpolation. At select

time points during the filament rotation, we fit a series of N Chebyshev polynomials Tn(θ̃body) (n = 1, . . . ,N ),

with N chosen so that the tangent angle curve is interpolated within a 5% error bound. The polynomial

coefficients are calculated using the chebfun package for MATLAB®. (a) and (b) The tangent angle of a single

filament undergoing buckling is captured relative to the body frame at four time points during its rotation.

Each subplot indicates the shape of the filament via θ̃body = θ̃ [m](t ) − θ (t ), the values of the interpolating

Chebyshev polynomial at discrete segment midpoints s̃[m], for each degree n. (c) and (d) The number and

magnitude of Chebyshev coefficients for each of the polynomials is presented, for V = 5 × 103 and 4 × 104,

respectively.

C. Results: A single active filament

In the following section, we consider swimming in a stationary fluid caused by two types of

traveling-wave moment densities, (1) spermlike sinusoidal motion m1(s, t ), and (2) a wormlike
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FIG. 6. Dynamics of an elastic filament sedimenting under gravity. Axes are centered on the center of mass

of the filament at the corresponding time point.

beating pattern m2(s, t ), given, respectively, by

m1(s, t ) = m0 s cos(ks − t ), (60)

m2(s, t ) = m0 cos(ks − t ), (61)

where m0 and k are the dimensionless amplitude and wave number, respectively. These swimmers

are initialized by sampling θ from a low-amplitude parabola y = 1 × 10−3x2 and constructed as

before, ensuring unit arclength.

For appropriately small choices of m0, substitution of Eq. (60) or (61) into Eq. (56) can induce

swimming in a filament in stationary surrounding flow. Fixing the wave number k, the relationship

between filament elasticity and choice of driving force (governed by m0) is investigated. The

velocity along a line (VAL) is a measure of the swimming speed of a filament for a chosen S

and m0 pair, calculated via

VAL =

∥

∥X
( j)
0 − X

( j−1)
0

∥

∥

T
, (62)

FIG. 7. Dynamics of a very flexible filament sedimenting under gravity. Here, for G = 3500, the filament

first assumes a metastable “W” profile, before instability along the arclength transforms causes transition to

the stable “U” configuration. In each panel, axes are centered on the center of gravity of the filament at the

corresponding time point. The dashed line indicates the position of the center of gravity at t = 0.
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FIG. 8. Swimming speed of a filament and its relation to parameter choices. The velocity along a line

(VAL) is calculated for various pairs of filament swimming number S and traveling-wave amplitude m0. Here

VAL is shown for (a) a spermlike swimmer [Eq. (60)] and (b) a wormlike swimmer [Eq. (61)], each with fixed

wave number k = 4π .

in which T = 2π is the period of the driving wave and X
( j)
0 represents the position of the leading

point of the filament after it has traveled j wavelengths, with j chosen such that the filament has

established a regular motion after beginning to swim.

Swimming speed for different choices of parameter pairs (S,m0) are presented in Fig. 8. For

critical values, filaments self-intersect, in which case the EIF is inapplicable. The shape of such

filaments are shown in Fig. 9. For a spermlike swimmer (left panel of Fig. 8), swimming speed

increases as m0 and S are increased in tandem for a fixed wave number k = 4π . This is in contrast

to wormlike swimmers (right panel of Fig. 8), in which there is a clear optimal choice of m0 for

a given S to induce fastest swimming. Shape profiles for the fastest swimmers of each swimming

type are also displayed in Fig. 9.

D. Results: Multiple passive filaments in shear flow

Motivated by the work of Young [43], two filaments of equal length are placed into a linear shear

flow so that their initial midpoints X (s = 1/2, t = 0) intersect the line y = 0, and are separated by

FIG. 9. Shape configuration of single swimming filaments, propelled by the moment density profiles in

Eqs. (60) (top row) and (61) (bottom row). In both scenarios, m0 = 0.03, k = 4π , and Q = 40. The dotted

magenta curve traces the path of the leading point X 0(t ). On the left, an optimal choice of S results in fast

directed motion, while on the right, extreme filament curvature is produced, leading to self-intersection.
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FIG. 10. Dynamics of two identical filaments (with Q = 40), separated by �X0 = 0.5 (top row), and

�X0 = 1 (bottom row). The color bar indicates the magnitude of the relative perturbed fluid velocity U p =

(U f − U b)/U ref, where U f is the fluid flow, U b is the background fluid flow, and U ref is the flow at an arbitrary

reference field point, chosen to be the at the bottom left of each figure frame. The plotted fluid lines display the

flow disturbance, illustrating the filament-fluid interactions and the occlusionary effect that the presence of the

leftmost filament has on the flow.

a distance �X0. The initial shape profiles for each filament are the same as in Sec. V A. For two

filaments characterized by the same viscous-elastic parameter, nonlocal hydrodynamic interactions

lead to geometric asymmetry, as seen in Fig. 10. The value of V determines the level of dissimilarity

between filaments with identical initial shape profiles, with higher values leading to larger deviations

in shape throughout the rotation.

The initial separation distance also has a significant influence on the dynamics of each filament.

The shapes of initially close filaments evolve in tandem, assuming similar geometries at a given

moment in time (row one of Fig. 10). Increasing the separation distance results in a decoupling of

the filament shape profiles (row two of Fig. 10). The EIF allows for each filament’s characteristic

parameter to be independently chosen, and in Fig. 11, we highlight the variation in shape this can

induce. In each of the panels in Figs. 10 and 11, color denotes the magnitude of the relative fluid

velocity disturbance (found by subtracting the shear fluid velocity from the resultant fluid velocity),

scaled with respect to the size of fluid velocity in the bottom left corner of each frame. Fluid lines

show the instantaneous direction of the flow disturbance.

The geometric similarity between filaments can be assessed via their Procrustes score [46],

calculated using the procrustes MATLAB® command. We compare pairs of filaments initially

separated by �X0 = 0.5 and 1 for a range of V , with results displayed in Fig. 12. As V is increased,

hydrodynamic interactions through the fluid cause larger levels of asymmetry between the filaments

during the period of maximum buckling (when they are perpendicular to the direction of shear

at t ≈ 3). Increasing the initial filament separation results in a higher baseline Procrustes score,

but with reduced variability, demonstrating how nonlocal hydrodynamic interactions decay as the

filaments are moved apart.
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FIG. 11. Two filaments of differing stiffness in shear flow, separated by �X0 = 1 and with Q = 40. The left

filament is characterized by V = 5 × 103, and the right by V = 2 × 104. The color bar indicates the magnitude

of the relative perturbed fluid velocity U p = (U f − U b)/U ref, where U f is the fluid flow, U b is the background

fluid flow, and U ref is the flow at an arbitrary reference field point, chosen to be the at the bottom left of each

figure frame.

E. Results: Multiple passive filaments sedimenting under gravity

A range of filament systems with multiple choices of the elastogravitational parameter G are

presented in Figs. 13, 14, and 15. In each case, the initial filament shape configurations are as

those in Sec. V B, and are separated from each other by �X 0 = [�X0,�Y0]. A stopping criterion

is implemented which halts the integration when filaments intersect or otherwise touch. For small

values of G filaments slide towards each other as they sediment due to the anisotropy of Stokes

drag. For larger values of G (rows two and three of Fig. 13) the metastable and stable buckling

modes observed in the single-filament experiments (Figs. 6 and 7) are replicated. In these systems,

the interaction of multiple filaments leads to the steady-state profiles being reached sooner than in

the single-filament cases. Furthermore, the onset of buckling occurs at reduced values of G when

multiple filaments are interacting.

As was the case for multiple filaments in shear flow, the interfilament spacing �X 0 also has

a significant effect on the resulting group dynamics, and can lead to symmetry breaking in the

arrangement of filaments. In Fig. 14, two initial filament placement configurations are tested. For

each setup, we initialize four filaments arranged in a grid, with �X0 = 1.5 and vertical separations

�Y0 = 0.5 (row one of Fig. 14) and �Y0 = 1.5 (row two of Fig. 14). Smaller vertical spacing

0 1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

1

FIG. 12. Quantifying the evolving geometric similarity between two filaments of equal stiffness in shear

flow for three values of V . The shape difference between two filaments is quantified using the Procrustes

measure, calculated using the procrustes MATLAB® command. Higher values indicate a larger degree of

dissimilarity between the two filaments [46].
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FIG. 13. Two filaments sedimenting under gravity, both characterized by the same elastogravitational

parameter G. Streamlines indicate the direction of the fluid disturbance caused by filament interactions.

leads to the filaments “nestling” in a horizontally mirrored configuration; when placed further apart,

horizontal mirroring still occurs, but the filaments do not approach each other.

In Fig. 15 nine identical filaments are arranged in a grid with initial spacing �X0 = 1.5

and �Y0 = 1. As with the smaller arrays, filaments can group and buckle according to the

choice of characteristic parameter G. Although identical in governing parameter G, the nonlocal

hydrodynamic interactions between filaments induce different buckling behaviors depending on

location within the array.

For all choices of G, vertical symmetry breaking occurs between the topmost and middle rows

of filaments, with the second and third rows of filaments on the left and right of the frame nestling

into those below them. For G = 3500, more prominent buckling is apparent, with filaments in the

central column approaching a “W” shape, whereas those on the flanks assume a “U” configuration.

Competing interactions between filaments in the central column and their surrounding neighbors

causes them to remain in a metastable “W” shape longer than would be expected in the single-

filament case.

F. Results: Multiple active filaments

Multiple self-propulsive active filaments can be simulated using the EIF method. To illustrate

this, we consider two filaments swimming alongside each other at different separation distances
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FIG. 14. The effect of initial filament density on group dynamics when sedimenting under gravity. In both

experiments, the horizontal spacing between the filament columns are equal. A change in the vertical spacing

from 0.5 (top row) to 1.5 (bottom row) leads to different fluid dynamics and resulting filament configurations.

Streamlines indicate the direction of the fluid disturbance caused by filament interactions.

�Y0, with shapes initialized as in Sec. III C. For fixed S = 8 and m0 = 0.05, the size of the

separation determines the resulting average swimming velocity, as shown in Fig. 16. At low levels

of separation, hydrodynamic interactions between the synchronous beats result in a higher average

VAL [Eq. (62)], which decays as the filaments are placed further apart [Fig. 16(a)].

VI. DISCUSSION

In this paper, the elastohydrodynamic integral equation (EIF) framework is formulated, and

applied to problems involving single and multiple filaments in shear flows, sedimenting under

gravity, and swimming due to a prescribed active moment. From the simulations presented in

Sec. V, it is apparent how interfilament nonlocal hydrodynamic interactions have a role in governing

filament shapes and buckling behavior. By examining active moment-driven swimmers, an optimum

pairing of moment-amplitude and characteristic swimming number is revealed.

One of the key benefits to the integral formulation framework presented is that the need for

computing Lagrange multipliers of tension is removed; inextensibility of the modeled filament is

already guaranteed by the use of the method of lines discretization. This results in a method that is

more computationally efficient than many similar contemporary models. The EIF method proposed

by Moreau and coauthors [1] highlighted the reduction in computational runtime attainable when

using the integral formulation applied to elastodynamics, due in part to the reduction in the required

degrees of freedom the integral formulation affords. Alleviating this numerical stiffness facilitates

the study of nonlinear problems, such as those involving filament buckling investigated in Sec. V.

Additional computational costs are incurred by introducing nonlocal hydrodynamics to the EIF

framework, in line with the increase in the dimension and density of the matrix system solved at each

time step. The BLM and the EIF with regularized stokeslets complete a relaxing rod simulation in

about equivalent walltime (as expected, since both approaches compute three-dimensional nonlocal

hydrodynamics), shown in Fig. 2(c). However, to ensure that the pointwise error is small, fine

discretizations need to be used with the bead model (Q > 60), whereas the EIF method performs

equally well with a much coarser segmentation of the filament (Q > 20). This allows for adequately
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FIG. 15. Simulation of multiple sedimenting filaments. The EIF framework can also accommodate larger

arrays of filaments, such as the 3 × 3 arrangements in the figure. In each case, the initial filament spacing is

�X 0 = [1.5, 1]. In all cases, vertical symmetry breaking is apparent for t > 0.001. Streamlines indicate the

direction of the fluid disturbance caused by filament interactions.

accurate results to be obtained for reduced computational cost when using the EIF with regularized

stokeslets over the bead and link model.

The proposed method has the potential to quickly and accurately simulate arrays of filaments in

various flows and surroundings. The EIF method presented here will enable the solution of more

challenging problems such as planar beating cilia sheets, or multiple sperm swimming in a narrow

channel. The methods’ modular framework enables such problems to be setup and executed in a

simple and obvious manner. Additionally, the EIF method fits into the family of regularized stokeslet

methods [34], which are increasingly widely used for problems in biological fluid mechanics.

Crucially, the computational efficiency exhibited in the single-filament experiments is retained.

The method could be extended by incorporating the treecode formulation of Wang et al. [47],

or equivalent methods, to coarse grain the far-field flow, simplifying the computational cost and

FIG. 16. Two identical filaments with S = 8 and m0 = 0.05, propelled by a spermlike active moment,

swimming alongside one-another. (a) Filaments in close proximity of each other produce a higher average

velocity (VAL). (b) The shapes of the evolving filaments are presented for an initial vertical separation �Y0 =

0.1 for t ∈ [6π, 24π ]. As in Fig. 9, the magenta paths in panel (b) indicate the path the leading point of the

filament takes over the course of the simulation.
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enabling simulation of increasingly large numbers of filaments. The inclusion of a repulsive force

term, such as the Lennard-Jones potential employed by Jarayaman et al. [3], could additionally

enable simulation of filaments in close proximity and help avoid filament self-intersection.

The results of Sec. V A suggest that the shape of a buckling filament can be described to a high

degree of accuracy by a relatively low order Chebyshev polynomial (Fig. 5). These results suggest

that a modified discretization based on orthogonal polynomials, perhaps in concert with suitable

quadrature techniques [48] might provide further improvements in efficiency and scalability. In

summary we hope that the integral operator formulation of elastohydrodynamics will be valuable in

biological fluid dynamics and beyond.
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