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Abstract—The well known backpropagation learning algo-
rithm is implemented in a FPGA board and a microcontroller,
focusing in obtaining efficient implementations in terms of
resource usage and computational speed. The algorithm was
implemented in both cases using a training/validation/testing
scheme in order to avoid overfitting problems. For the case of the
FPGA implementation, a new neuron representation that reduces
drastically the resource usage was introduced by combining the
input and first hidden layer units in a single module. Further, a
time-division multiplexing scheme was implemented for carrying
out product computations taking advantage of the built-in DSP
cores. In both implementations, the floating point data type
representation normally used in a PC has been changed to a
more efficient one based on a fixed point scheme, reducing system
memory variable usage and leading to an increase in computation
speed. The results show that the modifications proposed produced
a clear increase in computation speed in comparison to the
standard PC-based implementation, demonstrating the usefulness
of the intrinsic parallelism of FPGAs in neurocomputational tasks
and the suitability of both implementations of the algorithm for
its application to real world problems.
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I. INTRODUCTION

T
HE backpropagation algorithm (BP) is the most used

learning procedure for training multilayer neural net-

works architectures. Even if the algorithm was originally

proposed by Werbos in 1974 [1], it was not until 1986

that it become popularized through the work of Rumelhart

et al. [2]. The BP algorithm is a gradient descent based

method that minimizes the error between target and actual

network outputs, computing the derivatives of the error in an

efficient way [3], [4], [5]. As a gradient descent algorithm the

search for a solution can get stuck in a local minima but in

practice the algorithm is quite efficient, and as so it has been

applied to a wide range of areas from pattern recognition [6],

medical diagnosis [7], stock market prediction [8], etc. Real-

time applications require extra computational resources [9],

involving in some cases also energy consumption restrictions,

and thus the use of embedded (dedicated) systems [10] or low

power consumption devices are needed, as in those cases a PC

might not be the most adequate device for executing neural

network models.
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Field Programmable Gate Arrays (FPGA) are reconfigurable

hardware devices that can be reprogrammed to implement

different combinational and sequential logic created with the

aim of prototyping digital circuits, as they offer flexibility

and speed. In recent years, the advance in technology have

permitted to construct FPGAs with considerable large amounts

of processing power and memory storage, and as so they

have been applied in several domains (telecommunications,

robotics, pattern recognition tasks, infrastructure monitoring,

etc.) [11], [12], [13]. In particular FPGAs seem quite suitable

for neural network implementations as they are intrinsically

parallel devices as is the processing of information in neural

network models. Several studies have analyzed the implemen-

tation of neural networks models in FPGAs [14], [15], [16],

[17], [18], [19], but it is worth noting the difference between

off and on chip implementations. In off-chip learning imple-

mentations [20], [21] the training of the neural network model

is usually performed externally in a personal computer (PC),

and only the synaptic weights are transmitted to the FPGA that

acts as a hardware accelerator, while on-chip learning imple-

mentations includes both training and execution phases of the

algorithm [22], [23], [18]. Existing specific implementations

of the artificial neural network backpropagation algorithm in

FPGA boards include the works of [24], [25], [26], noting that

despite recent advances on the computational power of these

boards, still the size of the neural architectures that can be

implemented is quite limited. FPGA boards are predominantly

programmed using hardware description languages such as

VHDL (VHSIC Hardware Description Language) or Verilog

and programming them is usually very time consuming.

Apart from FPGAs, other devices very much used in neural

network applications are microcontrollers, which are small

and low-cost computers built on a single integrated circuit

containing a processor core, memory, and programmable in-

put/output peripherals built for dealing with specific tasks.

These devices are commonly used in sensor nodes (widely

used in wireless sensor network (WSN) [27]) usually under

environmental changing conditions, because they are an eco-

nomic, small and flexible solutions to interpret signals from

various sensors and take a decision according to the inputs

received [28], [29], [30], [31], [32], [19]. An advantage of

microcontrollers is that they can be easily programmed using

standard programming languages such as C, C++, Java, etc.,

while their main limitations are memory size and computing

speed.

In the present work, we have implemented the backprop-

agation algorithm in a VIRTEX-5 XC5VLX110T FPGA and
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an Arduino Due microcontroller. Our aim was two fold: first,

to obtain efficient implementations on both types of devices

that permit its practical application in real life problems and

second to compare the efficiency between them and to a

standard PC based implementation. The organization of the

present work is as follows: next section includes details about

the BP algorithm. The FPGA implementation is described

in Section III, which contains four parts: the first three

subsections describe each one of the three blocks used for the

algorithm implementation, while the fourth subsection deals

with specific implementation details. Section IV contains the

microcontroller implementation of the algorithm followed by

the Results section that presents results of both implemen-

tations on a set of benchmark functions, together with a

detailed analysis of the computational costs involved (number

of cycles and execution times) and of the general functioning

of the algorithm. The work finishes with the discussion and

conclusions.

II. THE BACKPROPAGATION ALGORITHM

The backpropagation algorithm is a supervised learning

method for training multilayer artificial neural networks, and

even if the algorithm is very well known, we summarize

in this section the main equations in relationship to the

implementation of the backpropagation algorithm, as they are

important in order to understand the current work.

Let’s consider a neural network architecture comprising

several hidden layers. If we consider the neurons belonging to

a hidden or output layer, the activation of these units, denoted

by yi, can be written as:

yi = g





L
∑

j=1

wij · sj



 = g(h) , (1)

where wij are the synaptic weights between neuron i in

the current layer and the neurons of the previous layer with

activation sj . In the previous equation, we have introduced h
as the synaptic potential of a neuron. g is a sigmoid activation

function given by:

g(x) =
1

1− e−βx
(2)

The objective of the BP supervised learning algorithm is to

minimize the difference between given outputs (targets) for a

set of input data and the output of the network. This error

depends on the values of the synaptic weights, and so these

should be adjusted in order to minimize the error. The error

function computed for all output neurons can be defined as:

E =
1

2

p
∑

k=1

M
∑

i=1

(zi(k)− yi(k))
2, (3)

where the first sum is on the p patterns of the data set and

the second sum is on the M output neurons. zi(k) is the

target value for output neuron i for pattern k, and yi(k) is the

corresponding response output of the network. By using the

method of gradient descent, the BP attempts to minimize this

error in an iterative process by updating the synaptic weights

upon the presentation of a given pattern. The synaptic weights

between two last layers of neurons are updated as:

∆wij(k) = −η
∂E

∂wij(k)
= η[zi(k)− yi(k)]g

′

i(hi)sj(k), (4)

where η is the learning rate that has to be set in advance (a

parameter of the algorithm), g′ is the derivative of the sigmoid

function and h is the synaptic potential previously defined,

while the rest of the weights are modified according to similar

equations by the introduction of a set of values called the

“deltas” (δ), that propagate the error form the last layer into

the inner ones.

Training and validation processes: The training procedure

is executed a certain number of times (epochs) using the

training patterns. In one epoch, the training patterns are all

presented once in random ordering, adjusting the synaptic

weights in an on-line manner. A well known and severe

problem affecting all predictive algorithms is the problem of

overfitting, caused by an overspecialization of the training

procedure on the training set of patterns [33]. In order to

alleviate this effect, one straightforward alternative is to split

the set of available training patterns in training, validation

and test sets. The training set will then be used to adjust

the synaptic weights according to Eq. 4, while the validation

set is used to control overfitting effects, storing in memory

the values of the synaptic weights that have so far led to the

lowest validation error, so when the training procedure ends,

the algorithm returns the stored set of weights. The test set is

used to estimate the performance of the algorithm in unseen

data patterns.

III. FPGA IMPLEMENTATION OF THE BP ALGORITHM

FPGAs [34] are reprogrammable silicon circuits, using

prebuilt logic blocks and modifiable routing resources that can

be configured to implement custom hardware. Besides the fact

that FPGAs can be completely reconfigured allowing to change

its behavior almost instantaneously by loading a new circuitry

configuration, they can be also used as hardware accelerators,

in particular for neural based applications given their intrinsic

parallel computational capabilities. FPGAs are usually pro-

grammed using a hardware description language (VHDL). For

the current implementation we used the Virtex-5 OpenSPARC

Evaluation Platform (ML509) that includes a Xilinx Virtex-

5 XC5VLX110T FPGA. The board was programmed using

the “Xilinx ISE Design Suite 12.4” environment within the

“ISim M.81d” simulator. Fig. 1 shows a picture of a Virtex-5

OpenSPARC board, and Table I shows some characteristics of

the Virtex-5 XC5VLX110T FPGA, indicating its main logic

resources. The table indicates for the mentioned board the

number of slice registers, Look-Up Tables (LUTs), Bonded

Input-Output Banks (IOB), Block RAM (BR) and DSP48

cores. Given that every computation in the FPGA has to

be defined from first principles, they usually contain DSPs

for helping to perform certain operations. A Digital Signal

Processor, or DSP, is a specialized microprocessor that has an

architecture optimized for the fast operational needs of digital

signal processing. A Digital Signal Processor (DSP) process
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Fig. 1. Picture of a Virtex-5 OpenSPARC Platform used for the implemen-
tation of the C-Mantec algorithm.
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Fig. 2. Scheme of the FPGA design where control, pattern and architecture
blocks are shown together with the information exchanged between them.

data in real time, making it ideal for applications that can not

tolerate delays [35], [36].

TABLE I
MAIN SPECIFICATIONS OF THE VIRTEX-5 XC5VLX110T FPGA RELATED

TO ITS AVAILABLE SLICE LOGIC.

Device
Slice Slice Bonded

BR DSP48
Registers LUTs IOBs

Virtex-5
69,120 69,120 34 148 64

XC5VLX110T

The FPGA implementation of the BP algorithm was carried

out using three blocks: control, pattern and architecture blocks.

The control block organizes the whole information process by

sending and processing the information from the architecture

and pattern blocks. The pattern block manages the exchange

of information between the PC and FPGA for reading the

set of patterns to be stored in blocks RAM, and also is used

to send a given pattern to the architecture block, that it will

be in charge of the training process. Circuit computations

have been programmed using fixed point arithmetic which is

the standard way to work with FPGA boards. Floating point

operations can be codified in a FPGA but they tend to be

inefficient in comparison to fixed point representation [25]. We

describe below the organization of each one of the three blocks

in separate subsections, followed by a fourth subsection that

comments on specific implementations details. Fig. 2 shows

a diagram of the FPGA design, where the three blocks used

are shown together with the information that is exchanged

between them.

A. Pattern block

The pattern block manages the data exchange between the

PC and the FPGA board through the serial communication

RS-232 port of the device. This port has been used because

it can be easily implemented in VHDL and ported to other

architectures.

To start the process, the user sends the set of parameters of

the algorithm and the training patterns. The set of parameters

specifies the number of training (#Train) and validation

patterns (#V alid), the number of neurons in each layer

(#Ni), the number of epochs (#Epoch), and the learning rate

value η. The training and validation data sets are stored in the

distributed-RAM block of the FPGA, storing the training set in

the first positions and the validation in the following ones. Two

bytes (1 byte = 8 bits) of memory are used for representing

each attribute and each class of a pattern, and thus the total

occupied memory of the data set is defined by the equation:

#bytes = 2 · (NI +NO) · (#V alid+#Train), (5)

where NI is the number of inputs (attributes) and NO is the

number of output classes.

During the execution of the algorithm the pattern block

might receive two different signals from the control block in

order to send a random training or validation pattern. To avoid

training several times a given pattern, the memory position of

the last sent pattern is switched with the one corresponding

to the final eligible memory position, while the number of

eligible memory positions is reduced by 1. This action is

repeated until the eligible memory is null, finishing the epoch

at this moment and starting a following one. The same process

is applied for both training and validation sets independently.

B. Control block

The control block organizes the whole information flow

process within the FPGA board by sending and processing

the information from the architecture and pattern blocks. The

structure of this block is organized into two main processes:

i) First, the main function of this block is to control two

activation signals that indicate whether a training or a val-

idation pattern should be sent to the architecture block. In

order to perform this action the control block receives a signal

value from the pattern block that indicates the total number of

training (#train) and validation (#val) patterns set for the whole

learning procedure. ii) The secondary process of this block is

to execute the validation process, included with the aim of

avoiding overfitting effects. In essence, this process computes

an error value using the validation set of patterns to store the

synaptic weight values that have led to the smallest validation

error thus far as the training of the network proceeds. The
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Fig. 3. Flowchart of the FPGA control block operations. The region inside
the dashed line corresponds to the validation procedure implemented.

implementation of the whole validation process in the FPGA

is detailed in section III-B.

When the computations starts, the set of patterns are loaded

into the pattern block that sends a signal to the control block

in order to start the execution of the algorithm. Fig. 3 shows a

flowchart of the control block operations. At the beginning

of the process, a set of counters related to the number of

training patterns, number of validation patterns and number of

epochs are initialized to zero. If the number of actual training

patterns has not reached the value # Train (set by the user),

the training procedure starts by sending a signal to the pattern

block indicating that a random chosen training pattern should

be sent to the architecture block. The architecture block will

then train the network, sending back a signal (S_Train) to

the control block when the training of this pattern finishes,

increasing the trained pattern counter Count1. When this

value gets equal to the total number of training patterns, then

the validation process start (this step is described in detail

below). After the validation process, an epoch counter is used

for checking whether the whole training-validation procedure

should continue or not, as the previous steps are repeated until

the maximum number of epochs (# Epoch) is reached.

Validation process: The validation process, included to

prevent overfitting problems, is executed after finishing a

training epoch. This process requires the storing of the lowest

validation error obtained so far (as the training procedure

advances) together with the synaptic weights that led to this

error. When this procedure is activated at the end of a training

epoch, it computes the mean square error (MSE) for the

validation set, and if this value is lower than the stored one,

then it is saved together with all synaptic weights in a block

RAM using a FIFO procedure. As the neurons included in the

network architecture are indexed, the control block demands

sequentially the set of synaptic weights associated to each

neuron so they can be stored in a single FIFO RAM while

preventing memory collision problems. The flowchart of the

TABLE II
NUMBER OF EMPLOYED RESOURCES FOR THE REALIZATION OF EACH

TYPE OF POSSIBLE NEURON.

Resource
Resource for type of Neuron

Input InpHid Hidden Output

LUTs 524 1126 923 502
Register 254 396 391 255
DSP48 1 1 1 1

Block RAM 1 1 1 1

validation process is included in Fig. 3.

C. Architecture block

The architecture block is in charge of the physical imple-

mentation of the neural network architecture. The number of

layers and the maximum number of neurons in each layer

has to be predefined by the user before the execution of the

algorithm.

Previous works [37], [38], [23] use three different types of

neurons, corresponding to input, hidden and output layer neu-

rons, as they all have different functionalities. Nevertheless, we

decide to use a different approach in order to optimize further

the FPGA resources, and thus the proposed implementation

eliminate input layer neurons as they are included together

with the first hidden layer neurons in a new module that we

name input-hidden neurons. The definition of this new type

of module is possible, mainly because the input layer neurons

do not process the information as they simple act as input to

the network. The implementation of the neurons consists of a

group of LUTs (LookUp Table) with a specific functionality

of the backpropagation algorithm. The input-hidden neurons

manage the input data, the synaptic weights between the input

and first hidden layer, the output computation of the first

hidden neuron and also the synaptic weights connecting to the

output or to a further hidden layer. The hidden layer modules

(in case they are included) compute the neuron activation and

store the values of the synaptic weights connecting to further

neurons. Finally, the output modules evaluate the value of the

output units in order to compute the error of the presented

pattern. A scheme of a two hidden layer neural network is

shown in Fig. 2 where the three different types of modules

are indicated. The table II shows the number of employed

resources by each type of neuron with a word size of 32 bits,

16 for the integer part (N1) and 16 to the decimal part (N2).

The election of the word size is described in section III-D1

To specify a given architecture the number of active neurons

in each layer should be sent to the FPGA as part of the

setting data set. However the system are composed of a deter-

mined number of neurons and layers, so that the architecture

of the network and the maximum number of neurons are

predetermined and delimited by the resources of the device.

The novel layer (the first layer blocks), that is employed in

this implementation, reduces the required resources for any

architecture. Table III shows board resources needed by the

proposed method (Prop.) for different size neural architectures

in comparison to a conventional implementation (Conv.) , and

also to the published results in Ref. [38] (Gomp.).
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TABLE III
NUMBER OF EMPLOYED RESOURCES FOR THE REALIZATION OF EACH

TYPE OF POSSIBLE NEURON.

Architecture Type
Resource

LUTs Regis. BR DSP

10− 3− 1
Conv. 11044 6676 79 15
Gomp. 8043 2243 – 70
Prop. 6413 4151 69 5

10− 6− 3− 2
Conv. 17084 9277 86 22
Gomp. 20021 5342 – 169
Prop. 13062 6767 76 12

10− 50− 1
Conv. 54425 25053 126 62
Prop. 59335 22763 116 52

30− 30− 10−2
Conv. 56177 26478 137 73
Prop. 46547 19008 107 43

50− 10− 10− 5
Conv. 49703 24503 140 76
Prop. 25533 11853 90 26

60− 15− 10− 5
Conv. 59558 28998 155 91
Prop. 33163 13833 95 31

Reduction mean 25.8% 35.2% 23.5% 50.1%

D. Implementation details

We describe below details related to the choice of synaptic

weights precision, for carrying out the implementation of

products, and about the computation of the sigmoid function

used as the transfer function of the neurons.

1) Synaptic weights precision: The representation of the

synaptic weights can be chosen according to the available

resources, taking into account that requiring higher accuracy

may need a larger representation, leading also to an increase

in the number of LUTs per neuron (consequently reducing

the maximum number of available neurons), and a decrease in

the maximum operation frequency of the board. On the other

hand, synaptic weights accuracy cannot be much reduced, as

a proper operation of the backpropagation algorithm requires

a certain level of precision [39], [25]. A synaptic weight is

represented by a bit array with integer and fractional parts of

length N1 and N2. N1 determines the minimum and maximum

values that can be represented −2(N1−1) to 2(N1−1) while N2

defines the accuracy 2(−N2). The number of bits needed to

represent all possible discrete values within a certain range

of positive values depends on the difference between the

maximum and minimum of the interval, and can be obtained

from the following equation:

#bits = log2((1 +max(wij))/(min(wij))). (6)

Table IV shows the number of LUTs needed to represent

each type of neuron modules as a function of the number

of bits used for representing the synaptic weights. N1 and

N2 indicate the integer and fractional parts of the synaptic

weight representation. The last column shows the maximum

whole system operation frequency allowed for the chosen

representation.

TABLE IV
NUMBER OF LUTS PER EACH TYPE OF POSSIBLE NEURON MODULE

ACCORDING TO THE NUMBER OF BITS USED FOR REPRESENTING THE

SYNAPTIC WEIGHTS.

N1 N2

LUTs per type of Neuron fmax

Input InpHid Hidden Output (MHz)
8 8 347 723 592 343 191.2
8 12 390 871 671 409 186.7
8 16 433 1028 763 448 183.7
12 12 430 913 740 425 183.7
12 16 476 1031 859 475 180.6
16 16 524 1126 923 502 177.3

2) Product implementation: The execution of the backprop-

agation algorithm requires the computation of several products,

mainly between neuron activations and synaptic weights values

(see Eqs. 1 - 4), and so an efficient implementation of this

operation is crucial in order to optimize board resources

(affecting the number of LUTs per neuron required and

the operation frequency of the FPGA). Multipliers can be

implemented by shifters and adders, following the approach

presented in [40] or by available specific DSP cores in the

FPGA. The number of required LUTs for the first type of

implementation is proportional to the bit size of the input data,

as for example, for two vectors with Na and Nb bits length

respectively, the product requires Na×Nb LUTs while for the

second type of implementation, one DSP for each neuron is

needed (clearly this puts a limitation in the maximum number

of neurons in the system). We decided to use the DSP based

strategy as the board frequency operation can be up to four

times faster, as we measured the operation of the board without

using the DSPs.

For an efficient use of the DSP resources, we implemented a

time-division multiplexing scheme, using only one multiplier

block per neuron and thus performing sequentially the com-

putation of several products. This time-division multiplexing

scheme is shown in Fig. 4. The neuron module comprises a

first block (we named it neuron block) that includes several

LUTs, registers and one BR, while a second block consists

just of a DSP. Both blocks are synchronous but the DSP uses

a frequency two times larger than the one used by the neuron

block, so that a product operation could be completed in one

operation cycle of the FPGA.

3) Implementation of the Sigmoid function: The operation

of the neurons involves the computation of sigmoid functions

for obtaining the output value of the neurons. As we are

using a fixed point representation (as it is more efficient than

the floating point one), then the computation of the sigmoid

function needs the use of an approximation. A look-up table

containing equispaced values of the function has been created

to obtain certain number of output values. Neverthless, as

high precision values are needed for the correct execution of

the algorithm, the computation of the function approximation

was further complemented by a linear interpolation procedure

using the two adjacent tabulated values (lower and larger)

with respect to the input. Storing table values requires large

amounts of memory, and as one table per neuron is needed, this

number should be optimized. 64 tabulated values were used, as

this ensures the obtention of absolute errors lower than 10−3.

These values start from −8 to 8 with 0.25 increasing steps
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Fig. 6. Picture of an Arduino DUE board used for the implementation of the
C-Mantec algorithm.

IV. MICROCONTROLLER (µC) IMPLEMENTATION

We have further implemented the backpropagation algo-

rithm in an Arduino DUE microcontroller. We describe below

in several subsections all the details of the implementation

process, highlighting the results of a comparison carried out

between using a fixed point representation or a floating point

one.

A. The Arduino board

Arduino is a single-board microcontroller designed to make

the process of using electronics in multidisciplinary projects

more accessible [41]. The hardware consists of a simple open

source board designed around an 32-bit Atmel ARM core

microcontroller, and the software includes a standard program-

ming language compiler that runs in a standard PC and a boot

loader for loading the compiled code on the microcontroller.

Arduino is a descendant of the open-source Wiring platform

and is programmed using a Wiring-based language (syntax and

libraries), similar to C++ with some slight simplifications and

modifications, and a processing-based integrated development

environment.

The Arduino DUE is based on the SAM3X8E ARM Cortex-

M3 CPU [42], and it has 54 digital input/output pins (of which

12 can be used as PWM outputs), 12 analog inputs, 4 UARTs

(hardware serial ports), a 84 MHz clock, an USB OTG capable

connection, 2 DAC (digital to analog), and a reset and erase

buttons. The SAM3X has 512 KB (2 blocks of 256 KB) of

flash memory for storing code, it also comes with a preburned

bootloader that is stored in a dedicated ROM memory. The

available SRAM amounts to 96 KB in two contiguous banks

of 64 and 32 KB. A picture of the Arduino DUE board is

shown in Fig. 6.

B. Learning and execution phases of the algorithm

The implementation of the backpropagation neural network

learning model comprises two phases: the learning phase

where the synaptic weights of the chosen architecture are

adjusted according to the set of patterns presented to the

network, and the execution phase in which the microcontroller

outputs a signal in response to sensed input data according to

the model previously adjusted.

The learning phase has been divided into two different pro-

cesses: loading of input patterns and neural network training.
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Data can be loaded into the microcontroller memory on-line

by I/O pins or by a serial communication USB port (this last

option was the used one in the current implementation for

simplicity reasons), but in both cases, the patterns have to be

stored into the memory board because the learning process

works in cycles in which patterns are repeatedly used. The

microcontroller memory has been further divided in two parts,

one of 64 KB for the loading process, which is used for storing

the inputs patterns, and a second part comprising 32 KB of

memory to be used for system variables. This second part of

memory is used for storing the value of the synaptic weights,

and all other variables of the algorithm, like the activation

value of the neurons, the deltas, the learning rate, etc. The

neural network training phase consists of the backpropagation

algorithm itself that was implemented with a validation phase

to avoid overfitting effects. Once the training phase finishes

the synaptic are stored in the memory block of 64 KB.

The execution phase is programmed to be carried out from

external data, as usually the microprocessor will be used as

an independent sensor. In this mode, a pattern would be read

from a sensor connected to one of the ports of the board, and

the previously trained model will be executed to obtain the

neural network output.

C. Pattern storage

The number of bits used for representing each of the

inputs of a pattern has to be decided in advance of the

implementation. In the present case, 8 bits have been used

to represent each variable, taking into account that these

input values have to be previously normalized between 0 and

255. Using this representation for the patterns, the maximum

number of samples that can be stored in a 64KB memory is

given by the following equation:

NP · (NI +NO) ≤ 65536 , (7)

where NP is the number of patterns, NI is the number of

input variables (the dimension of the patterns) and NO is the

number of outputs of the patterns that determines the number

of output of the neural architecture.

D. Data type representation

The microcontrollers are devices with limited computing

power so in order to speed up the learning process, we decided

to utilize a fixed point data representation. We note that

floating point is the usual data type representation used in this

kind of device but this representation is not always the most

efficiency. This paradigm shift involves important changes in

the way the BP algorithm is programmed but in return offers

a faster learning process and a smaller size representation

of variables. The following list give details of the type of

representation used for variables related to the implementation

of the neurons:

- deltas (δ): 2 bytes integer.

- Synaptic weights(w): 2 bytes integer.

- Outputs (y): 2 bytes integer.

The previous choice for the representation of the neural

network related variables affects the maximum network size

that can be utilized. The total number of neurons (NN ) in the

whole architecture can be expressed as the sum of the number

of neurons in each layer (NN = NN1 + NN2 + ...), so the

maximum number of neurons used in each layer should verify

the following constraint:

2 · (NN1 +NN2 + ...) +

+2 · (NI ·NN1 +NN1 ·NN2 +NN2 ·NN3 + ...) +

+2 · (NN1 +NN2 + ...) 6 32768, (8)

where the first term relates to the variable storage space for the

δs, the second term account for the synaptic weights between

all the layers of neurons, and the last term is related to the

output value of the neurons in each layer. (NN1 represents the

number of neurons in the first layer, NN2 of the second layer

and so on, while NI is used for the number of inputs).

From the 2 bytes used for representing the variables of

the system, 10 bits were used for the decimal part, and the

remaining 6 for the integer part, and thus the value of the

system variables ranges between 32 and −32. A special case

was the representation used for the variable computing the

summation of the synaptic potential, because in order to avoid

saturation effects a 4 bytes representation was used.

E. Computation of the Sigmoid function

The computation of the sigmoid function can be imple-

mented using the specific ALU (arithmetic and logic unit) for

resolving the exponential function. The previous computation

involves two different variable conversions, the first related to

the input values of the sigmoid (casting from integer to a float-

ing point representation), and the second conversion is done

to the output value in a reverse casting. The computational

cost of implementing the previous method is high, with an

approximate time of operation of 62µs, and thus an alternative

method based on a lookup table plus linear interpolation

of adjacent values, similar to the one used in the FPGA

implementation, was chosen. The method is explained in detail

in section III-D3, and in this case the computation time

employed is reduced to 2µs (97% reduction in comparison

to the first mentioned method).

F. Fixed point vs floating point representation comparison

Figs. 7 Top, middle and bottom show the number of times

that the implementation based on integer data type is faster in

comparison to the floating point representation as a function

of the number of neurons in the different layers of the neural

architecture. An architecture with only one hidden layer has

been used to compute the values represented in the figure,

where NN represents the number of neurons, NI the number

of inputs and NO is used for the number of outputs. The Fig.

7 top shows the comparison for variable values of NN and

NI (keeping fixed NO equal to 1), Fig. 7 middle is computed

for different values of NN and NO with NI equals to 10,

and finally Fig. 7 bottom represents the values obtained as a

function of NI and NO for NN equals to 5.
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Fig. 7. Number of times that the fixed point representation used in the
microcontroller is faster than the floating point one for different number of
neurons in the layers of a one hidden layer architecture (see text for more
details).

V. RESULTS

We analyze in this section several aspects in relationship

to the two implementations of the backpropagation algorithm

carried out in a FPGA board and in an Arduino DUE mi-

crocontroller, considering also a third implementation of the

algorithm in personal computer (PC) for comparison purposes.

The PC implementation of the algorithm has been executed

under Matlab code and run in an Intel(R) core (TM) i5-3330

CPU @3.00GHZ with 16 GB of RAM memory. All three

implementations of the algorithm follow the same operation

steps and the only evident differences between them are

the random number generator used for the initialization of

the synaptic weights, the type of data representation used

in each case, and the computation of the sigmoid function.
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Fig. 8. Number of clock cycles involved in the learning process of a single
pattern according to the type of implementation used for the case of a 4−5−3
neural network architecture.

The FPGA implementation uses a LFSR random number

generation routine, while the microcontroller and the Matlab

code use the built-in random and randn functions respectively.

Fig. 8 shows the estimated number of clock cycles that each

implementation employs for the learning of an input pattern

for a single hidden layer neural network architecture with

a 4-5-3 structure. Each bar in the graph is further divided

in two parts: computation of the output of the network in

response to the input pattern (clear part of the bar), and cycles

involved in the modification of the synaptic weights including

the backward phase of the BP algorithm (dark part of the

bar) (Note the logarithmic scale of the graph). The number of

clock cycles in the FPGA implementation has been measured

straightforwardly using the ISIM simulator. The estimation of

the number of cycles for the microcontroller has been done

by computing the time that takes the computation of each

instruction of the algorithm, multiplying this value by the clock

frequency of the microcontroller (80 MHZ) and then summing

over all the instructions involved in the algorithm. The number

of cycles used in the PC-Matlab implementation cannot be

computed directly and has been estimated by measuring the

total computation time and multiplying this value by the CPU

frecuency (3 GHZ), even if a strict evaluation of the number

of cycles should involve taking into account other factors like

instructions of the operative system, libraries, etc. The method

used in the FPGA and microcontroller implementations per-

mits to estimate the number of operation cycles as a function

of the number of neurons in one hidden layer architecture

(NI , NN , and NO) and is represented inside the bars in Fig.

8. It is worth noting that even if in principle microcontroller

and computer codes used are quite similar, there are differ-

ences regarding the implementations as the data representation

used is different (fixed and floating point respectively), and

the computation of the sigmoid function values is done in

a different way (tabulated values plus interpolation for the

microcontroller vs ALU in the case of a computer). To test

the correct implementation of the BP algorithm in the FPGA

and microcontroller devices, we tested the training, validation

and test errors on a set of benchmark problems from the UCI
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database [43] frequently used in the literature. Table V shows

the accuracy (generalization ability) values obtained for the

three implementations of the algorithm for eleven benchmark

problems. The first three columns indicate the data set name,

number of inputs and outputs respectively, while the last three

columns shows the accuracy obtained by using neural network

architectures with 5 neurons in the single hidden layer, as the

number of inputs and outputs is determined by the problems

themselves. We have not optimized the neural architecture

for each problem as our aim is to demonstrate the correct

implementation of the algorithm and not to obtain optimal

values of prediction accuracy. For carrying out the simulations

a training, validation and test sets splitting was used in a 50-20-

30 % scheme; in which the validation set was used to find the

number of epochs for evaluating the test error, the maximum

number of epochs was set to 1000, and the learning rate was

equal to 0.2.

We further computed execution times for the whole learning

process (training and validation) for the same set of benchmark

functions mentioned above, and the results are shown in Fig.

9 for the FPGA, microcontroller and PC versions of the

backpropagation algorithm (note the logarithmic scale used

in the Y-axis of the figure). We also perform an analysis to

see how FPGA and microcontroller performances behaves in

comparison to the PC implementation as the complexity of

the functions grow. We have used the execution time needed

in the PC implementation timePC as an estimation for the

complexity of the benchmark functions, to obtain that the

number of times that the FPGA implementation is faster than

the PC (#timesFPGA) grows as #timesFPGA = 94 +
2 · timePC (Pearson correlation coefficient equals to 0.753),

while the analysis for the microcontroller shows not significant

performance increase: #timesµC = 1.6 + 0.0083 · timePC

(Pearson correlation coefficient equals to 0.25).

TABLE V
ACCURACY

Function #I #O PC FPGA µC

Diabetes 8 2 78.31 79.35 79.13
Cancer 9 2 95.63 95.73 95.60

Statlog (Heart) 13 2 78.52 78.27 78.26
Climate 18 2 93.27 94.14 94.51

Ionosphere 34 2 88.21 87.57 87.14
HeartC 35 2 78.80 80.11 80.22
Iris 4 3 92.22 92.77 90.89

Balance Scale 4 3 87.93 87.82 87.61
Seeds 7 3 97.62 96.51 96.66
Wine 13 3 88.89 87.04 86.67
Glass 10 6 93.85 91.54 92.31

Average 88.48 88.26 88.09

Fig. 10 shows the Root Mean Square Error (RMSE) ob-

tained for training and validation processes when the BP

algorithm is implemented in the FPGA, µC and PC as a

function of the number of epochs for the Iris data set using a

4-5-3 architecture (similar results were observed for all data

sets). It can be seen that the training error always decreases as

training advances being lower for the PC implementation than

for other two, indicating that a more precise representation (32

bit floating point) helps to adjust the synaptic weights during
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Fig. 9. Execution times (in Seconds) for the whole learning process (training
and validation) for the set of benchmark functions used for verifying the
correct implementation of the algorithm in the FPGA and Microcontroller
using neural network architectures with a single hidden layer (see text more
details).
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training. However for the validation RMSE, the three curves

are quite similar noting also that the values increase at certain

point of the process (approximately at 200 epochs), indicating

overfitting effects and justifying the use of a validation set.

As in general the interest on the application of supervised

neural networks to practical problems is related to prediction,

validation and test errors are the important features and thus

the results confirm that the representation used for the FPGA

and µC (16 bits fixed point) is adequate.

VI. DISCUSSION AND CONCLUSIONS

The backpropagation algorithm has been successfully im-

plemented in a FPGA board and in an Arduino microcon-

troller, in a learning paradigm that includes a validation

scheme in order to prevent overfitting effects. The implemen-

tation of the algorithm in the FPGA board involved several

challenges as hardware programming is a totally different
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paradigm approach in comparison to standard software pro-

gramming, and as such, we have first introduced a new neuron

representation that permits to increase the efficiency of the

traditional implementation, obtaining an average reduction of

25.8% in the total number of LUTs needed to implement

different architectures, as shown in Table III. Further improve-

ments are related to a time-division multiplexing scheme for

carrying out product computations taking advantage of the

FPGA DSP built-in cores, and a lookup table plus linear

interpolation scheme for computing the transfer function of

the neurons (the Sigmoid function). At the time of a real

implementation, the limitation in terms of the size of the

neural network architectures that can be simulated would come

from the specific FPGA board used, and this analysis can

be done from the results shown in table II. In our case in

which we are using a Xilinx Virtex V XC5VLX110T board

the main limitation comes from the number of available DSP

cores, as the mentioned board includes 64 DSP cores, and

thus this factor limits the maximum number of neurons in

the architecture to 63, as an extra core is needed in the

validation process. If we compare these new results with

previous published works, for example those appearing in [38],

we see a significant efficiency increase that will permit the

utilization of much larger neural architectures. Nevertheless

the efficiency increase for a particular case would depend on

the values of the combination of neural network architecture

parameters and resources of the FPGA board used.

Considering the microcontroller implementation, the stan-

dard floating point data type representation has been changed

to a more efficient one based on a fixed point scheme, reducing

system memory variable usage and an increase in computation

speed, obtaining that the Fixed point representation is approx-

imately 10 times faster than the floating point one (see Fig.

7).

The results shown in Fig. 10 indicate that the representation

used for the FPGA and microcontroller was adequate as

validation and test errors were similar to the PC imple-

mentation of the algorithm. The use of a lower precision

representation affects the learning error (it is lower for the

PC implementation) but it is not relevant regarding prediction

accuracy. We hypotethize that this fact might be related to the

effect observed when noise is added both to input and synaptic

weight values [44], that instead of having negative effects, it

can help to improve generalization by preventing overfitting

effects.

An estimation of the computation time (Fig. 9 involved

in relationship with the three implementations of the BP

algorithm (FPGA, µC and PC) shows the potential advantages

of using a FPGA board as a hardware accelerator device for

neurocomputing applications, obtaining a speed up of hundred

of times with an improvement increasing with the complexity

of the problem, highlighting the intrinsic parallelism of the

device.

As an overall conclusion, the present work shows the

potential advantages of using FPGA boards as hardware ac-

celerator devices for neurocomputing applications giving their

intrinsic parallel capabilities, while in relationship to the use

of neural networks in microcontrollers we highlight the "on-

chip" characteristic of the presented implementation that will

permit its use in remote sensors using a stand-alone operation

mode.

VII. ACKNOWLEDGEMENTS

The authors acknowledge support from Junta de Andaluca

through grants P10-TIC-5770 and P08-TIC-04026, and from

CICYT (Spain) through grant TIN2010-16556 (all including

FEDER funds).

REFERENCES

[1] P. J. Werbos, “Beyond regression: New tools for prediction and analysis
in the behavioral sciences,” Ph.D. dissertation, Harvard University, 1974.

[2] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[3] K. Mehrotra, C. K. Mohan, and S. Ranka, Elements of Artificial Neural

Networks. Cambridge, MA, USA: MIT Press, 1997.

[4] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1998.

[5] R. D. Reed and R. J. Marks, Neural Smithing: Supervised Learning in

Feedforward Artificial Neural Networks. Cambridge, MA, USA: MIT
Press, 1998.

[6] J. Li, K. Ouazzane, H. Kazemian, and M. Afzal, “Neural network
approaches for noisy language modeling,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 24, no. 11, pp. 1773–1784, Nov
2013.

[7] K. Misra, S. Chattopadhyay, and D. Kanhar, “A hybrid expert tool for
the diagnosis of depression.” Journal of medical imaging and health

informatics., vol. 3, no. 1, pp. 42–47, 2013.

[8] H. Mo and J. Wang, “Volatility degree forecasting of stock market
by stochastic time strength neural network.” Mathematical Problems in

Engineering., vol. 2013, pp. 1–11, 2013.

[9] G.-B. Huang and C.-K. Siew, “Real-time learning capability of neural
networks,” IEEE Transactions on Neural Networks, vol. 17, no. 4, pp.
863–878, July 2006.

[10] S.-M. Baek and J.-W. Park, “Hessian matrix estimation in hybrid systems
based on an embedded ffnn,” IEEE Transactions on Neural Networks,
vol. 21, no. 10, pp. 1533–1542, Oct 2010.

[11] E. Monmasson, L. Idkhajine, M. Cirstea, I. Bahri, A. Tisan, and
M. Naouar, “Fpgas in industrial control applications,” IEEE Transactions

on Industrial Informatics, vol. 7, no. 2, pp. 224–243, May 2011.

[12] D. Bacon, R. Rabbah, and S. Shukla, “Fpga programming for the
masses,” Queue, vol. 11, pp. 40–52, 2013.

[13] P. Conmy and I. Bate, “Component-based safety analysis of fpgas,” IEEE

Transactions on Industrial Informatics, vol. 6, no. 2, pp. 195–205, May
2010.

[14] D. Le Ly and P. Chow, “High-performance reconfigurable hardware
architecture for restricted boltzmann machines,” IEEE Transactions on

Neural Networks, vol. 21, no. 11, pp. 1780–1792, Nov 2010.

[15] Q. N. Le and J.-W. Jeon, “Neural-network-based low-speed-damping
controller for stepper motor with an fpga,” IEEE Transactions on

Industrial Electronics, vol. 57, no. 9, pp. 3167–3180, Sept 2010.

[16] W. Mansour, R. Ayoubi, H. Ziade, R. Velazco, and W. E. Falouh, “An
optimal implementation on fpga of a hopfield neural network,” Advances

in Artificial Neural Systems, vol. 2011, pp. 1–9, 2011.

[17] L.-W. Kim, S. Asaad, and R. Linsker, “A fully pipelined fpga ar-
chitecture of a factored restricted boltzmann machine artificial neural
network,” ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 1, pp.
5–23, Feb. 2014.

[18] F. Ortega-Zamorano, J. Jerez, and L. Franco, “Fpga implementation of
the c-mantec neural network constructive algorithm,” IEEE Transactions

on Industrial Informatics, vol. 10, no. 2, pp. 1154–1161, May 2014.

[19] F. Ortega-Zamorano, J. M. Jerez, J. L. Subirats, I. Molina, and L. Franco,
“Smart sensor/actuator node reprogramming in changing environments
using a neural network model,” Engineering Applications of Artificial

Intelligence, vol. 30, no. 0, pp. 179 – 188, 2014.

[20] S. Himavathi, D. Anitha, and A. Muthuramalingam, “Feedforward neural
network implementation in fpga using layer multiplexing for effective
resource utilization,” IEEE Transactions on Neural Networks, vol. 18,
no. 3, pp. 880–888, May 2007.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TNNLS.2015.2460991

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



11

[21] T. Orlowska-Kowalska and M. Kaminski, “Fpga implementation of the
multilayer neural network for the speed estimation of the two-mass drive
system,” IEEE Transactions on Industrial Informatics, vol. 7, no. 3, pp.
436–445, Aug 2011.

[22] A. Dinu, M. Cirstea, and S. Cirstea, “Direct neural-network hardware-
implementation algorithm,” IEEE Transactions on Industrial Electronics,
vol. 57, no. 5, pp. 1845–1848, May 2010.

[23] J. Shawash and D. Selviah, “Real-time nonlinear parameter estimation
using the levenberg-marquardt algorithm on field programmable gate
arrays,” IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp.
170–176, Jan 2013.

[24] A. Omondi and J. Rajapakse, FPGA Implementations of Neural Net-

works. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.
[25] A. Savich, M. Moussa, and S. Areibi, “The impact of arithmetic

representation on implementing mlp-bp on fpgas: A study,” IEEE

Transactions on Neural Networks, vol. 18, no. 1, pp. 240–252, Jan 2007.
[26] A. Gomperts, A. Ukil, and F. Zurfluh, “Implementation of neural

network on parameterized fpga.” in AAAI Spring Symposium: Embedded

Reasoning. Stanford University, CA, USA, 2010, pp. 45–51.
[27] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”

Comput. Netw., vol. 52, no. 12, pp. 2292–2330, Aug. 2008.
[28] M. Sayed-Mouchaweh and E. Lughofer, Learning in non-stationary

environments: Methods and Applications. Springer, New York, 2012.
[29] D. Urda, E. Canete, J. L. Subirats, L. Franco, L. Llopis, and J. M.

Jerez, “Energy-efficient reprogramming in wsn using constructive neural
networks,” International Journal of Innovative, Computing, Information

and Control, vol. 8, pp. 7561–7578, 2012.
[30] E. E. Canete, J. Chen, R.Luque, and B. Rubio, “Neuralsens: A neural

network based framework to allow dynamic adaptation in wireless sensor
and actor networks.” J. Network and Computer Applications, vol. 35,
no. 1, pp. 382–393, 2012.

[31] S. Mahmoud, A. Lotfi, and C. Langensiepen, “Behavioural pattern
identification and prediction in intelligent environments,” Appl. Soft

Comput., vol. 13, no. 4, pp. 1813–1822, Apr. 2013.
[32] M. Rassam, A. Zainal, and M. Maarof, “An adaptive and efficient

dimension reduction model for multivariate wireless sensor networks
applications,” Appl. Soft Comput., vol. 13, no. 4, pp. 1978–1996, Apr.
2013.

[33] D. M. Hawkins, “The problem of overfitting,” Journal of Chemical

Information and Computer Sciences, vol. 44, no. 1, pp. 1–12, 2004.
[34] S. Kilts, Advanced FPGA Design: Architecture, Implementation, and

Optimization. Wiley-IEEE Press, 2007.
[35] U. Meyer-Baese, Digital Signal Processing with Field Programmable

Gate Arrays, 3rd ed. Springer-Verlag New York, NJ, USA, 2007.
[36] Virtex-6 FPGA DSP48E1 Slice USer Guide (v1.3), Xilinx inc., 2011.
[37] C.-J. Lin and C.-Y. Lee, “Implementation of a neuro-fuzzy network with

on-chip learning and its applications,” Expert Syst. Appl., vol. 38, no. 1,
pp. 673–681, Jan. 2011.

[38] A. Gomperts, A. Ukil, and F. Zurfluh, “Development and implementation
of parameterized fpga-based general purpose neural networks for online
applications,” IEEE Transactions on Industrial Informatics, vol. 7, no. 1,
pp. 78–89, Feb 2011.

[39] M. Moussa, S. Areibi, and K. Nichols, On the Arithmetic Precision

for Implementing Back-Propagation Networks on FPGA: A Case Study,
A. R. Omondi and J. C. Rajapakse, Eds. Springer US, 2006.

[40] P. P. Chu, RTL Hardware Design Using VHDL: Coding for Efficiency,

Portability, and Scalability. John Wiley & Sons, 2006.
[41] J. Oxer and H. Blemings, Practical Arduino: Cool Projects for Open

Source Hardware. Berkeley, CA, USA: Apress, 2009.
[42] Atmel, “Datasheet atmel sam3x8e arm cortex-m3 cpu,”

http://www.atmel.com/Images/doc11057.pdf.
[43] U. of California Irvine, “Machine learning repository,”

http://archive.ics.uci.edu/ml/.
[44] G. An, “The effects of adding noise during backpropagation training

on a generalization performance,” Neural Comput., vol. 8, no. 3, pp.
643–674, Apr. 1996.

Francsico Ortega-Zamorano (born 1980) received
his M.Sc. and Ph.D. degree in computer science
from the University of of Málaga, Spain, in 2013
and 2015, respectively. He joined the Department of
Computer Languages and Computer Science, Uni-
versity of Málaga in 2011, where he is currently a
Postdoctoral Researcher. His current research inter-
ests include FPGA hardware implementation, neuro-
computational real-time systems, smart sensor net-
works and deep learning.

José M. Jerez received the Ph.D. degree in computer
science in 2003 from the University of Málaga,
Málaga, Spain. He is currently an Associate Profes-
sor with the University of Málaga. His research in-
terests lie in the areas of computational intelligence,
image analysis, and bioinformatics. In particular,
he is developing prediction software for biomedical
problems using artificial intelligence techniques in
collaboration with the Málaga University hospital.
He has participated in more than 15 research projects
funded by international and national boards and he

belongs to several reviewing scientific committees.

Daniel Urda Muñoz was born in Málaga, Spain
in 1982. He studied Computer Sciences at the Uni-
versity of Málaga obtaining his degree in February
2008. After completing a Master degree in Software
Engineering and Artificial Intelligence in June 2010,
he began his PhD studies. Finally, he finished his
doctorate in February 2015 at the University of
Málaga, mainly focused on developing predictive
models based on genetic profiles to identify robust
genetic signatures with high prediction capabilities
for applications of Personalized Medicine. Currently,

he is working as a Marie Curie postdoctoral researcher at Pharmatics Ltd. in
Machine Learning for Personalized Medicine.

Rafael M. Luque-Baena received the M.S. and
Ph.D. degrees in Computer Engineering from the
University of Málaga, Spain in 2007 and 2012,
respectively. He moved to Mérida, Spain in 2013,
and is currently a lecturer at the Department of
Computer Engineering in the Centro Universitario
de Mérida, University of Extremadura. He also
keeps pursuing research activities in collaboration
with other Universities. His current research interests
include visual surveillance, image/ video processing,
neural networks and pattern recognition.

Leonardo Franco (M’06 SM’13) received the
M.Sc. and Ph.D. degrees in 1995 and 2000, re-
spectively, both from the National University of
Córdoba, Argentina. He was then a postdoctoral
researcher at SISSA, Italy and Oxford University,
UK. Since 2005, he has been with the Computer
Science Department at Malaga University Spain
where he is currently an Associate Professor. His
research interests include neural networks, com-
putational intelligence, biomedical applications and
computational neuroscience. He has authored more

than 60 publications in journals and international conferences proceedings.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TNNLS.2015.2460991

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


