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1. lNTRODUCTlON 

Object inheritance is semantically and pragmatically useful. Novel programming 

languages are being designed that allow the user to specify type hierarchies. 
Examples of these are class inheritance in Common Loops [9] and SmallTalk 
[12], flavor inheritance in ZetaLisp [20], subsorts in Theorem Proving [18, 191, 
type checking in Amber [lo], Galileo [7], and more recently object-oriented 
programming formulated as order-sorted algebraic abstract data-typing [ll, 171, 
and David McAllester’s work on boolean class expressions [ 141. 

In general, objects that are instances of classes organized in a partial order are 
manipulated as constraint expressions specifying conjunction, disjunction, or 
exclusion of certain class properties. Languages that support multiple inheritance 
(i.e., where a class may have more than one superclass) such as ZetaLisp [20] or 
Smalltalk [12] use an ad hoc solution for combining class properties that depend 
on the temporal total order in which the classes are defined or appear in an 
expression. This is clearly semantically unclean and pragmatically hazardous. 
Other proposals [2, 14, 191 have formalized the concept of class inheritance in 
lattice-theoretic terms. This captures the essential properties useful in practice 
for object-oriented languages, and allows a better handling of class expressions 
for efficient implementation (e.g., given a taxonomy of objects-a subsumption 
partial ordering-how expensive is it to compute the greatest common lower 
bounds of two objects?). 

In this paper, we present a method that can be used as a static (i.e., at 
compilation time) procedure based on an idea of carrying the order-theoretic 
information of the object taxonomy into a homomorphic image where GLB 
computation is efficient. Although the method is general as far as which codes 
are used, this study focuses on the code space of (unbounded) binary words, 
which is the canonical boolean lattice under the Cartesian extension of the 0 < 1 
ordering. The computation of greatest lower bounds, for example, is thus reduced 
to, a binary and. 

We developed this technique implementing the particular mechanism of object 
inheritance of LogIn [5] and further extended in Life [6]. Another promising 
prospect of relevance for the techniques we describe seems to be the fast 
implementation of other constraint programming models strongly related to ours, 
such as [13, 15, 161. 

Section 2 states the problem in general terms. We first focus on the GLB 
operation, the most commonly used operation. Given that in arbitrary posets 
such an operation is not necessarily defined, Section 3 recalls a simple semilattice 
embedding construction to palliate this. Then a first method based on transitive 
closure is presented in Section 4. This method is altered to yield a more space- 
efficient encoding algorithm in Section 5. In Section 6 other lattice operations 
are considered; i.e., how the method may be extended to support object disjunction 
and complementation. Finally, Section 7 elaborates a more sophisticated tech- 
nique called modulation. The idea is that in practice related elements come in 
“blobs” (which we call modules) such that it is possible to encode elements locally 
within a module, these being themselves partially ordered and encoded. A 
comparative study of all three methods on large posets illustrates the gains in 
space and time incurred. 
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Fig. 1. A poset with multiple inheritance. 

2. THE PROBLEM 

Consider the object taxonomy-henceforth referred to as a (object) poset-of 
Figure 1. Let us suppose that some object is determined to be both of type student 
and type employee; i.e., it inherits from both types. Object inheritance as type 
coercion is thus the operation of finding the greatest type, with respect to the 
subsumption ordering, which is a subtype of both student and employee; in this 
case, workstudy. 

Given that the GLB of any two elements exists and is unique-i.e., that the 
poset is a lower semi-lattice (LSL)--we need an algorithm to compute it. A 
general, albeit naive, algorithm to compute the GLB of two elements of a finite 
LSL Z, is given in Figure 2. That is, the GLB of two elements s and t is the 
greatest element of the set of common lower bounds of s and t in 2. This 
algorithm is probably not the most efficient one could find. However, it is 
undoubtedly correct. 

Let us suppose now that there exists an LSL ZC, n for which we know how 
to compute GLBs efficiently. Now, given some LSL Z, I, A, let us also suppose 
that there exists a function y from Z to 9 such that, for any two elements s and 
t in Z: 

Y(S A t) = Y(S) n -l(t) (1) 

i.e., y is an LSL homomorphism. Finally, let us also assume that the function y 
is invertible; i.e., that there exists a function y-l from 9 to z1 such that, for any 
s in Z: 

Y-l(Y(s)) = s (2) 

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989. 
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function GLB(s, t : element) returns : element; 

begin 

LBst{XEL: Ix+}; 

LBt +-{xEE Ix<t}; 

CLB t LBs n LBt; 

return max(CLB) 

end 

Fig. 2. The “brute-force” GLB algorithm. 

Then, a way of computing the GLB of two elements s and t in the semilattice 
Z is to combine Equations (1) and (2): 

s A t = y-Y-Y(s) l-i y(t)) (3) 

More precisely, Eq. (3) is an efficient way to compute GLBs in Z only if the 
function y and its inverse are also efficiently computable. And this is not an 
assumption we may realistically make. However we need not really use Equation 
(3) literally. The function y may be relatively expensive, as long as we can 
compute it statically. Indeed, a compile-time computation could thus compute 
all the y-images of the elements in Z, so that all the run-time GLB computations 
be carried out in 9, and only pay the price of computing the inverse image by y 
of the ultimate result. This idea is invaluable for a language like LogIn [5] where 
run-time computation consists essentially of a very high number of such GLB 
operations, and decoding with y-l is needed only to print out the result- 
obviously a small price to pay. 

This is indeed the gist of the technique we are to propose. We suggest viewing 
such a y function as a code, and compilation of the object inheritance operation 
thus becomes an encoding process. 

Naturally, we need to explicate other wild assumptions made above, such as 
the LSL structure of Z, and the decoding function y-l. We next dismiss the 
former by recalling a semilattice embedding. As for the latter, a simple decoding 
follows from the LSL embedding interpretation. 

3. A SEMILATTICE CONSTRUCTION 

The foregoing simple analysis relies on the assumption that the poset .Z must be 
a lower semilattice; i.e., that a unique GLB exists in Z for any two object symbols 
in 2 (given by the A operation). However in practice this is not quite a reasonable 
assumption to make. Indeed, in order to maintain this assumption valid, as the 
size of the poset grows, there must be an exponential number of pairwise GLBs 
to be specified-clearly, an inappropriate demand on a programmer. 

Instead it would be simpler to embed a partially-ordered object set JZ that is 
not an LSL into the least such structure that contains it-up to some isomorph- 
ism. This embedding must preserve the order structure of Z, and in particular, 
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Fig. 3. A poset that is not a semilattice. 

existing GLBs. Such an embedding must also be semantically sound, in that the 

operational logic it implements must be consistent-in our case, all or some 
consistent restrictions of propositional logic implemented as boolean codes and 

operations. 
The idea is rather simple, and makes intuitive sense. Let us consider for 

example the poset of Figure 3. Objects wl, . . . , wk are both students and 
employees. However there is not a common object symbol to designate the set of 
students and employees. Thus taking the GLB of student and employee in this 
poset cannot be defined as a unique element of the poset. Nevertheless it makes 
sense to say that the GLB of student and employee ought to be the set (wl, . . . , 
wk). This is precisely the effect that the following construction achieves. To our 
knowledge, this construction is not conventional. It is related to what is known 
as completion by ideals [8], and detailed in the particular following form in [2] 
and [3]. 

In what follows, we make the assumption that the poset is finite.’ First, we 
need some definitions. 

The restricted powerset of a poset S, 5 is the set 2”’ of nonempty finite subsets 
of pairwise incomparable elements of S. Such subsets are called cochains-or, 
more figuratively, crowns-and are partially ordered by a relation C_ defined by: 

XCY iff Vx E X, 3y E Y, x I y. 

Given a poset S, 5, the canonical injection (written 1) from S into 2”’ is the 
function that takes every element x of S into the singleton L(X) = (r). This simple 

’ In fact, as shown in [2], such a construction can he performed for an infinite poset which is 
Noetherian-i.e., one that does not contain infinite ascending chains. 
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function has the nice property that: 

vx E s, vy E s, L(X) E 1(y) iff x I y. 

That is, L is an order homomorphism. Given any subset X of S, we define its 
maximal restriction TX1 as the set of maximal elements of X. Clearly, TX1 is in 
2(‘), and defined for all subsets of a finite poset S. Given some element x of S, 
we note by x the subset of S of all lower bounds of 3~. That is, 

g = (y E s Iy I x). 

Then, for any two elements a, b in S, a rl b is the set of common lower bounds 
of a and b in S. Finally the following binary operation n can be defined on 2 (‘) 
for any pair of subsets X, Y: 

xnY= p;‘,f;anbl (4) 

and this operation is a GLB operation in 2”‘. 
As a result, 2”’ , C, n is a lower semilattice. Furthermore, we observe that if 

two elements J and y in S already have a unique GLB z in S, it follows that: 

Hence this construction is a structure embedding, in that it preserves the ordering 
and the GLBs when they exist in S. Now we are justified to take the freedom of 
writing simply x rather than lx) for any single element of an object poset Z, and 
extend the poset to 2 (x) the GLB preserving lower semilattice extension of Z. 
And this is the least such possible structure, since if Z is already a lower 
semilattice then it is isomorphic to its canonical injection into 2(x). 

This construction is our formal justification of the fact that we need only deal 
with posets which are LSLs. In addition to being a universal embedding, this 
restricted powerset construction also permits the manipulation of disjunctive 
objects. This brings the problem of the decoding function y-l. 

A convenient consequence of plunging the poset Z in its restricted powerset 
2’“’ with L, is that an inverse y-l for the encoding function y may be extracted 
as follows. Namely, y-l may be seen as the restriction of a function rbl from 9 
to 2’“’ such that , for any c in 3 

y,‘(c)= r{Xf=IYb)~CJ] (5) 

In words, r;’ (c) is the set of maximal elements of Z whose codes are less than c. 
What would then ys, the inverse of rhl, be? As we shall see, if 9 has the 
additional property of being a distributive lattice, y may be extended to such a 
ys from 2 (x) to 9, thus becoming always invertible. 

4. TRANSITIVE CLOSURE 

First of all, let us remark that even if Z, the object poset, is not an LSL, then 
the brute-force algorithm of Figure 2 remains correct. Then indeed, it yields the 
set of maximal common lower bounds of the input elements-the maximal 
simultaneously subsumed objects. 

The two approaches described in the previous section are each obviously 
correct. However, as they stand, they are also impractical. The brute-force method 
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Fig. 4. A Hasse diagram of a pod. 

would clearly lead to exponential computations, and it is not obvious how one 
could find an appropriate code function if one were to use the coding approach. 
Nevertheless, both ideas may be combined based on two observations: 

(1) Much redundant work in computing the sets of all lower bounds of poset 
elements could be performed statically, and saved for run-time use. 

(2) A simple code for a poset element could be a representation of the set of all 
its lower bounds. 

The first of these problems is solved by computing a reflexive and transitive 
closure of the “immediately greater than” relation. The second, by using a well- 
known representation of sets as bit-vectors. The trick is that bit-vectors imple- 
ment both 2(“) and 9, thus realizing the isomorphism between the two sets. This 
yields the simple encoding method explained next. 

4.1 Example 

Let us consider the 6-element poset of Figure 4. The “immediately greater than” 
relation covered by this ordering can be represented in a 6 x 6 array as shown in 
Figure 5. Each row contains l’s only in those columns headed by elements which 
are immediately less than the element heading the row; and it contains O’s 
otherwise. Thus a row headed by an element x can be viewed as a characteristic 
boolean vector representation of the set of all the immediate strict lower 
bounds of x. 

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989. 



122 l Hassan Ait-Kaci et al. 

Fig. 5. Bit-array of Hasse diagram. 

Now, taking the reflexive and transitive closure of the array in Figure 5, we 
obtain the array in Figure 6. It is obvious that each element’s row in this array 
is a characteristic representation of the set of all its lower bounds. Referring back 
to the brute-force GLB algorithm of Figure 2, the intersection operation com- 
puting common lower bounds is hence reduced to a binary and operation on bit- 
vectors. We have thus come up with a code function y which associates a 6- 
element bit-vector to any element x in the poset: the row of the boolean array 
representation of the reflexive and transitive closure of the “immediately greater 
than” relation. 

To compute the GLB of, say, d and e, we take the and of 111100 and 101010, 
obtaining 101000, which is precisely the code of c, the GLB of d and e. 

What happens if we try to compute the GLB of d and f? Taking the and of 
111100 and 111011 yields 111000, which is the code of none of the poset elements. 
But using the decoding function 7;’ described by Equation (5), we obtain the set 
(b, c) as wished; i.e., the set of maximal common lower bounds of d and f. 

Looking at Figure 6, we note that the column headed by a contains only 1’s. 
Indeed, a is a bottom element in this poset, and thus every element is greater 
than it. Thus, a slightly more compact binary code word is obtained by dropping 
the bit of the bottom element, without any loss. We shall do that systematically, 
always coding the least element with 0. 

4.2 Method 

Given an n X n boolean array M, its reflexive and transitive closure M* is given 
by: 

M* = ;1 Mi 63) 
i=O 

where the power operation is computed as matrix multiplication in the boolean 
ring of n X n bit-matrices. This yields a straightforward fixed-point algorithm 
that converges in at most logzn iterations.2 

Hence, operationally, transitive closure is a well-known computation. Never- 
theless, we shall present here a particular way of doing it. Our reasons will 

‘This is achieved by computing the sequence N0 = Z U M, Nk = Ni-,, (k > 0), until N, = Nk+l = 

M*. Each iteration involves one matrix multiplication. Hence, this gives a possible overall time 

complexity B(n”log n) where (Y was last known (by us) to be in the vicinity of 2.7, and according to 

rumors, keeps nibbling its way down. This method is based on techniques developed by Warshall- 

Strassen [ 11. 
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Fig. 6. Reflexive transitive closure. 

become clear later as we shall propose a slight modification of this idiosyncratic 
algorithm that would not be so immediate with other ways of implementing 
transitive closure. We now describe the algorithm, and in Section 4.3 we shall 
formally justify it as a transitive closure computation. 

Since we are concerned with finding a compilation-time procedure, time 
efficiency of the coding method is not the prime worry. Instead we may not mind 
paying the price of a slightly less efficient procedure if it leads to better run-time 
behavior. 

Another way of computing such a transitive closure is to work directly on the 

graph structure of the base relation. Starting at the bottom element, we can work 
upwards, layer by layer, assigning binary code words to each element.3 A layer is 
a set of incomparable elements-a cochain-computed from the previous layer 
as the set of all the immediate parents that cannot be reached later. In this 
manner, the entire poset can be swept through. A simple way to encode a “node” 
in the graph is to compute its code as the binary or of the codes of its children 
ored with 2p, where p is the number of nodes visited since 1. 

Let’s illustrate this procedure on the poset of Figure 4. We begin by assigning 
the code 0 to a. The first layer being (a), we obtain the second layer as (b, c 1. 
The code of b is computed as r(a) V 2’ = 0 V 1 = 1. Then the code of c is 
obtained as r(a) V 2l = 0 V 2 = 10. The layer obtained from (b, c) is (d, e, f) - 
(f) = (d, e). The reason why f is to be taken out is that it can be reached later. A 

simple test for such elements as f is that they do not have all their immediate 
children already coded. The code assigned to d is r(b) V y(c) V 2’ = 1 V 10 V 

100 = 111; and the code assigned to e is y(c) V 23 = 10 V 1000 = 1010. Finally, 
the last layer is (f), and the code off is -y(b) V -y(e) V 24 = 1 V 1010 V 10000 = 
11011. 

One will immediately note that these codes are exactly the reversed versions 
of those given in the reflexive transitive array of Figure 6 where the least element’s 
column has been dropped. 

A pidgin-code algorithm for this encoding procedure is given as Figures 7, 8, 
and 9. It uses a global variable p counting the number of codes assigned. It 
assumes a function Children (resp., Parents) that returns the set of elements 
immediately less (resp., greater) than a given one, and a predicate Coded that is 
true of any already encoded element. 

3 Without loss of generality, we shall assume that such a least element always exists in 2. If no such 
unique bottom exists, we can add one. 
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procedure AssignCode; 

begin 

P+ 0; 

7(-q + 0; 

L + u-h 
Fig. 7. The AssignCode procedure. while L # 0 do 

begin 

Encode Layer(L); 

L 4- NestLayer 

end 

end 

procedure EncodeLayer(L : cochain); 
begin 

for each z E L do 

begin 

r(5) + zp ” VyEChildren(z) 7(y); 

P+P+l 
end 

end 

Fig. 8. The EncodeLayer procedure. 

The next section elaborates on the correctness of the above algorithm as a 
transitive closure algorithm. 

4.3 Correctness 

To simplify the proof, we shall reinstate the least element “column” in the 
computation of codes. That is, we shall prove the correctness of our AssignCode 
encoding procedure where y (I) and p are both initialized to 1 instead of 0. 

First, it is clear that AssignCode performs at most n iterations, and that all the 
elements of I; are visited once and only once. Let I: = (aI, . . . , a, J be such that 
its element indices (1, . . . , n) correspond to the traversal order of 2 by the 
AssignCode procedure. Note that this sequence is a topological ordering of 2 with 
respect to its partial order. Namely, al = I and for all indices i and j between 1 
and n, 

i<j+UjSUi 
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function iVeztLaye~(L : cochain) returns : cochain; 

begin 

M + u{Parents(z) 1 z E L}; 

return M - {z E M 1 3y E Children(z) and 4’oded(y)} 

end 

Fig., 9. The NextLayer instruction. 

Now the codes computed by the AssignCode procedure are such that 
y(a,)=l,andfori>l, 

-f (Ui) = 2’-’ v v y(x), (8) 
x-a; 

where -C means “immediately less than.” 
If we can establish that the codes computed by the AssignCode procedure are 

such that there is a ‘1’ in the ith bit position of the code word of x (counting 
from right to left, starting with position 0) if and only if ai I X, then we shall 
have clearly proved that the codes are boolean vector representations of the set 
of all lower bounds of X. That is, AssignCode computes the reflexive and transitive 
closure of >. This is precisely what the following theorem states. 

THEOREM 1. Vx E Z, Vi, 1 5 i 5 n, 2i-1 A y(x) = 2’-l iff ai I x. 

PROOF: We proceed by induction on k, the index of x = ah. 
This is clearly true for k = 1. Indeed, for x = I, the question is reduced to 

showing: 

Vi, 1 5 i 5 n, 2’-l A 1 = 2’-l 

and that is obvious. 

if Ui 5 1. 

Let us now assume that this is true up to some index k; namely, 

1 5 j 5 k + 2i-1 A r(aj) = 2’-l (9) 

Now, by W, 

2’-’ A ~(a~+~) = 2’-l A (zk V v y(x)) 
x-%+1 

= (2i-’ A 2”) V (2i-’ A v 
I-a*+1 y(x)) 

= (2’-’ A 2k) V v (2’-l A y(x)) 
X-%+1 

Thus, 2i-1 A y (u~+~) is the binary or of two terms. There are two possible cases 
to consider, k = i - 1 or k # i - 1. 

In the first case, we have 2’-’ A 2k = 2’-‘. We also have Ui = &+I, and thus, 
a fortiori, ai 5 &+l. On the other hand, considering the second term V,,,( (2’-’ 
A y(x)), we notice by (7) that since x: < ai, the indices j of the x = cj elements 
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must be such that j < i; but then, k = i - 1 entails that j I k. We can therefore 
use the induction hypothesis (9) together with the fact that ai 5 ak+l to conclude 
that Vxxai (.P1 A y(x)) = zi-‘. 

Now, if k # i - 1, then 2’-’ A 2k = 0. Thus, 2’-’ A T(ak+l) = 2i-’ if and 
only if 

v (2’-l A y(x)) = 2”-] 
X-%+1 

By the remark (7) made earlier, it is clear that all these x elements are of index 
smaller than or equal to k, and each must satisfy the induction hypothesis (9). 
Therefore, 

QX < ak+l, Ui 5 X 

which entails Ui I Uk+l. 

We have thus showed that “only if” direction of the proposition to prove; 
namely, 

Zi-’ A Y(ak+l) = 2’-l * Ui 5 ak+] 

The reverse direction follows directly by observing that two cases are possible: 
either Ui = Uk+l or Ui < Uk+l. The first one is reduced to k = i - 1, and the same 
reasoning for this case, in the backward direction as above, works to conclude 
that 2’-’ A y(&+l) = 2’-l. 

As for the other case, Ui < ak+l, let us consider all those elements x such that 
x i ak+l. For those, we have either ai I x-in which case, by (9), 2’-l A y(x) = 

2’-l-or oi not related to r-in which case, again by (9), 2i-’ A y(x) = 0. The 
conclusion follows. Cl 

5. BOlTGM-UP ENCODING 

Although the encoding method exposed above can be employed, it uses an 
unnecessary amount of space for code words. Indeed, each code word is of length 
exactly n - 1, where n is the number of elements of the poset. However, in many 
cases, these code words do not need to be so long. Indeed, there are many 
situations where the maximum code word length can be cut to about half of 
the size. Consider, for example, the 16-element poset of Figure 10 (counting the 
omitted I). This tree-shaped poset can be encoded by the transitive closure 
method to yield the 15-bit-long codes shown in Figure 11(a). However, as shown 
in Figure 11(b), it can easily be seen that only &bit-long words would. suffice in 
this case (see Section 6.1). A further compaction (more evident on large posets) 
can result from code modulation, as seen in Figure 11(c) (see Section 7). 

In general, it may clearly be necessary to use all n - 1 bits. A trivial example 
consists of a flat semilattice. However, in practice, tree-like inheritance taxon- 
omies are rather frequent, even if only as parts of posets. Hence such a saving of 
space turns out to be substantial in practice. 

Let us first see what we can do on the small example of Figure 4. We begin by 
assigning the code 0 to a. The first layer being (a), we obtain the second layer as 
lb, cl. Since b has a as unique predecessor, the code of b is computed as r(a) V 

2’ = 0 V 1 = 1. Recording the maximum word length so far asp = 1, the same is 
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Fig. 10. A tree-shaped poset. 

done to c. Namely, the code of c is obtained as y(a) V 2l= 0 V 2 = 10. As before, 
the next layer obtained from (b, c) is (d, e). Now, d has more than just one 
‘predecessor. Thus we can assign to d the code r(b) V y(c) = 1 V 10 = 11 without 
incrementingp since such a code guarantees that, so far, d is strictly greater than 
all and only its predecessors, and incomparable to all the codes attributed so far 
to elements that are incomparable to d. Continuing thus, the code assigned to e 
is y(c) V 2p = 10 V 100 = 110, bringingp to 3. Finally, the last layer is (f), and 
f has two predecessors. However this time y(b) V r(e) = 1 V 110 = 111 violates 
our invariant condition in that it makes it comparable to the code of d although 
this element is not related to f. Nevertheless it is possible to reinstate our 
invariant; indeed, revising the code of d to be the disjunction of what it is (in 
order to maintain it greater than all its lower bounds) and of 2p (to guarantee 
that it remain incomparable to any code so far given to its unrelated elements). 
Therefore the final code of d is 1011. 

5.1 Method 

The idea is that the encoding procedure of Figure 7 is too generous in systemat- 
ically incrementing the word length by 1 each time it assigns a new code. But, in 
many cases, the code computed as the disjunction of the children’s codes would 
suffice. The only time it is necessary to augment the word length p is when an 
element has a unique predecessor-in which case it must be made distinguishable 
from it-or when the disjunctive code so computed is comparable to a code 
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Fig. 11. Three encodings of the tree poset: (a) transitive closure; (b) compact encoding; (c) modulated 

encoding. 

procedure Compact EncodeLayer( L : cochain); 

begin 
for each z E L do 

begin 
let (~1,. . . , z,} = Children(s) in 

ifn>l 

then r(5) + VL 7(4 

else 7(z) t IncrementCode( 
ResolveCodeConf licts(x) 

end 
end 

Fig. 12. The CompactEncodeLayer procedure. 

already attributed to an element of 2 known to be incomparable with this 
element. 

5.2 Justification 

Informally if it is ensured that a code is made greater that all and only the codes 
of its lower bounds, while being incomparable with the codes of incomparable 
elements, the procedure will be a correct encoding. 
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procedure ResolveCodeConflicts(x : element); 

begin 
for each y E IncSet(x) such that Coded(y) do 

case of 

begin 

7(x) = 7(Y) : 
begin 
7(x) t IncrementCode( 

7(y) t PropagateCode 

end; 

7(x) < 7(Y) : 
7(x) t IncrementCode( 

7(x) ’ 7(Y) : 
7(y) t ProPagateCode 

end 

end 

Fig. 13. The FksolveCodeConflicts procedure. 

function IrzcrementCode(x : element) 

returns : binary; 

begin 

P+P+l; 
return 2p-1 V 7(x) 
end 

Fig. 14. The IncrementCode instruction. 

This new encoding procedure is obtained from the AssignCode procedure by 
replacing the call to EncodeLayer by a call to a new procedure, which we name 
CompactEncodeLayer, described in Figures 12, 13, and 14. The ResolveCode- 
Conflicts procedure has for effect to ensure that the invariant condition- 
imposing that a code attributed to an element be such that it subsumes all and 
only the codes attributed to that element’s lower bounds-be satisfied again in 
case of violation. Clearly, the all part is ensured by IncrementCode since it sticks 
a 1 to the left of the previously assigned code. The only part is enforced by the 
recursive propagation of new such codes to the conflicting node’s parents, which 
happened to be already encoded. This is what the PropagateCode procedure does, 
making sure that all elements known to be incomparable stay so. 
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procedure PropagateCode(s : element); 

begin 

IncrementCode( 

for each y E {z E Parents(z) 1 Coded(z)} do 

ResolveCodeConf licts(y) 

end 

Fig. 15. The PropagateCode procedure. 

The function IncSet is such that IncSet(x) is the set of all elements incompa- 
rable with x, element of Z. These can be precomputed very efficiently using 
the classical fast transitive-reflexive closure algorithm (the above-mentioned 
B(n”log n) version of Warshall-Strassen’s method), for the relation 5 U 2. 
IncSet of ai is the row vector of bits obtained by taking the complement of the 
reflexive and transitive closure of being comparable to relation (I U z), and 
selecting the ith row. That is, 

IncSet(ai) = [((I U >)*)-‘Ii, i = 1, . . . , A. 

where Z = (al,. . . , a,, ). In addition, this information may be disposed of (garbage 
collected) before run-time. 

6. VARIATIONS 

6.1 Closed World 

There are other sensible choices to make regarding boolean lattice encoding 
techniques. One of the most obvious is the closed world assumption. Under the 
assumption that new information cannot be added during run time, common in 
logic programming [5], one can use even shorter binary words for encoding. This 
encoding algorithm is much like the compact encoding algorithm except that a 
new bit is only created for minimal types. No new bits are added for types which 
have unique predecessors, as they are in procedure 12. This encoding corresponds 
to the set representation of minimal elements in the poset. Thus, any element is 
the same thing as the set of minimal elements that it subsumes. This closed 
world encoding (obviously) does not preserve all the information obtainable from 
the transitive closure encoding, but in some cases this information is unnecessary. 

6.2 Disjunctive Objects 

We shall now take the freedom of overloading the symbol 5 to mean “less than 
or equal to” according to the context; i.e., depending on the set of elements it 
will be used with. The same applies to the symbols for GLB and LUB. 

As remarked earlier in this paper, the reflexive transitive closure code of an 
element x of Z is a boolean vector characteristic representation of the set of all 
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lower bounds of x. It is characteristic in the very precise sense of a boolean lattice 
isomorphism between 2’, the powerset of Z, and (0, 1) I” the set of bit-arrays of 
length equal to the cardinality of Z. 

Reconsidering the semilattice construction of Section 3, one will notice that it 
is in fact a lattice construction. Indeed, one can define the LUB of two elements 
in 2(x) as: 

sd=rsuTi (10) 

i.e., the set of maximal elements of the union. It is not difficult to prove that 
under our assumption of finiteness of Z, the lattice 2(“) is a complete distributive 
lattice. 

Hence, the coding function y from 2 to {O, 1) ’ x ’ may be extended to a function 
ys from 2’ to (0,l) ’ ‘I (thus in particular from 2 (a to (0, 11’“‘) as: 

(11) 

Note that this function restricted to 2(‘) is always invertible as shown by 
combining Equations (11) and (5). 

When implemented, this coding has the interesting effect of reducing “set-at- 
a-time” inheritance (unification) from the clearly exponential operation given by 
Equation (4) to a virtually constant-time and operation. In addition, it provides 
a mild but practical generalization facility that allows induction of LUB symbols 
which exist explicitly in the poset. For example, if a happens to be the LUB in 
ZOflUl,..., a,), then clearly r;‘(rs(jal, . . . , a,))) = a. 

6.3 Complemented Objects 

Let us now consider a simple, albeit quite interesting, extension of the subsump- 
tion partial ordering on 2(‘) which would be defined on pairs of elements of 2(x’. 
The idea is to see an object as a pair consisting of a positive object (i.e., everything 
it can be) and a negative object (i.e., everything it must not be). Hence a general 
object may be seen as a set of examples and counterexamples. Thus an object of 
type t is also of type tl\t2 if and only if t 5 tl and t Z$ t2. Of course such an 
object has the same denotation as I whenever t2 5 tl. 

The subsumption ordering is thus extended to complemented objects by: 

t,\tz 5 t3\t4 iff t, c: t3 and tz 2 t4 (12) 

and thus the GLB operation for complemented objects is: 

tl\t2 rl t3\t4 = (t1 l-l t3)\(t2 Ll t,) (13) 

The encoding function can be extended to complemented objects by: 

Y&W = rs(t1) A rsw (14) 

Now decoding complemented codes may still be done by equation 5 with the 
pragmatic consideration that there is no need to ever explicitly synthesize the 
negated part of a complemented object. If such a set of counterexamples was 
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needed for some reason, one could always sweep through the entire poset and 
keep the maximal set of such elements whose codes is not subsumed by the code 

being decoded. 

7. CODE MODULATION 

Although extremely efficient in time for reasonably sized object posets, the 
encoding techniques presented thus far can become cumbersome in space. This 
is obvious once one notices that every object must carry a bit for every other 
object in the poset when using transitive closure, and for each minimal when 
using the closed world encoding. Encoding posets with hundreds or thousands of 
minimals on real computers becomes problematic. However in practice an object 
taxonomy is often not completely connected. Many applications consist of tree- 
shaped posets, and in our experience, many object posets consist of several 
densely connected groups of nodes, with only a few inheritance links into other 
dense groups. This is natural when one realizes that the groups correspond to 
semantic groupings-an object called piston may have many inheritance links to 
other car-parts, while it may have few links to musical-instruments. It is possible 
to take advantage of this common property of posets to shorten the length of the 
bit-encodings. This benefit has a small price, in run-time, paid only when 
elements from incomparable groups participate in disjunctions or negation. 
Except for some pathological cases, this optimization performs qualitatively 
better than the transitive closure algorithm in time and space on large posets. 

An intuitive notion of our grouping is easily grasped by thinking of a tree of 
objects. Each of the N leaves is a minimal of the poset, and so is assigned a 
unique bit. In the algorithm presented so far, each leaf, and each node in the tree 
must have a bit for at least every leaf, so the total space used just to remember 
the codes is at least N2. But if we split the tree in two at the root, and encode 
each N/2 half of the tree separately (using only as many bits for each node as 
there are leaves in that half of the tree, thus N2/4 bits for each half), and then 
append a special group code to the front of the encoding (append a 01 to the front 
of each code in one half, and a 10 to the front of each code in the other), and just 
do the right thing for unification, disjunction, negation, etc., a great space 
improvement can result. (Figure 11(c) exhibits a small improvement on a small 
tree-like poset. Significant improvement can be gained using this technique on 
large trees.) Now only the number of elements times the length of its local code 
(within the group), plus its group code, or N(N/2 + 2) bits are required to encode 
the entire tree, where N2 were used before, One could further split the tree into 
smaller subtrees before encoding, adding more grouping bits and reducing the 
number of nodes in each group. This process can be repeated, but eventually 
becomes counterproductive as the subtrees become small. 

Further, this extension need not be restricted to trees, as long as there are no 
links into the middle of a group of objects. Splitting a tree in two is easily 
visualized, but splitting a graph can be more complex. This extension can be seen 
as simply dividing the original poset vertically and horizontally, while tree 
splitting only divides posets horizontally. One can draw a picture of a poset on 
paper, and then draw circles around groups of nodes such that every circle has a 
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unique highest element, a unique lowest element, and the only arcs from elements 
outside the circle to lower elements inside the circle end on the highest element 
of the circle, and the only arcs from elements inside the circle to lower elements 
outside the circle come from the lowest element of the circle. We call the group 
of elements inside such a circle a module. We encode each module of L elements 
separately, (using L2 bits), and encode the set of modules M as if the circles on 
the diagram of the poset were collapsed to points, and encoded as if they form a 
poset (they do). Each module’s code is then appended to the locally determined 
code of each of its elements. Now the total space used to encode a poset is 
bounded by the number of objects times the number of groups plus the number 
of local elements, or N(M + L), where the number of groups A4 times average 
number of local elements L must be equal to the total number of objects in the 
poset (L x M = N). 

Yet there is a possible further abstraction: why stop at groups of elements, 
why not create groups of groups? If one takes the above described diagram of 
collapsed modules, and encodes that using modulation, instead of transitive 
closure, the result is modules of modules. Obviously, this process could be repeated 
until there is only one module. In the optimistic case, only N log N bits are 
needed to encode the entire poset, where the full transitive closure uses N’. In 
real posets, this is often impossible, but a close approximation will lead to 
similarly compact codes. 

THEOREM 2. The space used by the above modulated encoding is B(N log N). 

PROOF. Given a poset of N elements modulated k times, modulation only 
requires N(N1 + Nz + . . . + Nk) bits to encode it, where N, is the number of 
elements at the xth level, and N, x Nz X . . . X Nk = N. For example Nk is the 
number of elements in each group at the bottommost level; or, in other words, 
Nk is the number of elements each circle contained the first time we drew circles. 
N, is the number of circles (reduced to points) we drew circles around the 
k - xth time we drew circles, etc. First we show that at any level, equal numbers 
of elements in each group at that level are optimal. Next we show that N1 = 
N2 = . . . = Nk = i?% is an optimal breakdown of the poset. Finally we find that 
the optimal k for a given N is log N. 

Given N elements, and M groups, each with the same number of elements, L, 
M X L = N, we show that moving any number of elements, b, from one group to 
another increases the total required bits. Thus, any configuration where some 
group has more elements than some other group must not be optimal. 

(1) (M + L) is the number of bits required to encode each element. 

(2) (M + L) + . . . + (M + L) 
L / Y 

N 

is the total number of bits required to encode the poset. If we change it in 
any way, that change can be seen as a combination of pairwise changes to 2 
terms-adding some number of elements to one term, and subtracting the 
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same amount from another. That is, 

(3) (A4 + L + b) + * * * + (M + L + b) 

Ls6 
+(M+L-b)+***+(M+L-b) 

+ (A4 + L) + *a * + (A4 + L) 
\ v J 

N-2L 

which we are trying to show is greater than or equal to the first sum. 
Subtracting away the N - 2L unchanged sums leaves: 

(4) (M + L + b) + *. * + (M + L + b) 
\ v / 

L+b 

+(M+L-b)+ a*- + (M+ L- b) 
\ v I 

L-b 

2 (it4 + L) + * * * + (M + L). 
\ I Y 

2L 

Subtracting 2L instances of (it4 + L) leaves: 

(5) (b + b + . . - + b) + (-b - b - . . . - b) > 0. 
V- 

L+b L-b 

Rearranging produces: 

(6) b(L + b) - b(L - b) > 0. 

(7) b = 0. So, completely even modules are best. 

Now we show that each group should contain the same amount of subgroups 
as every group on every level. In order for the N1 x N2 X . . . X Nk = N constraint 
to be met, a total of N x K x m bits must be used. Remember that k is the 
total number of times we drew circles. (We will show how to decide k later.) 

Modulation to the same degree at every level, using N x k x k&! bits, is 
optimal. 

(1) kx m+ . . . +kx m 
\ Y I 

N 

is the total number of bits required to encode the poset if modulation is 
performed to the same degree at every level. Here we assume that every 
module at a given level is the same size, as the previous lemma demonstrated 
was a good idea. If we change the encoding in any way, that change can be 
seen as a combination of pairwise changes to 2 terms-dividing one term by 
some positive number, multiplying another term by the same. 
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kX@R 
(2) kx@Rxd+ d +kxm+...kxm 

is also a solution. Now we need to show that this sum is greater or equal 
than the first sum. First, subtract all the unmodified terms from both: 

kX4OV 
(3)Izx@Xxal+ d rkx#??+kxtJ?i? 

Multiply both sides by d, and divide by k X m. 

(4) dxd+lsd+d 
(5) d2 - 2d + 1 2 0 

(6) (d - 1)2 2 0 

(7) d = 1. So no change will be beneficial. 

So N X k X fi is optimal. Now we need to find k for a given N-lets take 
the derivative, set it equal to 0, make sure that that it is a minimum, and 
solve for 12. 

(1) -$(Nxkxm)=O 

(2) (Nxm)+ Nxkx;PiN =0 

(3) (N x m - N x k x log IV 4% = o k2 . 

Dividing both sides by (N x m): 

(4) 1-kxy=O 

and multiply by k: 

(5) k - log N = 0 

(6) k = log N 

This turns out to be a minimum, and thus N x k x mbecomes N x log N x 
10gN%‘%, which simplifies to N X log N X e, which we claim is the minimum total 
number of bits needed to encode a (perfectly modulatable) poset of N elements 
using modulation. Cl 

For large posets, a very large improvement in encoded space is expected, and 
even unreasonably large posets can be realistically coded with this system. For 
instance, for N = 100 this is 100 X 5 X e, or 1,252, instead of 1002 or 10,000, and 
for N = 1000, its 18,778 instead of l,OOO,OOO. 

Thus far we have been discussing only the space performance of encoding 
techniques, but the time complexity is also of interest. The GLB operation using 
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transitive closure is d(N) (or 8(l) on a bit-vector machine), while GLB on 
modulated codes is @(log N) (or a(l)). This is a nice result, since it means that 
we can have our cake and eat it too-less space and less time. However, these 
theoretical results are somewhat misleading. On small posets, real computers do 
behave like bit-vector machines, and so t.ransitive closure and modulation behave 
approximately the same. On larger posets, real computers do not behave like bit- 
vector machines, and thus modulation is of most interest for large posets. 

For example, for N = 1000 space-optimal modulation only requires 18,778 bits, 
but uses 18 levels of modulation. But N = 1000 could also be broken down into 
32 modules of 32 elements (except that 24 of the modules have only 31 elements), 
requiring 63,256 bits, but only one level of modulation. If every level of modulation 
adds potential time cost, the overhead of extra nesting levels may offset the space 
compactness of optimal groupings. 

Also, thus far, we have assumed the poset to be perfectly modulatable. Trees 
are always perfectly modulatable, as are many sparsely connected posets. But 
even messy object posets can be dealt with by allowing modules of different sizes, 
even to the extreme of single element modules. This slight generalization allows 
more modulation than would otherwise be possible on real posets, and although 
the resulting code sizes won’t be optimal, they will be much smaller than if 
transitive closure had been used. 

7.1 Operations on Modulated Codes 

This all sounds fine until one reconsiders the above phrase ‘yust do the right 
thing for unification, disjunction, negation, etc.” Let us examine what the right 
thing is. 

For the moment we will consider an object poset encoded using only one level 
of modulation, so each code consists of only one group code, and a local code. 
The generalization of these operations for modules of modules is straightforward. 

First we define >,,, to be a function on two codes X and Y, where Xg is X’s 
group code, Xl is X’s local code, Yg is Y’s group code and Yl is Y’s local code, 
one needs to find the bitwise AND of Xg and Yg, call it Ag, and the bitwise AND 
of Xl and Yl, call it Al. Within any group, we use -1 as a shorthand for the 
topmost element’s code, and 0 as a shorthand for the bottommost element’s code. 

x>, Y 
iff Xg = Yg, and Xl > Yl; 

Xg# Yg=Ag; 

This definition says that X is greater than Y if and only if X and Y are in the 
same group, and Xl > Yl (using the previously defined > on codes), or X and Y 
are in different groups, and Y’s group is subsumed by X’s. 

Then the GLB of X and Y (with X = (Xg, Xl), and Y = (Yg, Yl), Ag = 
Xg A Yg, and Al = Xl A Yl) is: 

i 

(& Al) if Xg = Yg = Ag; 

XA Y= $y;;; 
if Xg = Ag # Yg; 
if Yg = Ag Z Xg; 

(Ag, -1) otherwise. 
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The first possibility is that X and Y are in the same group, and so the result is 
that group’s code appended to the AND of their local codes. The second possibility 
is that X’s group is subsumed by Y’s. Thus the result is simply X’s original code. 
The third possibility is that Y’s group is subsumed by X’s. Then the result is 
simply Y’s original code. The last possibility is that neither group subsumes the 
other, and thus the result is the topmost element in the group, which is the 
greatest lower bound of the two groups. 

Also, to define disjunction of objects, define LUB to compute the bitwise OR 
of the codes, and call the OR’ed components Og and 01. Let V be a binary 
constructor which represents the modulated disjunction. Thus the LUB of X and 
Y is: 

1 

(0% 00 if Xg = Yg = Og; 

xv Y= ;g;;;; 
if Xg = Og # Yg; 
if Yg= Og#Xg; 

VW, Y) otherwise. 

The first possibility is that X and Y are in the same group, and so the result is 
that group’s code appended to the OR of their local codes. The second possibility 

is that X’s group subsumes Y’s. Thus the result is simply X’s original code. The 
third possibility is that Y’s group subsumes X’s. Then the result is simply Y’s 
original code. The last possibility, the explicit or, is necessary only in cases where 
elements of two incomparable groups are ORed. The arguments of the explicit or 
are the original disjuncts. 

One also needs to know how to take GLB’s and LUB’s of explicit V’s. 

0(X, Y) A 2 = (X A 2) v (Y A 2) 

V(X, Y) v z = (X v 2) v (Y v 2). 

Also, define >m on explicit disjunctions. 

VK Y) >m 2 iff X>, 2, or Y >m 2 

z >m WC Y) iff Z >,,, X, and Z >,,, Y 

Finally, we define negation of objects similar to that in Section 6.3. Again 
define complemented objects as pairs of codes, one describing examples, the other 
describing counterexamples. An object of type t is also of type t,\,tz if and only 
if t I, tl and t S, t2. We thus define the \, or BUTNOT operator as first 
computing the bitwise AND’ed components Ag and Al, and then 

i 

(Xg, XAYZ) if Xg = Yg = Ag; 
x\,Y= I if Xg = Ag # Yg; 

x\, Y otherwise. 

The first possibility is that X and Y are in the same group. Then X\, Y is simply 
Xl\Yl in the common group. The second possibility is that Y’s group is subsumed 
by X’s, in which case the result is bottom. Otherwise the result is an explicit 
complement of the original arguments. 
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The obvious generalization of rule 5 to use the modulated encodings and >,,, 
function to decode encoded types is 

y;l(c) = rjn E z 1 c >mrm(~))i (15) 

In words, y;‘(c) is the set of maximal elements of Z whose codes are less than c. 

7.2 Implementation of Modulation 

Implementation of modulation requires two things-some method to generate 
the codes, and an efficient implementation of the GLB, LUB, and BUTNOT 
operations on the resulting codes. 

7.2.1 Generating Modules In order to take advantage of the benefits of mod- 
ulation, it is necessary to discover the group boundaries, or to draw circles around 
groups of elements. Below is a sketch of an algorithm to find these modules in 
an arbitrary poset. This algorithm may not find every module possible, but it 
does find the vast majority of them, and is able to modulate posets with hundreds 
of elements in a few seconds. Also, if one wishes to create modules of modules, 
one simply need invoke the top level function on an already modulated poset. 

The basic idea of this algorithm is to group elements together a few at a time 
until a group grows to some group size bound, in which case that group is not 
expanded any further, or the set of remaining objects (groups and ungrouped 
elements) is less than some threshold, in which case the entire process of 
modulation is complete. 

For simplicity in the pidgin code below, a module is named after its first 
element. Also it is assumed that the entire poset has been recorded as a set of 
related pairs, accessible through the previously seen functions Parents(x) 
and Children(x). It also assumes the operations Relate(x, y), which asserts 
that x i y, and Unrelute(x, y), which asserts that x -K y (recall that x < y 
means “x immediately less than y”). A few of the procedures used here are not 
defined, but are obvious from the context. 

The algorithm simply looks at each element, attempting to group it together 
with its parents. If that fails, it tries to group it with a sibling that has exactly 
the same set of parents as it does. In both types of grouping, it is possible that 
extra elements (children of the newly added elements) will need to be added to 
the group in order to satisfy the module requirements. Often, in trying to add 
the necessary extra children, the group will grow to encompass the entire poset. 
Thus checks for exceeding the group size bound are added to many of the 
procedures below. The bound used here is 32, although in fact the bound would 
depend on many factors such as machine word length etc., and should really be 
a constant parameter. 

The function Modulate (Figure 16) is the main loop of the algorithm. It begins 
by putting each element of the poset on a queue. It then examines the first thing 
in the queue. If it is able to grow that element into a larger module, then that 
new module is recorded, and is pushed on the queue (in order for it to grow 
further). 

RecordNewModule (Figure 17) simply updates the relatedness of elements and 
modules. 

The function GrowUpward (Figure 18) immediately adds all the parents of the 
element, since an element can never be grouped with only a subset of its parents. 
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function Modulate(s : set of elements) returns : set of set of elements; 

begin 

queue t s; 

modules t 0; 

while queue # 0 and (Iq ueue U modules/ > 32) do 
begin 

elt t pop(queue); 

newmodule + GrowUpward(elt); 

if newmodule = 0 then newmodule t GrowSideways(elt); 

modules f- (modules - newmodule) U {newmodule}; 

queue + (queue - newmodule) u {newmodule}; 

RecordNewModule(newmodule) 

end; 

return modules 

end 

Fig. 16. The main loop of the Modulation algorithm. 

procedure RecordNewModule(mod : set of elements); 

begin 

base + U{Children(z) 1 2: E mod}; 

crown t u{Parents(z) 1 z E mod}; 

for each z E base do 
begin 

for each y E mod do Unrelate(z, y); 

Relate(z, mod) 

end; 

for each z E crown do 
begin 

for each y E mod do Unrelate(y, z); 

Relate(mod, z) 

end 
end 

Fig. 17. The RecordNewModule procedure. 

It then tries adding extra elements upward, until a homogeneous layer is found. 
Homogeneous(s) returns true if its argument s is a singleton set, false otherwise. 

Grow Sideways (Figure 19) is similar to GrowUpward, except that it begins by 
finding its siblings (a cochain), and then finding those siblings that have exactly 
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function GrowUpward(e : element) returns : set of elements; 

begin 
crown t Parents(e); 

done t Homogeneous(crown) or (Size(crown) 2 32); 

while -done do 

begin 
TryAddingMoreAncestors(crown); 

done + Homogeneous(crown) or (Size(crown) 1 32) 
end; 

if Size(crown) 2 32 then return 0 

else return AddNecessaryChiZdren(crown, e) 

end 

Fig. 18. The GrowUpward function. 

function GrowSideways(e : element) returns : set of elements; 

begin 

family t {e}; 

crown t Parents(e); 
siblings t U{ChiZdren(x) 1 x E crown}; 

fullsiblings t lJ{x E siblings 1 Parents(x) = crown}; 

oldfamily + 0; 

done t (fullsiblings = 0) or (If amiZy/ > 32),; 

while ldone do 

begin 

brother t pop( f ullsiblings); 

family t AddNecessaryChiZdren({brother}, family); 

if 1 f amilyl 5 32 then oldf amily t family; 

done t (f ullsiblings = 0) or (If amily) > 32); 

end; 
return oldf amily 

end 

Fig. 19. The GrowSideways function. 

the same parents as the element. Those full siblings are then added, one at a 
time, until the bound is reached. As each new sibling is added, some children 
may have to be added in order to form a group. 

AddiVecessaryChiZdren (Figure 20) begins adding children of the new elements 
until either a group is formed or the module-size limit is reached. In fact, it could 
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function AddNecessaryChildren(added, old : set of elements) 

returns : set of elements; 

begin 
new + added - old; 

group + new u old; 

newkids t U{Children(x) 1 x E new}; 

uncles + U{Parents(x) 1 x E newkids); 

if Size(group) > 32 then return 0 

else 

if new = 0 then return old 

else 

if uncles g group then return 0 

else 

return AddNecessaryChildren(newkids,group) 

end 

Fig. 20. The AddNecessaryChildren function. 

be the case that by adding some new parents and some more new children, a 
group could be formed. However this is unlikely, and complicates the algorithm. 
Thus a simplification has been made to this function: Whenever one of the new 
children has any parents, there termed uncles, the function returns failure, 
preventing any such cancerous growth. 

7.2.2 GLB, LUB, and BUTNOT In our formulation, GLB is an extremely 
efficient operation. However, LUB and BUTNOT are not always as efficient. 
Uses of the LUB operation on elements from different modules can incur 
performance penalties in some cases, due to the need for explicit disjunctions. 
Similarly BUTNOT of elements from incomparable groups sometimes produces 
explicit negations. However, in many applications, disjunction and negation are 
infrequent or nonexistent. In these cases, it is advantageous to modulate the 
encoding as much as possible. Often the decision to modulate or not to modulate 
is dependent on details of the system implementation, including hardware archi- 
tecture (such as machine word-size, microcoding of multiword bit-vector opera- 
tions, etc.) In particular, it is not advantageous to modulate posets that have 
fewer elements than the underlying machine word has bits. This is due to the 
fact that bitwise-and of two bit vectors shorter than the word-size of the machine 
tends to be the fastest operation possible. Thus on many personal workstations 
posets with less than 32 elements should be encoded using the transitive closure 
algorithm, and only larger posets should be broken down. 

7.3 Proof of the Pudding 

Variants of these algorithms have been implemented in Common Lisp, and have 
been benchmarked on a Symbolics 3640. The benchmarks were collected by 
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Fig. 21. Average time to compute modulated and transitive closure GLB. 

building a series of trees (which are perfectly modulatable), and then adding 
some number of randomly generated links. Any links which would cause loops or 
which were redundant (because of transitivity) were ignored. The trees were of 
exponential nature (the branching factor at depth D was D + l), which generally 
corresponds to the posets we have encountered in practice. Some timings were 
collected for fixed-arity trees and for posets from actual practice that correlated 
well with our timings.4 

The first set of timings, presented in Figure 21 represents the time (in 
millionths of a second) one GLB takes to compute using transitive closure (the 
star-shaped data points), and modulation (the circular data points). These times 
were gathered for the posets that were successfully modulated by our algorithm 
(see the next set of benchmarks) by randomly selecting 10 pairs of elements, and 
then finding the minimum time necessary to compute the GLB of each pair, and 
then dividing by 10. The selection of the minimum time (rather than average) is 

4 Thanks go to Jungyun Seo for “Babel,” his library database, and others for smaller sample posets 
that helped drive the development of this technique. 
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Fig. 22. Posets for which modulated GLB is faster than transitive closure GLB. 

justified by the multitasking nature of the Symbolics machine. The same proce- 
dure was used for timing the Modulated GLB and Transitive Closure GLB. 

With fewer than 32 elements in the poset, both GLB operations are exactly 
one logand instruction, which takes between .000004 and .000008 seconds. With 
more than 32 elements, as can be seen in that diagram, modulated GLB is faster 
than transitive closure GLB by a factor of at least three. As the size of the poset 
increases, modulation outperforms transitive closure by larger and larger margins. 

However, this performance advantage only exists for certain posets. In fact, 
only posets that fall in the shaded area of Figure 22 are expected to exhibit such 
performance gains. The dashed vertical line is located at the 32 element mark, 
where the modulation and transitive closure algorithms diverge. The open circles 
mark the maximum number of links for which 50 percent of our randomly 
generated posets were successfully modulated. “Success” is defined to be breaking 
the poset down into 32 or less modules. Thus below the curved solid line the 
performance of Figure 21 is expected. Below that line and to the right of the 
dashed vertical line (the shaded area) one can expect at least a factor of three 
performance gain of modulation over transitive closure. Above that line it is still 
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possible that modulation will succeed, and it is possible that if modulation “fails” 
it will still outperform transitive closure. However these possibilities are unlikely. 

The slanted dotted line represents the effect of tree-splitting, an easy- 
to-implement restriction on modulation discussed earlier. As the diagram 
shows, tree splitting accounts for a large part of the expected gain of modu- 
lation. The x’s and the curved broken line to the left of the dashed vertical 

line represent the maximum possible number of links for a given number 
of elements-any more than 6 links between 5 elements of a poset must be 

redundant or inconsistent. 
These benchmarks reflect both the quality of the implementation of the GLB 

operations (for both transitive closure and modulated), and the quality of the 
Modulate routine that finds modules. We believe our implementations to be of 

high quality, but others may be able to do better. It should also be noted that 
these benchmarks compare two of our encoding techniques. All of our encoding 
techniques qualitatively outperform standard methods of implementing inherit- 
ance, which can easily be exponential in the size of the poset, where ours are 

linear or better. 

7.4 Modulated Variations 

Generalizations of the modulation theme are possible. In fact, it is possible to 
relax the requirements on modules to allow multiple topmost elements, and 
multiple bottommost elements in each module. If the upper surface (defined to 

be all the elements of a group that are immediate descendants of elements not in 
the group) is upward-homogeneous (defined here to mean that all elements have 
exactly the same set of parents), and the lower surface is downward-homogeneous, 
(defined similarly) then the group is a module. As described earlier, modules have 
singleton upper and lower surfaces, which are trivially homogeneous. In fact, the 
algorithm presented above is able to find modules that have large surfaces if the 
definition of Homogeneous is changed from a simple singleton test to one which 
tests whether all the elements presented have exactly the same set of parents. 
This better test is the one we actually used. 

Before we have assumed that the transitive closure encoding is used to 
determine the local code, and the group code of modules. It is also possible to use 
other variations, such as the closed world encoding. However using alternate 
local encoding schemes sometimes has subtle effects. Using the closed world 
encoding, tree splitting is the dominant operation; it is very difficult to divide a 
closed-world poset vertically into modules. Even more mundane encoding 
schemes, such as depth first search, could be used at one or more levels of a 
modulated poset. For emphasis on certain aspects of performance, alternate 
encoding schemes could be used at every level. This mix-and-match approach 
could be especially useful in very large posets. 

Also dynamic poset changes are much less costly for modulated codes tha for 
the transitive closure-generated codes. Using transitive closure encoding, m x ing 
any changes to the poset after its been encoded are extremely expensive. In ,fact, 
if there is a change to the poset at an element E, every element which subsumes 
E must be recoded. However, using modulated codes, only the elements that 
subsume E and are in the same module as E must be recoded, unless the change 
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made causes a link between modules, in which case many more must be recoded. 

Often the overhead of changing even a small number of codes at run-time prevents 
taking advantage of this feature of modulated codes, but in some applications 
dynamic changes to the poset can be facilitated with the use of modules. 

8. CONCLUSION 

An arbitrary poset may be plunged into a boolean lattice where greatest lower 
bounds may be computed very efficiently. We suggest that this be used as the 
basis for the compilation of object inheritance, although there are many other 
applications. We have demonstrated that our construction is general in that it 
can accommodate fully disjunctive and complemented inheritance, that it is very 
efficient, and that it can be formally justified. In addition to the simplest encoding 
method known as transitive closure encoding, we have also demonstrated several 
methods of accomplishing encodings that reduce the space overhead to acceptable 
levels by taking advantage of the topology of the poset. We thoroughly study a 
grouping technique that we call code modulation. 

The largest consequence of modulating the encoding of a poset is to reduce the 
space required to store the codes from B(N2) to @(N log N). But it should also 
be pointed out that the theoretical complexity of the GLB operation (in the 
encoded lattice) is @(log N). In addition, dynamic poset changes are much less 
costly for modulated codes than for the transitive closure generated codes. 

In summary, we have presented realistic techniques that facilitate certain 
frequent computations on posets, such that computations that traditionally are 
linear or even exponential time are reduced to nearly constant time operations. 
These techniques are bound to become useful as partially ordered entities abound 
in novel programming languages, notably those supporting inheritance. 
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