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Abstract—The recently developed concepts of quaternion
Fourier transform (QFT), quaternion convolution (QCV), and
quaternion correlation, which are based on quaternion algebra,
have been found to be useful for color image processing. However,
the necessary computational algorithms and their complexity
still need some attention. In this paper, we will develop efficient
algorithms for QFT, QCV, and quaternion correlation. The
conventional complex two-dimensional (2-D) Fourier transform
(FT) is used to implement these quaternion operations very
efficiently. By these algorithms, we only need two complex 2-D FTs
to implement a QFT, six complex 2-D FTs to implement a one-side
QCV or a quaternion correlation and 12 complex 2-D FTs to
implement a two-side QCV, and the efficiency of these quaternion
operations is much improved. Meanwhile, we also discuss two
additional topics. The first one is about how to use QFT and QCV
for quaternion linear time-invariant (QLTI) system analysis. This
topic is important for quaternion filter design and color image
processing. Besides, we also develop the spectrum-product QCV.
It is the improvement of the conventional form of QCV. For any
arbitrary input functions, it always corresponds to the product
operation in the frequency domain. It will be very useful for
quaternion filter design.

Index Terms—Quaternion convolution, quaternion correlation,
quaternion Fourier transform.

I. INTRODUCTION

T HE concept of the quaternion was introduced by Hamilton
in 1843 [1]. It is the generalization of a complex number.

A complex number has two components: the real and the imag-
inary part. The quaternion, however, has four components, i.e.,
one real part and three imaginary parts:

(1)

and , , and obey the rules as follows:

(2)

The quaternion can be used for three-entry or four-entry vector
analysis [2]. Recently, the quaternion has also been used for
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color image analysis. In (1), we can use, , and to repre-
sent the R, G, and B values of a color image pixel, respectively,
and set as 0.

Based on the concept of quaternion, thequaternion Fourier
transform(QFT) has been introduced recently. There are many
different types of QFT. The earliest definition of QFT is the
two-side form as follows[3], [4], [15]:

(3)

In fact, the QFT defined above can be generalized as [5]

(4)
where and are two unit pure quaternions (i.e., the quater-
nions with unit magnitude having no real part) that are orthog-
onal to each other:

i.e., (5)

(6)

Equation (3) is the special case of (4) in which , and
. Except for (4), there are also other types of QFT. Recently, the

left-side form of QFT was introduced in [5]:

(7)

where is any unit pure quaternion. Besides, we can also de-
fine the right-side QFT as the transpose transform of (7) [5].
Therefore, there are at least three types of QFT.

• Type 1 QFT (two-side):

(8)
where and satisfy (5) and (6).

• Type 2 QFT (left-side):

(9)
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• Type 3 QFT (right-side):

(10)
Their inverse [i.e.,inverse quaternion Fourier transform

(IQFT)] are as follows.

• Type 1 IQFT (two-side):

(11)
• Type 2 IQFT (left-side):

(12)
• Type 3 IQFT (right-side):

(13)
As the case of continuous QFT, there are also at least three

types ofdiscrete quaternion Fourier transform (DQFT) [3],
[5], [6], [19].

• Type 1 DQFT (two-side):

(14)
• Type 2 DQFT (left-side):

(15)
• Type 3 DQFT (right-side):

(16)
QFT and DQFT are useful for color image processing, espe-

cially for the color-sensitive smoothing, edge detection, and data
compression [7]–[11], but research on the efficient algorithms
of QFT and DQFT are not sufficient. This limits the utilities of
QFT and DQFT. Although [12] discussed the efficient algorithm
of Type 2 DQFT and [17] proposed a method to implement the
Type 1 DQFT, neither discussed the efficient algorithms for all
types of QFT and DQFT. In [17], although the idea is creative,
one must design another algorithm using quaternion arithmetic
other than using the well-known FFT algorithm to implement
the DQFT.

In Section II of our paper, we will develop the efficient algo-
rithms of all types of QFT, and with our algorithms, we can just
use the structure of the original FFT directly to implement the
QFT. Because the efficient algorithms of DQFT are very sim-
ilar to those of the continuous QFT, in this paper, we discuss the
efficient algorithms of the continuous QFT.

In Section III, we will discuss the efficient algorithms of
QCV, including one-side and two-side QCVs. In Section IV,

we will discuss how to use QCV for quaternion linear time-in-
variant (QLTI) system analysis. We will show that if the
impulse responses are all even functions, then the analysis
of QLTI systems is as simple as the analysis of conventional
LTI systems. In Section V, we will define a new type of QCV.
For this type of QCV, the QCV in the time domain always
corresponds to the product operation in the frequency domain.
This is useful in quaternion filter design. In Section VI, we will
discuss the efficient algorithms of quaternion correlation.

In this paper, we will use the following abbreviations:
FT Fourier transform.
IFT Inverse Fourier transform.
QFT Quaternion Fourier transform.
IQFT Inverse quaternion Fourier transform.
QCV Quaternion convolution.
QCR Quaternion correlation.
We will also use the following notation:

• , , , : Real part, -part,
-part, and -part of .

• : Partial conjugation. For example

(17)

(18)

• : Extracting some parts of original function. For ex-
ample

(19)

• : Transform results of QFT for (not
specified for which type).

• : Transform re-
sults of QFT of types 1, 2, and 3 for .

II. EFFICIENT IMPLEMENTATION OF QUATERNION

FOURIER TRANSFORM

A. Implementation of Type 1 QFT

We first discuss the implementation of type 1 QFT. To sim-
plify our discussion, we first discuss the special case that
and . We note that if

(20)

then

(21)
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and therefore

(22)

Thus

(23)
If we want to compute the QFT, we can first compute the com-
plex 2-D FT of input function as (20) and then use (23) to com-
pute the QFT.

We note in (20) that the input is a quaternion function
and not a complex function; therefore, we cannot just use one
complex 2-D FT to implement it. Instead, we can first decom-
pose as

where

(24)

Then, (20) can be rewritten as

(25)

From (25), we can calculate (20) by two complex 2-D FTs.
From the above discussion, we can compute the type 1 QFT

with three steps as follows.

1) Decompose the input function as (24).
2) Calculate from (25).
3) Calculate the transform result of QFT from by

(23).
If we sample the -, -, -, and -axes as

(26)

then (25) can be implemented as

(27)

The QFT can be implemented by two point 2-D DFTs.
Since each 2-D DFT requires real number mul-
tiplications [13], to implement QFT, we totally require

(28)

real number multiplications.
In the above, we only discuss the special case wherein

and . In general cases, we just need to modify the above
process a little. Suppose that

(29)

Then, we express as

(30)

and the relation between , , , and
, , is

(31)

Then, we can implement the type 1 QFT from the process as
follows.

1) First, decompose the input function as

(32)

where

(33)

2) Then, calculate from

(34)

3) Then, calculate the transform result of QFT by

(35)
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Although the integration operations in (34) are different from
the complex 2-D FT, they can still be implemented by complex
2-D FT. Since all the exponential terms and the input functions

, and in (34) contain the real part and the
part, as well as , there is no problem to use the efficient
algorithm of the complex 2-D FT to implement the integration
operations in (34), except that all thes are changed to s. Even
when and , we require two complex 2-D DFTs
to implement the type 1 QFT defined as (8), and the amount of
real number multiplications required is also about

(36)

We can also use the similar process as above to implement
the type 1 QFT. It also requires real multipli-
cations.

B. Implementation of QFT of Types 2, 3

We now discuss the efficient algorithms of QFT of types 2
and 3. The efficient algorithm of the discrete quaternion Fourier
transform (DQFT) of type 2 has been introduced in [12]. We
can modify their algorithms a little and derive the efficient al-
gorithms of continuous QFT of types 2 and 3. To implement the
type 2 QFT and type 3, we can implement the following process.

1) Find a unit pure quaternion orthogonal to , that is

(37)

We define as the product of and . If , we
can choose and and save this step.

2) By the same method as (31)–(33), we decompose the
input function into and .

3) For thetype 2 QFT, we can calculate the transform result
from

(38)

For thetype 3 QFT, we can calculate the transform result
from

(39)

Thus, we require two complex 2-D FTs or one 2-D FT and one
2-D IFT to implement the QFT of types 2 and 3. Therefore, the
amounts of real multiplications required for the QFT of types 2
and 3 are

(40)

The complexities of the QFT of types 1–3 are the same.

We can also use the similar way as above to implement the
IQFT of types 2 and 3, except that the roles of and

are exchanged, and in (39) and (40),
are replaced by . We also require

real number multiplications to implement the IQFT
of types 2 and 3.

C. Simplified Implementation of QFT for Some Special Cases

We have discussed the implementation of the QFT requiring
real multiplication operations. In fact, for

some special cases, we can further simplify the implementation
of the QFT.

We usually use the quaternion to deal with the color image.
When we use the quaternion to express a color image, we usu-
ally express it as

(41)

That is, we use-, -, and -parts to represent the R, G, and B
parts of the color image and set the real part to 0. Therefore, for
the applications about the color image, the input of the QFT is
usually a pure quaternion function (i.e., the real part is 0).

For the complex FT, if the input function is pure real, then we
can use the real-valued Fourier transform (RFT) instead of the
complex FT. The 2-D complex FT requires real
multiplications, but the 2-D RFT requires
real number multiplications [13]. Similarly, if the input of QFT
is a pure quaternion function, we can also simplify the imple-
mentation. In this case, since , then in (34), (38),
and (39), is a pure imaginary function, and the first in-
tegration in these equations is, in fact, the 2-D FT for the pure
imaginary input. For example, (34) can be implemented as

RFT FT
(42)

where FT represents the complex 2-D FT (but alls are
changed as s), and RFT represents the complex 2-D FT
for pure real input. Since RFT requires
real number multiplications, the total amount of real number
multiplications required is

(43)

Comparing it with (34) or (40), we find that one fourth of the
real multiplications are saved.

Except for the above cases, if the input is symmetric, then the
implementation of QFT can also be simplified. For example,
if the input is even-even (i.e., ),
even-odd, odd-even, or odd-odd, then we can use the 2-D co-
sine/sine transforms instead of the 2-D FTs in (34), (38), and
(39), and three fourths of the real multiplications can be saved. If
the input is symmetric in the-axis (i.e., )
or in the -axis, we can save half of the real multiplications.

III. I MPLEMENTATION OF QUATERNION CONVOLUTION

There are two different definitions for the QCV.
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• One-side QCV[3]:

(44)

• Two-side QCV [7]:

(45)

For the conventional convolution operation, if is the
convolution output of and , then can be cal-
culated from

IFT FT FT (46)

We can calculate the conventional convolution by the efficient
algorithms of the complex FT. Similarly, it is reasonable to think
that we can also find some simple relations between the QFT
and the QCV and use the efficient algorithms of the QFT to
implement the QCV.

In [14], how to use the hypercomplex Wiener–Khintchine
theorem to compute the quaternion correlation was discussed,
and we can modify their algorithm to implement the one-side
QCV, but their algorithm requires eight complex 2D FTs and is
not simple enough. In the following, we will show that we can
usesix complex 2-D FTsto implement the one-side QCV. For
the two-side QCV, we require12 complex 2–D FTsto imple-
ment it.

A. Implementation of the One-Side QCV by the Type 2 QFT

To derive the relation, we can first separate in (44)
into two parts.

where

(47)

The one-side QCV can be rewritten as

(48)

Then, if , , and are the type
2 QFT of , , and , we can calculate the
result of the QCV as follows.

• Relation between the type 2 QFT and the one-side
QCV:

IQFT

(49)

where IQFT means the type 2 IQFT. Its proof is shown
in the Appendix.

By (49), we can use the efficient algorithm of the type 2 QFT
to implement the one-side QCV. In Section II-B, we have stated

that we can use two 2-D Fourier transforms (FTs) to implement
the type 2 QFT or IQFT; therefore, in (49), we need two 2-D FTs
to calculate or IQFT . We notice that if the input
function of the type 2 QFT has a real part and andpart, then
for the algorithm in Section II-B, we can set , ,
and , and in (38), ;
thereforfe, in this case, we require one 2-D FT to implement
the type 2 QFT. Thus, in (49), we need one 2-D FT to calculate

. Similarly, we also need one 2-D FT to calculate
. Thus, by the method of (49), we totally require

six complex 2-D FTsto implement the one-side QCV. We re-
member that for the conventional 2-D convolution, we totally
require three complex 2-D FTs to implement it. The complexity
of the one-side QCV is twice of that of the conventional 2-D
convolution.

In some special conditions, the relation between the one-side
QCV and the type 2 QFT can be simplified. In the case where

has the even symmetry relation

(50)

then we can prove that the QFT of also has the same
symmetry relation

(51)

and the relation between the QCV and the type 2 QFT in (49)
can be simplified

IQFT

IQFT (52)

or

(53)

When , the QCV operation in the space
domain corresponds to the product operation in the frequency
domain. This is the same as the case of the conventional convo-
lution. In the case where has the odd symmetry relation
as

(54)

since , (49) can be simplified
to

(55)

However, we must notice that the benefits described above
do not exist for the case in which . We
must remember that the QCV operation is not commutative.

In general, if is neither even nor odd, from (53) and
(55), we can conclude that the relation between the inputs and
the output of the QCV in the frequency domain can be written
as

(56)
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where and are the even and odd parts
of

The relation in (56) is useful for the quaternion linear time in-
variant system analysis.

B. Implementation of One-Side QCV by Type 1 and Type 3
QFT

In Section III-A, we have discussed how to use the type 2
QFT to calculate the one-side QCV. In fact, we can also use the
type 1 and type 3 QFT to calculate the one-side QCV.

We first discuss the case of the type 3 QFT. Suppose
is the output of the one-side QCV of and , as in
(44). We can first separate as ,
where

(57)

can be calculated from the following.

• Relation between the type 3 QFT and the one-side
QCV:

IQFT

(58)

where IQFT means the type 3 IQFT. The process of
proof is similar as the process of proving the relation be-
tween the type 2 QFT and one-side QCV. Since we need
two complex 2-D FTs to calculate or IQFT
and just one complex 2-D FT to calculate
and , we totally requiresix complex 2-D FTs
to compute the QCV by the type 3 QFT. This is the same
as the case of computing the QCV by the type 2 QFT.

The relation in (58) can be simplified in some special cases.
When

(59)

since , (58) can be simplified as

(60)

In this case, the QCV corresponds to the product operation in
the frequency domain, and when

(61)

the relation between the QCV and the type 3 QFT can be sim-
plified to

(62)

We can compare (59)(62) with (50) (55). We find that they
are very much alike, except that the roles of and

are exchanged. We can conclude that when we want to imple-
ment the one-side QCV, then thetype 2 QFTis suitable for the
case in which , and thetype 3 QFTis
suitable for the case in which .

In general, if is neither even nor odd, then by com-
bining (60) with (62), we obtain

(63)

where , and
. This rela-

tion is also useful for the quaternion linear time-invariant system
analysis.

We can also use the type 1 QFT to implement the QCV. We
can first separate into , where

and
, as (47). Then, the correlation output can be

calculated from the following.

• Relation between the type 1 QFT and one-side QCV:

IQFT

(64)

where is defined as (19), and IQFT means the type 1
IQFT.

Since we require one complex 2-D FT to compute
or , two complex 2-D FTs to compute

IQFT or , we totally requiresix complex 2-D
FTsto implement the QCV by the type 1 QFT. It is the same as
the case when using the type 2 and type 3 QFT. However, some
problems exist. That is, (64) is more complicated than (49)
and (58), and this relation can be simplified into the product
operation only in some very special conditions. Although the
complexities are the same, we prefer using the type 2 and type
3 QFT rather than using the type 1 QFT to implement the
one-side QCV.

C. Implementation of Two-Side QCV

In Section sIII-A and B, we have discussed the implemen-
tation of one-side QCV. Here, we will discuss how to imple-
ment the two-side QCV, which is defined in (45). We can first
convert the two-side QCV into several one-side QCV’s, then
use the efficient algorithm of one-side QCV to implement it. In
(45), we can first separate and into

and , where

(65)
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Then, since

(66)

(45) can be rewritten as

(67)

where

(68)

That is, we can use four one-side QCVs to calculate one
two-side QCV. Then, with the aid of the efficient algorithms of
the one-side QCV introduced in Section III-A and B, we can
use the the type 1–3 QFTs to implement the two-side QCV.

When we use the type 2 QFT, then from (49) and (67) and the
fact that

QFT

(69)

we can implement the two-side QCV by the type 2 QFT as fol-
lows.

• Relation between the type 2 QFT and two-side QCV:

IQFT

(70)

Since we require two complex 2-D FTs to compute
IQFT , one complex 2-D FT to compute ,

or and two complex 2-D FTs to compute
each of , ( ), we totally require12
complex 2-D FTsto implement the two-side QCV. The
complexity of the two-side QCV is twice of that of the
one-side QCV.

Although we can also use the type 1 and type 3 QFTs to im-
plement the two-side QCV, the relation between the type 1 and
type 3 QFT and the two-side QCV is rather complicated; there-
fore, we suggest that it is better to use the type 2 QFT to imple-
ment the two-side QCV.

IV. QUATERNION LINEAR TIME-INVARIANT SYSTEM ANALYSIS

The complex FT is useful for the analysis of linear time-in-
variant (LTI) systems, especially for the filter design. This is be-
cause the conventional convolution corresponds to the product
operation in the frequency domain. With the aid of the complex
FT, it is easy to analyze the effects of the LTI system.

However, there is little research on how to use the QFT for
quaternion linear time-invariant (QLTI) system analysis. This
topic was discussed in [3]. The work in [3] is suited to the case
where the impulse response of the QLTI system is a pure real
function, but it is not general enough. Until now, no simple re-
lation between QCV and QFT has been found; therefore, QLTI
system analysis is still a difficult. In this paper, however, we have
found some simple and general relations between the QCV and
the QFT. With these relations, we can use the QFT to analyze
the QLTI system easily.

A. Using QFT for Quaternion Linear Time-Invariant System
Analysis

The QLTI can be represented by the one-side QCV, which is
defined in (44). If and are the input and output
of a QLTI system, is the impulse response, and
and should have the relation as

(71)

It matches the definition of one-side QCV. We can use the
one-side QCV to represent the QLTI system. Then, from the
relations between the QFT and the one-side QCV shown in
(49), (58), and (64), we can analyze the QLTI systems easily in
the frequency domain. We suggest that using the type 2 or type
3 QFT to analyze the QLTI system is more convenient than
using the type 1 QFT.

Then, we will discuss how to use the QFT to analyze the
combination of QLTI systems. In Fig. 1, we show two basic ways
to combine the QLTI systems.

When we combine the QLTI systems inparallel, as in
Fig. 1(a), the relation between the input and the output

can be expressed as

where

(72)
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(a) (b)

Fig. 1. Combination of QLTI systems. (a) In parallel and (b) in series.

and is the one-side QCV. In the frequency domain, regard-
less of the type of QFT, the relation between and

can be expressed as

where

(73)

It is the same as the case of combining the conventional LTI
systems in parallel.

When we combine the QLTI systems inseries, as in Fig. 1(b),
the relation between and can be expressed as

where

(74)

Then, in the frequency domain, when we use thetype 2 QFT,
the relation between and is

(75)

where and are the even part and
odd part of

(76)

The proof of (75) is shown in the Appendix. In fact, (75) can
also be rewritten as

(77)

where is the type 2 QFT of [which is de-
fined as (74)], and and are the even
and odd parts of . They can be calculated from

(78)

When we use thetype 3 QFTinstead of the type 2, then (78)
is changed to

(79)

where and are even/odd parts of
. Its proof is similar to the proof of (75). It is hard

to use the type 1 QFT to represent the series combination of
QLTI systems.

Applying the relation of (73), (78), and (79), we can use the
QFT to represent many different combinations of QLTI systems.
For example, for the QLTI systems combined as Fig. 2, if we use
the type 2 QFT to represent the above system, then from (73) and
(78), we have (80), shown at the bottom of the next page, where

(81)

With the aid of QFT, especially the QFT of types 2 and 3, the
analysis of QLTI systems and their combination becomes much
simpler.
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Fig. 2. Combination of quaternion linear time-invariant (LTI) systems.

B. Simplifying the QLTI System Analysis and Quaternion
Filter Design

In Section III, we have stated that in some conditions, the
relations between the QCV and QFT can be simplified as the
product operation in frequency domain. We can restrict the
forms of the input or the impulse response of QLTI system to
simplify the analysis of the QLTI system.

For example, if we use the type 2 QFT for QLTI system anal-
ysis, we can restrict the impulse response of the QLTI system as
an even function

(82)

In this case, the type 2 QFT of , , and will
have the relation as

(83)

The type 2 QFT is suitable to analyze the QLTI system with
even impulse response. In fact, in practical applications, espe-
cially for the quaternion filter design, the impulse response of
the QLTI system usually satisfies the relation that

. Similarly, the type 3 QFT is suitable for the case in
which the input is an even function

(84)

It is very convenient to simplify the QLTI system into the
product operation in the frequency domain, especially for the
quaternion filter design. For example, we can use as the
received signal and as the impulse response of quater-
nion filter. If we want to remove the high-frequency noise that
interferes with , we can first design the transfer function
of quaternion lowpass filter as

for and

otherwise (85)

and then

(86)

We note, in this case, that since , the rela-
tion between the QCV and the type 2 QFT can be simplified as
(83). From (83)

for and

otherwise (87)

When we convolve the input with , then the low-
frequency components of are preserved, and the high-
frequency components of are filtered out. This is the
same as the conventional case.

The analysis of the combination of QLTI systems can also
be simplified when the impulse responses of all stages are even
functions. When we combine QLTI systems in series, as in
Fig. 1(b), if

for (88)

then since ,
for all ; therefore, (75) can be simplified to

(89)

In this case, the combination of QLTI systems corresponds to the
continued product of the type 2 QFT of the impulse responses
of each stage in the frequency domain. This is the same as the
case of series combination of conventional LTI systems. Thus,
we can conclude the following.

• When all the impulse responses of QLTI systems are even
functions, then the analysis of the combination of QLTI
systems by the type 2 QFT is the same as the analysis of
the combination of conventional LTI systems.

For example, in Fig. 2, if , , , and
are all even functions that satisfy

, then, similar to the case of the combination of
conventional LTI systems, the relation between
and is

(90)

(80)
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V. SPECTRUM-PRODUCTQUATERNION CONVOLUTION

A. Definition of Spectrum-Product QCV

In Section III, we have stated in some conditions that the re-
lations between one-side QCV and the QFT of types 1–3 can
be simplified as the product operation in the frequency domain.
Although, in these cases, the effects of QCV are much easier to
analyze, there must be some restrictions for the input of QCV.

In this section, we will reverse the problem and ask for what
definitions of QCV,regardless of what forms of the inputs are,
do the QCV in the time domain always correspond to the product
operation in the frequency domain?

We first discuss the case of the type 2 QFT. Suppose

(91)

where , , and are the type
2 QFT of , , and , respectively. Then, we
can prove (the proof is shown in the Appendix)

(92)

where

(93)

We can define the new type of QCV [we call it the spectrum-
product QCV] as follows.

• Spectrum-product QCV suitable for type 2 QFT:

(94)

where is defined as (19). It can also be rewritten as

(95)

where means the one-side QCV defined as (44). Forany
inputs , , the following relation is always
satisfied for the spectrum-product QCV defined as (94)

(96)

Because the input and output have a very simple relation
and the effects of inputs are easier to analyze, the spec-
trum-product QCV is more suitable for the application of
quaternion filter design than the QCVs defined as (44) and
(45).

Of course, we also need three QFTs of type 2 (six com-
plex 2-D FTs in total) to implement the spectrum-product
QCV.

Similarly, for the type 3 QFT, we can define the spec-
trum-product QCV as follows.

• Spectrum-product QCV suitable for type 3 QFT:

(97)

For the type 1 QFT, we can define the spectrum-product
QCV as follows.

• Spectrum-product QCV suitable for type 1 QFT:

(98)

where

(99)

We can prove, for the spectrum-product QCV defined as
(97) and (98), regardless of what forms the input functions

, take, that the following relation is always
satisfied:

(100)

B. Properties and Applications of Spectrum-Product QCV

We can use the spectrum-product QCV introduced in Sec-
tion V-A for quaternion filter design and quaternion system de-
sign. In Section IV, we discussed how to use the one-side QCV
defined as (44) for quaternion filter and system design. Only
when the impulse response of the system satisfies the following
constraint:

(101)

the relation between the input and the output can be expressed as
the product operation in the frequency domain. Under other con-
ditions, the relation is rather complicated, but when we use the
spectrum-product QCV introduced in Section V-A for quater-
nion filter and system design, then the relation between the input
and the output can always be expressed as the product operation
in the frequency domain,even when(101) is not satisfied.

By the spectrum-product QCV defined in Section V-A, we
can use the conventional method to design the quaternion filter.
For example, if we want to design the equalizer filter by QFT,
we can set the desired output as . Then, since

and from (96), we can design the equalizer filter
as

IQFT for any (102)

It is the same as the conventional case, but when we use the
original QCV since the input and output has the relation (49),
it is harder to design the equalizer filter to obtain the
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Fig. 3. Combination of spectrum-product QCV systems.

desired output . For another example, if we
want to design a bandpass filter by QFT with the passband of

and , , as
in the conventional case, we can just design the bandpass filter
as

IQFT

where

for

otherwise (103)

Then, the QFT of the output and the QFT of the input
have the relation

for

otherwise (104)

If we use the original definition of QCV, and we use (103) as the
filter, then the relation between the QFTs of and
become (105), shown at the bottom of the page, and it does not
satisfy our requirement; therefore, for quaternion filter design,
using the spectrum-product QCV is more convenient than using
the original definition of QCV.

There is a limitation for the spectrum-product QCV. That is,
it does not fully match the definition of linear time-invariant
(LTI) system. The spectrum-product QCV defined as (94) is
time-invariantand quasilinear. Suppose is the output
of spectrum-product QCV of and . If we use

instead of , then the new output
is

(106)

If the input has the displacement of ( ), the output also has
the displacement of ( ). Thus, the spectrum-product QCV

is time-invariant. Besides, italmosthas thelinearity property
(we call it quasilinearity). Suppose that

(107)

Here, we use to denote the spectrum-product QCV defined
as (94). If we use the linear combination of and
as the new input, and the new output is

(108)

then we can prove

when (109)

and the above equation isnot satisfied only when the- or -part
of or is nonzero. Thus, although the spectrum-product QCV
is not a LTI operation, it almost has the property of LTI.

In fact, the problem that spectrum-product QCV does not
fully satisfy the LTI property has less effect on its applications.
This problem is important only when we want to analyze the
linear time-invariant system, but for the applications that are
closely related to the spectrum analysis (such as quaternion filter
design), whether the inputs and the output have the relation as
(96) is more important, and this problem has less of an effect.

In summary, if we want todesign a quaternion system in the
time domain, such as the quaternion linear time-invariant system
design, as in Section IV, then it still better to use theoriginal
definition of QCV. However, if we want todesign a quaternion
system in frequency domain, such as the application ofquater-
nion filter design, then it is better to use thespectrum-product
QCV since, in this case, the QFT of the output function is the
product of the QFTs of the input functions.

The analysis of the combination of spectrum-product QCV
systems is almost the same as the conventional case. We can see
this in the system in Fig. 3. Here, we use block dots in the front
and the back to represent the spectrum-product QCV system,
i.e., the relations between the input and output of this system is
the spectrum-product QCV, which is defined as (94). This is the
key difference between Fig. 2 (which consists of original QCV
systems) and Fig. 3.

for

for

otherwise (105)
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Suppose in Fig. 3 that the- and - parts of and are zero;
then, as the conventional case, the relation between and

has the following relation:

(110)

when

(111)

regardless of what forms of the system responses
and are. The analysis of the

combination of spectrum-product QCV is simpler than the
analysis of the combination of original definition of QCV. If
the requirement of linearity is not necessary, then using the
spectrum-product QCV will be more convenient.

VI. I MPLEMENTATION OF QUATERNION CORRELATION

In Section III, we discussed how to implement the QCV. In
this section, we will use the result in Section III and discuss the
implementation of quaternion correlation. In [14], the efficient
algorithm of quaternion correlation was discussed, but in fact,
their work can be further simplified. Thequaternion correlation
(QCR) is defined as

(112)

In fact, QCR can be viewed as a special case of one-side QCV

(113)

We can use the efficient algorithms of the one-side QCV to im-
plement the QCR.

When we use the type 3 QFT to implement the QCR, we
can use the efficient algorithm introduced in Section III-B, but

is changed as . Because in (113)

where and
, and

(114)

from (58), we can implement the QCR from the following.

• Relation between the type 3 QFT and quaternion cor-
relation:

IQFT

(115)

When we use the type 2 QFT to implement the QCR, be-
cause

(116)

from (49) and (113), we can implement the QCR by the
following.

• Relation between the type 2 QFT and quaternion cor-
relation:

IQFT

(117)

where and are the type 2 QFT
of and [which are defined as (47)].

When we use the type 1 QFT, then from (64), we can
implement the QCR as follows.

• Relation between the type 1 QFT and quaternion cor-
relation:

IQFT

(118)

where and are QFTs of type 1
of and [which are defined as (47)] and

(119)

When we use the QFT of types 1–3 to implement the
quaternion correlation, we all requiresix complex 2-D
FTs, but it seems the relation between the type 3 QFT
and quaternion correlation is simpler and easier to ana-
lyze. Therefore, we suggest that it would be better to use
the type 3 QFTto analyze the quaternion correlation. Be-
sides, we can also prove that if , i.e.,
the case of autocorrelation, then (115) can be simplified
as follows.

• Relation between the type 3 QFT and quaternion au-
tocorrelation:

IQFT

Odd (120)

where Odd means extracting the odd part. That is,
Odd .

VII. CONCLUSION

In this paper, we have developed efficient algorithms for the
quaternion Fourier transform (QFT), the QCV, and the quater-
nion correlation (QCR). We have shown that for each type of
QFT, we require two complex 2-D Fourier transforms (FTs) to
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TABLE I
SUMMARY OF THE RELATIONS BETWEEN QFT AND QUATERNION CONVOLUTION AND CORRELATION

implement it. We require six complex 2-D FTs to implement a
one-side QCV, 12 complex 2-D FTs to implement a two-side
QCV, and six complex 2-D FTs to implement a QCR. With
these efficient algorithms, the implementation of QFT, QCV,
and QCR are much simplified. The improvement of efficiency
is useful to extend the utilities of these quaternion operations.

We also discuss how to use QFT for quaternion linear time-in-
variant (QLTI) system analysis and filter design. Because some
simpler relations between QFT and one-side QCV have been de-
rived, it is easy to use QFT to analyze the QLTI system. When
the impulse responses of the QLTI systems are even functions,
then using the QFT to analyze the combination of the QLTI
systems is the same as the conventional case. We also define
a new type of QCV, i.e., spectrum-product QCV. For the spec-
trum-product QCV, regardless of what forms there are of the

input functions, the QCV in the space domain always corre-
sponds to the product operation in the frequency domain. Hence,
they are very useful for the quaternion filter design.

APPENDIX

A. Proof of (49) (Relation Between Type 2 QFT and One-Side
QCV)

See the equation at the bottom of the page. We have used the
fact that . Then, since

(121)

IQFT
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we obtain

IQFT

(122)

From a similar process, we can prove

IQFT

(123)

Therefore

IQFT

B. Proof of (78) (Series Combination of QLTI Systems
Represented by Type 2 QFT)

We use to denote the cascade output of
in Fig. 1(b). Then, since is the input of
and is the output of , from (56),

can be expressed as

(124)

Similarly, since is the input of and
is the output of , can be expressed as

for (125)

Then, from (125) and the fact that

, we obtain

for (126)

Thus, from (125) and (126), we obtain

(127)

for , and when

(128)

Substituting (127) into (124) iteratively and together with (128),
we can obtain (78).

C. Proof of (92) (Spectrum-Product QCV Suitable for the
Type 2 QFT)

From (91), can be expressed as the equation
at the bottom of the page. We can separate as

IQFT
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, where , are defined as
(93). Therefore, we have the second equation at the bottom of
the previous page. Therefore

D. Summary of the Relations Between QFT, QCV, and QCR

We use Table I to show the relations between QFT and QCV,
which is correlation derived in this paper. We use QFT-1, 2, and
3 to denote the QFT of types 1–3.
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