
Efficient Implementation of Sorting on Multi-Core SIMD
CPU Architecture

Jatin Chhugani† William Macy† Akram Baransi⋆

Anthony D. Nguyen† Mostafa Hagog⋆ Sanjeev Kumar†

Victor W. Lee† Yen-Kuang Chen† Pradeep Dubey†

Contact: Jatin.Chhugani@intel.com

†
Applications Research Lab, Corporate Technology Group, Intel Corporation
⋆
Microprocessor Architecture - Israel, Mobility Group, Intel Corporation

ABSTRACT
Sorting a list of input numbers is one of the most fundamen-
tal problems in the field of computer science in general and
high-throughput database applications in particular. Al-
though literature abounds with various flavors of sorting
algorithms, different architectures call for customized im-
plementations to achieve faster sorting times.

This paper presents an efficient implementation and de-
tailed analysis of MergeSort on current CPU architectures.
Our SIMD implementation with 128-bit SSE is 3.3X faster
than the scalar version. In addition, our algorithm performs
an efficient multiway merge, and is not constrained by the
memory bandwidth. Our multi-threaded, SIMD implemen-
tation sorts 64 million floating point numbers in less than 0.5
seconds on a commodity 4-core Intel processor. This mea-
sured performance compares favorably with all previously
published results.

Additionally, the paper demonstrates performance scal-
ability of the proposed sorting algorithm with respect to
certain salient architectural features of modern chip multi-
processor (CMP) architectures, including SIMD width and
core-count. Based on our analytical models of various ar-
chitectural configurations, we see excellent scalability of our
implementation with SIMD width scaling up to 16X wider
than current SSE width of 128-bits, and CMP core-count
scaling well beyond 32 cores. Cycle-accurate simulation of
Intel’s upcoming x86 many-core Larrabee architecture con-
firms scalability of our proposed algorithm.

1. INTRODUCTION
Sorting is used by numerous computer applications [15].

It is an internal database operation used by SQL operations,
and hence all applications using a database can take advan-
tage of an efficient sorting algorithm [4]. Sorting not only

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08,August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

orders data, it is also used for other database operations such
as creation of indices and binary searches. Sorting facilitates
statistics related applications including finding closest pair,
determining an element’s uniqueness, finding kth largest el-
ement, and identifying outliers. Sorting is used to find the
convex hull, an important algorithm used in computational
geometry. Other applications that use sorting include com-
puter graphics, computational biology, supply chain man-
agement and data compression.

Modern shared-memory computer architectures with mul-
tiple cores and SIMD instructions can perform high perfor-
mance sorting, which was formerly possible only on message-
passing machines, vector supercomputers, and clusters [23].
However, efficient implementation of sorting on the latest
processors depends heavily on careful tuning of the algo-
rithm and the code. First, although SIMD has been shown
as an efficient way to achieve good power/performance, it
restricts how the operations should be performed. For in-
stance, conditional execution is often not efficient. Also,
re-arranging the data is very expensive. Second, although
multiple processing cores integrated on a single silicon chip
allow one program with multiple threads to run side-by-
side, we must be very careful about data partitioning so
that multiple threads can work effectively together. This is
because multiple threads may compete for the shared cache
and memory bandwidth. Moreover, due to partitioning, the
starting elements for different threads may not align with
the cacheline boundary.

In the future, microprocessor architectures will include
many cores. For example, there are commercial products
that have 8 cores on the same chip [10], and there is a re-
search prototype with 80 cores [24]. This is because multi-
ple cores increase computation capability with a manageable
thermal/power envelope. In this paper, we will examine how
various architecture parameters and multiple cores affect the
tuning of a sort implementation.

The contributions of this paper are as follows:
• We present the fastest sorting performance for mod-

ern computer architectures.
• Our multiway merge implementation enables the run-

ning time to be independent of the memory bandwidth.
• Our algorithm also avoids the expensive unaligned load/store

operations.
• We provide analytical models of MergeSort that accu-

1313

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

rately track empirical data.
• We examine how various architectural parameters affect

the Mergesort algorithm. This provides insights into op-
timizing this sorting algorithm for future architectures.
• We compare our performance with the most efficient al-

gorithms on different platforms, including Cell and GPUs.
The rest of the paper is organized as follows. Section 2

presents related work. Section 3 discusses key architectural
parameters in modern architectures that affect Mergesort
performance. Section 4 details the algorithm and imple-
mentation of our Mergesort. Section 5 provides an analyti-
cal framework to analyze Mergesort performance. Section 6
presents the results. Section 7 concludes.

2. RELATED WORK
Over the past few decades, large number of sorting algo-

rithms have been proposed [13, 15]. In this section, we focus
mainly on the algorithms that exploit the SIMD and multi-
core capability of modern processors, including GPUs, Cell,
and others.

Quicksort has been one of the fastest algorithms used in
practice. However, its efficient implementation for exploit-
ing SIMD is not known. In contrast, Bitonic sort [1] is imple-
mented using a sorting network that sets all comparisons in
advance without unpredictable branches and permits multi-
ple comparisons in the same cycle. These two characteristics
make it well suited for SIMD processors. Radix Sort [13] can
also be SIMDfied effectively, but its performance depends on
the support for handling simultaneous updates to a memory
location within the same SIMD register.

As far as utilizing multiple cores is concerned, there exist
algorithms [16] that can scale well with increasing number of
cores. Parikh et al. [17] propose a load-balanced scheme for
parallelizing quicksort using the hyperthreading technology
available on modern processors. An intelligent scheme for
splitting the list is proposed that works well in practice.
Nakatani et al. [16] present bitonic sort based on a k-way
decomposition. We use their algorithm for performing load
balanced merges when the number of threads is greater than
the number of arrays to be sorted.

The high compute density and bandwidth of GPUs have
also been targeted to achieve faster sorting times. Sev-
eral implementations of bitonic sort on GPUs have been
described [8, 18]. Bitonic sort was selected for early sort-
ing implementations since it mapped well to their fragment
processors with data parallel and set comparison character-
istics. GPUTeraSort [8], which is based on bitonic sort, uses
data parallelism by representing data as 2-D arrays or tex-
tures, and hides memory latency by overlapping pointer and
fragment processor memory accesses. Furthermore, GPU-
ABiSort [9] was proposed, that is based on adaptive bitonic
sort [2] and rearranges the data using bitonic trees to re-
duce the number of comparisons. Recently added GPU
capabilities like scattered writes, flexible comparisons and
atomic operations on memory have enabled methods com-
bining radixsort and mergesort to achieve faster performances
on modern GPUs [19, 21, 22].

Cell processor is a heterogeneous processor with 8 SIMD-
only special purpose processors (SPEs). CellSort [7] is based
on a distributed bitonic merge with a bitonic sort kernel
implemented with SIMD instructions. It exploits the high
bandwidth for cross-SPE communication by executing as
many iterations of sorting as possible while the data is in

the local memory. AA-sort [11], implemented on a PowerPC
970MP, proposed a multi-core SIMD algorithm based on
comb sort [14] and mergesort. During the first phase of the
algorithm, each thread sorts the data assigned to it using
comb sort based algorithm, and during the second phase, the
sorted lists are merged using an odd-even merge network.
Our implementation is based on mergesort for sorting the
complete list.

3. ARCHITECTURE SPECIFICATION
Since the inception of the microprocessor, its performance

has been steadily improving. Advances in semiconductor
manufacturing capability is one reason for this phenomenal
change. Advances in computer architecture is another rea-
son. Examples of architectural features that brought sub-
stantial performance improvement include instruction-level
parallelism (ILP, e.g., pipelining, out-of-order super-scalar
execution, excellent branch prediction), data-level parallelism
(DLP, e.g., SIMD, vector computation), thread-level paral-
lelism (TLP, e.g., simultaneous multi-threading, and multi-
core), and memory-level parallelism (MLP, e.g., hardware
prefetcher). In this section, we examine how ILP, DLP, TLP,
and MLP impact the performance of sorting algorithm.

3.1 ILP
First, modern processors with super-scalar architecture

can execute multiple instructions simultaneously on differ-
ent functional units. For example, on Intel Core 2 Duo pro-
cessors, we can execute a min/max and a shuffle instruction
on two separate units simultaneously [3].

Second, modern processors with pipelining can issue a
new instruction to the corresponding functional unit per
cycle. The most-frequently-used instructions in our Merge-
sort implementation, Min, Max and Shuffle, have one-cycle
throughput on Intel Core 2 Duo processors. Nonetheless,
not all the instructions have one-cycle latency.

While the shuffle instruction can be implemented with
a single cycle latency, the Min and Max instructions have
three cycle latencies [3]. The difference in instruction laten-
cies often leads to bubbles in execution, which affects the
performance. We will examine the effect of the execution
bubbles in Section 4.2 and Section 5.2.

Third, another factor to consider in a super-scalar ar-
chitecture is the forwarding latency between various func-
tional units. Since the functional units are separate entities,
the communication between them may be non-uniform. We
must take this into account while scheduling instructions.

Rather than out-of-order execution, some commercially-
available processors have in-order execution. Our analysis
shows that the Mergesort algorithm has plenty of instruction
level parallelism and we can schedule the code carefully so
that its performance on a dual-issue in-order processors is
the same as that of a multi-issue out-of-order processors.
Thus, for the rest of the paper, we would not differentiate
between in-order and out-of-order processors.

3.2 DLP
First, Single-Instruction-Multiple-Data (SIMD) execution

performs the same operation on multiple data simultane-
ously. Today’s processors have 128-bit wide SIMD instruc-
tions, e.g., SSE, SSE2, SSE3, etc. Majority of the remaining
paper will focus on 128-bit wide SIMD as it is commonly
available. To simply the naming, we refer to it as 4-wide

1314

SIMD, since 128-bit wide SIMD can operate on four single-
precision floating-point simultaneously.

Second in the future, we will have 256-bit wide SIMD in-
structions [12] and even wider [20]. Widening the SIMD
width to process more elements in parallel will improve the
compute density of the processor for code with a large amount
of data-level parallelism. Nevertheless, for wider SIMD,
shuffles will become more complicated and will probably
have longer latencies. This is because the chip area to imple-
ment a shuffle network is proportional to the square of the in-
put sizes. On the other hand, operations, like min/max, that
process the elements of the vector independently will not
suffer from wider SIMD and should have the same through-
put/latency.

Besides the latency and throughput issues mentioned in
Section 3.1, instruction definition can be restrictive and per-
formance limiting in some cases. For example, in current
SSE architecture, the functionality of the two-register shuf-
fle instructions are limited - the first elements from the first
source can go to the lower 64-bits of the register while the
elements from the second source (destination operand) can
go to the high 64-bits of the destination. As input we have
two vectors:

A1 A2 A3 A4 and B1 B2 B3 B4
We want to compare A1 to A2, A3 to A4, B1 to B2 and

B3 to B4. To achieve, that we must shuffle the two vectors
into a form where elements from the two vectors can be
compared directly. Two accepted form of the vectors are:

A1 B1 A3 B3
A2 B2 A4 B4

or
A1 B2 A3 B4
A2 B1 A4 B3
The current SSE shuffle that takes two sources does not

allow the lower 64-bits of output from both sources. Thus,
instead of two shuffle instructions, we have to use a three
instruction sequence with the Blend instruction. The in-
struction sequence for shuffling the elements becomes.

C = Blend (A, B, 0xA) // gives: A1 B2 A3 B4
D = Blend (B, A, 0xA) // gives: B1 A2 B3 A4
D = Shuffle (D, D, 0xB1) // gives: A2 B1 A4 B3
This results in a sub-optimal performance. As we will

see in Section 4.2.1, this is actually a pattern that a bitonic
merge network uses in the lowest level. We expect the shuffle
instruction in the future to provide such capability and thus
improve the sort performance. For the rest of the paper,
we use this three-instruction sequence for the real machine
performance, while assuming only two instructions for the
analytical model.

3.3 TLP
For the multi-core architectures, getting more cores and

more threads is a clear trend. With the increase in computa-
tion capability, the demand for data would increase propor-
tionally. Two key architectural challenges are the external
memory bandwidth and the cache design. We won’t be able
to get more performance if our applications reach the limit of
the memory bandwidth. One way to bridge the enormous
gap between processor bandwidth requirements and what
the memory subsystem can provide, most processor designs
today are equipped with several levels of caches. The per-
formance of many sorting algorithms is limited by either
the size of the cache or the external memory bandwidth.

Although there will be bigger caches and higher memory
bandwidth in the future, they must be managed and be
used in the most efficient manner. First, when the size of
the total data set is larger than the size cache, we must re-
use the data in the cache as many times as possible before
the data is put back to the main memory. Second, in the
application, we should minimize the number of accesses to
the main memory, as we will see in Section 4.

3.4 MLP
Because today’s processors have hardware prefetchers that

can bring data from the next-level memory hierarchy to the
closer cache, memory latency is not an issue for our algo-
rithm. During the process of merging large arrays of data,
we must load the data from main memory to caches (with
a typical latency of a few hundreds cycles), before it can
be read into the registers. The access pattern of the merge
operation is highly predictable – basically sequential access.
Hence, hardware prefetchers in modern CPU’s can capture
such access patterns, and hide most of the latency of our
kernel. Furthermore, we can hide the latency by preemp-
tively issuing software prefetch instructions that can pre-
load the data into the caches. In our experiment, hardware
prefetchers can improve the performance by 15% and the
software prefetches can improve the performance by another
3%. Thus, for the rest of the paper, we will not address
memory latency any more. Instead, memory bandwidth, as
mentioned in Section 3.3, is a concern.

4. ALGORITHMIC DETAILS
For the remainder of the paper, we use the following no-

tation:
N : Number of input elements.
P : Number of processors.
K : SIMD width.
C : Cache size (L2) in bytes.
M : Block size (in elements) that can reside in the cache.
E : Size of each element (in bytes).
BWm: Memory Bandwidth to the core (in bytes per cycle).

We have mapped the Mergesort algorithm on a multi-
core, SIMD CPU for several reasons. First, Mergesort has
a runtime complexity of O(N logN)1, which is the optimal
complexity for any comparison based sorting algorithm [13].
The scalar version of the algorithm executes logN itera-
tions, where each iteration successively merges sequences
of two sorted lists, and finally ends up with the complete
sorted sequence2 . Second, since we are targeting multiple
cores, there exist algorithms [16] that can efficiently paral-
lelize mergesort across a large number of cores. In addition,
there exist merging networks [1] that can be mapped to a
SIMD architecture to further speedup the merging process.

4.1 Algorithm Overview
Each iteration of mergesort essentially reads in an element

once, and writes it back at its appropriate location after the
merge process. Thus, it is essentially a streaming kernel. A
naive implementation would load (and store) data from (and

1Unless otherwise stated, log refers to logarithm with base
2 (log2).
2To reduce the branch misprediction for scalar implementa-
tion, we use conditional move instructions.

1315

to) the main memory and would be bandwidth bound for
large datasets. Recall that modern CPU’s have a substantial
size of shared caches (Section 3.3), which can be exploited
to reduce the number of trips to main memory. To take
advantage of these caches, we divide the dataset into chunks
(or blocks), where each block can reside in the cache. We
sort each block separately, and then merge them in the usual
fashion. Assuming a cache size of C bytes, the block size
(denoted by M) would be C/2E , where E is the size of each
element to be sorted. We now give a high level overview of
our algorithm, which consists of two broad phases.

Phase 1. In this phase, we evenly divide the input data
into blocks of size M, and sort each of them individually.
Sorting each block is accomplished using a two step process.

1. First, we divide each block of data amongst the avail-
able threads (or processors). Each thread sorts the data
assigned to it using a SIMD implementation of merge-
sort. We use merging networks to accomplish it. Merg-
ing networks expose the data-level parallelism that can
be mapped onto the SIMD architecture. Each thread
sorts its allocated list of numbers to produce one sorted
list. There is an explicit barrier at the end of the first
step, before the next step starts. At the end of this step,
there are P sorted lists.

2. As a second step, we now merge these P sorted lists to
produce a single sorted list of sizeM elements. This re-
quires multiple threads to work simultaneously to merge
two lists. For example, for the first iteration of this step,
we have P sorted lists, and P threads. For merging ev-
ery two consecutive lists, we partition the work between
the two threads to efficiently utilize the available cores.
Likewise, in the next iteration, 4 threads share the work
of merging two sorted sequences. Finally, the last iter-
ation consists of all available threads merging the two
lists to obtain the sorted sequence. This step consists of
logP iterations and there will be an explicit barrier at
the end of each iteration.

At the end of the first phase, we have N/M sorted blocks,
each of size M. Note that since each of the blocks individ-
ually resided in the cache, we read (and write) any element
only once to the main memory.

Phase 2. The second phase consists of (logN -logM) iter-
ations. In each iteration, we merge pairs of lists to obtain
sorted sequences of twice the length than the previous iter-
ation. All P processors work simultaneously to merge the
pairs of lists, using an algorithm similar to 1(b). However,
for large N , the memory bandwidth may dictate the run-
time, and prevent the application from scaling. For such
cases, we use multiway merging, where the N/M lists are
merged simultaneously in a hierarchical fashion, by reading
(and writing) the data only once to the main memory.

4.2 Exploiting SIMD
For a merging network, two sorted sequences of length
K each are fed as inputs, and a sequence of length 2K is
produced. A network executes multiple steps, with each step
performing simultaneous comparisons of elements, thereby
making them amenable to a SIMD implementation. There
are two commonly described merging networks [1] that can
be implemented with the current set of SIMD instructions:
• odd-even network

• bitonic merge network
Figure 1 depicts the odd-even merge network, while Fig-

ure 2 shows the bitonic merge network (both for merging
sequences of length 4). Odd-even merge requires fewer com-
parisons than bitonic merge. However, not all the elements
are compared at every step, thereby introducing the over-
head of data movement and element masking.

Figure 1: Odd-Even merge network for merging se-
quences of length 4 elements each.

On the other hand, bitonic merge compares all the el-
ements at every network step, and overwrites each SIMD
lane. Note that the pattern of comparison is much simpler,
and the resultant data movement can easily be captured
using the existing register shuffle instructions. Therefore,
we mapped the bitonic merging network using the current
SSE instruction set (Section 4.2). In this subsection, we de-
scribe in detail our SIMD algorithm. We start by explaining
the three important kernels, namely the bitonic merge ker-
nel, the in-register sorting kernel, and the merging kernel.
This is followed by the algorithm description and various
design choices. For ease of explanation, we focus on single
thread for this subsection. This is later extended to multiple
threads in the next subsection.

4.2.1 Bitonic Merge Kernel

Figure 2: Bitonic merge network for merging se-
quences of length 4 elements each.

Figure 2 shows the pattern for merging two sequences of
four elements. Arrays A and B are are held in SIMD reg-
isters. Initially A and B are sorted in the same (ascending)

1316

order. Bitonic merge requires that one sequence be sorted
in ascending order, and the other be sorted in descending
order. The order of the inputs A and B are shown after
the sorted order of B has been reversed. Each level of the
sorting network compares elements in parallel using SIMD
min and max operations. For example, in the first level A 1
and B 2 are compared and the smaller value will be in the
SIMD register with the min results, designated by L, and
the larger will be in the SIMD register with the max results,
designated by H.

After the comparison operation, the data is shuffled so
that appropriate comparisons are made in the next level.
For example, consider the first level of comparisons. If A 1
is greater than B 2, then it will end up in H 1. Similarly, if
B 0 is greater than A 3, then it will end up in H 3. How-
ever, the second level needs to compare these two numbers
(on the extreme right of level 2 of Figure 2). Hence, we need
a shuffle instruction that can move a value from the 2nd lo-
cation of a register (from the left), to the 4th location (from
the left). Of course, other locations must be shuffled to
different locations. We expect a general shuffle instruction
that takes two registers as inputs and produces an output
register with the selected values from the input registers at
user-specified locations. Hence two shuffle instructions are
necessary between levels to position elements for subsequent
comparisons. Similarly, the second level of comparisons are
executed and the data are shuffled3. After the third stage,
elements from the register L must be interleaved with ele-
ments in the H register to obtain the final sequence. This
again requires 2 shuffle instructions.

Figure 3: Pseudo code for implementing the 4-wide
bitonic merge network (assuming general shuffle in-
structions).

The pseudo-code for the above example is shown in Fig-
ure 3. Input registers A and B are merged to form output
registers O1 and O2. A total of 6 min/max operations and 7
shuffle operations are required. In general, a K-wide network
has (log 2K) levels, with total number of (2 log 2K) min/max
operations, and (1 + 2 log 2K) shuffle instructions.

The use of the above merging network requires the values
within a register to be already sorted. To initiate the sorting
process, we begin by producing sorted elements of length K,
described next.

3We require 3 instructions to capture this shuffle pattern on
current SSE4 architecture, as mentioned in the example in
Section 3.2.

4.2.2 In-Register Sorting
We use an algorithm similar to the one proposed by [11].

We load K2 numbers into K SIMD registers. Here, we refer
to each slot within a SIMD register as a lane (for a total
of K lanes). We next sort values within each lane of the
registers, by simply executing a series of comparisons using
min/max operations. These comparisons re-order the values
so that values within any particular lane are sorted. We
use an odd-even sorting network (for sorting K values) to
accomplish this. This requires 2(K - 1 + (K(logK)(logK −
1))/4) min/max operations. This is followed by a transpose
operation so that each bunch of K contiguous values are
sorted. The transpose operation again requires a series of
shuffle instructions. It can be easily shown that this stage
requires K logK shuffle operations.

Figure 4: In-Register Sorting for 4-wide SIMD

Figure 4 depicts the whole process for a 4-wide SIMD. A
total of 10 min/max and 8 shuffle instructions are required.

4.2.3 Merging Two Sorted Lists
Assume there are two sorted lists, X and Y, that must

be merged to produce one sorted list. Further, we assume
that the generated array is stored into a different array (Z)
of appropriate size. We also assume a 4-wide SIMD for the
discussion, although the same algorithm holds for any K-
wide SIMD.

We start by loading 4 values each from the two arrays and
run the sorting network code (Figure 3). O1 and O2 form
a sorted sequence of length 8. We store O1 into the output
array; and O2 becomes one of the input registers for the next
call to the merging network. We now must load the other
input register from one of the two arrays. This requires
a comparison between the next value in X and Y arrays
respectively. The array with the minimum next value loads
4 values into the register, and the merging network code is
executed. We continue with this process till the end of one
of the arrays is reached. Thus, the values from the other
array are loaded and the merging network code executed till
the end of this array is reached.

For inputs of size L(each), the network code is executed
(2L/4 - 1) times. The corresponding number for a K-wide
SIMD is (2L/K - 1).

As explained in Section 3.1, each of the SIMD instruc-
tions has a certain latency and throughput. On current

1317

Intel architecture [3], the latency of a min/max operation is
3 cycles, and a shuffle instruction has a latency of 1 cycle.
The throughout of either of them is 1 per cycle. In addition,
the inter-functional-unit latency is 1 cycle. Let us take a
closer look at Figure 3.

Say the execution starts at the 1st cycle. The first shuffle
instruction takes 1 cycle. However, the execution of the
next min operation has to wait for 1 additional cycle (due
to the latency of moving a value from one functional unit
to another). So the first min operation is executed at cycle
#3, followed by the max at cycle #4. However, since the
max operation has a latency of 3 cycles, the result is not
available till the end of cycle #6. And the first shuffle cannot
execute till cycle #8. Thus, at the end of the 10th cycle, we
can start with the next level of the network. Continuing
with this analysis yields 26 cycles for executing one merging
network, which implies 6.5 cycles per element. Also, note
that we have not taken advantage of the multiple execution
units (Section 3.1) that can execute the min/max and shuffle
instructions in parallel.

Figure 5: Bitonic merge network for merging se-
quences of length 16 elements each

The main reason the poor performance is that the min/max
and the shuffle instructions have an inherent dependency
that exposes the min/max latency. There are 2 ways to
overcome it:
1. Simultaneously merging multiple lists. Since merge

operations for different lists are independent of each other,
we can hide the latency exposed above by interleaving
the min/max and shuffle instructions for the different
lists. In fact, for the current latency numbers, it is suffi-
cient (and necessary) to execute four merge operations
simultaneously (details in Section 5.2) to hide the la-
tency. The resultant number of cycles is 32 cycles, which
implies 2 cycles per element, a 3.25X speedup over the
previous execution time. The encouraging news is that
in case of the logN iterations of mergesort, all except
the last two iterations have at least 4 independent pairs
of lists that can be merged.

2. Use a wider network. For example, consider a 16 by
16 bitonic merge network (Figure 5). The interesting
observation here is that the last 4 levels (L2, L3, L4 and
L5) basically execute 2 independent copies of the 8 by
8 network. The levels L3, L4 and L5 are independent
copies of 4 by 4 network. Hence, executing two 8 by 8

networks provides the four independent 4 by 4 networks
that we require. However, note that an 8 by 8 network
has one extra level, so we execute 4 extra min/max oper-
ations as compared to independent 4 by 4 networks. The
detailed analysis yields 2.5 cycles per element (section
5.2), a 2.5X speedup over the previous execution time.
The last but one iteration of mergesort can resort to a
8 by 8 network for getting optimal results. By a similar
analysis, the last iteration can use a 16 by 16 network,
that yields 3 cycles per element, a 2.2X speedup.

Hence, by carefully adapting the network width, we can
exploit the available hardware resources and improve our
merging performance. Profiling our implementation shows
that majority of the execution time is spent in the merging
kernels. Thus, it is imperative to optimize the performance
of these kernels.

Moreover, each platform has slightly different architec-
tural parameters. Hence for optimal performance, fine tun-
ing is required for each platform. Another additional benefit
of fine tuning the code is that once it is optimized, it would
work well for both out-of-order and in-order processors. The
reason is that during the optimization process, we typically
take into account the instruction latencies and dependen-
cies. Once these factors are considered, the code generated
would run well without the expensive out-of-order engine.

4.2.4 Complete SIMD Algorithm
The complete algorithm is as follows:

1. Divide the input (size N) into chunks of size M. For
each chunk:

(a) Perform In-Register Sort to obtain sorted sequences
of length K.

(b) for itr ← [(logK) .. (logM - 3)]
• Simultaneously merge 4 sequences (using a K

by K network) of length 2itr to obtain sorted
sequences of length 2itr+1.

(c) Simultaneously merge 2 sequences (using a 2K by
2K network) of length M/4 to obtain sorted se-
quences of length M/2.

(d) Merge the two resultant sequences (using a 4K by
4K network) of length M/2 to obtain the final
sorted sequence of length M.

2. for itr ← [(logM) .. (logN - 1)]

(a) Merge sequences of length 2itr to obtain sorted se-
quences of length 2itr+1.

During Step 1, we load the complete dataset from main
memory only once. Each iteration of Step 2 needs to load/store
complete dataset from/to the main memory. Total num-
ber of instructions required for the complete algorithm is
O(N log(N) log(2K)/K). For cases where Step 2 becomes
bandwidth bound, we present a scheme in Section 4.4 to
reduce the number of read/write passes to just one.

4.3 Exploiting Multiple Cores
In this section, we discuss how we adapt our algorithm to

an architecture with multiple cores. In mutli-core platform,
multiple threads can share last-level caches. Instead of us-
ing the block size of M (for each thread) as in the serial
implementation, we use a block size of M′ = M/P. Each
thread sorts its block of size M′, and then we have merge
the resultant P sorted lists at the end of Step 1(d) in the

1318

previous section, before moving on to the next block. This
is described next as Step 1(e).

Step 1(e). Threads cooperate in this step to merge the
P individually sorted lists into one sorted list. This consists
of logP iterations. Let us consider the first iteration. In
order to keep all the threads busy, we assign each set of two
threads to merge each consecutive pairs of lists. Consider
the first two threads. Let the two lists be denoted by X
and Y, each of size N ′. To generate independent work for
the threads, we first compute the median of the merged
list. Although we are yet to merge the lists, since the lists
are individually sorted to begin with, the median can be
computed in log 2N ′ steps [5]. This computation also assigns
the starting location for the second thread in the two lists.
The first thread starts with the beginning of the two lists
and generates N ′ elements, while the second thread starts
with the locations calculated above, and also generates N ′

elements. Since the second thread started with the median
element, the two generated lists are mutually exclusive, and
together produce a sorted sequence of length 2N ′. Note that
this scheme seamlessly handles all boundary cases, with any
particular element being assigned to only one of the threads.

It is important to compute the median since that divides
the work equally amongst the threads. At the end of the it-
eration, there is an explicit barrier, before the next iteration
starts. Similarly, in the next iteration, 4 threads cooperate
to sort two lists, by computing the starting points in the two
lists that correspond to the the 1/4th, 2/4th and the 3/4th

quantile, respectively. There are a total of logP iterations
in this step. The partitioning is done in a way that each
thread (except possibly the last one) is assigned a multiple
of K elements to merge and write to the output list.

In addition, for each iteration of the merge operations
in Step 2, all P threads work simultaneously as described
above.

There are a couple of implementation details for the mul-
tiple threads case. In a single thread, all memory load ad-
dresses are exactly aligned with the size of the SIMD width.
However, in the case of multiple threads working simultane-
ously to merge two lists, the threads start from the median
points that may not be aligned locations. Functionality-
wise, this can be taken care of by issuing unaligned memory
loads instead of the regular aligned loads. Performance-wise,
unaligned loads are often slower than aligned loads. In some
cases, we noticed a slowdown of up to 15%.

We devised a technique that eliminates unaligned loads
during the simultaneous multi-thread merging phase. This
follows from the fact that the number of elements assigned to
each thread is a multiple of the SIMD width. Without loss of
generality, we use two threads for the following discussion.
The outputs of the threads are always aligned stores and
the first thread starts with two aligned addresses. Although
the starting points of the second thread may be unaligned,
the sum of the number of unaligned elements (till the SIMD
width boundary) must be equal to the SIMD width.

With this observation, we handle the boundary case sep-
arately. That is, we merge first few elements (from the two
lists) outside the loop. After that, the thread loads the re-
maining data in the usual fashion by issuing aligned memory
accesses in the loop. Furthermore, our technique can han-
dle the boundary case via SIMD and aligned loads—as the
computation of the boundary case of second thread’s start-
ing points can be used as the boundary case of first thread’s

ending points. The above discussion can be easily extended
to multiple threads cooperating to merge 2 sorted arrays.
Hence we do not have any unaligned loads in our algo-
rithm.

4.4 Multiway Merging
For larger problem sizes, bandwidth becomes a bottleneck,

even for a single core execution. With multiple cores (where
the available bandwidth increases more slowly than the core
count), the bandwidth becomes the dominant bottleneck.
The problem stems from the fact that the off-chip traffic for
large problem sizes (N ≥ 2M) involves (logN -logM) reads
and writes of the entire data.

L

N

R

L L L LL L L

N N N

NN

Head

Tail

Count

Head

Tail

Count

Head

Tail

Count

Figure 6: Multiway Merging

We devised multiway merging to address the bandwidth
bottleneck. After computing the individual lists, we merge
them incrementally [6] to compute the final sorted list. This
is achieved by using a binary tree (Figure 6), where each of
the leaves (labeled L) point to a sorted chunk from Step 1
(Section 4.2.4) and the root (labeled R) points to the desti-
nation array that will contain the sorted output at the end
of Step 2. Each internal node (labeled N) has a small FIFO
queue (implemented as a circular buffer) to store partial re-
sults for each intermediate iteration. At any node, if there
is an empty slot in its FIFO queue and each of its children
has at least one element in its queue (i.e. the node is ready),
the smaller of those two elements can be moved from the
child’s queue into the nodes queue. While there are ready
nodes available, this basic step is applied to one of those
nodes. When no ready nodes remain, the destination array
will have the sorted data.

Since sorting one pair at a time incurs high overheads,
in practice, each node has a buffer big enough to store hun-
dreds of elements and is deemed ready only when each child’s
buffer is at least half full so that FIFO size/2 elements can
be processed at a time. To exploit SIMD, the elements from
the two lists are merged using a 4K by 4K network. The
working set of the multiway merging is essentially the ag-
gregate size of all the FIFO queues in the internal nodes.
Consequently, the size of the FIFO queue is selected to be
as large as possible while the working set fits in the cache.
At the leaves, only the head element is part of the working
set and has a minimal impact on the working set.

This approach also accommodates parallelization in a nat-
ural way. The ready nodes can be processed in parallel, using
synchronization to maintain a global pool of ready nodes. In
practice, this scheme works well for the current multi-core
processors.

1319

4.5 Sorting (key, data) pairs
So far, we have focussed on sorting an input list of num-

bers (keys). However, database applications typically sort
tuples of (key, data), where data represents the pointer to
the structure containing the key. Our algorithm can be eas-
ily extended using one of the following ways to incorporate
this case.
1. Treating the (key, data) tuple as a single entity (e.g., 64-

bit value). Our sorting algorithm can seamlessly handle
it by comparing only the first 32-bits of the 64-bits for
computing the min/max, and shuffling the data appro-
priately. Effectively, the SIMD width reduces by a factor
of 2X (2-wide instead of 4-wide), and the performance
slows down by 1.5X-2X for SSE, as compared to sorting
just the keys.

2. Storing the key and the data values in different SIMD
registers. The result of the min/max is used to set a
mask that is used for blending the data register (i.e.,
moving the data into the same position as their corre-
sponding keys). The shuffle instructions permute the
keys and data in the same fashion. Hence, the final
result consists of the sorted keys with the data at the
appropriate locations. The performance slows down by

˜2X.
Henceforth, we report our analysis and results for sorting

an input list of key values.

5. ANALYSIS
This section describes a simple yet representative analyt-

ical model that characterizes the performance of our algo-
rithm. We first analyze the single threaded scalar imple-
mentation, and enhance it with the SIMD implementation,
followed by the parallel SIMD implementation.

5.1 Single-Thread Scalar Implementation
The aim of the model is to project the running time of

the algorithm, given the time taken (in cycles) to compute
one element per iteration of the mergesort algorithm. If
the number of elements is small so that they all fit into on-
chip caches, the execution time will be characterized mainly
by core computation capability. The initial loads and final
stores contribute little to the execution time overall. The
following expression models the execution time of this class
of problems:

Tserial = N log(N) * Tse + N log(N) * Tls

Tse is the execution time per element per iteration, while
Tls is the time spent in the load and store of each element.

If the elements cannot fit into the cache, then loop-blocking
is necessary to achieve good performance. We divide the
data elements into chunks (or blocks) of M elements each,
such that two arrays of sizeM can reside in the cache. For
N elements, there will be N/M blocks.

As discussed in Section 4, we sort the elements in two
phases. The first phase performs log(M) iterations for each
block, thereby producing sorted lists of sizeM. The execu-
tion time is similar to the expression above, except that the
load and store from memory only happens once.

Tserial−phase1 = N/M * M log(M) * Tse + N * Tls

Note that memory accesses of one block can be completely
hidden by the computation of another block. Thus, Tls of
the above equation effectively become insignificant, giving
the following equation.

Tserial−phase1 = N * log(M) * Tse

Once all blocks have been merged through the first log(M)
iterations, the remaining log(N/M) iterations are executed
in the next part using multiway merging (Section 4.4). The
time taken in the second phase can be modeled as follows:

Tserial−phase2 = (log(N)− log(M)) * N * Tse

To account for cases where the bandwidth isn’t large enough
to cover for computation time, the expression becomes:

Tserial−phase2 = N * Max(log(N/M) Tse, 2E/BWm)

The total execution time of our scalar serial mergesort al-
gorithm is given by Tserial = Tserial−phase1 + Tserial−phase2.

5.2 Single-Thread SIMD Implementation
We now build a model to estimate the running time for

the merging network (using SIMD instructions). Let a, b
and c represent the min/max latency, shuffle latency and
the inter-functional-unit latency respectively ((a ≥ 1), (b ≥
1) and (c ≥ 0)). The aim is to project the actual running
time based on these three parameters, and K.

Figure 7: Timing diagram for the two functional
units during the execution of the merging network.

Using the pseudo-code in Figure 3 as an example, Figure 7
depicts the snapshot of a processor with two function exe-
cution units during the execution of the network. Consider
the min/max functional unit in Figure 7. After issuing the
min and max operation, this unit does not execute the next
instruction for (a - 1) + c + (b + 1) + c, equal to a+b+2c
cycles. Similarly, the shuffle functional unit also remains
idle for a+b+2c cycles. Adding up the total time for the
network in the 4 by 4 merging network on a 4-wide SIMD
yields 3(a+b+2c+2) + (b+c) cycles. The general expres-

1320

sion for a K by K network on a K-wide SIMD architecture
is (a+b+2c+2)log 2K + (b+c) cycles.

Different scenarios exist depending on the exact values
of the latencies. We consider a representative scenario for
today’s architecture below and will discuss scenarios of up-
coming architectures in Section 6.5.

On today’s Intel architecture [3], the latencies of min/max,
shuffle, and cross-functional unit bypass are 3, 1 and 1, re-
spectively. In other words, (a = 3), (b = 1) and (c = 1).
The time taken for a 4 by 4 network on SSE yields 26 cy-
cles, implying 6.5 cycles per element. As noted above, each
functional unit remains idle for 6 cycles. In the best case,
we can issue 3 pairs of min/max operations to keep the unit
busy. One way to accomplish this is to run 4 independent in-
stances of the merging network. Thus, the total time taken
to produce 1 element drops to 2 cycles. The generalized
expression is ((a+b+2c+2)log 2K + (b+c+6))/4K cycles.

In case of mergesort, there may exist iterations where 4
independent pairs of lists do not exist. In case of 2 indepen-
dent lists, one can execute two networks of 2K by 2K (on
a K-wide SIMD). Although this generates 4 independent K
by K networks, we have to execute eight extra min/max op-
erations (Figure 5). This increases the cycles per element
to ((a+b+2c+2)log 2K + (b+c+14))/4K cycles, which eval-
uates to 2.5 cycles per element on 4-wide SSE.

Executing a 4K by 4K network results in
((a+b+2c+2)log 2K + (b+c+22))/4K cycles, which evalu-
ates to 3 cycles per element on the current 4-wide SSE.

5.3 Multi-threaded Implementation
Given the execution time (in cycles) per element for each

iteration of the single-threaded SIMDfied mergesort, and
other system parameters, this models aims at computing
the total time taken by a multi-threaded implementation.

As explained in Section 4.3, the algorithm has two phases.
In the first phase, we divide the input list into N/M blocks.
Let us now consider the computation for one block.

To exploit the P threads, the block is further divided into
P lists, wherein each thread sorts itsM′ =M/P elements.
In this part, there is no communication between threads,
but there is a barrier at the end. However, since the work
division is constant and the entire application is running in
a lock-step fashion; we do not expect too much load imbal-
ance, and hence the barrier cost is almost negligible. The
execution time for this phase can be modeled as:

Tparallel−phase1a = M log(M′) * Tpe

Tpe is the execution time per element per iteration. The
P threads now cooperate to form one sorted list. This in-
troduces two new components to the execution time.

• Computation by the threads to compute the starting lo-
cations in the arrays before merging (Textra).
• Synchronization cost while the threads work simultane-

ously to merge arrays (Tsync).

The Textra component is relatively small compared to the
computation time per iteration and can be ignored. The
synchronization time: Tsync includes the time wasted be-
cause of load imbalance and the barrier synchronization time
at the end of this part. The barrier time is proportional to
the number of cores in the system. For a small system with
four or eight processors, the barrier time is negligible. But as
the core count increases, the barrier time can be substantial.

In addition, the threads are working with the complete
data in the cache. Thus, the bandwidth of concern here is
not the external memory bandwidth but the interconnect
bandwidth. There are logP iterations in this part. The fol-
lowing equation models this part of the execution:

Tparallel−phase1b = log(P) * [MTpe + Tsync]

Since there are N/M blocks, the total time spent in
1st phase is Tparallel−phase1 = N/M * (Tparallel−phase1a +
Tparallel−phase1b).

During the second phase, various threads cooperate with
each other to merge the sorted blocks of size M into a fi-
nal sorted list. The following equation models the execution
time of this phase:

Tparallel−phase2 = log(N/M) * [NMax(log(N/M)Tpe, 2E/
BWm) + Tsync]

The total execution time of our parallel mergesort algo-
rithm is given by Tparallel = Tparallel−phase1 + Tparallel−phase2.

6. RESULTS
In this section, we present the data of our MergeSort al-

gorithm. The input dataset was a random distribution of
single precision floating point numbers (32-bits each). The
runtime is measured on a system with a single Intel Q9550
quad-core processor, as described in Table 1.

System Parameters
Core clock speed 3.22GHz
Number of cores 4
L1 Cache 32KB/core
L2 Cache 12MB
Front-side Bus Speed 1333MHz
Front-side Bus Bandwidth 10.6GB/s
Memory Size 4GB

Table 1: System parameters of a quad-core Q9550
machine.

We implemented serial and parallel versions of the Merge-
Sort algorithm. For each version, we have implemented
scalar and SIMD versions. All versions are written in C and
optimized with SSE intrinsics. The parallel version uses
the pthread library. All implementations are compiled with
10.1 version of the Intel Compiler. We first describe results
for the different implementations on the latest Intel IA-32
architecture. Second, we compare our results with the an-
alytical model presented in Section 5. Then, we compare
our measured results with other platforms. Finally, we use
the analytical model to study how the various architectural
parameters affect performance.

6.1 Single-Thread Performance
Table 2 shows the execution times in seconds for the serial

versions of the scalar and SIMD MergeSort. The dataset
sizes vary from 512K to 256M elements. Note that datasets
of size up to only 1M elements fit in the cache.

The execution of MergeSort is extremely regular and it is
possible to report performance at a finer granularity – the
number of clock cycles to process each element in a single it-
eration. Table 3 shows the normalized performance in cycles

1321

Cell 8600 8800 Quadro PowerPC[11] Intel Our Implementation

[7] GTS[22] GTX[19] 5600[19] 1C 4C 2C[7] 1CScalar 1CSSE 2C 4C

BW (GB/sec) 25.6 32.0 86.4 76.8 16.8 16.8 10.6 10.6 10.6 10.6 10.6

Peak GFLOPS 204.8 86.4 345.6 345.6 20.0 80.0 51.2 25.8 25.8 51.6 103.0

512K - 0.05 0.0067 0.0067 - - - 0.0314 0.0088 0.0046 0.0027

1M 0.009 0.07 0.0130 0.0130 0.031 0.014 0.098 0.0660 0.0195 0.0105 0.0060

2M 0.023 0.13 0.0257 0.0258 0.070 0.028 0.205 0.1385 0.0393 0.0218 0.0127

4M 0.056 0.25 0.0514 0.0513 0.147 0.056 0.429 0.2902 0.0831 0.0459 0.0269
Number

8M 0.137 0.50 0.1030 0.1027 0.311 0.126 0.895 0.6061 0.1763 0.0970 0.0560
Of

16M 0.317 - 0.2056 0.2066 0.653 0.251 1.863 1.2636 0.3739 0.2042 0.1170
Elements

32M 0.746 - 0.4108 0.4131 1.363 0.505 3.863 2.6324 0.7894 0.4292 0.2429

64M 1.770 - 0.8476 0.8600 2.872 1.118 7.946 5.4702 1.6738 0.9091 0.4989

128M 4.099 - - 1.8311 6.316 2.280 16.165 11.3532 3.6151 1.9725 1.0742

256M - - - - - - - 23.5382 7.7739 4.3703 2.4521

Table 2: Performance comparison across various platforms. Running times are in seconds. (1C represents
1-core, 2C represents 2-cores and 4C represents 4-cores.)

per element per iteration. We observed two things. First,
the performance for the scalar version is constant across all
dataset sizes. The cycles per element for each iteration is
10.1 cycles. This means the scalar MergeSort is essentially
compute bound (for the range of problems we considered).
In addition, this also implies that our implementation is able
to hide the memory latency pretty well.

No. of
Elements

512K 1M 4M 16M 64M 256M

Scalar 10.1 10.1 10.1 10.1 10.1 10.1
SIMD 2.9 2.9 2.9 3.0 3.1 3.3

Table 3: Single-Thread Performance (in cycles per
element per iteration).

Second, the performance of the (4-wide) SIMD implemen-
tation is 3.0X - 3.6X faster than the scalar version. The cy-
cles per element (per iteration) time grows from 2.9 cycles to
3.3 cycles (from 512K to 256M elements). Without our mul-
tiway merge implementation, the number varied between 2.9
cycles (for 512K elements) to 3.7 cycles (for 256M elements,
with the last 8 iterations being bandwidth bound). There-
fore, our efficient multiway merge implementation ensures
that the performance for sizes as large as 256M elements is
not bandwidth bound, and increases by only 5-10% as com-
pared to sizes that fit in the L2 cache. The increase in run-
time with the increase in datasize is due to the fact that our
multiway merge operation uses a 16 by 16 network, which
consumes 30% more cycles than the optimal combination of
merging networks (Section 5.2). For an input size of 256M
elements, the last 8 iterations are performed in the multiway
merge, that leads to the reported increase in runtime.

6.2 Multi-Thread Performance
Figure 8 shows the parallel speedup of the scalar and the

SIMD versions of MergeSort for 1M and 256M elements. We
choose those two data points to show how our implementa-
tion scales for the case where the data fits into the on-chip

caches and the case where it does not.

 0

 1

 2

 3

 4

421421

P
ar

al
le

l S
pe

ed
up

Number of Cores

1M Elements 256M Elements

Scalar
SIMD

Figure 8: Parallel performance of the scalar and
SIMD implementations.

We observe several things from the figure. First, our im-
plementation scales well with the number of cores – around
3.5X on 4 cores for scalar code, and 3.2X for SSE code. In
particular, our multiway merge implementation is very ef-
fective. Without our multiway merge implementation, the
SSE version for 256M elements scales only 1.75X because of
being limited by the memory bandwidth. Second, our im-
plementation is able to efficiently utilize the computational
resources. The scaling of the larger size (256M), which does
not fit in the cache, is almost as good as the scaling of the
smaller size (1M), which fits in the cache. The scaling for
the SSE code is slightly lower than the scalar code due to
the larger synchronization overhead.

6.3 Comparison with Analytical Model
Using the analytical model from Section 5, we were able to

predict the performance of MergeSort. For the scalar imple-
mentation, the error of the model is within 2% of measured
data. This provides good confidence on our scalar single-
threaded model to predict the running time, given the value
Tse for the specific architecture (Section 5.1).

In case of the SIMD model (Section 5.2), we analytically
compute the actual cycles per element per iteration, and de-

1322

duce the resultant running time. For different sizes, our run-
ning times are around 30% larger than our predicted values.
This can be attributed to the following two reasons. First,
an extra shuffle instruction after the second level of compar-
isons (for a 4 by 4 network) accounts for around 10% of the
extra cycles. Second, extra move instructions are generated,
which may be executed on either the min/max or the shuf-
fle functional units, accounting for around 15% overhead on
average. By accounting for these two reasons, our analytical
model reasonably predicts the actual performance.

Both of these experiments confirm the soundness of our
analysis for the sorting algorithm, and provide confidence
that the analytical model developed can be used for pre-
dicting performance on various architectural configurations.

6.4 Comparison with Other Platforms
Table 2 lists the best reported execution times4 (in sec-

onds) for varying dataset sizes on various architectures(IBM
Cell [7], Nvidia 8600 GTS [22], Nvidia 8800 GTX and Quadro
FX 5600 [19], Intel 2-core Xeon with Quicksort [7], and
IBM PowerPC 970MP [11]). Our performance numbers are
faster than those reported on other architectures. Since
sorting performance depends critically on both the com-
pute power and the bandwidth available, we also present
the peak GFLOPS (Billions of floating point operations per
second) and the peak bandwidth (GB/sec) for a fair com-
parison. The columns at the end show running times of our
implementation for 1 core and 4 cores. There are two key
observations:
• Our single-threaded implementation is 7X–10X faster

than previously reported numbers for 1-core IA-32 plat-
forms [7]. This can be attributed to our efficient imple-
mentation. In particular, our cache-friendly implemen-
tation and multiway merging aims at reducing the band-
width bounded stages in the sorting algorithm, thereby
achieving reasonable scaling numbers even for large
dataset sizes.
• Our 4-core implementation is competitive with the per-

formance on any of the other modern architectures, even
though Cell/GPU architectures have at least 2X more
compute power and bandwidth. Our performance is
1.6X–4X faster than Cell architecture and 1.7X–2X faster
than the latest Nvidia GPUs (8800 GTX and
Quadro FX 5600).

6.5 Performance on Future Platform
Future processors will likely use wider SIMD and a large

number of CMP cores to exploit DLP and TLP [20]. In
this section, we use the aforementioned analytical model and
detailed simulation to study how changes in SIMD width
and core count may affect MergeSort performance.

First, we look at how varying SIMD width affect merge-
sort performance. In Section 5.2, we proposed an analytical
model for our SIMD implementation and analyzed it for the
parameters for today’s architecture. We now further analyze
the model for other parameters. Recall from Section 5.2
that we use a, b and c to represent min/max latency, shuffle
latency and inter-functional-unit latency, respectively.
• (a = 1), (b = 1), and (c = 1): With the advance-

ment in microarchitecture, it is reasonable to expect the

4Some of the missing numbers correspond to either the data
not being available, or the input size being too big to fit in
the Cell/GPU memory.

latency of the min/max operation to reduce (recall in
Section 5.2 that the latency of min/max is 3 cycles for
the current Intel architecture). For these new specific
latencies (i.e., min/max latency of 1), the functional
units remain idle for 4 cycles. Hence, we need 3 in-
dependent sets of K by K network to fill in pipeline
bubbles. However, since the increase in width brings
2 extra levels, the most optimal run times are obtained
by running 4 independent merging networks. The resul-
tant expression is (a+2b+3c+#Shuffles-4)/K, which is
equal to (a+2b+3c+8(log 2K))/4K cycles per element.
For 4-wide SSE, we obtain 1.875 cycles per element.
Executing two 2K by 2K networks yields (a+2b+3c+
8(log 4K))/4K cycles per element, equivalent to 2.375
cycles per element for 4-wide SIMD.
Executing a 4K by 4K network results in (a+2b+3c+
8(log 8K))/4K which evaluates to 2.875 cycles per ele-
ment on the 4-wide SIMD.
• (a = 1), (b = 1), and (c = 0): This represents the

limit study, with each of the parameters being assigned
their minimum possible values. In this case, we only
need 2 independent instances of the K by K merging
network to execute simultaneously for optimal perfor-
mance. On a 4-wide SIMD, our model predicts 1.75 cy-
cles per element as the most optimal running time. The
corresponding time for executing two 2K by 2K networks
yields 2.25 cycles per element (on 4-wide SIMD), and a
4K by 4K network results in 2.69 cycles per element on
4-wide SIMD.

The above discussed cases cover a substantial portion of
the various scenarios that can exist. We can draw a cou-
ple of interesting conclusions. First, reducing the latency of
the min/max operations, a, has minimal impact on perfor-
mance. Second, by carefully scheduling the instructions, we
are able to keep both the min/max and shuffle functional
units busy for most of the times. Currently, we assume a
throughput of 1 per cycle for each. With the increase in
SIMD width, it is reasonable to expect the execution time
of shuffle operations to increase, which will proportionately
increase the execution times of the merging network. For
example, a throughput of 1 shuffle instruction every 2 cy-
cles will approximately double the execution times for all
the cases discussed above.

 0
 1
 2

 3
 4
 5
 6

 7
 8
 9

64321684

S
pe

ed
up

 o
ve

r
4-

w
id

e
(3

,1
,1

)

SIMD Width

(3,1,1)
(1,1,1)
(1,1,0)

Figure 9: Speedup as SIMD width increases from
4-wide to 64-wide for different latencies of (a, b, c).

In Figure 9, we plot the speedup in execution time (in
cycles per element per iteration) with varying SIMD width

1323

for different values of a, b and c. The data size N is fixed
at 16M elements. All numbers are plotted w.r.t. a 4-wide
SIMD with (a, b, c)=(3,1,1). As evident from the graph, for
any particular SIMD width, the speedup only varies by a few
percent for different values of a, b and c. This is attributed
to our scheduling algorithm that extracts the maximum per-
formance for any given set of values for these parameters.
In addition, the speedup increases near-linearly with the in-
crease in SIMD width, and, in fact, is consistent with the
O(N log(N) log(2K)/K) running time of the algorithm.

Next, we study how MergeSort would perform on a future
CMP system and project performance for Intel’s upcom-
ing Larrabee – a many-core x86 architecture with simple
in-order cores and 512-bit SIMD instructions [20]. For our
experiments, we use a cycle-accurate, execution-driven sim-
ulator of Larrabee architecture with an assumed frequency
of 1GHz. Table 4 lists the projected runtimes for dataset
sizes of 64M and 256M elements, with the number of cores
varying from 8-32 cores. Our algorithm scales near-linearly
on Larrabee, well beyond 32 cores.

Number Of Elements 8C 16C 32C

64M 0.636 0.324 0.174
256M 2.742 1.399 0.751

Table 4: Projected performance (in seconds) on
Larrabee architecture [20].

Additionally, we use the analytical model to study how
changes in the cache size and the processor frequency would
affect the performance. Cache size determines the block
size that each thread uses to sort in the first phase, fol-
lowed by the multiway merging during the second phase.
The larger the cache size, the fewer the iterations in the
second phase. Since each iteration of the second phase is
only slightly expensive than in the first phase, doubling the
cache size improves the execution time only by 2–3%. On
the other hand, increasing the frequency of the processor
will proportionately improve the overall performance, since
the execution time per element per iteration (Tse and Tpe in
the equations in Section 5) are proportionately reduced.

7. CONCLUSIONS
We have presented an efficient implementation and de-

tailed analysis of MergeSort on current CPU architectures.
This implementation exploits salient architectural features
of modern processors to deliver significant performance ben-
efit. These features include cache blocking to minimize ac-
cess latency, vectorizing for SIMD to increase compute den-
sity, partitioning work and load balancing among multiple
cores, and multiway merging to eliminate the bandwidth
bound stages for large input sizes. In addition, our imple-
mentation uses either wider sorting network or multiple in-
dependent networks to increase parallelism and hide back-
to-back instruction dependences. These optimizations en-
able us to sort 256M numbers in less than 2.5 seconds on
a 4-core processor. We project near-linear scalability of our
implementation with up to 64-wide SIMD, and well beyond
32 cores.

8. ACKNOWLEDGEMENTS
We would like to thank Hiroshi Inoue for sharing the

PowerPC performance numbers and Professor John Owens,

Mark Harris and Nadathur Rajagopalan Satish for providing
the Nvidia GPU numbers. We are also thankful to Ronny
Ronen for his comments on an initial version of the paper,
and the anonymous reviewers for their insightful comments
and suggestions.

9. REFERENCES
[1] K. E. Batcher. Sorting networks and their applications. In

Spring Joint Computer Conference, pages 307–314, 1968.

[2] G. Bilardi and A. Nicolau. Adaptive bitonic sorting: an optimal
parallel algorithm for shared-memory machines. SIAM J.
Comput., 18(2):216–228, 1989.

[3] Intel 64 and IA-32 architectures optimization reference manual.
http://www.intel.com/products/processor/manuals.

[4] M. V. de Wiel and H. Daer. Sort Performance Improvements in
Oracle Database 10g Release2. An Oracle White Paper, 2005.

[5] R. Francis and I. Mathieson. A Benchmark Parallel Sort for
Shared Memory Multiprocessors. IEEE Transactions on
Computers, 37:1619–1626, 1988.

[6] R. S. Francis, I. D. Mathieson, and L. Pannan. A Fast, Simple
Algorithm to Balance a Parallel Multiway Merge. In PARLE,
pages 570–581, 1993.

[7] B. Gedik, R. R. Bordawekar, and P. S. Yu. CellSort: High
Performance Sorting on the Cell Processor. In VLDB ’07,
pages 1286–1297, 2007.

[8] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
GPUTeraSort: High Performance Graphics Co-processor
Sorting for Large Database Management. In Proceedings of the
ACM SIGMOD Conference, pages 325–336, 2006.

[9] A. Gress and G. Zachmann. GPU-ABiSort: Optimal Parallel
Sorting on Stream Architectures. International Parallel and
Distributed Processing Symposium, 2006, April 2006.

[10] M. Gschwind. Chip Multiprocessing and the Cell Broadband
Engine. In CF ’06: Proceedings of the 3rd conference on
Computing frontiers, pages 1–8, 2006.

[11] H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani.
AA-Sort: A New Parallel Sorting Algorithm for Multi-Core
SIMD Processors. In PACT ’07, pages 189–198, 2007.

[12] Intel Advanced Vector Extensions Programming Reference.
http://softwarecommunity.intel.com/isn/downloads/intelavx/Intel-
AVX-Programming-Reference-31943302.pdf/,2008.

[13] D. E. Knuth. The Art of Computer Programming, Volume 3:
(2nd ed.) Sorting and Searching. 1998.

[14] S. Lacey and R. Box. A Fast, Easy Sort. Byte Magazine, pages
315–320, 1991.

[15] W. A. Martin. Sorting. ACM Comp Surv., 3(4):147–174, 1971.

[16] T. Nakatani, S.-T. Huang, B. Arden, and S. Tripathi. K-way
Bitonic Sort. IEEE Transactions on Computers,
38(2):283–288, Feb 1989.

[17] R. Parikh. Accelerating QuickSort on the Intel Pentium 4
Processor with Hyper-Threading Technology.
softwarecommunity.intel.com/articles/eng/2422.htm/, 2008.

[18] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and
P. Hanrahan. Photon mapping on programmable graphics
hardware. In ACM SIGGRAPH 2005 Courses, 2005.

[19] N. R. Satish, M. Harris, and M. Garland. Designing Efficient
Sorting Algorithms for Manycore GPUs. Submitted to
SuperComputing 2008.

[20] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,
R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.
Larrabee: A Many-Core x86 Architecture for Visual
Computing. Proceedings of SIGGRAPH, 27(3):to appear, 2008.

[21] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan
primitives for GPU computing. In ACM symposium on
Graphics hardware, pages 97–106, 2007.

[22] E. Sintorn and U. Assarsson. Fast Parallel GPU-Sorting Using
a Hybrid Algorithm. In Workshop on General Purpose
Processing on Graphics Processing Units, 2007.

[23] P. Tsigas and Y. Zhang. A Simple, Fast Parallel
Implementation of Quicksort and its Performance Evaluation
on SUN Enterprise 10000. pdp, 00:372, 2003.

[24] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain,
S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-Tile
1.28TFLOPS Network-on-Chip in 65nm CMOS. In Proceedings
of Solid-State Circuits Conference, pages 98–589, 2007.

1324

