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Efficient Implementation of Quaternion Fourier
Transform, Convolution, and Correlation by 2-D
Complex FFT

Soo-Chang Pefellow, IEEE Jian-Jiun Ding, and Ja-Han Chang

Abstract—The recently developed concepts of quaternion color image analysis. In (1), we can ugeq;, andg; to repre-
Fourier transform (QFT), quaternion convolution (QCV), and  sent the R, G, and B values of a color image pixel, respectively,
quaternion correlation, which are based on quaternion algebra, and sety, as 0
have been found to be useful for color image processing. However, ! ' . . .
the necessary computational algorithms and their complexity — Based on the concept of quaternion, theaternion Fourier
still need some attention. In this paper, we will develop efficient transform(QFT) has been introduced recently. There are many
algorithms for QFT, QCV, and quaternion correlation. The different types of QFT. The earliest definition of QFT is the
conventional complex two-dimensional (2-D) Fourier transform two-side form as follows[3], [4], [15]:

(FT) is used to implement these quaternion operations very TR )

efficiently. By these algorithms, we only need two complex 2-D FTs 0o poo

to implement a QFT, six complex 2-D FTs to implement a one-side H(q) (w,v) = / / e~ E ] (z,y) - e—Ivy . drdy. (3)
QCV or a quaternion correlation and 12 complex 2-D FTs to —o0 J —oo

implement a two-side QCV, and the efficiency of these quaternion

operations is much improved. Meanwhile, we also discuss two In fact, the QFT defined above can be generalized as [5]
additional topics. The first one is about how to use QFT and QCV

for quaternion linear time-invariant (QLTI) system analysis. This oo oo ,

topic is important for quaternion filter design and color image Hy (w,v) = / / e T b (z,y) e MY - dady
processing. Besides, we also develop the spectrum-product QCV. —oo S =00 (4)

It is the improvement of the conventional form of QCV. For any . . .

arbitrary input functions, it always corresponds to the product Wherey: andy; are two unit pure quaternions (i.e., the quater-
operation in the frequency domain. It will be very useful for nions with unit magnitude having no real part) that are orthog-

quaternion filter design. onal to each other:
Index Terms—Quaternion convolution, quaternion correlation,
guaternion Fourier transform. 1=t pr o dF ek
Pz = pi2 i+ plag g+ plog s k
. INTRODUCTION R R R CRE R  CAl|
HE concept of the quaternion was introduced by Hamilton (i.e,uf =p3 =-1) )
in 1843 [1]. Itis the generalization of a complex number. i o s oy + k- o = 0. (6)

A complex number has two components: the real and the imag-
inary part. The quaterni(_)n, hpwever, has four components, iBquation (3) is the special case of (4) in which= 4, andu, =
one real part and three imaginary parts: j. Except for (4), there are also other types of QFT. Recently, the

. . left-side form of QFT was introduced in [5]:
9=¢+g itg -Jta-k 1)

andt, j, andk obey the rules as follows: Hpy (w,v) = / / emmortvn) p gy dady  (7)

wherey; is any unit pure quaternion. Besides, we can also de-

fJ ==J L.I . fine the right-side QFT as the transpose transform of (7) [5].
Jk=—kj=1 Therefore, there are at least three types of QFT.
ki=—ik=j. (2) * Type 1 QFT (two-side):

The quaternion can be used for three-entry or four-entry vector o oo e
analysis [2]. Recently, the quaternion has also been used fd# (1) (w;v) I/ / e h(z,y) - e - dady
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» Type 3 QFT (right-side): we will discuss how to use QCV for quaternion linear time-in-
o oo variant (QLTI) system analysis. We will show that if the

Hiy3) (w,v) :/ / Bz, y) - e Pt | gedy impulse responses are all even functions, then the analysis
—ooJ —o0 (10) of QLTI systems is as simple as the analysis of conventional

LTI systems. In Section V, we will define a new type of QCV.
For this type of QCV, the QCV in the time domain always
corresponds to the product operation in the frequency domain.

Their inverse [i.e.,inverse quaternion Fourier transform
(IQFT)] are as follows.

* Type 1 IQFT (two-side): This is useful in quaternion filter design. In Section VI, we will
L [0 oo discuss the efficient algorithms of quaternion correlation.
h(z,y) = (47°) / / e Higry (w, v)e!* Y dwdv. In this paper, we will use the following abbreviations:
oo Ym0 FT Fourier transform.
(11) .
. Type 2 IQFT (left-side): IFT Inverse I_:ourler tr_ansform.
QFT Quaternion Fourier transform.

_ =1 [T [ 1 (watvy) ~IQFT Inverse quaternion Fourier transform.
hay) = (4°) /_Oo /_Ooe Higa) (w,v) dwdv; 5y, Quaternion convolution.
(12) QCR Quaternion correlation.

» Type 3 IQFT (right-side): We will also use the following notation:
Lo oo * ho(z,y), hi(z, ), hi(z,y), he{z,y): Real parti-part,
h(z,y) = (477) / / Hgs) (w, v)ets (=09 dudy. j-part, andk-part of h(x, y).
Teo v (13) « —#: Partial conjugation. For example
As the case of continuous QFT, there are also at least three — ik )
types ofdiscrete quaternion Fourier transform (DQFT) [3], h(e,y)" =he (2,9) +i-hi(z,y)
[5]. [6], [19]. —Jhi(zy) =k (z,y) 7
» Type 1 DQFT (two-side): h (xjy)”’k =h, (z,y) — i h; (z,y)
Mo1y-1 +ihy(zy)—k-ha(z,y)  (18)
H(ql) (p’ 3) _ Z Ze—p127r(prn/l\/[)h (m, 7’L) e—pg?ﬁ(sn//\/f).
=0 n—=0 * Q. Extracting some parts of original function. For ex-
(14) ample
» Type 2 DQFT (left-side): ‘
Q7 (h(x.y)) =hs (2.y) +i - hi (.9)
Higay(pys) = 3 3 a2 @n/A0+Gn/M) (g ), QP (W (w, ) =i - hy () + k- huc(2,9) . (19)

m=0 n=0

(15) * H;(w,v): Transform results of QFT foh(x,y) (not

* Type 3 DQFT (right-side): specified for which type).
Ml N1 * Hgy(w,v), Hgoy(w,v), Higzy(w,v): Transform re-
Hiys (p,s) = Z Z h (m, n) ¢ 2 (@m/M)+(n/30) sults of QFT of types 1, 2, and 3 fé(z, y).
q ? ’ .
meo o (16) [I. EFFICIENT IMPLEMENTATION OF QUATERNION
QFT and DQFT are useful for color image processing, espe- FOURIER TRANSFORM

cially forthe color-sensitive smoothing, edge d(_et_ection, an_d data Implementation of Type 1 QFT
compression [7]-[11], but research on the efficient algorithms ) ) ) ) )
of QFT and DQFT are not sufficient. This limits the utilities of e first discuss the implementation of type 1 QFT. To sim-
QFT and DQFT. Although [12] discussed the efficient algorithrRlify our discussion, we first discuss the special casejthat i
of Type 2 DQFT and [17] proposed a method to implement tf1d/2 = j. We note that if
Type 1 DQFT, neither discussed the efficient algorithms for all oo oo ‘
types of QFT and DQFT. In [17], although the idea is creative, H. (w,v) = / / e " h(x,y)-e ™Y - dedy (20)
one must design another algorithm using quaternion arithmetic T e
other than using the well-known FFT algorithm to implemenhen
the DQFT.

In Section Il of our paper, we will develop the efficient algo-
rithms of all types of QFT, and with our algorithms, we can just o oo 2
use the structure of the original FFT directly to implement the :/ / e p (2, y) - cos(vy) - dedy
QFT. Because the efficient algorithms of DQFT are very sim- —o0 J—o0
ilar to those of the continuous QFT, in this paper, we discuss the  [H. (w,v) — He(w, —v)]
efficient algorithms of the continuous QFT. 2

In Section IIl, we will discuss the efficient algorithms of R P . .
QCYV, including one-side and two-side QCVs. In Section IV, — {/Oo [me “h(z,y) - sin(vy) 'dxdyJ i (21)

[Hc(wa U) + Hc(w’ _U)]
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and therefore then (25) can be implemented as
H.(w,v) + H.(w, —v) N H(w,v) = Ho(w, —v) (—k) Hgty (pAw, gAy)
Mo N
ad i . . —i(((2mwpm)/ M)+ (27 gn) /N
:/ / = b () ¢ dandy. 22) Z Z H(((2mpm)/ M)+((27 gr)/N))
—oo J—c0 m=—Mqy n=—Ng
“hg (mAx,nA )
Thus M,
—t wpm) /M 7w qn)/N
[He (w,v) - (1 — k) + He (w,—v) - (1 + k)] [ Z Z (Empm)[MF (2 an)/20))

H(ql) (w7 U) = 2 . m=—M n=—Nj

(23)
If we want to compute the QFT, we can first compute the com-

plex 2-D FT of input function as (20) and then use (23) to com-
pute the QFT. The QFT can be implemented by twid x N point 2-D DFTs.

We note in (20) that the inpui(z, /) is a quaternion function Since each 2-D DFT requiréd V -log, M N real number mul-
and not a complex function; therefore, we cannot just use ofidications [13], to implement QFT, we totally require
complex 2-D FT to implement it. Instead, we can first decom- QMN -log, MN (28)
poseh(x,y) as

“hy (MAL, —nly) } - (27)

real number multiplications.

Mz, y) =ho(z,y) + (2, y) - j In the above, we only discuss the special case whereia i
whereh, (z,y) =hy (z,y) + hi (z,y) - i andyo =j._ln general cases, we just need to modify the above
process a little. Suppose that
hy (2, y) =h; (z,y) + b (2,9) - @. (24) , ,
pr=p1cttpre-gtpzck
Then, (20) can be rewritten as 2 =pia1 i+ poo g+ pos -k
oo poo ‘ p3 =pa - pl2 = piz1 -t pz2 - J+ pss k. (29)
He(wo)= [ [ by (o) dudy
- Then, we expresk(zx,y) as
/ / why (a,y) - je T - dady  h(r,y) = he(z, )+ Ba(w,w)
+ha(2,y) - p2 + ha(z,y) - i (30)
:/_ /_ e "The (x,y) - e”" - dudy and the relation betweeh;(x,v), ho(z,y), hs(z,y), and

hi(z,y), hyj(z,y), hi(z,y) is

/ / Ty (,y) - €Y - dady [hl(a:,y)] [Nl,l p2,1 u3,1]_1[hv¢(%y)]
_ . (31)

‘ ‘ hao(z,y) P12 P22 13,2 hi(z,y)
_ —tWE =Y | . ? ’ ’
H, (w,v) _/_Oo /_Ooe ¢ ha (2,y) - dzdy ha(z,y) P13 H23 1433 hi(z,y)
S Then, we can implement the type 1 QFT from the process as
{ / / Y follows.
1) First, decompose the input function as

by (z,—y) - dwdy] - 5. (25)
h(xvy):ha (‘Tvy)+hb (‘Tvy)NQ (32)
From (25), we can calculate (20) by two complex 2-D FTs.
From the above discussion, we can compute the type 1 QFT  Where
with three steps as follows.

) . he (z,y) =h, (x, hi(z,y)-
1) Decompose the input function as (24). 0 (T,y) =N (2,4) + M (2,9) - 1

2) CalculateH,(w,v) from (25). he (x,y) =h2 (z,y) + ha (z,y) - ju1. (33)
3) Calculate the transform result of QFT frafh.(w, v) by 2) Then, calculaté, (w, v) from
(23). ’ o
If we sample the-, y-, w-, andv-axes as H, (w,v) = /OO /OO et tvy) p (g ) dedy
Tz =ml,, y=nd,, w=DpA, 0o poo
+ {/ / emmwrtuy) p, (z, —y) dxdyJ cp2. (34)
v =qA,, m,p € [-Mo, Mol, n,q € [~ No, No] -
A, A, :%’ A, A, = 2%’ M = 2My+ 1 3) Then, calculate the transform result of QFT by
1—p 1+p
N I2N0 +1 (26) H(ql) (w7 U) = Hc (w7 U) ° +Hc (w7 _U) Tg (35)



2786 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001

Although the integration operations in (34) are different from We can also use the similar way as above to implement the
the complex 2-D FT, they can still be implemented by compldQFT of types 2 and 3, except that the roles/df:, y) and
2-D FT. Since all the exponential terms and the input functiord$ ,, 5)(w, v) are exchanged, and in (39) and (4&);; (wz +
he(z,y), andhy(z,y) in (34) contain the real part and the vy) are replaced by (wx + vy). We also requir@M N -
part, as well ag? = —1, there is no problem to use the efficientog, M N real number multiplications to implement the IQFT
algorithm of the complex 2-D FT to implement the integratioof types 2 and 3.
operationsin (34), except that all tfeeare changed t@; s. Even
wheny; # ¢ andus # j, we require two complex 2-D DFTs C. Simplified Implementation of QFT for Some Special Cases

to implement the type 1 QFT defined as (8), and the amount ofyye have discussed the implementation of the QFT requiring

real number multiplications required is also about 2MN - log, MN real multiplication operations. In fact, for
R some special cases, we can further simplify the implementation
2MN -log, M N. (36) of the QFT.

We can also use the similar process as above to implemen¥Ve usually use the quaternion to deal with the color image.

the type 1 QFT. It also require€s\/ N - log, M N real multipli- When we use the quaternion to express a color image, we usu-
cations. ally express it as

B. Implementation of QFT of Types 2, 3 h(m,n) =hg(m,n) i+he(m,n) j+hg(m,n) k. (41)

We now discuss the efficient algorithms of QFT of types Zhat is, we useé-, j-, andk-parts to represent the R, G, and B
and 3. The efficient algorithm of the discrete quaternion Fouriggrts of the color image and set the real part to 0. Therefore, for
transform (DQFT) of type 2 has been introduced in [12]. Wghe applications about the color image, the input of the QFT is
can m0d|fy their algorithms a little and derive the efficient alusua”y a pure quaternion function (i_e_, the real part is O)
gorithms of continuous QFT of types 2 and 3. To implement the For the complex FT, if the input function is pure real, then we
type 2 QFT and type,3ve can implement the following processcan use the real-valued Fourier transform (RFT) instead of the

1) Find a unit pure quaternigm, orthogonal tau, thatis  complex FT. The 2-D complex FT requird$N -log, M N real

multiplications, but the 2-D RFT requiréd/ N/2) - log, M N

e =pic v By g real number multiplications [13]. Similarly, if the input of QFT
+prkck is a pure quaternion function, we can also simplify the imple-
fte =jigi -G+ pog - J mentation. In this_ case, sinm(a_z,y) =0, t_hen in (34), (_38)_,
¥ ok and (39) ., (z, y) is a pure imaginary function, and the firstin-
’ tegration in these equations is, in fact, the 2-D FT for the pure
N R N R N R e N (37) " imaginary input. For example, (34) can be implemented as

We defineus as the product ofi; andps. If 111 = 4, we
can choose:; = j andus = k& and save this step. B
2) By the same method as (31)~(33), we decompose tH& (w,v) = RET™ (hy (2,9)) - pu + FT (B (2, ~)) ZQZ
input functioni(z, y) into h,(z,y) andhy(x, y). (42)
3) For thetype 2 QFTwe can calculate the transform resultvhere FF' represents the complex 2-D FT (but all are

from changed ag:;s), and RFT* represents the complex 2-D FT
oo poo for pure real input. Since RFET requires(M N/2) - log, M N
Higo (w,v) = / / et wstvy) (g ) dedy real number multiplications, the total amount of real number
e multiplications required is
+ {/ / et wmY) by (2 4y dﬂ?d@lJ “p2. (38) 3SMN
For thetype 3 QFT we can calculate the transform result
from Comparing it with (34) or (40), we find that one fourth of the
" e e s o real multiplications are saved.
(¢3)(w; 0) = N a(@, y)dady Except for the above cases, if the input is symmetric, then the

oo poo implementation of QFT can also be simplified. For example,
+ {/ / ) by (2,47 dxdyJ " B2 (39) if the inputh(z,y) is even-even (i.eh(x,y) = h(z, +y)),
T e even-odd, odd-even, or odd-odd, then we can use the 2-D co-
Thus, we require two complex 2-D FTs or one 2-D FT and orgne/sine transforms instead of the 2-D FTs in (34), (38), and
2-D IFT to implement the QFT of types 2 and 3. Therefore, th89), and three fourths of the real multiplications can be saved. If
amounts of real multiplications required for the QFT of types the input is symmetric in the-axis (i.e.,h(z,y) = +h(—x, 1))
and 3 are or in they-axis, we can save half of the real multiplications.

2MN -logy MN. (40) [ll. 1 MPLEMENTATION OF QUATERNION CONVOLUTION

The complexities of the QFT of types 1-3 are the same. There are two different definitions for the QCV.
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» One-side QCV[3]: that we can use two 2-D Fourier transforms (FTs) to implement
the type 2 QFT or IQFT,; therefore, in (49), we need two 2-D FTs
gz, y) =f (=,9)*¢h (z,y) to calculateH ) (w, v) or IQFT?), We notice that if the input
:/Oo /Oo F(z—7y—n)h(r.n)-drdn. (44) function of the type 2 QFT has a real part and amrt, then
oo —oo for the algorithm in Section 1I-B, we can sgt = 4, 2 = j,
. = . andus = k,and in (38)h(x,y) = hj(z,y) +i-he(z,y) = 0;
Two-side QCV 7] thereforfe, in this case, we require one 2-D FT to implement
g(z,y) =f (x,y) % {h1 (z,9) , ha (x,9)} the type 2 QFT. Thus, in (49), we need one 2-D FT to calculate

oo poo Fo(q2)(w,v). Similarly, we also need one 2-D FT to calculate
I/ / ha(r.n) f(x— 7,9 —n)ha (T, n) Fyg2)(w,v). Thus, by the method of (49), we totally require
T six complex 2-D FT$o implement the one-side QCV. We re-
-drdn. (45) . .
member that for the conventional 2-D convolution, we totally
For the conventional convolution operation,fif(t) is the require three complex 2-D FTs to implement it. The complexity
convolution output off; (¢) and f»(¢), then f3(¢) can be cal- of the one-side QCV is twice of that of the conventional 2-D

culated from convolution.
In some special conditions, the relation between the one-side
f3(t) = IFT (FT(fu(8)) - FT(f2(1))) . (46) QcV and the type 2 QFT can be simplified. In the case where

We can calculate the conventional convolution by the eﬁicieﬁl(x’ y) has the even symmetry relation

algorithms of the complex FT. Similarly, it is reasonable to think h(z,y) = h(—z, —y) (50)
that we can also find some simple relations between the QFT ’ ’
and the QCV and use the efficient algorithms of the QFT tten we can prove that the QFT bfx,) also has the same

implement the QCV. symmetry relation
In [14], how to use the hypercomplex Wiener—Khintchine
theorem to compute the quaternion correlation was discussed, Hgoy(w,v) = Hgoy(—w, —v) (51)

and we can modify their algorithm to implement the one-side . :
QCV, but their algorithm requires eight complex 2D FTs and nd the relation between the QCV and the type 2 QFT in (49)

not simple enough. In the following, we will show that we caff" be simplified
usesix complex 2-D FT$o implement the one-side QCV. For gz, y) :IQFT(Q) ((Fa(qQ) (w,v)

the two-side QCV, we requirgé2 complex 2-D FT# imple- .
ment it. +Fy g2y (w,v)5) Higoy(w,v))

' ' =IQFT® (Fy2)(w, v) H(gay(w, v)) (52)
A. Implementation of the One-Side QCV by the Type 2 QFT

To derive the relation, we can first separdter, y) in (44)
into two parts. Gle2) (w,v) = Flg2) (w,v) - H g2 (w,v) (53)
f(xvy) :fa (xvy) + fb (-T,y) J

wheref, (x,y) =fr (x,y) + fi (x,y) X!

or

When h(z,y) = h(—=, —y), the QCV operation in the space
domain corresponds to the product operation in the frequency

fo(zy) =fi(z,y) + fu(z,y) - (47) domain This is the same as the case of the conventional convo-
] ) lution. In the case wherk(z, i) has the odd symmetry relation
The one-side QCV can be rewritten as as
g(z.y) =f (z,u) *¢h (z,y) M, y) = —h(—z, —y) (54)
:fa (.’L”y) >k’Ih’ (xﬁy) i . .
F £ (2,y) - jogh (z,y) - (48) tsmceH(,ﬂ)(w,v) = —H (0 (—w, —v), (49) can be simplified
0

Then, if g2y (w, v), Fyq2)(w, v), andH 2y (w, v) are the type ik
2 QFT of fo(x, ), fu(x,y), andh(z,y), we can calculate the Gq2) (w,v) = Flgoy (w,v)" Hga) (w,v). (55)
result of the QCV as follows. . ) .
:J Relati Qb W tr\1N i > OFT and th i However, we must notice that the benefits described above
ecii/_'on etween the type 2 QFT an € ONE-SI€ 45 not exist for the case in whici(z,y) = +f(—z,—y). We
QCV: must remember that the QCV operation is not commutative.
g(z,y) = IQFT® (Fatgz) (w, v) H gy (1, ) In general, ifh(x,y) is neither even nor odd, from (_53) and
Py (w0, 0) - 5 H o) (—w, — )) (49) (55), we can conclude that the relation between the inputs and
b(g\W, V) JH (g2)\ W, Y the output of the QCV in the frequency domain can be written

where IQFT? means the type 2 IQFT. Its proof is showrf'S

in the Appendix. .
By (49), we can use the efficient algorithm of the type 2 QFQW) (w,v) = Flgz) (w,v) Hgz)e (w,)

to implement the one-side QCV. In Section II-B, we have stated +Fq2) (w, v)g’kH(qQ)o (w, v) (56)
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whereH ;2).(w, v)andH ,2),(w, v) are the even and odd partsare exchanged. We can conclude that when we want to imple-

of Hgoy(w,v) ment the one-side QCV, then thge 2 QFTis suitable for the
case in whichh(z,y) = +h(—z, —y), and thetype 3 QFTis
He, (w,0) = | Hgz) (w,v) + Hg2) (—w, —v)] suitable for the case in which(z, y) = +f(—z, —v).
(@2)e 15 2 In general, ifh(x,y) is neither even nor odd, then by com-
Hop (10,0) | Hq2) (w,v) 2H(q2) (—w, —v)] . bining (60) with (62), we obtain
) ) ) ) ) ) ) G(q3) (w7 U) = F(q3)e (w7 U) H(q3) (w7 U)
The relation in (56) is useful for the quaternion linear time in- ik
variant system analysis. +F(g3)0 (w,v) Hygs) (w,0) " (63)

B. Implementation of One-Side QCV by Type 1 and Type 3 WhereFigs).(w, v) = [Figa)(w,v) + Figs)(—w, —v)]/2, and
QFT F(qg)o(w,v) = [F(qg)(w,v) - F(qg)(—w, —U)]/2. This rela-

) ] tion is also useful for the quaternion linear time-invariant system
In Section IlI-A, we have discussed how to use the type %alysis.

QFT to calculate the one-side QCV. In fact, we can also use theys can also use the type 1 QFT to implement the QCV. We
type 1 gnd t_ype 3 QFT to calculate the one-side QCV. can first separate(z,y) into fu(z,y) + fu(z,y) - 5, where
We first discuss the case of the type 3 QFT. Suppdsey) ¢ () = f,(z,y) + fi(z,y)i and fo(z,y) = f;(z.5) +

is the output of the one-side QCV ¢f, y) andh(x, y), as in fu(z. )i, as (47). Then, the correlation outpy(tz,y) can be
(44). We can first separaté(«, y) @sha(x, ) +j - ha(®,4),  calculated from the following.

where » Relation between the type 1 QFT and one-side QCV:
he (x,y) =he (2, y) + hi (x,y) -4 :
_ (1) 7.
e e ey 9 AT Faey (0,0) @ (g (w0)
g(z,y) can be calculated from the following. + Fogqr) (w,—v) - Q"% (Hg) (w,v))
* Relation between the type 3 QFT and the one-side + Fygry (w, —v) §Q" (Hgr) (—w,v))
QCV: .
” + Fyq) (w, v) jQ™*
g (.’17, y) = IQFT (F(q3) (wa U) Ha(q3) (w, U)
; - (Hgry (—w,v)) (64)
+ Fig3) (—w, —v) - Ha(gs) (w,v)) (58) 1

where IQFT®) means the type 3 IQFT. The process of ~ whereQ is defined as (19), and IQF* means the type 1
proof is similar as the process of proving the relation be-  1QFT.
tween the type 2 QFT and one-side QCV. Since we needSince we require one complex 2-D FT to compute
two complex 2-D FTs to calculatg s (w, v) or IQFT®)  F, .1y (w,v) Or Fy(,1)(w, v), two complex 2-D FTs to compute
and just one complex 2-D FT to calculat&, ,s)(w,v) IQFTY) or H,1)(w,v), we totally requiresix complex 2-D
andH 43y (w, v), we totally requiresix complex 2-D FTs FTsto implement the QCV by the type 1 QFT. Itis the same as
to compute the QCV by the type 3 QFT. This is the santhe case when using the type 2 and type 3 QFT. However, some
as the case of computing the QCV by the type 2 QFT. problems exist. That is, (64) is more complicated than (49)
The relation in (58) can be simplified in some special casesd (58), and this relation can be simplified into the product
When operation only in some very special conditions. Although the
complexities are the same, we prefer using the type 2 and type
f(z,y) = f(—2.—y) (59) 3 QFT rather than using the type 1 QFT to implement the
sinceF a3 (w, v) = Fig3)(—w, —v), (68) can be simplified as one-side QCV.
Gty (w,0) = Flys) (,0) Hegay (w,0). (60) C. Impler.nentatlon of Two-Side QCV. |
In Section sllI-A and B, we have discussed the implemen-
In this case, the QCV corresponds to the product operationtation of one-side QCV. Here, we will discuss how to imple-

the frequency domain, and when ment the two-side QCV, which is defined in (45). We can first
convert the two-side QCV into several one-side QCV'’s, then
flz.y) = —f(—=,~y) (61) use the efficient algorithm of one-side QCV to implement it. In

. .(45), we canfirst separatg (x, y) andf(z,y) into hy ,(z,y)+
g:i?ierilit;on between the QCV and the type 3 QFT can be si = (x.y) - j and fu (e, y) + fu(,5) - 4, where

hl,a (‘Tv y) :hl,r (‘Tv y) + hl,i ('Tv y) -4
hi(@,y) =hi; (z,y) + hig(z,y) - ¢

We can compare (58)62) with (50)~(55). We find that they fo(@,y) =fr (@, 9) + fi(z,y) -
are very much alike, except that the rolesféf, v) andh(z, v) fola,y) =fi (z,y) + fu (x,y) - @ (65)

— ik
G g3) (w,0) = Figs) (w,0) Higay (w,0) . (62)

X, =
X =

7
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Then, since or Fy(q2y(w,v) and two complex 2-D FTs to compute
each ofH ;2 (w, v), (s = 3,4, 5, 6), we totally requir@2
hia(mom) fole =7y —n) =fo(z =7y —n) complex 2-D FTgo implement the two-side QCV. The
hia(T,m) complexity of the two-side QCV is twice of that of the
hl,b (7_7 77) : J : fa (J} -7,y 77) :fa (J} — T,y — 77) one-side QCV
hyy (Tm) -, Although we can also use the type 1 and type 3 QFTs to im-

. . plement the two-side QCV, the relation between the type 1 and

hio(rn) fo(x—my—mn)-j=filx—1y—mn)J type 3 QFT and the two-side QCV is rather complicated; there-

“hio(T,m) fore, we suggest that it is better to use the type 2 QFT to imple-
hip(rom)-d-hz—my—m)-j=fz-—7Ty—n)J ment the two-side QCV.

. hl,b (7—7 77) . J (66)

IV. QUATERNION LINEAR TIME-INVARIANT SYSTEM ANALYSIS

(45) can be rewritten as The complex FT is useful for the analysis of linear time-in-

_ _ _ variant (LTI) systems, especially for the filter design. This is be-
g9(z,y) —/_Oo /_Oo folz =7,y =) hs(r,n) drdn cause the conventional convolution corresponds to the product
- operation in the frequency domain. With the aid of the complex
+ / / Ja(@ =7,y —n) hy(7,m) drdn FT, it is easy to analyze the effects of the LTI system.

0o poo However, there is little research on how to use the QFT for
+/ / fole =71,y —n) jhs (1,n) drdn guaternion linear time-invariant (QLTI) system analysis. This
topic was discussed in [3]. The work in [3] is suited to the case

+ /OO /OO IACEE D)) where the impulse response of the QLTI system is a pure real
function, but it is not general enough. Until now, no simple re-
- jhe (1,m) drdn (67) lation between QCV and QFT has been found; therefore, QLTI

system analysis is still a difficult. In this paper, however, we have

where found some simple and general relations between the QCV and

hs (1,m) =hy o (T,7) - ha (7,1) the QFT. With these relations, we can use the QFT to analyze
ha (ron) =huy (1.1) - - ha (7,1) the QLTI system easily.

hs (1,m) =hyq (1,1) - ha (T,7) A. Using QFT for Quaternion Linear Time-Invariant System

he (1,m) =h1y (7,n) - j - ha (T,m) . (68) Analysis

The QLTI can be represented by the one-side QCV, which is

That is, we can use four one-side QCVs to calculate o

two-side QCV. Then, with the aid of the efficient algorithms O%?];nSETIPsM;)ergﬁx y; ?sn%% (Tmy)ug;aert:se g]r?sué a;;(iz ut;;ut

the one-side QCV introduced in Section IlI-A and B, we can y LY b P 4
andg(z,y) should have the relation as

use the the type 1-3 QFTs to implement the two-side QCV.
When we use the type 2 QFT, then from (49) and (67) and the
rhen YPe2Q (49) and (67) s = [ [ fe-ry=nntm g

QFT (Feamse)) = [ [ eritemson [ s e vy drdn. (70

 faors (z,y) dxdy It matches the definition of one-side QCV. We can use the
=F, orb,(q2) (—w, —v) (69) one-side QCV to represent the QLTI system. Then, from the
relations between the QFT and the one-side QCV shown in
we can implement the two-side QCV by the type 2 QFT as folz9), (58), and (64), we can analyze the QLTI systems easily in
lows. the frequency domain. We suggest that using the type 2 or type
» Relation between the type 2 QFT and two-side QCV: 3 QFT to analyze the QLTI system is more convenient than
9 using the type 1 QFT.
9(,v) =IQFT® Then, we will discuss how to use the QFT to analyze the
Fogo) (w,v) Hago (w,v) combination of QLTI systemis Fig. 1, we show two basic ways
to combine the QLTI systems.
+ Fo(q2) (—w, —v) - JH4(q2) (w,v) When we combine the QLTI systems parallel, as in
Fig. 1(a), the relation between the inpl(tz, ) and the output
g(z,y) can be expressed as

(‘7;7 ):f(l', )* hy (J}, )
- JHe(q2) (—w, —v)|. (70) e wherz ' ’

+ Fb(qQ) (wvv) JHo(qQ) ( U)
+ Fy(q2) (—w, —v)

Since we require two complex 2-D FTs to compute

I ( hs (z,y) (72)
IQFT®, one complex 2-D FT to computl, o) (w,v), e Z
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hl(x5 y) o~
1, Yy hy(x, ¥) [P haolx, )
hZ(x3 y)
fen— ¢+ glx, ) :
g(x, ) hs(x, y) 14
hy(x,y)
@ (b)

Fig. 1. Combination of QLTI systems. (a) In parallel and (b) in series.

andx, is the one-side QCV. In the frequency domain, regarevhere H; ,o)(w,v) is the type 2 QFT of(z,y) [which is de-
less of the type of QFT, the relation betweéh,)(w,v) and finedas (74)], and;(,2).(w,v) andH;42).(w,v) are the even

G(q)(w,v) can be expressed as and odd parts off;(,2)(w,v). They can be calculated from
Gig) (w,v) =Fg) (w,v) Hyg) (w,0) [Ht@?)e (w, “)}
where Hi(g2)0 (w,v) .
Hl (g2)e (w7 U) Hl (g2)o (w7 U) ]
H w, ) H, ) (w,v) 73 = —_— ik
t((l) Z ((1) ( ) [Hl (42)o (w7 U) Hl (q2)e \(W ( ) U)J
.k
Ho(oone Hyrooo o
It is the same as the case of combining the conventional LTI . l 2(g2)e (10,0) MM
systems in parallel. Hymyo (w,v)  Haggz)e (w,v) '
" Whlerj[_wegotmbine the QLT(Ijsystemss'erigs asin Fig. 3(b), - [Hs 1 g2e (0,0) Hs_1.iq2)0 (0, U)J,k]
e relation betwee an can be expressed as j &
A(x,v) andg(, y) P Hs_ 14200 (w,v)  Hs_1,(g2)e (w,v)"
9(e.y) =1 (.9) #4h (.9) [HS@”@ w, ﬂ (78)
HS(q2)0 w U

where
he(,y) =hy(z,y)%.ha(z, 1), When we use theype 3 QFTinstead of the type 2, then (78)

* is ch dt
ghs(z,y). (74) 'S changedto
Gg3) (0, 0) = [Figa)e (w,v) Figz)o (w,v)]
[ Hy (g3)e (w,0) Hy (43)0 (w, ) }
’ J.k 3.k
Hl (g3)o (w’ U) Hl (g3)e (w, U)

Then, in the frequency domain, when we usetipe 2 QFT
the relation betweedt ,»)(w,v) and G o) (w, v) is

Gaz) (w,v) = [Fgz) (w,v)  Fgzy (w,v) ] [ Hy(g3)e (w’v])k H(g3) (w,vj)k}
Hy(g2ye (w,v)  Hyq2)0 (w, ) ] Hagzyo (w,v) Ha(g3)e (w,v)
F TR H € ? H e} ?
Hy (@20 (w,v)  Hi g (w,0) [ she b Uj),‘ S14a8o Uj),k}
Js HS—l,(q3)o (w7 U) HS—l,(q3)e (w7 U)

—_—j.k
H2(q2)e (wa v H2(q2)o (w U) ]
7~k
H2(q2)e (w7 U)

) Hs_ 1 (q2)0 (w, )

)
) (79)

HS( 3) (wvv)
H2(q2)0 (w v . |: 1 1 :| .

HS(!]3) (w7 U)J

H g

S-L(ae \W - ik where F s).(w,v) and Fgs).(w,v) are even/odd parts of

w,v)  Hs—1,(g2)e (w,0) Fg3y(w, ). Its proof is similar to the proof of (75). It is hard

} (75 to use the type 1 QFT to represent the series combination of
QLTI systems.

Applying the relation of (73), (78), and (79), we can use the
QFT torepresent many different combinations of QLTI systems.
For example, for the QLTI systems combined as Fig. 2, if we use
the type 2 QFT to represent the above system, then from (73) and
[Hotq2) (w,v) + 55@12) (-w, —v)] (78), we have (80), shown at the bottom of the next page, where
Ho gy (,0) = 11202 (00) = gy o0 0] 7 [HW)E (wvv)} _ [waz)e (w,v) Higgz)o (“””)i’k]

! 2 5(a2)0 (W, Hig2)0 (w,v)  Higg2)e (w,v)”

The proof of (75) is shown in the Appendix. In fact, (75) can Hy(g2)e (w,v) (81)
also be rewritten as Hy(g2)o (w,v) |

. With the aid of QFT, especially the QFT of types 2 and 3, the
Clan () = Mﬁtm)ﬁ (w,v) analysis of QLTI systems and their combination becomes much
+Fg2) (w,v)"" Hygayo (w,v) (77) simpler.

(
Hs_, ,(g2)o (
)
)

|:HS(’12)F w,v
HS((IQ)O w, v

where H; (42)e(w, v) and Hy(42),(w, v) are the even part and
odd part ofH (42)(w, v)

Hs(q?)e (w7 U) =
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h

» hl(x’y) L Z(xs J/)
fix,y) — —j—' a6 9) L g(x, )
h3(x’ Y)

Fig. 2. Combination of quaternion linear time-invariant (LTI) systems.

y

B. Simplifying the QLTI System Analysis and Quaternion We note, in this case, that sinkéz, y) = h(—z, —y), the rela-
Filter Design tion between the QCV and the type 2 QFT can be simplified as

In Section I, we have stated that in some conditions, tH83)- From (83)
relations between the QCV and QFT can be simplified as the
product operation in frequency domain. We can restrict the
forms of the input or the impulse response of QLTI system to G (g2 (w,v) =0,

simplify the analysis of the QLTI system. When we convolve the inpyt(z, ») with (x, ), then the low-
For example, if we use the type 2 QFT for QLTI system anafzequency components df(z, ) are preserved, and the high-
ysis, we can rgstrlct the impulse response of the QLTI SyStemfPéquency components of(z, y) are filtered out. This is the
an even function same as the conventional case.
The analysis of the combination of QLTI systems can also
/ = h(—z, —y). 82 o )
Wz y) = b=, —=y) (82) be simplified when the impulse responses of all stages are even

In this case, the type 2 QFT éfz, ), f(z,v), andg(x, y) will fgnctions._When we combine QLTI systems in series, as in
have the relation as Fig. 1(b), if

G g2y (w,v) =Fg2y(w,v), for|w| < B, andlv| < B,
otherwise (87)

G(qg) (w,v) = F(qQ) (w, v) H(qg) (w,v). (83) hs(z,y) = hs(—z,—y) fors=1,2,---,5 (88)

The type 2 QFT is suitable to analyze the QLTI system witli€n SINCeH (42)c(w,v) = Hy(q2)(w,v), Hs(q2)o(w,v) = 0
even impulse response. In fact, in practical applications, esp@- all s; therefore, (75) can be simplified to

cially for the quaternion filter design, the impulse response .
the QLTI system usually satisfies the relation thét,y) = 85@2) (w,v) = Fgz) (w,v) Hyqz) (w, v)

h(—z, —y). Similarly, the type 3 QFT is suitable for the case in Hgay (w,v) -+ Hs g2y (w, ). (89)

which the input is an even function In this case, the combination of QLTI systems corresponds to the

Fzy) = f(—z, —y). (84) continued proo_iuct of the type 2 QFT _of the_ impulse responses
of each stage in the frequency domain. This is the same as the
It is very convenient to simplify the QLTI system into thecase of series combination of conventional LTI systems. Thus,
product operation in the frequency domain, especially for thvee can conclude the following.
quaternion filter designFor example, we can ugéz, y) as the » When all the impulse responses of QLTI systems are even
received signal anél(x,y) as the impulse response of quater-  functions, then the analysis of the combination of QLTI
nion filter. If we want to remove the high-frequency noise that  systems by the type 2 QFT is the same as the analysis of
interferes withf(x, v), we can first design the transfer function the combination of conventional LTI systems.
of quaternion lowpass filter as For example, in Fig. 2, ifhy(z,y), ho(z,y), ha(z,y), and
hy(xz,y) are all even functions that satisffi.(z,y) =
Hy(w,v) =1, for jw| < B, and|v| < B, hsg—x,)—y), then, similar to the case of thef%:o(mbi%ation of
Hy(w,v) =0, otherwise (85) conventional LTI systems, the relation betwe@i,z)(w, v)
and then and F,2y(w, v) is
h(z,y) = (r’z )71 sin <%) sin <ﬂ> (86) Gap (1:0) = Flaz) (,0) [y (. 0) Hyggp ()
Y 4 2 ) +Hs(g2) (w,v)] Hy(go) (w,v) . (90)

G(q2) (w7 U) = [F(q2) (w7 U) F(q2) (w7 U) j7k]

3,k
HS(qQ)e (wa U) + H3(q2)e (wa U) HS(qQ)o (wa U) + H3(q2)o (wa U) )
Hj(g2)0 (w,v) + Ha(g2)o (w,v)  Hy(g2)e (w,v) + Hz(g2)e (w0, v)

)
| Haggzye (w, U)}
|:H4(q2)o (w,v) (80)

J:k




2792 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001

V. SPECTRUMPRODUCT QUATERNION CONVOLUTION » Spectrum-product QCV suitable for type 3 QFT:

A. Definition of Spectrum-Product QCV

T,Y) = T =T,y — " h (r,n)] drd

In Section Ill, we have stated in some conditions that the rg-( ) /—oo /—oo 7 m @ [ (rml 7

lations between one-side QCV and the QFT of types 1-3 can RS e ik

be simplified as the product operation in the frequency domain. + Y S Fr—wn—y) Q7 [h(rmldrdy. (97)

Although, in these cases, the effects of QCV are much easier to

analyze, there must be some restrictions for the input of QCV.
In this section, we will reverse the problem and ask for what

definitions of QCV,regardless of what forms of the inputs are,

do the QCV inthe time domain always correspond to the produc _ ; ,—M

operation in the frequency doma&in g Ex’ v) fey (@, 9) #qhex (2,4) + fou (.x’ y) ¥ghea (x"y)

We first discuss the case of the type 2 QFT. Suppose ey @) Hqhow (2,9) = Joy @ 8) " *ehow (2,5) " (98)

For the type 1 QFT, we can define the spectrum-product
QCYV as follows.
» Spectrum-product QCV suitable for type 1 QFT:

Gq2) (w,v) = Fgo)y (w,v) Hgay (w,v) (91) where
WhereG( ) (w, v), Fiq2)(w,v), and Hyz)(w, v) are the type o9 _Uy) + fz —y)]
2 QFT of g(z,y), f(x,y), andh(x,y), respectively. Then, we 2
can prove (the proof is shown in the Appendix) Foula,y) = [f(a,y) = [z, —y)]
oo oo ’ 2
g9(z,y) = / / fale =7,y —n)h(r,n)drdn hew(z, y) =Y M= )]
oo oo exr ) 2
+[ [ herryeminmia @ hos(iny) =R (99)
where We can prove, for the spectrum-product QCV defined as
. (97) and (98), regardless of what forms the input functions
fa(z,y) =fr (=, 9) + fi(z,y) -4, fx,y), h(x,y) take, that the following relation is always
B (2,0) =15 (2,9) + fi (2, 9) 4. (93) satisfied:
We can define the new type of QCV [we call it the spectrum- G (w,v) = Figy(w,v)Hgy(w, v). (100)

product QCV] as follows.

* Spectrum-product QCV suitable for type 2 QFT: B. Properties and Applications of Spectrum-Product QCV

g(z,y) We can use the spectrum-product QCV introduced in Sec-
I B g b drd tion V-A for quaternion filter design and quaternion system de-
=/ | Q" [f(x =7y = m)] (7, m)drdn sign In Section 1V, we discussed how to use the one-side QCV

oo poo defined as (44) for quaternion filter and system design. Only
+ / / QFf@+7y+mn)] when the impulse response of the system satisfies the following
e _.CZ(T’ n)drdn (94) constraint:
whereQ is defined as (19). It can also be rewritten as h(z,y) = £h(~=2, ~y), (101)
g(z,y) = Q™ (f(z,y)) s.h (2,1) the relation between the input and the output can be expressed as

k the product operation in the frequency domain. Under other con-
Q™ (F(@,9)) #oh (—2, —v) (95) ditions, the relation is rather complicated, but when we use the
wherex, means the one-side QCV defined as (44).&wr spectrum-product QCV introduced in Section V-A for quater-
inputs f(x,y), h(x,y), the following relation is always nion filter and system design, then the relation between the input
satisfied for the spectrum-product QCV defined as (94) and the output can always be expressed as the product operation
in the frequency domaireven wherf101)is not satisfied
Gq2) (w,0) = Figz) (w,v) H gz (w,v) . (96) By the spectrum-product QCV defined in Section V-A, we

Because the input and output have a very simple relatiGA™ Use the cqnventional methqd to design the qu_aternion filter.
and the effects of inputs are easier to analyze, the sp&Q" €xample, if we want to design the equalizer filter by QFT,
trum-product QCV is more suitable for the application of/@ can set the desired outputg(s;, y) = 6(x,). Then, since
quaternion filter design than the QCVs defined as (44) algég (w,v) = 1 and from (96), we can design the equalizer filter
(45).

Of course, we also negd three QFTs of type 2 (six com- j, (z,y) = IQFT [F‘l (w, U)] for any f(z,y). (102)
plex 2-D FTs in total) to implement the spectrum-product ¢
QCV. It is the same as the conventional case, but when we use the

Similarly, for the type 3 QFT, we can define the speoariginal QCV since the input and output has the relation (49),
trum-product QCV as follows. it is harder to design the equalizer filtéfz,y) to obtain the
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xXa
-hl(xs y)
f(xay) - 1 - Xb e][ g(X,J/)

Fig. 3. Combination of spectrum-product QCV systems.

desired outpuy(z,y) = &(x,y). For another example, if we is time-invariant Besides, italmosthas théinearity property
want to design a bandpass filter by QFT with the passband (@fe call it quasilinearity. Suppose that
{(w,v)|wy < w < we, vy < v < wa}andwy > 0,v; > 0, as

in the conventional case, we can just design the bandpass filter 9a (T, 4) =fa (z,y) *g2)h (1)
as gb (‘Tv y) :fb (‘Tv y) *q(?)h (‘Tv y) . (107)
h(z,y) = IQFT [H,(w,v)] Here, we usé, ) to denote the spectrum-product QCV defined
as (94). If we use the linear combinationfg{x, ) andf, (z, ¥)
where as the new input, and the new outpugis$z, y)
Hq(w,v) =1, f0rw1<w<w2,v1<v<vg fc(-’f,y) :d'fa(xvy)+e'fb($7y)
H,(w,v) =0, otherwise (103) 9e (@,4) =fe (%, 9) *2) b (%, ) (108)

Then, the QFT of the outpul(x, y) and the QFT of the input €N We can prove

f(x,y) have the relation ge (@, y) =d - go (z,y) + ¢ - g (2,7)

Gk (Y — ik (o) —
G g2y (w,v) =F(gay(w,v), forw; <w <ws, v <v < v when@”" (d) =Q" (¢) = 0 (109)

Gg2)(w,v) =0, otherwise (104)  and the above equationnst satisfied only when the or k-part

o o of d or e is nonzeroThus, although the spectrum-product QCV
If we use the original definition of QCV, and we use (103) as thg not a LTI operation, it aimost has the property of LTI.

filter, then the relation between the QFTsyéf:, y) andf (x, y) In fact, the problem that spectrum-product QCV does not
become (105), shown at the bottom of the page, and it does figfy satisfy the LTI property has less effect on its applications.
sajusfy our requirement; therefore_, for quaternlor_1 filter demg_qrhis problem is important only when we want to analyze the
using the spectrum-product QCV is more convenient than usifigear time-invariant system, but for the applications that are
the original definition of QCV. _closely related to the spectrum analysis (such as quaternion filter
_ There is a limitation for the spectrum-product QCV. That igjesign), whether the inputs and the output have the relation as
it does not fully match the definition of linear time-invarianigg) is more important, and this problem has less of an effect.
(LTI) system. The spectrum-product QCV defined as (94) is |n summary, if we want taesign a quaternion system in the
time-invariantand quasilinear Supposey(z,y) is the output (ime domainsuch as the quaternion linear time-invariant system
of spectrum-product QCV of (z,y) and i(z,y). If we use gesjgn, as in Section IV, then it still better to use thiginal
f(z—z0, y—yo) instead off (x, y), then the new outpw(z,4)  definition of QCV However, if we want talesign a quaternion
IS system in frequency domaisuch as the application gluater-
oo poo ‘ nion filter design then it is better to use thepectrum-product
9o (z,y) =/ / Q' [f (x—zo— 7,y — o — 1) QCV:since, in this case, the QFT of the output function is the
I _;’h (r.m) drd product of the QFTs of the input functions.
’ The analysis of the combination of spectrum-product QCV

+ / / Q7 [f(x—mo+7u— w0 +n)] systems is almost the same as the conventional case. We can see
—o0 J —o0 this in the system in Fig. 3. Here, we use block dots in the front
x h(7,n)drdn and the back to represent the spectrum-product QCV system,
=g(x — x0,¥ — %) (106) i.e., the relations between the input and output of this system is

the spectrum-product QCV, which is defined as (94). This is the
If the input has the displacement afy( o), the output also has key difference between Fig. 2 (which consists of original QCV
the displacement ofi(, 410). Thus, the spectrum-product QCVsystems) and Fig. 3.

G (w,v) =Q"" (Fyoy(w,v)) for wy < w < we,v; < v > va
G2y (w,v) =Q* (F(,IQ)(w,v)) for —wi <w < —wa, —v1 <V > -
Gq2)(w,v) =0, otherwise (105)
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Suppose in Fig. 3 that the andk- parts ofa andb are zero; from (49) and (113), we can implement the QCR by the
then, as the conventional case, the relation betwéeny) and following.
g(z,y) has the following relation:  Relation between the type 2 QFT and quaternion cor-
relation:
Gq2) (w,v) = Hyq2) (w, v) [a “Hig2) (w, v)
+b- H2(q2) (wa U)] F(q?) (wa U) (110) g ('T 7/) _IQFT( ) |: a(q2) (w U) <Qr,i (H(qQ) (w7 U))
when ik
. . — Q" (Hga) (—w, —)) )
Q% (a) = Q" (b)) =0 (111)
regardless of what forms of the system responses + (g2 (w,0) j <Q7  (Higzy (—w, —v))
hi(z,y), ho(z,y) and hs(x,y) are. The analysis of the S
combination of spectrum-product QCV is simpler than the — Q" (H(ga) (w,v)) )} (117)

analysis of the combination of original definition of QCV. If
the requirement of linearity is not necessary, then using the WhereF, ,o)(w,v) andFy(42)(w,v) are the type 2 QFT

spectrum-product QCV will be more convenient. of fo(x,y) and fy(z,y) [which are defined as (47)].
When we use the type 1 QFT, then from (64), we can
VI. | MPLEMENTATION OF QUATERNION CORRELATION implement the QCR as follows.
* Relation between the type 1 QFT and quaternion cor-

In Section Ill, we discussed how to implement the QCV. In

this section, we will use the result in Section Ill and discuss the relation:
|mple_mentat|on of qqaternlon cc_>rre|at|0n..ln [14], the eff_|C|ent g(z,y) —IQFT® gy (w,v) H, (w,v)
algorithm of quaternion correlation was discussed, but in fact,
their work can be further simplified. Thegiaternion correlation + Fo(qy (w, —v) Hy (w,v)
(QCR)is defined as + Fyq) (w, —v) - jH, (—w,v)
g(z, (z,y) @ h(z,y) + Fyqry (w,v) - jH, (—w,v)} (118)
/ / flz+ry+n)
whereF, ,1)(w,v) andFy(,1)(w, v) are QFTs of type 1
h(r,n) - drdn. (112) of f.(z,y) andf,(x, y) [which are defined as (47)] and

In fact, QCR can be viewed as a special case of one-side QCV H, (w,v) =Q™ (QFT(I) (m))
F(@,9) @ h(z,y) = f(z,y)%h (-2, —y).  (113) H, (w,v) =Q"* (QFT<1> (m)) . (119)

We can use the efficient algorithms of the one-side QCV to im-
plement the QCR.

When we use the type 3 QFT to implement the QCR, we
can use the efficient algorithm introduced in Section IlI-B, but
h(z,y) is changed a8 (—z, —y). Because in (113)

When we use the QFT of types 1-3 to implement the
guaternion correlation, we all requiggx complex 2-D
FTs but it seems the relation between the type 3 QFT
and quaternion correlation is simpler and easier to ana-
lyze. Therefore, we suggest that it would be better to use

h(—z,—y) = he (=2, —y) — j by (=2, —y) thetype 3 QFTto analyze the quaternion correlation. Be-
) sides, we can also prove thatfifz,y) = h(z,y), i.e
where ho(z,y) = he(z,y) + hi(z,y)i and hb(xvy) = the case of autocorrelation, then (115) can be simplified
hi(z, ) + ha(z,y)i, and as follows.

 Relation between the type 3 QFT and quaternion au-

(3) . _
QET (h“( * y)> =Ha(g3) (w, ) tocorrelation:

QFT® (~hy(—2, —y)) = — Hygz) (~w, —v), (114)

2 2
gl(x,y) = IQFT(?’) [ H, w,v)|” + |H w, v
from (58), we can implement the QCR from the following. (=:9) | () { )| | v { )|

. Rela_tlor? between the type 3 QFT and quaternion cor- +2j0dd (me(qg) (w, U))} (120)
relation:
g (z,y) = IQFT® (F(qg) (w, ) Ha(gs) (w, v) where Odd) means extracting the odd part. That is,
. Oodd f(z,y)) = [f(z.y) + f(—2. —y)]/2.
—F3) (—w, —v) - Hy(g3) (—w, —v)) . (115)
When we use the type 2 QFT to implement the QCR, be- VII. CoNCLUSION
cause In this paper, we have developed efficient algorithms for the

@ (77— > guaternion Fourier transform (QFT), the QCV, and the quater-
QIr (h( “ )) @ (H(’IQ)(w U)) nion correlation (QCR). We have shown that for each type of
—Q* (H(qQ)(—w, —v)) (116) QFT, we require two complex 2-D Fourier transforms (FTs) to
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TABLE |
SUMMARY OF THE RELATIONS BETWEEN QFT AND QUATERNION CONVOLUTION AND CORRELATION

Relation between Gy (w,v) =F (w,v)Q”j (H(ql) (w,v)) +F,, (w,—v) o' ( H, (w,v)) i
l-side QCV and

QFT-1 Fyay () j@ (H - V))+ Fygn(wv)j@* (H @ ")) ’

where fo(x, ¥) = flx, ) Hfille, Vi, folx, 3) = fi(x, y) + filx, y)i.

Relation between G(q2)(w’ v)=F, a(qZ)(W’ v)H (q2)(W,V)+ F, b(qz)(wa V)’ JH (q2)(_ w,~v),
l-side QCV and
QFT-2 where f,(x, ¥) = fi(x, ) + fi(x, )i, fplx, ¥) =S, )+ filx, v

Rel.atlon between Gs) (w,v) =F3 (w, V)H a(g3) (W7 V)+ Fos (“ W:“’)' JH y(43 (W’ V)’
I-side QCV and
QFT-3 where h,(x, y) = hx, ¥) + hix, )i, ha(x, y) = hilx, y) — hulx, y)i.

Rel.ation between G(qZ) (W’ ") = Fa(qZ) (W: V)Hs(qz)(ws")"' Fon (_ W’_v)jH«qz) (W, V)
2-sidle QCV and
QFT-2 Fygay(W9) jHqy (= W) + Fygg (= w,=v) jHigy (- W),

where f3(x, y) = f(x, ) + filx, )i, folx, ¥) = fi(x, ¥) + filx, YA,
ha(x, ¥), halx, v), hs(x, ), he(x, ¥), are defined as (68)

giilidbgt:;-zn Gigsy (W) = Fogsy (W, V)H ) (0,v) = Foysy (= W) JH ) (= wim),
where ho(x, y) = h(x, y) + hilx, V)i, hp(x, ¥) = B, ¥) — hux, Y)i-
Relation between See (117), (118).

QCR and QFT-1, 2

implement it. We require six complex 2-D FTs to implement mput functions, the QCV in the space domain always corre-
one-side QCV, 12 complex 2-D FTs to implement a two-sidgponds to the product operation in the frequency domain. Hence,
QCV, and six complex 2-D FTs to implement a QCR. Withhey are very useful for the quaternion filter design.
these efficient algorithms, the implementation of QFT, QCV,
and QCR are much simplified. The improvement of efficiency APPENDIX
is useful to extend the utilities of these quaternion operations.
We also discuss how to use QFT for quaternion linear time-ig- o, ¢ (49) (Relation Between Type 2 QFT and One-Side
variant (QLTI) system analysis and filter design. Because sor@e V)
simpler relations between QFT and one-side QCV have been de-
rived, it is easy to use QFT to analyze the QLTI system. WhenSee the equation at the bottom of the page. We have used the
the impulse responses of the QLTI systems are even functiof@st thatje’(v=Fvv2) = g=itwratvuz) j Then, since
then using the QFT to analyze the combination of the QLTI oo
systems is the same as the conventional case. We also de(mpz)—l / / gilwztvy) o—i(wetvy) g=i(weatvye) goo
a new type of QCV, i.e., spectrum-product QCV. For the spec- —ooJ —oo
trum-product QCV, regardless of what forms there are of the =6(x—xz1—x2) 6(y—y1 — Y2) (121)

IQFT®) (Fy gy (w,v) - 1 H gy (—w, —v))

1 oo oo oo oo © -, Z
1 Cz('zum—l—'ny)C—z('wml-l-'nyl)fb (xlv yl)
471'2 —O0 M 00 /00 S —00 Y —00 =00

gewrEa ) b (19 yo) day dyy dzodysdwdu

s —o0J —o0 J—o0 J—o0 —oo J —oo

Jo(zr, 1) g h(z2,y2) derdyrdeadyy
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we obtain Similarly, sinceg,_1(z, y) is the input ofh, (=, ) andg,(z, ¥)
is the output o, (z, ), Gp(42)(w,v) can be expressed as

IQFT®) (Fy(g2) (w,v) jHg2) (—w, —v))
= / / Jo(® — 22,9 — y2) Jh (22, y2) dvadys. (122)

Gp(e2y(w,v) = Gpo1 (g2) (w0, V) Hp(g2)e (w, v)

—/'7k
—i—Gp,l?(qg) (w,v)J Hp(qg)o(w, v). forp>2. (125)

From a similar process, we can prove Then, from (125) and the fact thmj’k _
k J:
f(z,y)" - h(z,y)”", we obtain

IQFT®) (F,(y2) (w,v) Hyay (w,v))

gk g,k 3,k
= [ h ) e, @2y O (0= G (0] By (00
a e [ e Y2 ik
+Gp—l,(q2) (w7 U) Hp(q?)o (w7 U)J forp 2 2. (126)

Therefore Thus, from (125) and (126), we obtain
7/'7k
IQFT(Q) (Fa(q2) (w,v) Hgoy (w,v) [Gp(,ﬂ)(w, v) Gp(g2y (w, U)J }
+ Fyg2) (w,0) - §H(ga) (—w, —v)) ik
. =|G,_ w,v) G,_ w, v
= (2, g (2,0) 4 fo (2,0) - egh (2,9) [Gostan ) st
=f (x,9) *,h (z,7) N [Hp((p)e(w,v) Hp(42)o(w71})'k‘| (127)
TR T
=g (z,y). O Hp(qg)o (w, v) Hp(qg)e(w, v)
forp > 2, and wherp =1
B. Proof of (78) (Series Combination of QLTI Systems [Gl((ﬂ)(w V) Wﬂ}
Represented by Type 2 QFT) .
We useg,(z,y) to denote the cascade output igf(z, ) = [F(q2)(w,v) Flgzy(w,v)" }
in Fig. 1(b). Then, sinceis_1(x,y) is the input ofhs(x,y) b
andg(z,y) = gs(z,y) is the output ofhs(z,v), from (56), x [Hl(‘ﬂ)e(w’v) Hl(q”"(w’v)jk] ) (128)
Gq2)(w,v) = Gs(q2)(w, v) can be expressed as Hygoyo(w,v)  Hygaye(w,v)

Substituting (127) into (124) iteratively and together with (128),
G q2)(w, v) =Gs—1,(g2)(w, U)HS((IQ)G(W v) we can obtain (78). O

G H ° .
s L (v, Dl sta2)o(w;v) C. Proof of (92) (Spectrum-Product QCV Suitable for the

= |:GS,17(q2)(w,U)Gsfly(qg)(w,v)bk} Type 2 QFT)
_[Hs(qg)ﬁ(w,v)} (124) From (91), g(z,y) can be expressed as the equation
Hs(g2)0(w,v) at the bottom of the page. We can separdie.,y) as

ag(z,y) —IQFT( ) (F(,IQ) w, v H(,IQ) w,v))

/ / / / /OO = z(wa}-l—by) —z(wacl-l—byl)
42

x f(z1,y1) e~ wratvy2) (xg,yg) dx1dy; dzodyzdwdu.

g (.’L’, y) :m / / / / / / ez(wx—l—'by)e—z(wxl-l—byl)e—z(wacz-l—byg)

X fo (@1,y1) b (22, y2) dr1dy daodysdwdy

47r2/ / / / / / Hwrtvy) p—i(wzituy) pi(wro+ovys)

X fo (x1,91) Gh (22, y2) doydyr daadyz dwdy

/ / / / §(x — o1 — @2,y — 1 —Y2)

X fa (x1,91) b (22, y2) - derdyidaadys

/ / / / 6(x — 21 + 32,y —y1 +42)

X fo(x1,y1) Gh (w2,y2) - deidyrdeadys
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folz,y) + folz,y) - 5, wheref,(z,v), fo(x,y) are defined as  [15] T.A. Ell, “Hypercomplex spectral transforms,” Ph.D. dissertation, Univ.

(93). Therefore, we have the second equation at the bottom gf _ Minnesota, Minneapolis, 1992. _ _
[16] V. M. Chernov, “Discrete orthogonal transforms with data separation

the preV|ous page. Therefore in composition algebras,” iRroc. 9th Scand. Conf. Image Analune
1995.
[17] M. Felsberg. (1997) Fast-quaternionic-Fourier-transform. Chris-
g( / / fa a:l,yl) tian-Albrechts Univ. Kiel, Cognitive Syst. Group, Inst. Comput.
Sci. Applied Math., Kiel, Germany. [Online]Jwww.informatik.uni-

kiel.de~tbl/index.html

(x — dxid
LY Ul) 1641 [18] S.J. Sangwine, “Fourier transforms of color images using quaternion or

/ / £ 3717y1) g)::r:.erlcgogrglplex numbersElectron. Lett,vol. 32, no. 21, pp. 1979-1980,
[19] T. Bilow, “Hypercomplex spectral signal representations for the
L — &,y — )dxldyl processing and analysis of images,” Ph.D. dissertation, Chris-
tian-Albrechts Univ. Kiel, Kiel, Germany, [Online] Available:
/ / Jalz =7,y —m)h(7,n)drdn www.cis.upenn.edu/~thomasbl, 1999.
+/ / fo(z+1y+mn)
ade o) ade o)
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