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Abstract—We present a spatial filtering approach to first-
order steerable Differential Microphone Arrays (DMAs) with
arbitrary planar geometry. In particular, the design of the spatial
filter is based on a recently proposed frequency-domain design
methodology that approximates, in a least-square sense, a target
beampattern using the Jacobi-Anger expansion involving Bessel
functions. Despite the generality of that approach, however, its
computational cost turns out to be excessive when working
with limited processing resources. The beamforming technique
proposed in this manuscript overcomes this issue by exploiting
the fact that in DMAs the spacing between sensors is typically
smaller than the smallest wavelength of audio signals of interest.
This allows us to substitute zero- and first-order Bessel functions
with their Taylor series approximation truncated to the first
order. Moreover, we show that this approximation allows us to
derive an efficient discrete-time-domain implementation of first-
order steerable differential beamformers based on arrays with
arbitrary geometries.

Index Terms—Beamforming, Differential Microphones

I. INTRODUCTION

Microphone array signal processing is a constantly growing

field of research for both academia and industry [1]–[6].

Spatial and temporal information gathered by microphone

arrays can be exploited for a wide variety of applications

that range from acoustic source localization [7]–[9], to speech

enhancement [10]–[13], and source separation [12]–[16]. Most

applications of the sort involve spatial filtering (beamforming)

techniques, which allow us to steer beams towards prescribed

directions. The simplest and most widespread beamforming

method is Delay-And-Sum (DAS) [1], [2], as it operates

by individually delaying, weighing; and then finally adding

together the sensor signals in order to shape a beampattern

that points towards a prescribed direction. The main issue with

DAS beamformers is in the fact that their spatial response

varies with frequency. In fact, the width of the beampattern’s

mainlobe increases as the frequency decreases.

One of the solutions adopted in the literature in order

to overcome this problem is the adoption of differential

microphone arrays (DMAs) [3]–[5], [17]–[29]. Thanks to

their small and compact aperture, DMAs exhibit a nearly

frequency-invariant beampattern. The literature is rich with

DMA methods based on different array geometries. The most

widespread ones are the uniform linear DMAs [3], [19], [22],

[30] and the uniform circular DMAs [4], [25]. Uniform linear
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DMAs exhibit limited steering performance as their beampat-

tern strongly depends on the steering direction; in fact, the

design of beams with a single mainlobe is possible only when

they are steered towards the end-fire directions. Moreover, they

suffer from the well-known problem of front-back ambiguity,

which often limits their applicability in practical scenarios.

Nonuniform linear DMAs have also been proposed in [31],

showing that they can significantly improve the robustness

against white noise with respect to uniform linear DMAs,

especially at low frequencies. Uniform circular DMAs, on

the other hand, exhibit much better steering capabilities. The

design of circular DMA has been widely addressed in the

literature (see [4], [18], [25], [32], [33] and references therein).

In particular, the method proposed in [18], [32] enables a

continuous steering of first-order beams by linearly combining

eigenbeams computed from the microphone signals. In [25],

starting from the theory of circular harmonics beamformers

[34], [35], the authors propose an optimal method, in a least-

squares error sense, for approximating a target beampattern,

steered in any direction, using the Jacobi-Anger expansion.

Linear and circular DMAs offer promising features but they

have hard constraints on their geometry. In some practical

scenarios (e.g., small-size embedded systems), this can be a

problem, as it might not be possible to place regularly spaced

sensors. In addition, fabrication errors can add uncertainty

to sensor positioning. All this raises the issue of how to

develop beamforming techniques for DMAs with arbitrary

geometry. An approach to the design of DMAs with arbitrary

geometry was addressed in [26] as an extension of the results

presented in [25]. In [26], for example, using a Jacobi-

Anger expansion for the approximation of the beampattern,

an algorithm is proposed that can form steerable beampatterns

with a microphone array of any planar geometry. Despite the

generality of this method, however, a significant computational

effort is required. Like most DMA beamformers, in fact, its

implementation is based on Short-Time Fourier Transform

(STFT) filtering. In addition, STFT filtering involves block

processing that can make frequency-domain beamformers un-

suitable for audio applications that require small delays (e.g.,

real-time audio communication). In order to overcome this

issue, time-domain beamformers have been discussed in the

literature (see [30], [36]–[38] and references therein). In [30],

[36], [37], in particular, time-domain differential beamformers

with linear and circular geometries are proposed. The design

of such beamformers is performed considering a time-domain
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Fig. 1: Illustration of an arbitrary array geometry.

acoustic model and it results in a set of FIR spatial filters

(one per sensor) whose derivation involves the solution of a

multidimensional linear system of equations; the length of the

FIR spatial filter affects the performance of the systems and

their computational cost. The author of [38], instead, proposes

a robust time-domain modal beamformer for circular arrays

with two processing stages: in the former, sensor data are

converted to the circular harmonics domain using a real-valued

discrete circular Fourier transform and then steered toward a

look-direction; the latter is based on a set of FIR spatial filters

(one per sensor).

In this manuscript, we develop a computationally inexpen-

sive data-independent differential beamformer for arrays with

arbitrary planar geometry, which can be implemented both

in the frequency domain and in the time domain. Starting

from [26], under the assumption that spacing between sensors

is smaller than the smallest wavelength of audio signals of

interest, we obtain a simple spatial filtering method that

allows us to efficiently steer first-order beams in any direction.

We show that the performance of the proposed method is

comparable with that of [26] in terms of white noise gain

(WNG), directivity factor (DF) and beampattern while the

computational cost is significantly reduced.

The rest of the manuscript is organized as follows. Section II

presents the signal model and the definition of beampattern.

Section III reviews the background on spatial filter design

based on the Jacobi-Anger expansion. Section IV and Sec-

tion V discuss the proposed beamforming method for planar

arrays with arbitrary geometry in the frequency-domain and

in the time-domain, respectively. Section VI presents some

simulation results and comparisons with respect to [26] in

terms of WNG, DF and beampattern. Section VII shows a

frequency-domain implementation and a time-domain imple-

mentation of the proposed system and provides a discussion

about the required computational cost. Finally, Section VIII

draws conclusions on the proposed solution.

II. SIGNAL MODEL AND DEFINITIONS

Let us consider an array of M microphones arbitrarily

placed on a two-dimensional plane. Assuming that the center

of mass of the array coincides with the origin of the Cartesian

coordinate system, we can express the position of the mth

microphone as follows

pm = rm [cos(ψm), sin(ψm)] , (1)

where rm is the distance from the origin of the axes and ψm
is the counterclockwise angle with respect to the positive x-

axis. A general illustration of the array geometry is shown in

Fig. 1. Given a source in the far field, we can express the

signal captured by the mth microphone as [25], [26]

Ym(ω) = Dm(ω, θs)X(ω) + Vm(ω), (2)

where ω = 2πf is the angular frequency, f is the temporal

frequency, X(ω) is the source signal, Vm(ω) models an

additive noise and Dm(ω, θs) models the propagation from the

source to the mth microphone with θs the direction of arrival

of the source. Under the far field assumption, Dm(ω, θs) can

be expressed as [26]

Dm(ω, θs) = ej
ωrm

c
cos(θs−ψm), (3)

where c is the speed of sound and j is the imaginary unit. In

vectorial form, (2) can be written as

y(ω) = d(ω, θs)X(ω) + v(ω), (4)

where the vectors are defined as

y(ω) = [Y1(ω), . . . , YM (ω)]
T

d(ω, θs) = [D1(ω, θs), . . . , DM (ω, θs)]
T

v(ω) = [V1(ω), . . . , VM (ω)]
T
.

(5)

In order to perform spatial filtering, microphone signals Ym(ω)
are combined as follows

Z(ω) =
M∑

m=1

H∗

m(ω)Ym(ω) = hH(ω)y(ω) , (6)

where H∗

m is the filter coefficient of the mth microphone;

the asterisk denotes conjugation; Z(ω) represents the output

of the beamformer; the superscript H denotes the Hermitian

operator; and h(ω) = [H1(ω), . . . , HM (ω)]
T

.

The sensitivity of a beamforming filter h(ω) to a plane

wave impinging on the array with an angle θ is known as

beampattern and it is mathematically expressed as

B [h(ω), θ] = hH(ω)d(ω, θ) =

M∑

m=1

H∗

m(ω)ej
ωrm

c
cos(θ−ψm).

(7)

Dealing with data-independent beamformers, when the filter

h(ω) is designed to steer a beam in the direction θs, the

function |B [h(ω), θ] |2 exhibits a maximum when evaluated

for θ = θs.

III. BACKGROUND ON BEAMFORMER DESIGN

In [26] the filter h(ω) is designed in such a way that the

resulting beampattern matches a target symmetric frequency-
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Fig. 2: STFT-based implementation scheme of the beamforming
method proposed in [26].

invariant beampattern steered towards θs. This target beam-

pattern is given by

B̄(b, θ, θs) =

N∑

n=0

an cos(n(θ − θs))

=
1

2

N∑

n=0

an

(
ejn(θ−θs) + e−jn(θ−θs)

)

=

N∑

n=−N

bne
jn(θ−θs) = bTΥ(θs)p(θ)

(8)

where N is the order of the beampattern,

{
b0 = a0

bi = b−i =
1
2ai i = 1, 2, . . . , N

(9)

and

b = [b−N , . . . , b0, . . . , bN ]
T

p(θ) =
[
e−jNθ, . . . , 1, . . . , ejNθ

]T

Υ(θs) = diag
(
ejNθs , . . . , 1, . . . , e−jNθs

)
.

(10)

The coefficients in the vector b determine the shape of the

beampattern and they can be designed following different

optimization criteria [20]. In order to express the beampattern

in (7) in a form that is similar to that of the target beampattern

in (8), we can use the Jacobi-Anger expansion (or circular

harmonics expansion) [4], [39]

ej
ωrm

c
cos(θ−ψm) =

+∞∑

n=−∞

jnJn

(ω
c
rm

)
ejn(θ−ψm), (11)

where Jn(·) is the nth order Bessel function of the first

kind. By truncating the Jacobi-Anger expansion to the N th

order and by substituting (11) in (7), we obtain the following

beampattern expression [4], [39]

B [h(ω), θ] =

M∑

m=1

H∗

m(ω)

N∑

n=−N

jnJn

(ω
c
rm

)
ejn(θ−ψm)

=

N∑

n=−N

jnejnθ
M∑

m=1

H∗

m(ω)Jn

(ω
c
rm

)
e−jnψm .

(12)

After equating (12) with the target beampattern B̄(b, θ, θs) in

(8), we obtain

N∑

n=−N

jnejnθ
M∑

m=1

H∗

m(ω)Jn

(ω
c
rm

)
e−jnψm

=

N∑

n=−N

bne
jn(θ−θs). (13)

By matching mode-by-mode the left-hand side and the right-

hand side of (13), we obtain

M∑

m=1

H∗

m(ω)jnJn

(ω
c
rm

)
e−jnψm = bne

−jnθs . (14)

For each n ∈ {−N, . . . , N} the expression in (14) can be

written in matrix form as follows

Ψ(ω)h(ω) = Υ∗(θs)b, (15)

where

Ψ(ω) =




(−j)−NψH
−N (ω)

...

ψH0 (ω)
...

(−j)NψHN (ω)




(16)

is a (2N + 1)×M matrix and

ψn(ω) =
[
Jn

(ωr1
c

)
e−jnψ1 , . . . , Jn

(ωrM
c

)
e−jnψM

]T
.

(17)

When M ≥ 2N + 1, the minimum norm solution of (15) can

be computed as follows

h(ω) = ΨH(ω)
[
Ψ(ω)ΨH(ω)

]
−1

Υ∗(θs)b. (18)

The scheme in Fig. 2 shows the implementation of the

described beamformer, based on STFT filtering. For each

time frame at each sensor a Fast Fourier Transform (FFT)

is performed and K multiplications with the filter coefficients

are computed, where 2K is the FFT length. Lastly, all the

filtered signals of the M microphones are summed at each

frequency bin and one inverse FFT provides the beamformer

output for the considered time frame.

Notice that, in order to derive the filter coefficients Hm(ω),
no particular assumptions have been made on the array geom-

etry. In the following sections, we will show that, assuming

the distances between sensors to be negligible with respect to

the wavelength of the audio signals of interest (usually true

with small-sized arrays used for differential beamforming), the

described spatial filtering process in Fig. 2 can be simplified
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in such a way that the computational cost will be significantly

reduced.

IV. BEAMFORMER DESIGN IN THE FREQUENCY DOMAIN

In the rest of the manuscript we consider first-order differ-

ential microphones (N = 1). As DMAs typically use closely

spaced omnidirectional sensors, we can assume that [18]

λ =
2πc

ω
≫ rm ⇒

ωrm
c
→ 0 ∀m = 1, . . . ,M, (19)

where λ is the wavelength. It is worth noticing that under

condition (19) the spatial aliasing problem, which is known

for creating undesired grating lobes, is greatly mitigated as

discussed in [4], [5], [40].

If (19) is true, zero-order and first-order Bessel functions are

well approximated by their Taylor series expansion truncated

at the first order [41]

J0(x) ≈ 1 +O
(
x2
)

J1(x) ≈
x

2
+O

(
x3
)
,

(20)

where x = ωrm/c is close to zero. According to (20), Ψ(ω)
in eq. (16) can be approximated as

Ψ̂(ω) =



jψ̂

H

−1(ω)

ψ̂
H

0 (ω)

−jψ̂
H

1 (ω)


 (21)

where

ψ̂1(ω) =
[ωr1
2c

e−jψ1 ,
ωr2
2c

e−jψ2 , . . . ,
ωrM
2c

e−jψM

]T

=
ω

2c

[
r1e

−jψ1 , r2e
−jψ2 , . . . , rMe

−jψM

]T

ψ̂
−1(ω) = −ψ̂

∗

1(ω)

ψ̂0(ω) = [1, 1, . . . , 1]
T
.

(22)

Given the equations in (22), Ψ̂(ω) in (21) can be written as

Ψ̂(ω) = D(ω)Φ (23)

where

D(ω) = diag

(
−
jω

2c
, 1,−

jω

2c

)
,

Φ =



r1e

−jψ1 r2e
−jψ2 . . . rMe

−jψM

1 1 . . . 1
r1e

jψ1 r2e
jψ2 . . . rMe

jψM


 . (24)

In equation (23) Ψ̂(ω) is expressed as the product of a

frequency-dependent diagonal matrix D(ω) and a frequency-

independent matrix Φ that embeds all the information related

to the geometry of the array. Substituting Ψ(ω) with Ψ̂(ω) in

(18), and omitting the argument ω for the sake of readability,

we get the following approximation of the filter vector h(ω)

ĥ = Ψ̂
H
(
Ψ̂Ψ̂

H
)−1

Υ∗(θs)b

= ΦHDH
(
DΦΦHDH

)
−1

Υ∗(θs)b

= ΦHDH
(
DH

)−1
(
ΦΦH

)
−1

D−1Υ∗(θs)b

= ΦH
(
ΦΦH

)
−1

D−1Υ∗(θs)b

= PD−1Υ∗(θs)b,

(25)

where P = ΦH
(
ΦΦH

)
−1

with

ΦΦH =

M∑

m=1




r2m rme
−jψm

(
rme

−jψm

)2

rme
jψm 1 rme

−jψm

(
rme

jψm

)2
rme

jψm r2m


 .

(26)

Notice that ΦΦH is a centro-Hermitian matrix. It is known

that the inverse of a centro-Hermitian matrix is centro-

Hermitian [42], therefore
(
ΦΦH

)
−1

is centro-Hermitian. The

centro-Hermitian property of
(
ΦΦH

)
−1

and eq. (24), allow

us to rewrite P as

P =




p11 p12 p∗11
p21 p22 p∗21

...
...

...

pM1 pM2 p∗M1


 , (27)

where P ∈ C
M×3, with pm2 ∈ R ∀m ∈ {1, . . . ,M}.

Applying the Hermitian operator to (25) we obtain

ĥH(ω) = bHΥ(θs)
[
(D(ω))

−1
]H

PH , (28)

therefore the mth element of ĥH(ω) can be expressed as

Ĥ∗

m(ω) =
[
b−1

2c
jω
ejθs b0 b1

2c
jω
e−jθs

]


p∗m1

pm2

pm1




= b0pm2 +
2c

jω

(
b−1p

∗

m1e
jθs + b1pm1e

−jθs
)
.

(29)

In order for the beampattern to be symmetric with respect to

the steering angle θs, the following condition must be met [4]

b−1 = b1. (30)

Moreover, in order to prevent any amplitude modification

of the signals coming from the direction θs, we need

B̄(b, θs, θs) = 1. This is accomplished with the condition [4]

b0 + b1 + b−1 = 1. (31)

Given (30) and (31), we can adopt the following parametriza-

tion for the coefficients in b

b0 = 1− q , b1 = q/2 with 0 ≤ q ≤ 1. (32)

By inserting (32) in (29) we obtain

Ĥ∗

m(ω) = (1− q)pm2 + q2c
1

jω

(
ℜ
{
p∗m1e

jθs
})
, (33)

where the operator ℜ{·} returns the real part of a complex

number. It is worth noticing that the only frequency-dependent

term in (33) is the factor 1/(jω).
Substituting H∗

m(ω) with Ĥ∗

m(ω) in (6) we obtain

Ẑ(ω) =

M∑

m=1

Ĥ∗

m(ω)Ym(ω)

=(1− q)

M∑

m=1

pm2Ym(ω)+

+ q
2c

jω

M∑

m=1

ℜ
{
p∗m1e

jθs
}
Ym(ω) ,

(34)
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Fig. 3: Examples of random array geometries obtained using (57).

where the term 1/(jω) was collected, as it is shared by all

filter coefficients Ĥ∗

m(ω). It follows that the output of the

beamformer can be compactly expressed as

Ẑ(ω) = (1− q)Ẑo(ω) + qẐd(ω). (35)

where Ẑo(ω) is the omnidirectional component defined as

Ẑo(ω) =

M∑

m=1

pm2Ym(ω) , (36)

and Ẑd(ω) is the steered dipole component defined as

Ẑd(ω) =
2c

jω
Yd(ω), (37)

with

Yd(ω) =

M∑

m=1

ℜ
{
p∗m1e

jθs
}
Ym(ω) . (38)

The Special Case of Uniform Circular Arrays

Though the filter definition in (33) is valid for DMAs of

arbitrary geometry, in the following we show that its expres-

sion further simplifies when working with uniform circular

arrays, which are widely used in a variety of spatial filtering

applications [4]. In a uniform circular array we have

rm = r ∀m ∈ {1, . . . ,M}

ψm =
2π

M
(m− 1) ∀m ∈ {1, . . . ,M}.

(39)

Given the conditions in (39), the matrix ΦΦH in (26) becomes

a diagonal matrix in the form

ΦΦH =Mdiag
(
r2, 1, r2

)
. (40)

In fact, as shown in the Appendix A, the non-diagonal ele-

ments of ΦΦH become zero. In this case, the mth row of

matrix P becomes

[pm1, pm2, p
∗

m1] =
1

M

[
1

r
ej

2π

M
(m−1), 1,

1

r
e−j

2π

M
(m−1)

]
(41)

As a consequence, the mth element of the filter vector ĥH(ω)
in (33) can be expressed analytically as

Ĥ∗

m(ω) =
1

M

(
(1− q) + q

2c

jω
ℜ

{
e−j

2π

M
(m−1)+θs

r

})

=
1

M

(
(1− q) + q

2c

jω

cos(θs − ψm)

r

)
.

(42)

It follows that the output of the beamformer can be expressed

in the form

Ẑ(ω) =(1− q)
1

M

M∑

m=1

Ym(ω)+

+
q

M

2c

jωr

M∑

m=1

cos(θs − ψm)Ym(ω)

=(1− q)
1

M

M∑

m=1

Ym(ω) + q
2c

jω
Yd(ω)

=(1− q)Ẑo(ω) + qẐd(ω).

(43)

V. BEAMFORMER DESIGN IN THE TIME DOMAIN

In order to derive a continuous-time expression of the output

signal of the beamformer, we apply a inverse Fourier transform

to (35), obtaining

ẑ(t) = (1− q)ẑo(t) + qẑd(t), (44)

where, according to (37), ẑd(t) satisfies

yd(t) =
1

2c

dẑd(t)

dt
. (45)

Starting from (44) and (45) there are many possible discrete-

time realizations of the beamformer, which depend on the

discretization method (e.g., finite difference methods) used for

approximating time derivatives in (45). For example, adopting

the trapezoidal rule with a fixed sampling step (known as

bilinear transform [43]), we obtain

ẑ[n] = (1− q)ẑo[n] + qẑd[n] (46)
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Fig. 4: Comparison, in terms of spatial response for f = 1kHz, for the DF and WNG, between the proposed method (dashed line) and
[26] (solid line) for a first-order differential beamformer based on the geometry in Fig. 3a. (a), (b) and (c) refer to a first-order beamformer
with q = 0.5 and steered toward direction θs = 0

◦. (d), (e) and (f), instead, refer to a first-order beamformer with q = 0.67 and steered
toward direction θs = 120

◦.

where n is the sample index and

ẑo[n] =
M∑

m=1

pm2ym[n]

ẑd[n] = RC (yd[n] + yd[n− 1]) + ẑd[n− 1],

(47)

with

RC = cTs, yd[n] =

M∑

m=1

ℜ
{
p∗m1e

jθs
}
ym[n]. (48)

Ts = 1/Fs is the sampling period defined as the inverse

of the sampling frequency Fs. According to (46) the output

of the system ẑ[n] is computed as a linear combination of

the omnidirectional component ẑo[n] and the steered dipole

component ẑd[n].

A. The Special Case of Uniform Circular Arrays

As a special case of the general model in (46), (47) and

(48), we can derive the discrete-time implementation of a

beamformer based on a uniform circular array as

ẑ[n] = (1− q)ẑo[n] + qẑd[n] (49)

where

ẑo[n] =
1

M

M∑

m=1

ym[n]

ẑd[n] = RC (yd[n] + yd[n− 1]) + ẑd[n− 1],

(50)

with

RC = cTs, yd[n] =
1

Mr

M∑

m=1

cos(θs − ψm)ym[n]. (51)

B. Frequency Analysis of the Discrete-Time Beamformer

The proposed discrete-time model is derived from the fre-

quency domain model in the previous section by applying the

inverse Fourier transform and approximating the time deriva-

tive with the bilinear transform [43]. Such an approximation

results in a frequency warping, since points on the jω axis of

the complex s-plane of the Laplace transform are mapped to

the unit circle in the z-plane of the Z transform, according to

the substitution

jω ←
2

Ts

ejω̃Ts − 1

ejω̃Ts + 1
(52)
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Fig. 5: Spatial-frequency beampattern plots of both Huang et al. [26]
(a) and the proposed method (b) for the geometry in Fig. 3a with
q = 0.67.

where ω̃ is here referred to as the digital frequency. It is

possible to express in closed-form the reference “analog”

frequency ω as a function of the digital frequency ω̃ by [43]

ω =
2

Ts
tan

(
ω̃
Ts
2

)
. (53)

It follows that ω is really close to ω̃ at low frequencies,

while they differ more and more at high frequencies. It is

evident that the higher the sampling frequency Fs = 1/Ts,
the more the difference between ω and ω̃ becomes negligible

in the whole frequency range of interest. Eq. (53) allows us to

perform a frequency analysis of the discrete-time realization

of the spatial filter ĥ(ω) as the sampling frequency Fs is

changed. An analysis of the sort has already been performed

in [44] where a discrete-time implementation of differential

beamformers characterized by small-size uniform linear arrays

is discussed.

VI. SIMULATIONS

In this section we study the behavior of the proposed beam-

forming method in terms of spatial response (beampattern),

WNG and DF. WNG and DF both quantify the improvement

in Signal-to-Noise Ratio (SNR), assuming that we are dealing

with spatially white noise and spatially isotropic diffuse noise,

respectively [4]. Given a spatial filter h(ω), the WNG is

mathematically defined as

WNG [h(ω)] =
|hH(ω)d(ω, θs)|

2

hH(ω)h(ω)
, (54)
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Fig. 6: Beampattern of both Huang et al. [26] (green solid line)
and the proposed method (black dashed line) for different steering
angle θs = {0, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157, 5◦} for
f = 1kHz.

while the DF as

DF [h(ω)] =
|hH(ω)d(ω, θs)|

2

hH(ω)Γdn(ω)h(ω)
, (55)

where

[Γdn(ω)]ij =
sin (ωδij/c)

ωδij/c
, (56)

with δij the distance between the ith microphone and the jth
microphone. A comparison with the beamforming method dis-

cussed in [26] by G. Huang et al. is also provided. The purpose

of this comparison is to show that, despite the approximation

introduced in (20), the behavior of the proposed first-order

differential spatial filters is in line with that of [26]. However,

in Section VII we will show that our method is less demanding

than [26] in terms of computational load.
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Fig. 7: Average WNG and average DF resulting from 300 realiza-
tions of beamformers characterized by M = 12 sensors and different
array geometries obtained using (57).

In all the simulations presented in this section, the posi-

tions pm of the M omnidirectional sensors are obtained by

modeling rm and ψm as random variables. More precisely,

rm ∼ U(0.1 cm, 1.5 cm) ,

ψm ∼ U(0, 2π) ,
(57)

where ∼ U(a, b) indicates a uniform distribution with bound-

aries a and b. As further constraints over the array geometry,

we set the minimum distance between each pair of sensors to

0.35 cm, i.e., δij ≥ 0.35 cm ∀ {i, j} | i 6= j. Fig. 3 shows three

array geometries of the sort.

For example, let us now design two first-order differential

beamformers, the first with q = 0.5, steered toward θs = 0◦,

and the second with q = 0.67, steered toward θs = 120◦,

both based on the array geometry with M = 12 sensors

in Fig. 3a. Fig. 4 shows the obtained results in terms of

spatial response for f = 1kHz, WNG and DF, and it

provides a comparison with respect to [26]. Notice that the

differences of behavior between the proposed method and [26]

are generally negligible, except for small discrepancies of DF
at high frequencies. Moreover, Fig. 5 shows that the proposed
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Fig. 8: Average WNG and average DF resulting from 300 realiza-
tions of beamformers with different array geometries obtained using
(57). The number of sensors M is varied at each experiment.

beamformer and the one in [26] are both characterized by an

almost frequency-invariant beampattern.

As a further analysis, we average the spatial responses, the

WNG and the DF computed for 300 different array geometries

with M = 12 obtained using (57), as described above. Fig. 6

shows the averaged spatial responses for f = 1kHz, q = 0.67
and 8 different steering angles θs. We also computed the

standard deviations of the spatial responses that are close to

zero at all angles and they exhibit a maximum of 0.324 in

correspondence to the zeros of the beampatterns. The results

of the proposed method are basically identical, both in terms

of average and standard deviation, to those obtained with

[26]. Fig. 7 shows that the average DF and the average

WNG obtained with the two methods are matching, except

for small differences at high frequencies. In particular, since

it is known that the WNG is a measure of robustness of

a beamformer against the deviations of the assumed sensor

characteristics, like gain, phase and position, [45], we deduce

that the proposed spatial method is comparable to the method

in [26] in terms of sensitivity to microphone mismatches

or misplacements, which is a crucial aspect in differential

beamformers using small-sized arrays.

federico borra
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Fig. 9: Implementation scheme of the proposed beamforming system (a). The Time/Frequency Processing block varies depending on the
chosen implementation strategy. A detail of Block O is given in (b), while a detail of Block D is given in (c).

As a last experiment, we vary the number of sensors

M with the purpose of investigating how the DF and the

WNG are affected. In particular, we test three different array

configurations with M = 5, M = 8 and M = 12 sensors,

respectively. For each value of M , 300 realizations are tested.

The average DF and the average WNG are reported in Fig. 8.

As expected, as the number of sensors M increases, the WNG
increases as well. The DF, instead, is substantially unaltered.

VII. SYSTEM IMPLEMENTATION

In this section we discuss how the proposed system can be

implemented both in the frequency domain and in the time

domain. As far as the frequency-domain is concerned we also

compare its computational cost with the one required by the

method in [26].

A. Implementation Schemes

The signal flow that describes both the STFT-based im-

plementation and the discrete-time implementation of the

proposed system is shown in Fig. 9. The signals ym[n] with

m ∈ 1, . . . ,M captured by the M sensors feed two blocks,

namely Block O and Block D. The output of Block O is the

signal ẑo[n] in (47) that is the discrete-time counterpart of

Ẑo(ω) in (37). Instead, the output of Block D is the signal

yd[n] in (48) that is the discrete-time counterpart of Yd(ω) in

(37). The signal yd[n] is then fed to the block Time/Frequency

Processing. The output of such block is the signal ẑd[n] that

can be obtained using either the frequency domain approach,

according to (37), or the discrete-time domain approach,

according to (47). Notice that, with reference to Fig. 9, despite

the output of the Time/Frequency Processing block being

denoted as ẑd[n] in both time and frequency domains, the two

outputs can be different from each other. This is due to the

fact that the time derivative in (45) is approximated by a finite

difference. However, it has already been shown that, using a

sufficiently high sampling frequency this difference becomes

negligible [44]. Finally, according to (46), the signals ẑo[n] and

ẑd[n] are linearly combined in order to obtain the beamformer

output ẑ[n].
Fig. 10 shows the implementation of Block O and Block D

for a uniform circular array. In this case the output ẑo[n] of

the Block O is obtained using (50), while the output ẑd[n] of

Block D is obtained according to (51).

+

1

Mρ

y1[n] y2[n] yM[n]

̂zo[n]

Block O

(a)

cos (θs − ψ1)
M r

cos (θs − ψM)
M r

+

y1[n] y2[n] yM[n]

yd[n]

Block D

cos (θs − ψ2)
Mr

(b)

Fig. 10: Block O and Block D for the UCA case

B. A Discussion on Computational Cost

We compare the computational cost of the proposed fre-

quency domain beamformer (see Fig. 9) to that of [26] (see

Fig. 2). We consider both the general scenario of an arbitrary
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TABLE I: Frequency domain implementation cost: comparison be-
tween the proposed method and [26] in terms of number of FFTs,
additions (ADD) and multiplications (MUL). M is the number of
sensors, while K indicates the number FFT bins.

FFT ADD MUL

Proposed Arbitrary 2 2M 2M + 1 +K

Proposed Uniform Circular 2 2M M + 1 +K

Huang et al. [26] M + 1 K(M − 1) MK

array geometry and the special case of a uniform circular array.

Table I shows the comparison in terms of number of FFTs,

additions and multiplications. The number of frequency bins

is indicated by K. Considering the number of FFTs, one can

see that only two FFTs are needed for the proposed approach,

while the number of FFTs for [26] linearly increases with the

number of microphones M . As far as the number of additions

is concerned, it linearly increases with M for the proposed

method but, unlike [26], it does not depend on K. More

precisely, by solving the inequality K(M − 1) > 2M we

obtain

M >
K

K − 2
≈ 1. (58)

Equation (58) shows that, by employing more than one mi-

crophone, the number of additions needed for the proposed

method is less than that needed for [26]. The same holds for

the number of multiplications. In fact, considering the general

case of an arbitrary array geometry, and solving the inequality

MK > 2M + 1 +K we obtain

M >
K + 1

K − 2
≈ 1. (59)

The computational cost of the proposed discrete-time do-

main beamformer, instead, is hereafter discussed in terms of

number of required operations per sampling step. In particular,

Table II reports the number of additions and multiplications

to perform, along with the number of scalar values to store

(i.e., memory requirements), at each sampling step. Also in

this case, we consider both the general scenario of an arbitrary

array geometry and the special case of a uniform circular array.

TABLE II: Discrete-time domain implementation cost in terms of
number of adds (ADD), multiplications (MUL) and samples to store
(MEM) per sampling step.

ADD MUL MEM

Arbitrary Geometry 2M + 2 2M + 2 2
Uniform Circular Geometry 2M + 2 M + 3 2

A comparison between the proposed frequency domain

beamformer and the proposed discrete-time domain beam-

former in terms of computational cost could be developed by

considering K samples of the output signal ẑ[n], where K is

the length of the FFT frames. In this case, the cost to output

K samples required by the frequency domain beamformer is

already reported in Table I, while the cost of the discrete-time

domain beamformer can be obtained by multiplying by K the

values in Table II that refer to a single sampling step. A more

precise cost comparison should take into account that frames

in STFT-filtering usually overlap with the amount of overlap

depending on the used window functions [43].

As a further remark, we note that the proposed discrete-

time domain beamformer exhibits an higher time resolution

than the proposed frequency domain beamformer since the

steering direction θs can be varied at each sampling step.

VIII. CONCLUSIONS AND FUTURE WORKS

In this manuscript we presented a method that allows

us to implement steerable first-order DMAs with arbitrary

planar geometry, under the assumption of small-size arrays

(spacing between sensors smaller than the audio wavelength

of interest). This method’s performance is comparable with

that of differential spatial filtering solutions available in

the literature in terms of WNG, DF and beampattern, but

it requires a significantly lower computational cost. Both

frequency-domain and discrete-time domain implementations

have been discussed. Future works will be devoted to the

extension of the proposed approach to higher order DMAs.

Such an extension would require us to find approximations of

higher order Bessel functions, thus making possible to move

frequency dependent terms to the last stages of the beamformer

signal flow. However, a thorough analysis on the limitations of

such an approximation would be necessary to study the trade-

off between computational complexity and accuracy of the

resulting beamformer. Another appealing development will be

the integration of the proposed DMA models into two-stage

spatial filtering methods like those discussed in [46].

APPENDIX A

DERIVATION OF ΦΦH
IN THE UNIFORM CIRCULAR CASE

We show that, in the case of a uniform circular array ge-

ometry, the matrix multiplication ΦΦH reduces to a diagonal

matrix as stated in (40). Looking at the expression in (26),

under the assumption in (39), we show that the following two

equations are verified

M∑

m=1

rme
−jψm = 0 , (60)

M∑

m=1

(
rme

−jψm

)2
= 0 . (61)

The first equation (60) can be derived as follows

M∑

m=1

rme
−jψm = r

M∑

m=1

e−j
2π

M
(m−1)

= rej
2π

M

M∑

m=1

e−j
2π

M
(m) (n = m− 1)

= rej
2π

M

M−1∑

n=0

e−j
2π

M
(n)

= rej
2π

M

(
1− e−jM 2π

M

1− e−j
2π

M

)
= 0.

(62)
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The second equation (61), instead, can be derived as

M∑

m=1

(
rme

−jψm

)2
=

M∑

m=1

r2e−j2
2π

M
(m−1)

= r2ej
4π

M

M∑

m=1

e−j
4π

M
(m) (n = m− 1)

= r2ej
4π

M

M−1∑

n=0

e−j
4π

M
(n)

= r2ej
4π

M

(
1− e−jM 4π

M

1− e−j
4π

M

)
= 0.

(63)
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