
Efficient In-Network Moving Object Tracking in
Wireless Sensor Networks

Chih-Yu Lin, Wen-Chih Peng, and Yu-Chee Tseng
Department of Computer Science and Information Engineering

National Chiao Tung University
Hsin-Chu, 30050, Taiwan

{lincyu, wcpeng, yctseng}@csie.nctu.edu.tw
(corresponding author: Prof. Yu-Chee Tseng)∗

Abstract

The rapid progress of wireless communication and embedded micro-sensing MEMS tech-
nologies has madewireless sensor networkspossible. In light of storage in sensors, a sensor
network can be considered as a distributed database, in which one can conductin-networkdata
processing. An important issue of wireless sensor networks is object tracking, which typically
involves two basic operations: update and query. This issue has been intensively studied in
other areas, such as cellular networks. However, the in-network processing characteristic of
sensor networks has posed new challenges to this issue. In this paper, we develop several
tree structures for in-network object tracking which take the physical topology of the sensor
network into consideration. The optimization process has two stages. The first stage tries to
reduce the location update cost based on a deviation-avoidance principle and a highest-weight-
first principle. The second stage further adjusts the tree obtained in the first stage to reduce the
query cost. The way we model this problem allows us to analytically formulate the cost of ob-
ject tracking given the update and query rates of objects. Extensive simulations are conducted,
which show a significant improvement over existing solutions.

Index Terms: object tracking, in-network processing, sensor network, data aggregation, mobile
computing.

∗Y. C. Tseng’s research is co-sponsored by the NSC Program for Promoting Academic Excellence of Universities
under grant number 93-2752-E-007-001-PAE, by Computer and Communications Research Labs., ITRI, Taiwan, by
the Communications Software Technology Project of III, Taiwan, and by Intel Inc.

1 Introduction

The rapid progress of wireless communication and embedded micro-sensing MEMS technologies

has madewireless sensor networkspossible. Such environments may have many inexpensive

wireless nodes, each capable of collecting, processing, and storing environmental information, and

communicating with neighboring nodes. In the past, sensors are connected by wire lines. Today,

this environment is combined with the novelad hocnetworking technology to facilitate inter-

sensor communication [11, 12]. The flexibility of installing and configuring a sensor network is

thus greatly improved. Recently, a lot of research activities have been dedicated to sensor networks

[4, 5, 6, 7, 8, 9, 13, 14].

Object tracking is an important application of wireless sensor networks (e.g., military intrusion

detection and habitat monitoring). Existing research efforts on object tracking can be categorized

in two ways. In the first category, the problem of accurately estimating the location of an object

is addressed [1, 10]. In the second category, in-network data processing and data aggregation for

object tracking are discussed [8, 15]. The main theme of this paper is to propose a data aggregation

model for object tracking. Object tracking typically involves two basic operations:updateand

query. In general, updates of an object’s location are initiated when the object moves from one

sensor to another. A query is invoked each time when there is a need to find the location of an

interested object. Location updates and queries may be done in various ways. A naive way for

delivering a query is to flood the whole network. The sensor whose sensing range contains the

queried object will reply to the query. Clearly, this approach is inefficient because a considerable

amount of energy will be consumed when the network scale is large or when the query rate is high.

Alternatively, if all location information is stored at a specific sensor (e.g., the sink), no flooding is

needed. But whenever a movement is detected, update messages have to be sent. One drawback is

that when objects move frequently, abundant update messages will be generated. The cost is not

2

justified when the query rate is low. Clearly, these are tradeoffs.

In [8], a Drain-And-Balance(DAB) tree structure is proposed to address this issue. As far

as we know, this is the first in-network object tracking approach in sensor networks where query

messages are not required to be flooded and update messages are not always transmitted to the

sink. However, [8] has two drawbacks. First, a DAB tree is a logical tree not reflecting the physical

structure of the sensor network; hence, an edge may consist of multiple communication hops and

a high communication cost may be incurred. Second, the construction of the DAB tree does not

take the query cost into consideration. Therefore, the result may not be efficient in some cases.

To relieve the aforementioned problems, we propose a new tree structure for in-network ob-

ject tracking in a sensor network. The location update part of our solution can be viewed as an

extension of [8]. In particular, we take the physical topology of the sensor network into consid-

eration. We take a two-stage approach. The first stage aims at reducing the update cost, while

the second stage aims at further reducing the query cost. For the first stage, several principles,

namely deviation-avoidance and highest-weight-first ones, are pointed out to construct an object

tracking tree to reduce the communication cost of location update. Two solutions are proposed:

Deviation-Avoidance Tree(DAT) andZone-based Deviation-Avoidance Tree(Z-DAT). The latter

approach tries to divide the sensing area into square-like zones, and recursively combine these

zones into a tree. Our simulation results indicate that the Z-DAT approach is very suitable for

regularly deployed sensor networks. For the second stage, we develop aQuery Cost Reduction

(QCR) algorithm to adjust the object tracking tree obtained in the first stage to further reduce the

total cost.

The way we model this problem allows us to analytically formulate the update and query costs

of the solution based on several parameters of the given problem, such as rates that objects cross the

boundaries between sensors and rates that sensors are queried. We have also conducted extensive

3

simulations to evaluate the proposed solutions. The results do validate our observations.

Several other tracking-related problems have also been studied, but they can be considered

independent issues from our work. The authors in [14] explored a localized prediction approach

for power efficient object tracking by putting unnecessary sensors in sleep mode. Techniques for

cooperative tracking by multiple sensors have been addressed in [1, 3, 10, 15]. In [3], a dynamic

clustering architecture that exploits signal strength observed by sensors is proposed to identify the

set of sensors to track an object. In [15], aconvoy treeis proposed for object tracking using data

aggregation to reduce energy consumption.

The rest of this paper is organized as follows. Preliminaries are given in Section 2. DAT,

Z-DAT, and QCR algorithms are presented in Section 3. Performance studies are conducted in

Section 4. This paper concludes with Section 5.

2 Preliminaries

We consider a wireless sensor network deployed in a field for the purpose of object tracking.

Sensors’ locations are already known at a special node, calledsink, which serves as the gateway

of the sensor network to the outside world. We adopt a simplenearest-sensormodel, which only

requires the sensor that receives the strongest signal from the object to report to the sink (this can

be achieved by [3]). Therefore, the sensing field can be partitioned into a Voronoi graph [2], as

depicted in Fig. 1(a), such that every point in a polygon is closer to its corresponding sensor in that

polygon than to any other. In practice, a sensor under our model may represent the clusterhead of a

cluster of reduced-function sensors. In this work, however, we are only interested in the reporting

behavior of these clusterheads.

Our goal is to propose a data aggregation model for object tracking. We assume that whenever

an object arrives at or departs from the sensing range (polygon) of a sensor, adetection eventwill

4

36

17
16

23

8

15
A

B
12

6

C

2312

D

73

9

3
E

5

11

17

6

F

21

12 2

5

G

H

I
J

K

128
1

0
2

5

11

9

8

6
9

6

10

9

13
25

5

8

13
15

9

12

(a)

A

B

C

D
E

F

G

H

I
J

K

33

18

10

35

2312
16

15
7

39

23

20
1420

53

19

38

13

28

7

1

21

(b)

Figure 1: (a) The Voronoi graph of a sensor network. The arrival and departure rates between
sensors are the numbers associated with arrows. (b) The graphG corresponding to the sensor
network in (a). The number labelled on each edge represents its weight.

be reported (note that this update message are not always forwarded to the sink, as will be elab-

orated later). Two sensors are calledneighborsif their sensing ranges share a common boundary

on the Voronoi graph; otherwise, they arenon-neighbors. Multiple objects may be tracked concur-

rently in the network, and we assume that from mobility statistics, it is possible to collect the event

rate between each pair of neighboring sensors to represent the frequency of objects travelling from

one sensor to another. For example, in Fig. 1(a), the arrival and departure rates between sensors

are shown on the edges of the Vonoroi graph. In addition, the communication range of sensors is

assumed to be large enough so that neighboring sensors (in terms of their sensing ranges) can com-

municate with each other directly. Thus, the network topology can be regarded as an undirected

weighted graphG = (VG, EG) with VG representing sensors andEG representing links between

neighboring sensors. The weight of each link(a, b) ∈ EG, denoted bywG(a, b), is the sum of

event rates froma to b andb to a. This is because both arrival and departure events will be reported

in our scheme. In fact,G is a Delaunay triangulation of the network [2]. Fig. 1(b) shows the

5

A

B

C

D E

F

G

H

I
J

K

Q
u

ery
(C

ar1
)

Car1

Car2

Car3

DL
A

({Car3}, {Car1},

NIL,NIL, {Car2})

DL
B
(NIL, {Car2}, NIL, NIL)

DL
F
(NIL,

{Car1})

w
T
(I,J) = 1

w
T
 (F

,I) =
 1

w
T
(J,K) = 1

w
T
 (A

,F
) =

 1

DL
D

(NIL)

w
T

 (A
,G

) =
 2

w

T

(A,D

) = 1

DL
C
(NIL)

w
T
(B,C) = 1

w
T
(A,B) = 1

w

T

(B

,E
) = 1

w

T

(B

,H
) = 2

DL
G

(NIL)

DL
E
(NIL)

DL
H

({Car2})

DL
K

({Car1})

DL
J
(NIL, {Car1})

DL
I
(NIL, {Car1})

Q
u
ery

(C
ar1

)

Query(Car1)
Query(Car1)

A is the sink.

(a)

A

B

C

D E

F

G

H

I

J
K

(b)

A is the sink.

Car1

Car2

Car3

DL
A

({Car3}, NIL,

{Car1}, NIL, {Car2})

DL
B
(NIL, NIL, NIL, {Car2})

DL
C
({Car2})

DL
E
(NIL)

DL
F
(NIL, NIL)

DL
G

({Car1})

dep(C
ar2, H

, C
)

arv(Car2, C, H)

arv(C
ar1, G

, K
)

Q
uery(C

ar1)

DL
H

(NIL)

DL
K

(NIL)dep(Car1, K, G)

DL
J
(NIL, NIL)

DL
I
(NIL, NIL)

d
ep

(C
ar1

, K
, G

)

dep(Car1, K, G)

d
ep

(C
ar1

, K
, G

)

DL
D

(NIL)

Figure 2: (a) An object tracking treeT , where the dotted lines are the forwarding path of a query
for Car1. (b) The events generated as Car1 moves from sensorK to G and Car2 moves fromH to
C.

corresponding Delaunay triangulation of the sensor network in Fig. 1(a).

In light of the storage in sensors, the sensor network is able to be viewed as a distributed

database. We will exploit the possibility of conducting in-network data aggregation for object

tracking in a sensor network. Similar to the approach in [8], a logical weighted treeT will be

constructed fromG. For example, Fig. 2(a) shows an object tracking treeT constructed from the

networkG in Fig. 1(b). Movement events of objects are reported based on the following rules.

Each nodea in T will maintain adetected listDLa = (L0, L1, . . . , Lk) such thatL0 is the set of

objects currently inside the coverage of sensora itself, andLi, i = 1, · · · , k, is the set of objects

currently inside the coverage of any sensor who is in the subtree rooted at thei-th child of sensor

a, wherek is the number of children ofa. When an objecto moves from the sensing range ofa

to that ofb ((a, b) ∈ EG), a departure eventdep(o, a, b) and an arrival eventarv(o, b, a) will be

reported bya andb, respectively, alone the treeT . On receiving such an event, a sensorx takes the

following actions:

6

• If the event isdep(o, a, b), x will remove o from the properLi in DLx such that sensora

belongs to thei-th subtree ofx in T . If x = a, o will be removed fromL0 in DLx. Then

x checks whether sensorb belongs to the subtree rooted atx in T or not. If not, the event

dep(o, a, b) is forwarded to the parent node ofx in T .

• If the event isarv(o, b, a), x will add o to the properLi in DLx such that sensorb belongs

to the i-th subtree ofx in T . If x = b, o will be added toL0 in DLx. Thenx checks

whether sensora belongs to the subtree rooted atx in T or not. If not, the eventarv(o, b, a)

is forwarded to the parent node ofx in T .

The above data aggregation model guarantees that, disregarding transmission delays, the data

structureDLi always maintains the objects under the coverage of any descendant of sensori in T .

Therefore, searching the location of an object can be done efficiently inT ; a query is only required

to be forwarded to a proper subtree and no flooding is needed. For example, Fig. 2(a) shows the

forwarding path of a query for Car1 inT . Fig. 2(b) shows the reporting events as Car1 and Car2

move and the forwarding path of a query for the new location of Car1.

Our goal in this paper is to construct an object tracking treeT = (VT , ET) that incurs the

lowest communication cost given a sensor networkG = (VG, EG) and the corresponding event

rates and query rates, whereVT = VG andET consists of|VT | − 1 edges with the sink as the

root. Intuitively,T is a logical tree constructed fromG, in which each edge(u, v) ∈ T is one of

the shortest paths connecting sensorsu andv in G. Therefore, the weight of each edge(u, v) in

T , denoted bywT (u, v), is modelled by the minimum hop count betweenu andv in G. The cost

function can be formulated asC(T) = U(T) + Q(T), whereU(T) denotes the update cost and

Q(T) is the query cost.

Table 1 summaries the notations used in this paper.

7

Table 1: Summary of notations.
distG(u, v) The minimum hop count betweenu andv in G.
distT (u, v) The sum ofwT s of edges on the path connectingu andv in T .
wG(u, v) The event rate betweenu andv.
wT (u, v) The weight of edge(u, v) in T . (= distG(u, v)).
lca(u, v) The lowest common ancestor ofu andv.

p(v) The parent ofv in T .
Subtree(v) Members of the subtree rooted atv.

root(v) The root of the temporary subtree containingv during the construction ofT .
q(v) The query rate ofv.

neighbors(v) Neighbors ofv.
children(v) Children ofv.

3 Tree Construction Algorithms

This section presents our algorithms to construct efficient object tracking trees. In Section 3.1, we

develop algorithm DAT targeted at reducing the update cost. Then, in Section 3.2, based on the

concept of divide-and-conquer, we devise algorithm Z-DAT to further reduce the update cost. In

Section 3.3, algorithm QCR is developed to adjust the tree obtained by algorithm DAT/Z-DAT to

further reduce the total cost.

3.1 Algorithm DAT (Deviation-Avoidance Tree)

Object tracking typically involves two basic operations: update and query. Based on the aggrega-

tion model in Section 2, updates will be initiated when an objecto moves from sensora to sensor

b. It can be seen that both the departure eventdep(o, a, b) and the arrival eventarv(o, b, a) will be

forwarded to the root of the minimum subtree containing botha andb. Therefore, the update cost

U(T) of a treeT can be formulated by counting the average number of messages transmitted in

8

the network per unit time:

U(T) =
∑

(u,v)∈EG

wG(u, v)× (distT (u, lca(u, v)) + distT (v, lca(u, v))), (1)

wherelca(u, v) denotes the root of the minimum subtree inT that includes bothu andv (from

now on, we will call lca(u, v) the lowest common ancestor ofu andv), anddistT (x, y) is the

sum of weights of the edges on the path connectingx and y in T . For example in Fig. 2(a),

distT (F, K) = wT (F, I) + wT (I, J) + wT (J,K) = 3. In order to identify which factors affecting

the value ofU(T), we show thatU(T) also can be formulated in a different way as follows.

Theorem 1. Given any logical treeT of the sensor networkG, we have

U(T) =
∑

(p(v),v)∈ET

wT (p(v), v)×

∑
(x,y)∈EG∧x∈Subtree(v)

∧y /∈Subtree(v)

wG(x, y)

 , (2)

whereSubtree(v) is the subtree ofT rooted at nodev andp(v) is the parent ofv.

Proof. This can be proved by observing which events will be reported along an edge inT . Given

(p(v), v) ∈ ET , for any (x, y) ∈ EG wherex ∈ Subtree(v) and y /∈ Subtree(v), since the

lowest common ancestor ofx andy must not inSubtree(v), any event generated on(x, y) will be

transmitted fromv to p(v). Otherwise, no message will be transmitted fromv to p(v). This leads

to the theorem.

From Eq. 1 and Eq. 2, we make three observations aboutU(T):

• Eq. 1 contains the factordistT (u, lca(u, v)). Its minimal value isdistG(u, lca(u, v)), which

denotes the minimum hop count between sensoru and sensorlca(u, v) in G. Therefore, we

would expect thatdistT (u, sink) = distG(u, sink) for eachu ∈ VG; otherwise, we say that

9

u deviates fromits shortest path to the sink. IfdistT (u, sink) = distG(u, sink) for each

u ∈ VG, we say that treeT is adeviation-avoidancetree. Fig. 3 shows four possible object

tracking trees for the graphG in Fig. 1(b). The one in Fig. 3(b) is not a deviation-avoidance

tree sincedistT (E, A) = 3 > distG(E, A) = 2. The other three are deviation-avoidance

trees.

• Eq. 2 contains the factorwT (u, v). Its minimal value is 1 whenu 6= v. Consequently,

it is desirable that each sensor’s parent is one of its neighbors. Only the tree in Fig. 3(d)

satisfies this criterion. By selecting neighboring sensors as parents, the average value of

distT (u, lca(u, v))+distT (v, lca(u, v)) in Eq. 1 can be minimized. For example, the average

values ofdistT (u, lca(u, v))

+ distT (v, lca(u, v)) are 3.591, 2.864, and 2.227 for the trees in Fig. 3(a), 3(c), and 3(d),

respectively.

• In Eq. 1, the weightwG(u, v) will be multiplied bydistT (u, lca(u, v)) + distT (v, lca(u, v)).

For two edges(u, v) and (u′, v′) ∈ EG such thatwG(u, v) > wG(u′, v′), it is desirable

thatdistT (u, lca(u, v))+ distT (v, lca(u, v)) < distT (u′, lca(u′, v′))+ distT (v′, lca(u′, v′)).

Combining this observation with the second observation, an edge(u, v) with a higherwG(u, v)

should be included intoT as early as possible andp(v) should be set tou if distG(u, sink) <

distG(v, sink), and vice versa. We call this thehighest-weight-firstprinciple.

Based on above observations, we develop our algorithm DAT. Initially, DAT treats each node as

a singleton subtree. Then we will gradually include more links to connect these subtrees together.

In the end, all subtrees will be connected into one treeT . The detailed algorithm is shown in

Algorithm 1, where notationroot(x) represents the root of the temporary subtree that containsx.

To begin with,EG is sorted into a listL in a decreasing order of links’ weights. Based on the third

10

A

B

C

D
E

F

G

H

I

J

K

(a)

A is the sink.

w
T
(A,B) = 1

w
T
(A,C) = 2

w
T
(A,E) = 2

w

T
(A,H) = 3

w

T

(A

,D
) = 1

w

T
 (A

,K
) =

 3

w
T

 (A
,G

) =
 2

w
T

 (A
,J) =

 3

w
 T
(
A

,F
)
=

 1

w
 T
(A

,I
)

=
 2

A

B

C

D
E

F

G

H

I

J
K

A is the sink.

w
T
(A,B) = 1

w
T
(A,C) = 2

w
 T

(C

,E
)
=
 1

w

T
(D,H) = 2

w

T

(A

,D
) = 1

w

T
(F,K) = 2

w
T

 (D
,G

) =
 1

w

T

(F,J) = 2

w
T

 (A
,F

) =
 1

w

T
 (F

,I) =
 1

(b)

A

B

C

D
E

F

G

H

I

J
K

A is the sink.

w
T
(A,B) = 1

w
T
(A,C) = 2

w
T
(D,E) = 1

w

T
(D,H) = 2

w

T

(A

,D
) = 1

w

T
(F,K) = 2

w
T

 (D
,G

) =
 1

w

T
 (F,J) = 2

w
T
 (A

,F
) =

 1

w
T
 (F

,I) =
 1

(c)

A

B

C

D
E

F

G

H

I

J
K

A is the sink.

w
T
(A,B) = 1 w

T
(B,C) = 1

w
T
(D,E) = 1

w
T

 (E
,H

) =
 1

w

T

(A

,D
) = 1

w

T

(G

,K
) = 1

w
T

 (D
,G

) =
 1

w

T
 (G

,J) =
 1

w
T

 (A
,F

) =
 1

w

T
 (F

,I) =
 1

(d)

Figure 3: Four possible location tracking trees for the graph in Fig. 1(b).

11

observation, algorithm DAT will examine edges inL one by one for possibly being included into

treeT . For each edge(u, v) in L being examined by algorithm DAT,(u, v) will be included intoT

only if u andv are currently located in different subtrees. Also,(u, v) will be included intoT only

if at least one ofu andv is currently the root of its temporary subtree and the other is on a shortest

path inG from the former node to the sink (these conditions are reflected by theif statements

in lines 5 and 7). An edge inG passing these checks will then be included intoT . Note that

without these conditions, deviations may occur. It can be seen thatT is always a subgraph ofG

andwT (u, v) = 1 for all (u, v) ∈ ET . For example, Fig. 4(a) is a snapshot of an execution of DAT.

When(F,G) is examined by DAT, it will not be included intoT , because neitherF nor G is the

root of its temporary subtree. Another snapshot is shown in Fig. 4(b). When(B,D) is examined,

it will not be included intoT . AlthoughD is the root of its temporary subtree,B is not on the

shortest path fromD to A, i.e., distG(D, A) 6= distG(B, A) + 1. (A,D) will be then examined

after(B, D). (A,D) can be included intoT , becauseD is the root of its temporary subtree andA

is on the shortest path fromD to A.

Algorithm 1 DAT(G)
1: Let T = (VT , ET) such thatVT = VG andET = φ
2: SortEG into a listL in a decreasing order of their event rates.
3: for each(u, v) ∈ EG in L do
4: if (root(u) 6= root(v)) then
5: if (u = root(u)) ∧ (distG(u, sink) = distG(v, sink) + 1) then
6: Let ET = ET ∪ (u, v) and let the root of the new subtree beroot(v).
7: else if(v = root(v)) ∧ (distG(v, sink) = distG(u, sink) + 1) then
8: Let ET = ET ∪ (u, v) and let the root of the new subtree beroot(u).
9: end if

10: end if
11: end for

Theorem 2. If G is connected, the treeT constructed by algorithm DAT is a connected deviation-

12

A

B

C

D
E

F

G

H

I
J

K

33

18

10

35

2312
16

15
7

39

23

20
1420

53

19

38

13

28

7

1

21

(a)

Root node

Non-root node

(Sink)

A

B

C

D
E

F

G

H

I
J

K

33

18

10

35

2312 16

15
7

39

23

20
1420

53

19

38

13

28

7

1

21

(b)

(Sink)

Root node

Non-root node

Figure 4: Snapshots of an execution of DAT. Solid lines are those that have been included intoT .

avoidance tree rooted at the sink.

Proof. First, we show thatT is connected. Each sensor is the root of a singleton subtree in the

beginning and we will prove that only one senor will be the root in the ending. SinceG is con-

nected, when a sensorx 6= sink is the root of a subtree (i.e.,x = root(x)), it always can find a

neighboring sensory such thatdistG(x, sink) = distG(y, sink) + 1. It is clear thatroot(y) 6= x,

becausedistG(root(y), sink) ≤ distG(y, sink). Hence, edge(x, y) can be included intoT , and

x will not be the root anymore. By repeating such arguments,T must be connected and rooted

at the sink. Second, we show thatT is a deviation-avoidance tree. This can be derived from two

observations. First, when an edge(u, v) is included intoT , DAT will choosev as the child ofu if

distG(v, sink) is larger thandistG(u, sink), and vice versa. Therefore, if the path from the sink to

sensoru is one of the shortest paths, the path from the sink to sensorv is also one of the shortest

paths. Second, assumingdistG(v, sink) = distG(u, sink) + 1, DAT will include (v, u) only when

13

v itself is the root of a subtree. This guarantees that all descendant nodes inSubtree(v) will not

deviate from their shortest paths to the sink. Hence, the theorem follows.

3.2 Algorithm Z-DAT (Zone-based Deviation-Avoidance Tree)

The Z-DAT is derived based on the following locality concept. Assume thatu is v’s parent inT .

According to Eq. 2, for any edge(x, y) ∈ EG such thatx ∈ Subtree(v) andy /∈ Subtree(v),

arrival/departure events betweenx andy will cause a message to be transmitted on(p(v), v), thus

increasing the value of
∑

(x,y)∈EG∧x∈Subtree(v)∧y/∈Subtree(v) wG(x, y). Therefore, the perimeter that

bounds the sensing area of sensors in eachSubtree(v) will impact the update costU(T). A longer

perimeter would imply more events crossing the boundary. For example, in the three subtrees

in Fig. 5, although all subtrees have the same number of sensors, the perimeter of the subtree in

Fig. 5(a) is smaller than that in 5(b), which is in turn less than that in 5(c). In geometry, it is

clear that a circle has the shortest perimeter to cover the same area as compared with other shapes.

Circle-like shapes, however, are difficult to be used in an iterative tree construction. As a result,

Z-DAT will be developed based on square-like zones.

(a) (b)

v

v

(c)

v

p(v)

p(v)
p(v)

Figure 5: Possible structures of subtrees with nine sensors.

Z-DAT is derived based on the deviation-avoidance principle and the above locality concept.

The algorithm buildsT in an iterative manner based on two parameters,α andδ, whereα is a

14

power of2 andδ is a positive integer. To begin with, Z-DAT first uses(α − 1) horizontal lines to

divide the sensing field intoα strips. For each horizontal line between two strips, we are allowed

to further move it up and down within a distance no more thanδ units. This gives2δ + 1 possible

locations of each horizontal line. For each location of the horizontal line, we can calculate the total

event rate that objects may move across the line. Then we pick the line with the lowest total event

rate as its final location. After all horizontal lines are determined, we then further partition the

sensing field intoα2 regions by using(α − 1) vertical lines. Following the adjustment as above,

each vertical line is also allowed to move left and right within a distance no more thanδ units and

the one with the lowest total event rate is selected as its final location.

After the above steps are completed, the sensing field is divided intoα2 square-like zones.

First, we run DAT on the sensors in each zone. This will result in one or multiple subtrees in each

zone. Next, we will merge subtrees in the aboveα2 zones recursively as follows. First, we combine

these zones together intoα
2
× α

2
larger zones, such that each larger zone contains2×2 neighboring

zones. Then we merge subtrees in these2 × 2 zones by sorting all inter-zone edges (i.e., edges

connecting these2 × 2 zones) according to their event rates into a listL and feedingL to steps

3 ∼ 11 of the original DAT algorithm. Second, we further combine the above larger zones together

into α
4
× α

4
even larger zones, such that each even larger zone contains2 × 2 neighboring larger

zones. This process is repeated until one single tree is obtained. The algorithm is summarized in

Algorithm 2. An illustrated example is shown in Fig. 6.

To summarize, Z-DAT is similar to DAT except that it examines links ofEG in a different

order. By partitioning the sensing field into zones, each subtree inT is likely to cover a square-like

region, thus avoiding the problem pointed out in Fig. 5. Also, by using the parameterδ to fine-tune

the lowest-level zones, Z-DAT tends to avoid high-weight links becoming inter-zone edges. In

fact, this is a consequence of the the highest-weight-first design principle.

15

Algorithm 2 Z-DAT(G, α, δ)
1: Divide the network intoα× α zones based on parametersα andδ.
2: Run DAT on the sensors in each zone.
3: i ← 1
4: while α

2i 6= 0 do
5: The network is divided intoα

2i × α
2i zones.

6: Run DAT on each zone to merge its subtrees.
7: i ← i + 1
8: end while

Zone12Zone11Zone10Zone9

Zone8Zone5 Zone6

Zone2Zone1

Zone15Zone14

Zone7

Zone3 Zone4

Zone13 Zone16

(a)
2

Zone2

Zone4Zone3

Zone1

(b)

Figure 6: An example of the Z-DAT algorithm withα = 4. (a) In the first iteration, we divide the
field intoα× α zones and adjust their boundaries according toδ. (b) In the second iteration, each
2× 2 neighboring zones is combined into a larger zone.

Theorem 3. If G is connected, the treeT constructed by algorithm Z-DAT is a connected deviation-

avoidance tree rooted at the sink.

Proof. Z-DAT will examine all links ofG, but in a different order from DAT. However, the proof

of Theorem 3 is independent of the order of the links being examined for being included intoT .

Therefore, the same proof is still applicable here.

16

3.3 Algorithm QCR (Query Cost Reduction)

The above DAT and Z-DAT only try to reduce the update cost. The query cost is not taken into

account. QCR is designed to reduce the total update and query cost by adjusting the object tracking

tree obtained by DAT/Z-DAT. To begin with, we define the query rateq(v) of each sensorv as the

average number of queries that refer to objects within the sensing range ofv per unit time in

statistics.

Given a treeT , we first derive its query costQ(T). Suppose that an objectx is within the

sensing range ofv. Whenx is queried, ifv is a non-leaf node, the query message is required to be

forwarded tov sincep(v) only indicates thatx is in the subtree rooted atv. On the other hand, ifv

is a leaf node, the query message only has to be forwarded top(v), because sensorp(v) knows that

the object is currently monitored byv. The following equation givesQ(T) by taking into account

the number of hops that query requests and query replies have to travel onT .

Q(T) = 2×

∑
v∈VT∧

v /∈leaf node

q(v)× distT (v, sink) +
∑

v∈VT∧
v∈leaf node

q(v)× distT (p(v), sink)

 , (3)

We make two observations onQ(T). First, becausedistT (p(v), sink) is always smaller than

distT (v, sink), Eq. 3 indicates that placing a node as a leaf can save the query cost instead of

placing it as a non-leaf. For example, when query rates are extremely high, it is desirable that

every node will become a leaf node andT will become a star-like graph. Second, the second term

in Eq. 3 implies that the value ofdistT (p(v), sink) should be made as small as possible. Thus, we

should choose a node closer to the sink asv’s parent (however, this is at the expense of the update

cost).

Based on the above observations, QCR tries to adjust the treeT obtained by DAT or Z-DAT. In

QCR, we examineT in a bottom-up manner and try to adjust the location of each node inT by the

following operations.

17

1. If a nodev is not a leaf node, we can make it a leaf by cutting the links to its children and

connecting each of its children top(v). (Note that we can do so becauseT is regarded as a

logical tree.) LetT ′ be the new tree after modification. We derive that

C(T)− C(T ′) = Q(T)−Q(T ′) + U(T)− U(T ′) = 2×

q(v) +

∑
i∈children(v)∧

i∈leaf node

q(i)

−
∑

i∈neighbors(v)
∧i∈Subtree(v)

wG(x, i)−
∑

i∈children(v)

∑
(x,y)∈EG∧y /∈Subtree(i)

∧x∈Subtree(i)

wG(x, y)

+
∑

(x,y)∈EG∧y /∈Subtree(v)

∧x∈Subtree(v)∧x6=v

wG(x, y). (4)

The derivation of Eq. 4 is in Appendix A. If the amount of reduction is positive, we replace

T by T ′. Otherwise, we keepT unchanged. Fig. 7 illustrates this operation.

w

v

u
1

u
k

w

v

u
1

u
k

u
2

u
2

Figure 7: Making a non-leaf nodev a leaf node.

2. If a nodev is a leaf node, we can makep(v) closer to the sink by cuttingv’s link to its current

parentp(v) and connectv to its grandparentp(p(v)). Let T ′ be the new tree. We derive that

C(T)− C(T ′) = Q(T)−Q(T ′) + U(T)− U(T ′) =

2× (q(v) + q′(v))−

2×

∑
(x,y)∈EG∧y /∈Subtree(v)∧

x∈Subtree(v)∧y∈Subtree(p(v))

wG(x, y)

 , (5)

18

where

q′(v) =

{
0 if p(v) has more than one child inT
q(p(v)) otherwise

.

The derivation of Eq. 5 is in Appendix A. If the amount of reduction is positive, we replace

T by T ′. Otherwise,T remains unchanged. Fig. 8 illustrates this operation.

w

u

v
1

v
k

v
i

w

u

v
1

v
k

v
i

Figure 8: Connecting a leaf nodevi to p(p(vi)).

Note that Eq. 4 and Eq. 5 allow us to compute the reduction of cost without computingU(T ′)

andQ(T ′). This saves computational overhead. Also note thatT is examined in a bottom-up

manner in a layer-by-layer manner. Nodes that are moved to an upper layer will have a chance

to be reexamined. However, to avoid going back and forth, nodes that are not moved will not be

reexamined.

For example, suppose that we are given a DAT tree in Fig. 9(a) (which is constructed from

Fig. 1(b)), where the number labelled on each node is its query rate. When examining the bottom

layer, we will apply step 2 to sensorsH, J , andK and obtain reductions of1974, −62, and−6,

respectively. Hence, onlyH is moved upward as shown in Fig. 9(b). When examining the second

layer, we will apply step 1 to sensorG andI and apply step 2 to sensorsC, E, andH. Only

when applying to sensorH, it will result in a positive reduction of1970. This updates the tree to

Fig. 9(c). Finally, sensorsB, D, andF are examined. OnlyD has a positive reduction of1842.

19

A

B

C

D

EF

G
H

I
J

K

A is the sink.

3 5
2

1000

32

1

10005
2 3

(a)

A

B
C

D

E
F

G
H

I
J

K

A is the sink.

3
5

2

1000

3
2

1

1000
5 2 3

(b)

A

B
C

D

E
F

G
H

I
J

K

A is the sink.

3
5

2

1000

3
2

1

1000
5 2 3

(c)

A

B
C

D

E
F

G
H

I
J

K

A is the sink.

3
5

2

1000 3
2

1

1000
5 2 3

(d)

Figure 9: An execution example of algorithm QCR.

Thus,D will become a leaf and all its children are connected toD’s parent as shown in Fig. 9(d).

Overall, the cost is reduced from 7121 to 5150, 3180, and then 1338 after each step respectively.

4 Simulation Results

We have simulated a sensing field of size256 × 256. Unless otherwise stated,4096 sensors are

deployed in the sensing field. Two deployment models are considered. In the first one, sensors

are regularly deployed as a64× 64 grid-like network. In the second model, sensors are randomly

deployed. In both models, the sink may be located near the center of the network or one corner of

the network.

Event rates are generated based on a model similar to thecity mobility modelin [8]. Assuming

the sensing field as a square of sizer× r, the model divides the field into2× 2 sub-squares called

20

level-1subregions. Each level-1 subregion is further divided into2× 2 sub-squares calledlevel-2

subregions. This process is repeated recursively. Given an object located in any position in the

sensing field, it has a probabilityp1 to leave its current level-1 subregion, and a probability1− p1

to stay. In the former case, the object will move either horizontally or vertically with a distance of

r/2. In the latter case, the object has a probabilityp2 to leave its current level-2 subregion, and a

probability1 − p2 to stay. Again, in the former case, the object will move either horizontally or

vertically with a distance ofr/22, and in the latter case it may cross level-3 subregions. The process

repeats recursively. The probabilitypi is determined by an exponential probabilitypi = e−C·2d−i
,

whereC is a positive constant andd is the total number of levels. In fact, the above behavior

only formulates how objects move in the sensing field. After sensors are deployed in the network

(no matter the sensors are deployed in a regular or random way), the movement patterns of these

objects will generate event rates between neighboring sensors. Also, objects are queried by the

sink with the same probability. Since objects may be located at different sensors with different

probabilities, the query rates may vary in different sensors.

We compare our schemes with a naive scheme and the DAB scheme [8]. In the naive scheme,

any update is sent to the sink (i.e., there is no in-network processing capability.) In this case, the

query cost is always zero, so it is preferable when the query rates are relatively high. For the DAB

scheme, all sensors are considered leaf nodes, and a logical structure is used to connect these leaf

nodes. When two subtrees are merged into one, the root of the subtree which is closer to the sink

will become the root of the merged tree (note that this may still cause deviation).

First, we observe the advantage of using in-network processing to reduce update cost. Fig. 10

shows the result under different values ofC for regular and random sensor deployment. As can be

seen, a largerC implies a higher moving locality, thus leading to a lower update cost. The naive

scheme has the highest update cost, which is reasonable. By exploiting the concept of deviation

21

(a) regular deployment, sink at a corner

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

7.00E+03

8.00E+03

C=0.1 C=0.5 C=1.0 C=1.5 C=2.0

U
p
d
at

e
co

st

naive

DAB

DAT

Z-DAT

(b) regular deployment, sink at the center

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

4.00E+03

C=0.1 C=0.5 C=1.0 C=1.5 C=2.0

U
p
d
at

e
co

st

naive

DAB

DAT

Z-DAT

(c) random deployment, sink at a corner

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

C=0.1 C=0.5 C=1.0 C=1.5 C=2.0

U
p
d
at

e
co

st

naive

DAB

DAT

Z-DAT

(d) random deployment, sink at the center

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

C=0.1 C=0.5 C=1.0 C=1.5 C=2.0

U
p
d
at

e
co

st

naive

DAB

DAT

Z-DAT

Figure 10: Comparison of update costs. In the Z-DAT scheme,α = 8 andδ = 0.

avoidance and taking the physical topology into account, DAT and Z-DAT further outperform

DAB.

Next, we investigate the effect of deployment models. By comparing, the graphs in Fig. 10, we

see that Z-DAT outperforms DAT under regular deployment, but the advantage is almost negligible

under random deployment. This is because maintaining the shapes of subtrees in Z-DAT is difficult.

For example, Fig. 11 shows snapshots of DAT trees and Z-DAT trees under regular and random

deployments. As can be seen, Z-DAT does exploit the locality of sensors by partitioning sensors

into zones under regular deployment. However, this is not true for the random case.

To get further insight into the performance of Z-DAT, we varyα andδ, and show the results

in Fig. 12, where a 4096- and a 2500-node sensor networks are simulated. Note that whenα = 1

22

(a) A DAT tree. (Regular Deployment) (b) A Z−DAT tree. (Regular Deployment)

(c) A DAT tree. (Random Deployment) (d) A Z−DAT tree. (Random Deployment)

Figure 11: Snapshots of treeT obtained by DAT and Z-DAT under regular and random deploy-
ments. There are 1024 sensors with the sink at the lower-left corner. ((α, δ) = (8, 0) for Z-DAT.)

23

(a) regular deployment, C=0.1, 4096 sensors

3.00E+02

3.50E+02

4.00E+02

4.50E+02

5.00E+02

5.50E+02

6.00E+02

(32,0) (16,1) (16,0) (8,2) (8,1) (8,0) (4,2) (4,1) (4,0) (2,1) (2,0) (1,0)

U
p

d
at

e
C

o
st

(b) random deployment, C=0.1, 4096 sensors

3.50E+02

3.60E+02

3.70E+02

3.80E+02

3.90E+02

4.00E+02

4.10E+02

4.20E+02

4.30E+02

4.40E+02

4.50E+02

(32,0) (16,1) (16,0) (8,2) (8,1) (8,0) (4,2) (4,1) (4,0) (2,1) (2,0) (1,0)

U
p

d
at

e
co

st

(c) regular deployment, C=0.1, 2500 sensors

2.50E+02

2.70E+02

2.90E+02

3.10E+02

3.30E+02

3.50E+02

3.70E+02

3.90E+02

(32,0) (16,1) (16,0) (8,2) (8,1) (8,0) (4,2) (4,1) (4,0) (2,1) (2,0) (1,0)

U
p

d
at

e
C

o
st

(d) random deployment, C=0.1, 2500 sensors

2.60E+02

2.65E+02

2.70E+02

2.75E+02

2.80E+02

2.85E+02

2.90E+02

(32,0) (16,1) (16,0) (8,2) (8,1) (8,0) (4,2) (4,1) (4,0) (2,1) (2,0) (1,0)

U
p

d
at

e
co

st

Figure 12: Comparison of update costs under different(α, δ) for Z-DAT. Sinks are located at the
center of the network.

andδ = 0, Z-DAT is equivalent to DAT. For regular deployment, Z-DAT performs well whenα

is larger than 4. However, for random deployment, the Z-DAT does not perform well, because

maintaining the shapes of subtrees in Z-DAT is difficult. Furthermore, it can be seen that when

δ = 0, Z-DAT has better performance. This means that a square-like zone is better than a rectangle-

like zone. Also, note that the trend in both 4096- and 2500-node sensors networks (the latter has a

non-power-of-2 number of nodes) are quite similar.

Next, we examine the query cost. The result is shown in Fig. 13. In general, the query cost

increases linearly with the aggregate query rate. As mentioned earlier, the query cost of the naive

scheme is always zero. Both query costs for DAT and Z-DAT are lower than that of DAB. This

is attributed to the fact that query messages are always transmitted along the shortest paths be-

tween the sink and sensors in DAT and Z-DAT. Also due to the similar reason, the query cost is

independent of the shape ofT ; thus, DAT and Z-DAT perform similarly despite the deployment

24

(a) regular deployment, sink at a corner

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

7.00E+03

8.00E+03

10.0 20.0 30.0 40.0 50.0

Aggregate query rate

Q
u
er

y
 c

o
st

naive

DAB

DAT

Z-DAT

(b) regular deployment, sink at the center

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

4.00E+03

4.50E+03

5.00E+03

10.0 20.0 30.0 40.0 50.0

Aggregate query rate

Q
u
er

y
 c

o
st

naive

DAB

DAT

Z-DAT

(c) random deployment, sink at a corner

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

10.0 20.0 30.0 40.0 50.0 60.0

Aggregate query rate

Q
u
er

y
 c

o
st

naive

DAB

DAT

Z-DAT

(d) random deployment, sink at the center

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

4.00E+03

10.0 20.0 30.0 40.0 50.0 60.0

Aggregate querying Rate

Q
u
er

y
 c

o
st

naive

DAB

DAT

Z-DAT

Figure 13: Comparison of query costs. (C = 1.0)

models.

Finally, we examine the effectiveness of algorithm QCR by showing the total update and query

costs of different schemes in Fig. 14. (For visual clarity, the cost of DAT are not shown.) The

naive scheme has a constant cost because it is not affected by the query rate. The costs of DAB

and Z-DAT increase linearly with respect to the query rate. As a result, they are outperformed

by the naive scheme after the query rate reaches a certain level. Our Z-DAT with QCR scheme

performs the best at all query rates. When the query rate is low, it performs close to Z-DAT. On

the other hand, when the query rate increases, it works similar to the naive schemes. This verifies

the advantage of the proposed DAT/Z-DAT with QCR schemes.

25

(a) regular deployment, sink at a corner

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

5.0 10.0 15.0 20.0 25.0 30.0 35.0

Aggregate query rate

T
o
ta

l
co

st

naive

DAB

Z-DAT

Z-DAT+QCR

(b) regular deployment, sink at the center

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

4.00E+03

5.0 10.0 15.0 20.0 25.0 30.0 35.0

Aggregate query rate

T
o
ta

l
co

st

naive

DAB

Z-DAT

Z-DAT+QCR

(b) regular deployment, sink at the center

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

4.00E+03

5.0 10.0 15.0 20.0 25.0 30.0 35.0

Aggregate query rate

T
o
ta

l
co

st

naive

DAB

Z-DAT

Z-DAT+QCR

(d) random deployment, sink at the center

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

Aggregate query rate

T
o

ta
l

co
st

naive

DAB

Z-DAT

Z-DAT+QCR

Figure 14: Comparison of total costs. (C = 1.0)

26

5 Conclusions

In this paper, we have developed several efficient ways to construct a logical object tracking tree in

a sensor network. We have shown how to organize sensor nodes as a logical tree so as to facilitate

in-network data processing and to reduce the total communication cost incurred by object tracking.

For the location update part, our work can be viewed as the extension of the work in [8], and we

enhance the work by exploiting the physical structure of the sensor network and the concept of

deviation avoidance. In addition, we also consider the query operation and formulate the query

cost of an object tracking tree given the query rates of sensors. In particular, our approach tries to

strike a balance between the update cost and query cost. Performance analyses are presented with

respect to factors such as moving rates and query rates. Simulation results show that by exploiting

the deviation-avoidance trees, algorithms DAT and Z-DAT are able to reduce the update cost. By

adjusting the deviation-avoidance trees, algorithm QCR is able to significantly reduce the total cost

when the aggregate query rates is high, thus leading to efficient object tracking solutions.

References

[1] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus, “Tracking a Moving

Object with Binary Sensors,” inProc. of ACM SenSys. ACM Press, November 2003.

[2] F. Aurenhammer, “Voronoi Diagrams - A Survey of a Fundamental Geometric Data Struc-

ture,” ACM Computing Surveys, vol. 23, no. 3, pp. 345–405, September 1991.

[3] W.-P. Chen, J. C. Hou, and L. Sha, “Dynamic Clustering for Acoustic Target Tracking in

Wireless Sensor Networks,” inProc. of IEEE International Conference on Network Protocols

(ICNP), November 2003.

27

[4] D. Ganesan, R. Cristescu, and B. Beferull-Lozano, “Power-Efficient Sensor Placement and

Transmission Structure for Data Gathering under Distortion Constraints,” inProc. of Int’l

Workshop on Information Processing in Sensor Networks (IPSN), 2004.

[5] C.-F. Huang and Y.-C. Tseng, “The Coverage Problem in a Wireless Sensor Network,” in

Proc. of ACM Int’l Workshop on Wireless Sensor Networks and Applications (WSNA), Sep-

tember 2003.

[6] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A Scalable and Ro-

bust Communication Paradigm for Sensor Networks,” inProc. of 6th Annual International

Conference on Mobile Computing and Networking (MobiCOM), August 2000.

[7] B. Krishnamachari, D. Estrin, and S. Wicker, “Modelling Data-Centric Routing in Wireless

Sensor Networks,” inProc. of IEEE Infocom, 2002.

[8] H. T. Kung and D. Vlah, “Efficient Location Tracking Using Sensor Networks,” inProc. of

IEEE Wireless Communications and Networking Conference (WCNC), March 2003.

[9] S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, “Supporting Aggregate Queries over

Ad-Hoc Wireless Sensor Networks,” inProc. of 4th IEEE Workshop on Mobile Computing

and Systems Application, 2002.

[10] K. Mechitov, S. Sundresh, and Y. Kwon, “Cooperative Tracking with Binary-Detection Sen-

sor Networks,”University of Illinois at Urbana-Champaign, Technical Report UIUCDCS-R-

2003-2379, 2003.

[11] G. J. Pottie and W. J. Kaiser, “Wireless Integrated Network Sensors,”Communications of the

ACM, vol. 43, no. 5, pp. 51–58, 2000.

28

[12] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J.Pottie, “Protocols for Self-organization of a Wire-

less Sensor Network,”IEEE Personal Communications, vol. 7, no. 5, pp. 16–27, October

2000.

[13] Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang, “Location Tracking in Wireless Sensor

Network by Mobile Agents and Its Data Fusion Strategies,” inProc. of Int’l Workshop on

Information Processing in Sensor Networks (IPSN), 2003.

[14] Y. Xu and W.-C. Lee, “On Localized Prediction for Power Efficient Object Tracking in Sensor

Networks,” inProc. of Int’l Workshop on Mobile Distributed Computing (MDC), May 2003.

[15] W. Zhang and G. Cao, “DCTC: Dynamic Convoy Tree-Based Collaboration for Target Track-

ing in Sensor Networks,”IEEE Transactions on Wireless Communication, vol. 3, no. 5, pp.

1689–1701, September 2004.

Appendix A

In this appendix, we show how to derive Eq. 4 and Eq. 5. To begin with, we present two implicit

facts used in the following derivations. First, according to Theorem 1, we can conclude that if the

members ofSubtree(v) are not changed, the number of messages transmitted on edge(v, p(v)) ∈
T will be unchanged. Second, when a nodev is being examined by QCR,wT (p(v), p(p(v))) must

be 1. This fact holds because the input of QCR algorithm is a DAT/Z-DAT tree and the tree is

examined in a bottom-up manner.

First, we derive theQ(T) − Q(T ′) in Eq. 4. Whenv becomes a leaf and the queried object

locates at the sensing field ofv, the query only has to be sent top(v). In addition, when one of

v’s children, sayi, is connected top(v) andi is a leaf,p(v) also can reply the query if the queried

29

object locates at the sensing field ofi. Thus, we have

Q(T)−Q(T ′) = 2×

q(v) +

∑
i∈children(v)
∧i∈leafnode

q(i)

 .

Now we derive theU(T) − U(T ′) in Eq. 4. The operation of QCR ensures that when one of

v’s children, sayi, changes its parent top(v), the update cost will be increased by

∑

i∈children(v)

∑
(x,y)∈EG∧y /∈Subtree(i)

x∧∈Subtree(i)

wG(x, y)

 .

In addition, the events betweenv and i, wherei ∈ neighbors(v) and i ∈ Subtree(v), will be

reported top(v) rather thanv whenv becomes a leaf. Thus,v must forward an additional message

to p(v). The increased cost is
∑

i∈neighbors(v)∧
i∈Subtree(v)

wG(x, i).

However, whenv becomes a leaf, the event across an edge(x, y) ∈ EG such thaty /∈ Subtree(v),

x ∈ Subtree(v), andx 6= v will not be transmitted on(v, p(v)). The cost is reduced by

∑
(x,y)∈EG∧y /∈Subtree(v)

∧x∈Subtree(v)∧x 6=v

wG(x, y).

Combining above three factors, we have

U(T)− U(T ′) = −
∑

i∈neighbors(v)
∧i∈Subtree(v)

wG(x, i)−
∑

i∈children(v)

∑
(x,y)∈EG∧y /∈Subtree(i)

∧x∈Subtree(i)

wG(x, y)

+
∑

(x,y)∈EG∧y /∈Subtree(v)

∧x∈Subtree(v)∧x6=v

wG(x, y).

Next, we derive Eq. 5. To seeQ(T) − Q(T ′), observe that whenv changes its parent from

p(v) to p(p(v)), the saved query cost isq(v). Furthermore, whenp(v) has only one childv, the

30

adjustment ofv will makep(v) a leaf. This saves a query cost ofq(p(v)). Therefore, we have

Q(T)−Q(T ′) = 2× (q(v) + q′(v)).

The value ofU(T) − U(T ′) is affected by three factors, whenv changes its parent fromp(v)

to p(p(v)). The update cost will be increased by

∑
(x,y)∈EG∧y /∈Subtree(v)

∧x∈Subtree(v)

wG(x, y).

For edges that have one incident vertex inSubtree(v) and one incident vertex is inSubtree(p(v))

but not inSubtree(v), the events across these edges cannot be absorbed byp(v) afterv changes its

parent fromp(v) to p(p(v)). The increased update cost will be:

∑
(x,y)∈EG∧y /∈Subtree(v)∧

x∈Subtree(v)∧y∈Subtree(p(v)

wG(x, y).

However, for edges that have one incident vertex inSubtree(v) and one incident vertex is not

in Subtree(p(v)), the events across these edges will be transmitted on(v, p(p(v))) rather than

(v, p(v)) when we connectsv to p(p(v)). The update cost will be decreased by

∑
(x,y)∈EG∧x∈Subtree(v)

∧y /∈Subtree(p(v))

wG(x, y).

Combing these terms leads to the following equation

U(T)− U(T ′) = −
∑

(x,y)∈EG∧y /∈Subtree(v)

∧x∈Subtree(v)

wG(x, y)−
∑

(x,y)∈EG∧y /∈Subtree(v)∧
x∈Subtree(v)∧y∈Subtree(p(v))

wG(x, y)

+
∑

(x,y)∈EG∧x∈Subtree(v)

∧y /∈Subtree(p(v))

wG(x, y) = −

2×

∑
(x,y)∈EG∧y /∈Subtree(v)∧

x∈Subtree(v)∧y∈Subtree(p(v))

wG(x, y)

 .

31

