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Abstract. Pairing-based cryptosystems rely on the existence of bilinear, nondegener-
ate, efficiently computable maps (called pairings) over certain groups. Currently, all such
pairings used in practice are related to the Tate pairing on elliptic curve groups whose
embedding degree is large enough to maintain a good security level, but small enough
for arithmetic operations to be feasible. In this paper we describe how to construct or-
dinary (non-supersingular) elliptic curves containing groups with arbitrary embedding
degree, and show how to compute the Tate pairing on these groups efficiently.

Key words. Pairing-based cryptosystem, Elliptic curve construction, Efficient imple-
mentation, Tate pairing.

1. Introduction

Pairing-based cryptosystems depend on the existence of bilinear, nondegenerate, effi-
ciently computable maps (called pairings) over certain groups. In some schemes, se-
curity depends on a new security assumption called the Bilinear Diffie–Hellman [6] or
Tate–Diffie–Hellman [14] assumption. In other schemes, security depends on a standard
assumption, but properties of the pairing are exploited. For example, pairings are used
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to construct groups where the Computational Diffie–Hellman problem is believed to be
hard, but the Decisional Diffie–Hellman assumption does not hold [18] (these groups
have been called Gap Diffie–Hellman groups [7]).

Two basic problems naturally arise when implementing pairing-based systems, namely,
generating groups where a suitable pairing exists, and effectively implementing the pair-
ing. These problems can be solved in certain elliptic curve groups using maps based on
the Tate pairing, which maps pairs of points to finite field elements.

A subgroup G of (the group of points of) an elliptic curve E(Fq) is said to have
embedding degree k if the subgroup order r divides qk − 1, but does not divide qi − 1
for all 0 < i < k. The Tate pairing [2], [13], [15] and the Weil pairing [18], [21],
[26] map pairs of curve points to elements of the field Fqk , the former pairing being
much more efficiently computable than the latter. The embedding degree for a random
curve is usually enormous [1], rendering the computation of the Tate or Weil pairing
infeasible. For a long time, the only curves known to contain groups whose embed-
ding degree is small enough to make pairing computation feasible were supersingu-
lar curves, for example, over F3m where k = 6 [21]. It may be that the widespread
suspicion that supersingular curves are unsafe is unjustified, but, nevertheless, these
curves are often constructed over fields of low characteristic, making them more sus-
ceptible to discrete logarithm algorithms [9], [25]. Recently, Miyaji et al. [23] showed
how to build non-supersingular curves over Fq of prime order via the complex mul-
tiplication method, as long as certain conditions hold for the field size q, the trace
of Frobenius t [26, III.4.6], and the curve order n. Their method is based upon certain
properties of the cyclotomic polynomials of order k ∈ {3, 4, 6} (i.e., those of degree 2), so
that here again the embedding degree is bound by k ≤ 6, as in the supersingular case.

We investigate how to build curves with general embedding degree k, and present
concrete methods for constructing them. We also describe a deterministic variant of
Miller’s algorithm to compute the Tate pairing that uses significantly fewer operations
whenever the coordinates of one of the points is restricted to the base field Fq .

These results extend and complement our previous work in [2] (which focuses on
supersingular curves) and [3] (which only marginally considers pairing implementa-
tion). Another method for building curves with arbitrary k has been recently proposed
by Dupont et al. [11]. Independent results on the implementation of the Tate pairing
for supersingular curves have been obtained by Galbraith et al. [15] and especially by
Duursma and Lee [12], and these results describe the best pairing algorithm presently
known for supersingular curves in characteristic 3.

This paper is organized as follows. Section 2 summarizes the mathematical concepts
we use in the remainder of the paper. Section 3 describes our methods to construct
pairing-friendly elliptic curves. Section 4 presents our improvements for Tate pairing
computation. Section 5 discusses experimental results.

2. Mathematical Preliminaries

Let p be a prime number, let m be a positive integer, and let Fpm be the finite field with
pm elements; p is said to be the characteristic of Fpm , and m is its extension degree. We
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simply write Fq with q = pm when the characteristic or the extension degree are known
from the context or are irrelevant for the discussion. We also write F∗q ≡ Fq − {0}.

An elliptic curve E defined over Fq is the set of solutions (x, y) over F̄q to an equation
of the form y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6, where ai ∈ Fq , together with
an additional point at infinity, denoted O . If K is an extension of the field Fq , the set of
K -rational points of E , which we denote by E(K ), is the set of points (x, y) ∈ E such
that x, y ∈ K .

If p > 3, then any elliptic curve can be affinely transformed so that its equation
takes the form y2 = x3 + ax + b. The twist E ′(Fq) of such a curve E(Fq) is given by
y2 = x3 + v2ax + v3b for any quadratic nonresidue in v ∈ Fq .

There exists an abelian group law on E . Explicit formulas for computing the coordi-
nates of a point P3 = P1 + P2 from the coordinates of P1 and P2 are well known [26,
algorithm III.2.3]. It is easy to show that E(K ) is a subgroup of E ; for this reason we
sometimes refer to E(K ) as “the curve E(K ).”

The number of points of E(K ), denoted #E(K ), is called its order. The Hasse bound
states that #E(Fq) = q + 1− t , where |t | ≤ 2

√
q. The quantity t is called the trace of

Frobenius (or simply “trace”). Curves whose trace t is a multiple of the characteristic p
are called supersingular.

Let n = #E(K ). The order of a point P ∈ E is the smallest integer r > 0 such that
[r ]P = O . The set of r -torsion points of E , denoted E(K )[r ], is the set {P ∈ E(K ) |
[r ]P = O}. The order of a point always divides the curve order. It follows that 〈P〉 is a
subgroup of E(K )[r ], which in turn is a subgroup of E(K )[n].

Let P be a point of E(Fq) of prime order r . The subgroup 〈P〉 is said to have embedding
degree k for some k > 0 if r | qk − 1 and r � qs − 1 for any 0 < s < k. If E
is supersingular, the value of k is bounded by k ≤ 6 [21]. This bound is attained in
characteristic 3 but not in characteristic 2, where the maximum achievable value is
k = 4 [20, Section 5.2.2].

We assume E(Fqk ) contains r2 r -torsion points, that is, E(Fqk )[r ] ∼= Zr ⊕ Zr , and,
in particular, there exists a point Q ∈ E(Fqk ) of order r but linearly independent to P .
This is always true when k > 1 [1].

For our purposes, a divisor is a formal sum of points on the curve E(Fqk ). The degree
of a divisor A = ∑P aP(P) is the sum

∑
P aP . An abelian group structure is defined

on the set of divisors by the addition of corresponding coefficients in their formal sums;
in particular, nA =∑P (naP)(P).

Let f : E(Fqk )→ Fqk be a function on the curve and letA =∑P aP(P) be a divisor
of degree 0. We define f (A) ≡ ∏

P f (P)aP . Note that, since
∑

P aP = 0, f (A) =
(c f )(A) for any factor c ∈ F∗qk . The divisor of a function f is ( f ) ≡ ∑P ordP( f )(P)
where ordP( f ) is the order of the zero or pole of f at P (if f has no zero or pole at
P , then ordP( f ) = 0). A divisor A is called principal if A = ( f ) for some function
( f ). It is known [20, Theorem 2.25] that a divisor A = ∑P aP(P) is principal if and
only if the degree ofA is zero and

∑
P aP P = O . Two divisorsA and B are equivalent,

and we write A ∼ B, if their difference A − B is a principal divisor. Let P ∈ E[n]
where n is coprime to q , and let AP be a divisor equivalent to (P) − (O); under these
circumstances the divisor nAP is principal, and hence there is a function fP such that
( fP) = nAP = n(P)− n(O).
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Let � be a natural number coprime to q. The Tate pairing of order � is the map
e� : E(Fq)[�]× E(Fqk )[�]→ F∗qk given by e�(P, Q) = fP(AQ)

(qk−1)/�. It satisfies the
following properties:

— (Bilinearity) e�(P1 + P2, Q) = e�(P1, Q) · e�(P2, Q) and e�(P, Q1 + Q2) =
e�(P, Q1)·e�(P, Q2) for all P, P1, P2 ∈ E(Fq)[�] and all Q, Q1, Q2 ∈ E(Fqk )[�].
It follows that e�([a]P, Q) = e�(P, [a]Q) = e�(P, Q)a for all a ∈ Z.

— (Non-degeneracy) If e�(P, Q) = 1 for all Q ∈ E(Fqk )[�], then P = O . Alterna-
tively, for each P �= O there exists Q ∈ E(Fqk )[�] such that e�(P, Q) �= 1.

— (Compatibility) Let � = h�′. If P ∈ E(Fq)[�] and Q ∈ E(Fqk )[�′], then e�′([h]P,
Q) = e�(P, Q)h .

Notice that because P ∈ E(Fq), fP is a rational function with coefficients in Fq .
We note that our definition of the pairing differs slightly from the standard defini-

tion [13], [14]. We restrict the first argument of e� to E(Fq)[�] and we raise fP(AQ)

to the power (qk − 1)/�, so that e� maps to certain uniquely determined coset repre-
sentatives. Our definition captures the essential properties needed for cryptographical
purposes.

3. Curve Construction

3.1. Generalized MNT Curves

Any elliptic curve E over Fq of order n satisfies Hasse’s theorem [26, V.1.1], which
states that the trace t of the Frobenius endomorphism on E , related to q and n by the
equation n = q + 1− t , is restricted to |t | ≤ 2

√
q.

Let	k be the kth cyclotomic polynomial [19, Definition 2.44] for some k > 0. MNT
curves [23] are non-supersingular curves built with the complex multiplication (CM)
method [5, Chapter VIII] where the curve order has the form n = mr for some m and a
prime r , such that r | 	k(t− 1) but r � 	i(t− 1) for all 0 < i < k. This ensures that the
following lemma holds.

Lemma 1. For MNT curves, the subgroup of order r has embedding degree k.

Proof. We show that r | qk − 1 but r � qi − 1 for all 0 < i < k. Clearly, q ≡ t − 1
(mod r) due to the relation n = q + 1− t , hence r | qs − 1 iff r | (t − 1)s − 1 for any

s > 0. It is well known [19, Theorem 2.45(i)] that xs − 1 =∏d|s 	d(x). Thus, since r is
prime, r | xs −1 iff r | 	d(x) for some d | s, and hence r | (t −1)s −1 iff r | 	d(t−1).
Therefore, r | qs − 1 iff r | 	d(t− 1) for some d | s. As we assume from the definition
of MNT curves that r � 	i(t− 1) for i < k, it follows that r � qi − 1. On the other hand,
we also assume that r | 	k(t− 1), and hence r | qk − 1.

The CM equation has the form

DV 2 = 4q − t2 = 4mr − (t − 2)2. (1)

The strategy to build MNT curves seems straightforward: choose k, t , and m so that
	k(t−1) contains a (large) prime factor r and q = mr+ t−1 is prime or a prime power,



Efficient Implementation of Pairing-Based Cryptosystems 325

then factor 4q− t2 as DV 2, where D is square-free, and use the CM method to compute
the curve equation coefficients. Unfortunately, this approach is not practical, because in
general the CM discriminant D is too large (comparable with q), and cryptographically
significant parameters would have q ≈ 2160 at least.

Miyaji et al. originally considered only k ∈ {3, 4, 6} and r = 	k(t − 1), for which
(1) reduces to a Pell equation whose solution is well known [27]. The case of arbitrary
k is much harder, since no general method is known to solve Diophantine equations
of degree deg(	k) ≥ 4. Even k ∈ {5, 8, 10, 12}, which leads to quartic Diophantine
equations potentially solvable by the method of Tzanakis [28], has proven unsuccessful
in producing cryptographically significant curves for manageable D. However, even if
this direct approach remains out of reach, there are ways to generate suitable field and
curve parameters, as we show next. For simplicity, we concentrate on prime q.

3.2. Algebraic Solutions

One possible approach to solving (1) is to look for algebraic, closed-form solutions. The
complexity of this equation does not suggest by itself an immediate answer; we propose
two strategies to simplify the problem and obtain solutions in certain special cases.

First strategy: Consider (1) in the form

DV 2 = 4h	k(t− 1)− (t− 2)2, (2)

where h	k(t − 1) = mr = n, restricted so that h and m are integers and r is a large
prime factor of	k(t−1). Seek to factor out this equation by setting h = αDu2 for some
square-free α and some u, and t − 2 = βh for some β. For arbitrary square-free D, this
yields possible curve parameters as functions of u, which can be varied so that r and
q = n+ t − 1 are both prime. It is easy to see that these choices satisfy (1), and that the
Hasse bound t ≤ 2

√
q is satisfied. Table 1 summarizes the results of this strategy for

k = 2 and k = 6.

Second strategy: Parameterize the CM equation (1) for r = 	k(x) as DV (x)2 =
4m(x)	k(x) − (x − 1)2, where x = t − 1, V = V (x), and m = m(x). Let V (x) =
(x − 1)V ′(x) and m(x) = (x − 1)2m ′(x) for some V ′(x) and m ′(x). Multiplying both
sides of this equation by D and defining z(x) = Dm ′(x) and B(x) = DV ′(x) leads to

B2(x) = 4z(x)	k(x)− D. (3)

Thus we are confronted with the somewhat simpler problem of finding z(x) such that
the polynomial 4z(x)	k(x)− D is a perfect square.

Table 1. CM parameters obtained by the first algebraic strategy.

k α β m r t q V

2 2 4 4Du2 m + 1 2m + 2 m2 + 3m + 1 4u
6 1 12 Du2 144m2 + 12m + 1 12m + 2 144m3 + 12m2 + 13m + 1 2u(12m − 1)
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Table 2. Some solutions to (3) (i, j > 0).

k D z(x) B(x)

3i 3 1 2xk/3 + 1
2i 3 j 3 1 2xk/6 − 1
7i 7 x2k/7 − xk/7 + 2 2x4k/7 + 2x2k/7 + 2xk/7 + 1

2i 7 j 7 xk/7 + xk/14 + 2 2x2k/7 + 2xk/7 − 2xk/14 + 1

The cyclotomic polynomials are known [24] to satisfy the following recurrence rela-
tions. If v is any prime dividing u, then	uv(x) = 	u(xv). On the other hand, if v � u, then
	uv(x) = 	u(xv)/	u(x). These recurrence relations provide a means to obtain new solu-
tions to (3) from existing ones, as whenever B2(x) = 4z(x)	u(x)−D, clearly B2(xv) =
4z(xv)	uv(x)− D if v is a prime dividing u, and B2(xv) = 4[z(xv)	u(x)]	uv(x)− D
if v � u.

Table 2 lists some noteworthy examples. Corresponding CM parameters are con-
structed for t ≡ 2 (mod D) (i.e. restricted so that all divisions are exact), m =
(t − 2)2z(t − 1)/D, a large prime factor r of 	k(t− 1), n = mr , and q = n + t − 1. In
all cases it is necessary to ensure that q is prime and that the embedding degree of the
subgroup of order r is indeed k (it is at most k, but can be smaller). We point out that, in
principle, this method enables the ratio m/r to get arbitrarily small for the listed D and
large k.

Appendix 6 contains a detailed example of this method.
It is unclear whether these strategies can be generalized in a simple way for arbitrary

k and D, since the corresponding expressions get very involved (new results along
these lines have been recently found by Brezing and Weng [8]). Many such solutions
probably exist. For example, for k = D = 11 we found the particular solution m(x) =
(4x8+ x6− 3x5+ 3x4+ x3+ 6x2− 6x + 5)/11 where x = t − 1. However, the second
strategy only yields solutions for small D, which could potentially have a lower security
level [5, Section VIII.2], even though no specific vulnerability is known at the time of
this writing. To address these limitations, the next method we propose is suitable for
general k and D.

3.3. A General Method

Assume D and t are chosen in (1) so that gcd(D, t) = 1 (otherwise there is no hope that
q is prime). For convenience, let A = 4r and B = (t − 2)2, so that (1) takes the form

DV 2 = Am − B.

We want to solve this quadratic Diophantine equation for m and V , ensuring that q =
mr + t − 1 is prime and trying to keep m as small as possible. We do so in three steps.

First, we solve for m and z the linear Diophantine equation Dz = Am − B. This
equation has solutions [17] for the given choice of t and D iff gcd(A, D) | B, namely,

mi = m0 + i(D/g),

zi = z0 + i(A/g),
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where g = gcd(A, D), m0 = (B/g)(A/g)−1 mod(D/g), and z0 = (Am0 − B)/D
(notice that A/g is invertible modulo D/g, because gcd(A/g, D/g) = 1). All of the
values g, m0, and z0 can be computed at once with the extended Euclidean algorithm.

Next, we solve for V and i the quadratic Diophantine equation V 2 = z0 + i(A/g).
This clearly requires z0 to be a quadratic residue (QR) modulo A/g. If so, let {su} be the
set of square roots of z0 modulo A/g, that is, the set of values in the range 0 ≤ su < A/g
for which s2

u ≡ z0 (mod A/g). Thus we can write V = su + (A/g)α where α is any
integer, implying i = (V 2−z0)/(A/g) = (A/g)α2+2suα+(s2

u−z0)/(A/g). Therefore
the complete solution is

Vα = su + α(A/g),

iα = (A/g)α2 + 2suα + (s2
u − z0)/(A/g),

for each square root su of z0 modulo A/g.
Finally, we pick up any solution iα such that q = miαr + t − 1 is prime. Although

we can vary α to obtain this solution, to make the ratio between log q and log r as tight
as possible one may prefer to restrict the search for q to α = 0, that is, by considering
i0 = (s2

u − z0)/(A/g) alone and varying only t .
Experiments we conducted showed that, in practice, m tends to be close to r . Nev-

ertheless, such solutions are perfectly suitable for most pairing-based cryptosystems, a
noticeable exception being the short signature scheme of [7].

Appendix 6 contains examples of this method.

3.4. Choosing Sparse Group Orders

There are circumstances where one need not strictly minimize m, but rather find r with
some structure, for instance, low Hamming weight, as this considerably speeds up pairing
computations.

It is possible to choose a reasonably sparse r using any of the constructions we propose.
This can be achieved when 	k(t − 1) is reasonably sparse (as it happens if all prime
factors of k are very small) by strengthening the condition r | 	k(t−1) to r = 	k(t−1),
and by restricting t − 1 to values of low Hamming weight.

4. Computing the Tate Pairing

In this section we propose several improvements to Miller’s algorithm [22] to compute
the Tate pairing as defined in Section 2, in cases of cryptographical interest.

Let r be the order of the subgroup of E(Fq) with embedding degree k > 1, let
P ∈ E(Fq)[r ] and Q ∈ E(Fqk ) be linearly independent points, and let fP be the
rational function with divisor ( fP) = r(P)−r(O). We wish to compute the Tate pairing
er (P, Q) = fP(AQ)

(qk−1)/r , where AQ satisfies AQ ∼ (Q) − (O), and the support of
AQ does not contain P or O .

Lemma 2. For any proper factor d of k, qd − 1 is a factor of (qk − 1)/r .

Proof. We start with the factorization qk − 1 = (qd − 1)
∑k/d−1

i=0 qid . Since the
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embedding degree is k > 1, we have r | qk − 1 and r � qd − 1. Thus r |∑k/d−1
i=0 qid , and

qd − 1 survives as a factor of (qk − 1)/r .

Corollary 1 (Irrelevant Factors). For any proper factor d of k, one can freely multiply
fP(Q) by any nonzero factor x ∈ Fqd without affecting the pairing value.

Proof. To compute the pairing, fP(Q) is raised to the exponent (qk − 1)/r . By
Lemma 2, this exponent contains a factor qd − 1, thus by Fermat’s Little Theorem
for finite fields [19, Lemma 2.3], x (q

k−1)/r = 1.

Theorem 1. Let P ∈ E(Fq)[r ] and Q ∈ E(Fqk ) be linearly independent points. Then
er (P, Q) = fP(Q)(q

k−1)/r .

Proof. Let R �∈ {O,−P, Q, Q− P} be some point on E(Fq), and let f ′P be a function
with divisor ( f ′P) = r(P+R)−r(R) ∼ ( fP), so that er (P, Q) = f ′P((Q)−(O))(q

k−1)/r .
Because f ′P does not have a zero or pole at O , we have f ′P((Q)−(O)) = f ′P(Q)/ f ′P(O);
moreover, since P ∈ E(Fq), f ′P is defined over Fq , and hence f ′P(O) ∈ F∗q . Corollary 1
then ensures that f ′P(O) is an irrelevant factor and can be omitted from the Tate pairing
computation. Therefore, er (P, Q) = f ′P(Q)

(qk−1)/r .
Now ( f ′P) = r((P + R) − (R)) = r((P) − (O) + (g)) = ( fP) + r(g) for some

rational function g, since (P + R)− (R) ∼ (P)− (O). Thus f ′P = fP gr , and because
Q is not a zero or pole of fP or f ′P (so that g(Q) ∈ F∗qk is well defined) it follows that

f ′P(Q)
(qk−1)/r = fP(Q)(q

k−1)/r g(Q)q
k−1 = fP(Q)(q

k−1)/r .

In the next theorem, for each pair U, V ∈ E(Fq) we define the line function gU,V to
be (the equation of) the line through points U and V (if U = V , then gU,V is the tangent
to the curve at U , and if either one of U, V is the point at infinity O , then gU,V is the
vertical line at the other point). The shorthand gU stands for gU,−U . Notice that the gU,V

functions are defined over Fq .

Theorem 2 (Miller’s Formula). Let P be a point on E(Fq) and let fc be a function
with divisor ( fc) = c(P) − ([c]P) − (c − 1)(O), c ∈ Z. For all a, b ∈ Z, fa+b(Q) =
fa(Q) · fb(Q) · g[a]P,[b]P(Q)/g[a+b]P(Q) up to a constant factor in F∗q .

Proof. The divisors of the line functions satisfy

(g[a]P,[b]P) = ([a]P)+ ([b]P)+ (−[a + b]P)− 3(O),

(g[a+b]P) = ([a + b]P)+ (−[a + b]P)− 2(O).

Hence, (g[a]P,[b]P)−(g[a+b]P) = ([a]P)+([b]P)−([a+b]P)−(O). From the definition
of fc we see that

( fa+b) = (a + b)(P)− ([a + b]P)− (a + b − 1)(O)
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= a(P)− ([a]P)− (a − 1)(O)

+ b(P)− ([b]P)− (b − 1)(O)

+ ([a]P)+ ([b]P)− ([a + b]P)− (O)
= ( fa)+ ( fb)+ (g[a]P,[b]P)− (g[a+b]P).

Therefore fa+b(Q) = fa(Q) · fb(Q) · g[a]P,[b]P(Q)/g[a+b]P(Q).

The fc functions are defined over Fq ; besides, ( f0) = ( f1) = 0 which means
that f0 and f1 are constants, so by Corollary 1 we can set f0(Q) = f1(Q) = 1 for
simplicity. Furthermore, fa+1(Q) = fa(Q) · g[a]P,P(Q)/g[a+1]P(Q) and f2a(Q) =
fa(Q)2 · g[a]P,[a]P(Q)/g[2a]P(Q).

Recall that r > 0 is the order of P . Let its binary representation be r = (rt , . . . , r1, r0)

where ri ∈ {0, 1} and rt �= 0. Miller’s algorithm (simplified via Theorem 1) computes
fP(Q) = fr (Q) for Q �∈ {O, P} by coupling the above formulas with the double-and-
add method to calculate [r ]P:

Miller’s algorithm (simplified):
set f ← 1 and V ← P
for i ← t − 1, t − 2, . . . , 1, 0 do {

set f ← f 2 · gV,V (Q)/g[2]V (Q) and V ← [2]V
if ri = 1 then set f ← f · gV,P(Q)/gV+P(Q) and V ← V + P

}
return f

Miller’s algorithm can be simplified even further if k is even, as established by the
following observations [4]. Let d = k/2, and suppose the characteristic of the field p > 3.
Consider the twist of the curve E(Fqd ) : y2 = x3 + ax + b, which is given by E ′(Fqd ) :
y2 = x3+ v2ax + v3b where v is a quadratic nonresidue in Fqd . Pick any Q′ ∈ E ′(Fqd ).
The map  : (X,Y) �→ (v−1X, (v

√
v)−1Y) describes how to map points of E ′(Fqd ) to

points of E(Fqk )− E(Fq). Set Q = (Q′), and note that its x-coordinate lies in Fqd .

Theorem 3 (Denominator Elimination). Choosing Q according to these observations
for even k, the g[2]V and gV+P denominators in Miller’s formula can be discarded
altogether without changing the value of er (P, Q).

Proof. The denominators in Miller’s formula have the form gU (Q). From the definition
of the line functions, it is clear that gU (Q) ≡ x − u, where x ∈ Fqd is the abscissa of
Q and u ∈ Fq is the abscissa of U . Hence gU (Q) ∈ Fqd . By Corollary 1, they can be
discarded without changing the pairing value.

There is no guarantee that r divides the order of Q, though this is very likely. To
determine whether Q is suitable, it suffices to check that er (P, Q) �= 1.

In the cases p = 2, 3, if particular supersingular curves are used, then there exist
distortion maps that take points of E(Fq) to linearly independent points of E(Fqk ), and
it turns out that the denominators can be eliminated for similar reasons [2]. We may also
apply point doubling and tripling to improve performance [2], [15].
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For efficiency, the map can be delayed until it is required for a pairing computation.
In other words, operations on Q that do not involve the pairing can be performed on Q′

instead, which lies in a smaller field, and  is applied only when necessary.
Thus, if k = 2 pairing-based protocols can be almost completely implemented using

E(Fq) arithmetic. Only simple support for Fq2 arithmetic is required for the pairing
computation. For higher k, we suggest implementing Fqk as Fq [x]/Rk(x), where Rk(x)
is the sparsest possible polynomial containing only terms of even degree, so that ele-
ments of Fqd are polynomials lacking any term of odd degree and can be represented as
polynomials of degree d .

5. Experimental Results

There are several opportunities for further optimization that lead to noticeable perfor-
mance improvements under certain circumstances, depending on the details of the actual
pairing-based cryptosystem.

For instance, raising a finite field element to a power h is usually much faster than
multiplying a curve point by the scalar α, so one can benefit from the pairing bilinearity
and compute er (P, [α]Q) or er ([α]P, Q) as er (P, Q)α .

Besides, one often needs to compute pairings er (P, Q) where P is either fixed (e.g.,
the base point on the curve) or used repeatedly (e.g., a public key). In these cases the
underlying scalar multiplication in Miller’s algorithm can be executed only once to
precompute the coefficients of the line functions gU (Q).

However, the heaviest operation in any pairing-based cryptosystem is the pairing
computation. For a 512-bit prime p, computing the Tate pairing takes 20.0 ms (8.6 ms
with preprocessing) on a PIII 1 GHz machine.

For illustrative purposes, Table 3 compares the signing and verification times for RSA,
DSA (without precomputation), ECDSA (without precomputation), and BLS [7] at the
same security level. Timings for Boneh–Franklin identity-based encryption (IBE) are
listed in Table 4. The data refers to a curve over Fp with a 512-bit prime p, using a
subgroup of 160-bit sparse prime order r .

6. Conclusions

We have shown how to construct curves containing subgroups of arbitrary embedding
degree k. Such curves are suitable for most pairing-based cryptosystems. The ratio

Table 3. Comparison of signing and verification times (in ms) on a PIII 1 GHz.

Algorithm Signing Verification

RSA, |n| = 1024 bits, |d| = 1007 bits 7.90 0.40
DSA, |p| = 1024 bits, |q| = 160 bits 4.09 4.87
Fp ECDSA, |p| = 160 bits 4.00 5.17
F2163 ECDSA 5.77 7.15
Fp BLS (MNT), |p| = 157 bits 2.22 45.8
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Table 4. IBE times on a PIII 1 GHz.

Operation Time (ms)

IBE encryption 35 (preprocessed: 22)
IBE decryption 27 (preprocessed: 17)

log(q)/log(r) is always larger than 1, and in general close to 2. Systematically con-
structing groups with arbitrary k where log(q)/log(r) is close to 1 (or better yet, curves
of prime order and prescribed k) remains an open problem.

We have also proposed efficient algorithms to implement the Tate pairing, as needed
in pairing-based cryptosystems. Our algorithms are practical and lead to significant
performance improvements.
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Appendix A. An Example of the Algebraic Construction

This simple construction implements the second strategy of Section 3.2 and quickly
yields a curve and a point of large prime order r , with embedding degree k and function
z(x) given by Table 3.

1. Choose t ≡ 2 (mod D) of appropriate size at random.
2. Set r ← 	k(t− 1). If r is not prime, restart at step 1.
3. Set m ← (t − 2)2 · z(t − 1) /D and n = mr .
4. Set q = n + t − 1. If q is not prime, restart at step 1.
5. Use the CM method to find the curve of the form y2 = x3+ B with discriminant D

(in practice small values of B can be tested to find the correct curve [10]), and find
a point of order r on the curve using, e.g., the method described in Section A11.3
of [16].

An example run of this algorithm for k = 12 and D = 3 yields

t = 203247593909.

r = 1706481765729006378056715834692510094310238833,

m = 13769861476328261174883,

n = 23498017525968473690296083113864677063688317873484513640816910831539,

q = 23498017525968473690296083113864677063688317873484513641020158425447.

Here r is a 151-bit prime, and q is a 224-bit prime. The curve is quickly found as
E : y2 = x3 + 4 over Fq .
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Appendix B. An Example of the General Construction

Let σ be the approximate desired size (in bits) of the subgroup order r , let D be the chosen
CM discriminant, and let k be the desired embedding degree. The following procedure
implements the general construction method described in Section 3.3 restricted to α = 0,
and yields a suitable field size q, a prime subgroup order r , and the curve order n (it also
indirectly provides the cofactor m, which it seeks to minimize, and the trace of Frobenius
t). It is straightforward, but hardly necessary in practice, to modify step 6 to consider
other small values of α, say, α < 128.

1. Choose t ≈ 2σ/δ at random, where δ ≡ deg(	k).
2. Compute r ← 	k(t− 1), A← 4r , B ← (t − 2)2, and g← gcd(A, D).
3. Check that r is prime, that r � qd − 1 for any d > 0 such that d | k, and that g | B.

If either of these conditions fail, choose another t in step 1.
4. Solve for m and z the linear Diophantine equation Dz− Am+ B = 0, namely, set

m0 ← (B/g)(A/g)−1 mod(D/g), and z0 ← (Am0 − B)/D.
5. Compute all square roots su of z0 modulo A/g. If z0 is not a QR mod A/g, choose

another t in step 1.
6. For each square root su , set i0 ← (s2

u − z0)/(A/g), m ← m0+ i0(D/g), n← mr ,
and q ← n + t − 1. If q is not prime, restart with another t at step 1. Otherwise,
construct a curve over Fq of order n and trace of Frobenius t using the CM method.

An example run of this algorithm for k = 7 and D = 500003 yields

t = 67329606,

r = 93161485761743186136191195699326539602148725131,

m = 13425090940189806839398998187415093504886695170332,

n = 125070141847460013396986527273692733814291536913611095852428963052461\
4109630975056367228694013492,

q = 125070141847460013396986527273692733814291536913611095852428963052461\
4109630975056367228761343097.

Here r is a 157-bit prime, and q is a 320-bit prime. The curve is quickly found as
E : y2 = x3 − 3x + b over Fq , where

b = 315283565391589690418903185062076693159181569566876474809008162248459\
256213526466473404332175506.

Another example, this time for k = 11 and D = 500003:

t = 5651493,

r = 33237721806329292477733472892286817383477632299281817794659481922677,

m = 19429529807320017250929519781158178098446838731085667916658667094871,

n = 645793306563485513812965048035098778963201537968134813236427213716936\
868831560525236938964558029767656530135495362724707835601045289667,
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q = 645793306563485513812965048035098778963201537968134813236427213716936\
868831560525236938964558029767656530135495362724707835601050941159.

Here r is a 225-bit prime, q is a 448-bit prime, and the curve is E : y2 = x3 + x + b
over Fq , where

b = 114943390928260306683630109134459805121604770378075777246396805900505\
342675782177132483241141214345727335963156146267084855055515119955.

In the final example, for k = 2 and D = 40003, the order r has low Hamming weight.
Generating it needs a slight modification to the above algorithm, namely, choosing t with
low Hamming weight in step 1. The size of r was chosen so that its discrete logarithm
security matches the index calculus security of F∗q2 . This example is designed to provide
a non-supersingular replacement curve for IBE as originally described [6]:

t = 1461501637330902918203684832716283019655932553443,

r = 1461501637330902918203684832716283019655932553443,

m = 787416166498841206906296612827344790048771921628788394310882904386034\
6239501697377579019816773317057910037,

n = 115081001659887928983183333439006823966686089624358183845462930047742\
449061542192527617451661960091622653320553434335100383879042640029916\
65661870388607391,

q = 115081001659887928983183333439006823966686089624358183845462930047742\
449061542192527617451661960091622653335168450708409413061079488357079\
48681526321160833.

Here r is a 161-bit prime of Hamming weight 8, q is a 512-bit prime, and the curve is
E : y2 = x3 − 3x + b over Fq , where

b = 845063354749524237003327740674758499794269970671427244291565289026454\
691206522422878864529897191976309217068909606291590475187329776939910\
7743038519465095.
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