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Abstract

The rapid progress of wireless communication and embedded micro-sensing MEMS tech-
nologies has madeireless sensor networlgssible. In light of storage in sensors, a sensor
network can be considered as a distributed database, in which one can dontktetorkdata
processing. An important issue of wireless sensor networks is object tracking, which typically
involves two basic operations: update and query. This issue has been intensively studied in
other areas, such as cellular networks. However, the in-network processing characteristic of
sensor networks has posed new challenges to this issue. In this paper, we develop several
tree structures for in-network object tracking which take the physical topology of the sensor
network into consideration. The optimization process has two stages. The first stage tries to
reduce the location update cost based on a deviation-avoidance principle and a highest-weight-
first principle. The second stage further adjusts the tree obtained in the first stage to reduce the
guery cost. The way we model this problem allows us to analytically formulate the cost of ob-
ject tracking given the update and query rates of objects. Extensive simulations are conducted,
which show a significant improvement over existing solutions.

Index Terms: object tracking, in-network processing, sensor network, data aggregation, mobile
computing.
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1 Introduction

The rapid progress of wireless communication and embedded micro-sensing MEMS technologies
has madewireless sensor networksossible. Such environments may have many inexpensive
wireless nodes, each capable of collecting, processing, and storing environmental information, and
communicating with neighboring nodes. In the past, sensors are connected by wire lines. Today,
this environment is combined with the novadl hoc networking technology to facilitate inter-
sensor communication [11, 12]. The flexibility of installing and configuring a sensor network is
thus greatly improved. Recently, a lot of research activities have been dedicated to sensor networks
[4,5,6,7,8,9, 13, 14].

Object tracking is an important application of wireless sensor networks (e.g., military intrusion
detection and habitat monitoring). Existing research efforts on object tracking can be categorized
in two ways. In the first category, the problem of accurately estimating the location of an object
is addressed [1, 10]. In the second category, in-network data processing and data aggregation for
object tracking are discussed [8, 15]. The main theme of this paper is to propose a data aggregation
model for object tracking. Object tracking typically involves two basic operatiopstateand
guery In general, updates of an object’s location are initiated when the object moves from one
sensor to another. A query is invoked each time when there is a need to find the location of an
interested object. Location updates and queries may be done in various ways. A naive way for
delivering a query is to flood the whole network. The sensor whose sensing range contains the
queried object will reply to the query. Clearly, this approach is inefficient because a considerable
amount of energy will be consumed when the network scale is large or when the query rate is high.
Alternatively, if all location information is stored at a specific sensor (e.g., the sink), no flooding is
needed. But whenever a movement is detected, update messages have to be sent. One drawback is

that when objects move frequently, abundant update messages will be generated. The cost is not
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justified when the query rate is low. Clearly, these are tradeoffs.

In [8], a Drain-And-Balance(DAB) tree structure is proposed to address this issue. As far
as we know, this is the first in-network object tracking approach in sensor networks where query
messages are not required to be flooded and update messages are not always transmitted to the
sink. However, [8] has two drawbacks. First, a DAB tree is a logical tree not reflecting the physical
structure of the sensor network; hence, an edge may consist of multiple communication hops and
a high communication cost may be incurred. Second, the construction of the DAB tree does not
take the query cost into consideration. Therefore, the result may not be efficient in some cases.

To relieve the aforementioned problems, we propose a new tree structure for in-network ob-
ject tracking in a sensor network. The location update part of our solution can be viewed as an
extension of [8]. In particular, we take the physical topology of the sensor network into consid-
eration. We take a two-stage approach. The first stage aims at reducing the update cost, while
the second stage aims at further reducing the query cost. For the first stage, several principles,
namely deviation-avoidance and highest-weight-first ones, are pointed out to construct an object
tracking tree to reduce the communication cost of location update. Two solutions are proposed:
Deviation-Avoidance Tre¢DAT) and Zone-based Deviation-Avoidance TigeDAT). The latter
approach tries to divide the sensing area into square-like zones, and recursively combine these
zones into a tree. Our simulation results indicate that the Z-DAT approach is very suitable for
regularly deployed sensor networks. For the second stage, we dev€laprg Cost Reduction
(QCR) algorithm to adjust the object tracking tree obtained in the first stage to further reduce the
total cost.

The way we model this problem allows us to analytically formulate the update and query costs
of the solution based on several parameters of the given problem, such as rates that objects cross the

boundaries between sensors and rates that sensors are queried. We have also conducted extensiv



simulations to evaluate the proposed solutions. The results do validate our observations.

Several other tracking-related problems have also been studied, but they can be considered
independent issues from our work. The authors in [14] explored a localized prediction approach
for power efficient object tracking by putting unnecessary sensors in sleep mode. Techniques for
cooperative tracking by multiple sensors have been addressed in [1, 3, 10, 15]. In [3], a dynamic
clustering architecture that exploits signal strength observed by sensors is proposed to identify the
set of sensors to track an object. In [15c@voy treds proposed for object tracking using data
aggregation to reduce energy consumption.

The rest of this paper is organized as follows. Preliminaries are given in Section 2. DAT,
Z-DAT, and QCR algorithms are presented in Section 3. Performance studies are conducted in

Section 4. This paper concludes with Section 5.

2 Preliminaries

We consider a wireless sensor network deployed in a field for the purpose of object tracking.
Sensors’ locations are already known at a special node, cgifi&dwhich serves as the gateway
of the sensor network to the outside world. We adopt a simplest-sensamodel, which only
requires the sensor that receives the strongest signal from the object to report to the sink (this can
be achieved by [3]). Therefore, the sensing field can be partitioned into a Voronoi graph [2], as
depicted in Fig. 1(a), such that every point in a polygon is closer to its corresponding sensor in that
polygon than to any other. In practice, a sensor under our model may represent the clusterhead of a
cluster of reduced-function sensors. In this work, however, we are only interested in the reporting
behavior of these clusterheads.

Our goal is to propose a data aggregation model for object tracking. We assume that whenever

an object arrives at or departs from the sensing range (polygon) of a sedstection evenuill



(b)

Figure 1: (a) The Voronoi graph of a sensor network. The arrival and departure rates between
sensors are the numbers associated with arrows. (b) The gtagghresponding to the sensor
network in (a). The number labelled on each edge represents its weight.
be reported (note that this update message are not always forwarded to the sink, as will be elab-
orated later). Two sensors are callegighborsif their sensing ranges share a common boundary
on the Voronoi graph; otherwise, they aren-neighborsMultiple objects may be tracked concur-
rently in the network, and we assume that from mobility statistics, it is possible to collect the event
rate between each pair of neighboring sensors to represent the frequency of objects travelling from
one sensor to another. For example, in Fig. 1(a), the arrival and departure rates between sensors
are shown on the edges of the Vonoroi graph. In addition, the communication range of sensors is
assumed to be large enough so that neighboring sensors (in terms of their sensing ranges) can com-
municate with each other directly. Thus, the network topology can be regarded as an undirected
weighted graplG = (Vg, E¢) with V; representing sensors aid; representing links between
neighboring sensors. The weight of each liakb) € E, denoted bywg(a,b), is the sum of
event rates from to b andb to a. This is because both arrival and departure events will be reported

in our scheme. In factx is a Delaunay triangulation of the network [2]. Fig. 1(b) shows the
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Figure 2: (a) An object tracking treg, where the dotted lines are the forwarding path of a query
for Carl. (b) The events generated as Carl moves from sé&hsmt> and Car2 moves frori to

C.
corresponding Delaunay triangulation of the sensor network in Fig. 1(a).
In light of the storage in sensors, the sensor network is able to be viewed as a distributed

database. We will exploit the possibility of conducting in-network data aggregation for object
tracking in a sensor network. Similar to the approach in [8], a logical weighteditneél be
constructed frontz. For example, Fig. 2(a) shows an object tracking ffesonstructed from the

network G in Fig. 1(b). Movement events of objects are reported based on the following rules.
, L) such thatl, is the set of

Each node: in 7" will maintain adetected lisDL, = (Lo, L1,
objects currently inside the coverage of sensdself, andL;,i = 1,--- , k, is the set of objects

currently inside the coverage of any sensor who is in the subtree rooted:attihild of sensor
a, wherek is the number of children af. When an objecb moves from the sensing range ©of
to that ofb ((a,b) € E), a departure evenitep(o, a, b) and an arrival evenirv(o, b, a) will be

reported by: andb, respectively, alone the trdé On receiving such an event, a senstakes the

following actions:



e If the event isdep(o, a,b), = will remove o from the properL; in DL, such that sensar
belongs to the-th subtree ofc in T'. If + = a, o will be removed fromL, in DL,. Then
x checks whether sensémbelongs to the subtree rootedzatn 7" or not. If not, the event

dep(o, a, b) is forwarded to the parent nodeofn T

e If the event isarv(o,b,a), x will add o to the properZ; in DL, such that sensdrbelongs
to thei-th subtree ofr in 7. If x = b, o will be added toL, in DL,. Thenz checks
whether sensat belongs to the subtree rooteduain 7" or not. If not, the eventrv(o, b, a)

is forwarded to the parent node.oin 7.

The above data aggregation model guarantees that, disregarding transmission delays, the data
structureDL; always maintains the objects under the coverage of any descendant ofis@riBor
Therefore, searching the location of an object can be done efficieriflyarquery is only required
to be forwarded to a proper subtree and no flooding is needed. For example, Fig. 2(a) shows the
forwarding path of a query for Carl ifi. Fig. 2(b) shows the reporting events as Carl and Car2
move and the forwarding path of a query for the new location of Carl.

Our goal in this paper is to construct an object tracking ffee- (Vr, E7) that incurs the
lowest communication cost given a sensor netwGrk= (V, E¢) and the corresponding event
rates and query rates, wheve = Vi; and Er consists of|V| — 1 edges with the sink as the
root. Intuitively, 7" is a logical tree constructed frofd, in which each edgéu,v) € T is one of
the shortest paths connecting sensoendv in G. Therefore, the weight of each edge v) in
T, denoted bywr(u, v), is modelled by the minimum hop count betweeandv in G. The cost
function can be formulated as(7') = U(T) + Q(T), whereU(T") denotes the update cost and
Q(T) is the query cost.

Table 1 summaries the notations used in this paper.



Table 1: Summary of notations.
dist(u,v) | The minimum hop count betweenandv in G.
distr(u,v) | The sum ofwrs of edges on the path connectimgndv in 7.

weg(u,v) The event rate betweenandv.
wr(u, ) The weight of edgéu, v) in T. (= distg(u,v)).
lea(u, v) The lowest common ancestorofando.
p(v) The parent ob in 7.
Subtree(v) | Members of the subtree rootedwat
root(v) The root of the temporary subtree containinduring the construction df.
q(v) The query rate of.

neighbors(v) | Neighbors ofv.
children(v) | Children ofv.

3 Tree Construction Algorithms

This section presents our algorithms to construct efficient object tracking trees. In Section 3.1, we
develop algorithm DAT targeted at reducing the update cost. Then, in Section 3.2, based on the
concept of divide-and-conquer, we devise algorithm Z-DAT to further reduce the update cost. In
Section 3.3, algorithm QCR is developed to adjust the tree obtained by algorithm DAT/Z-DAT to

further reduce the total cost.

3.1 Algorithm DAT (Deviation-Avoidance Tree)

Object tracking typically involves two basic operations: update and query. Based on the aggrega-
tion model in Section 2, updates will be initiated when an objatioves from sensar to sensor

b. It can be seen that both the departure evepto, a, b) and the arrival eventrv(o, b, a) will be
forwarded to the root of the minimum subtree containing ho#mdb. Therefore, the update cost

U(T) of a treeT' can be formulated by counting the average number of messages transmitted in



the network per unit time:

U(T) = Z we (u,v) X (distr(u, lea(u,v)) + distr(v, lca(u,v))), (1)

(u,0)€EG
wherelca(u,v) denotes the root of the minimum subtreeTirthat includes both: andv (from
now on, we will calllca(u,v) the lowest common ancestor efandv), anddistr(z,y) is the
sum of weights of the edges on the path connectirgndy in 7. For example in Fig. 2(a),
distr(F, K) = wr(F,I) 4+ wr(I,J) +wr(J, K) = 3. In order to identify which factors affecting

the value ofU (T"), we show that/ (T") also can be formulated in a different way as follows.

Theorem 1. Given any logical tred” of the sensor network, we have

U= Y., |[wrlp(v),v)x > wa(z,y) | (2)

W)EE (z,y)EEgNAxzE€Subtree(v)
(p(v) U) B Ay¢ Subtree(v)

whereSubtree(v) is the subtree of " rooted at node) andp(v) is the parent ob.

Proof. This can be proved by observing which events will be reported along an edgeGiven
(p(v),v) € Er, for any (z,y) € Eg wherex € Subtree(v) andy ¢ Subtree(v), since the
lowest common ancestor efandy must not inSubtree(v), any event generated @m, y) will be

transmitted fromv to p(v). Otherwise, no message will be transmitted froto p(v). This leads

to the theorem. O

From Eg. 1 and Eq. 2, we make three observations a3 ¢Li:

e Eq. 1 contains the factatistr(u, lca(u,v)). Its minimal value islistg(u, lca(u, v)), which
denotes the minimum hop count between sensamd sensotca(u, v) in G. Therefore, we

would expect thatlist(u, sink) = distg(u, sink) for eachu € Vi; otherwise, we say that
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u deviates fronits shortest path to the sink. dfisty(u, sink) = distg(u, sink) for each

u € Vg, we say that tre& is adeviation-avoidancéree. Fig. 3 shows four possible object

tracking trees for the grapfi in Fig. 1(b). The one in Fig. 3(b) is not a deviation-avoidance
tree sincedistr(F, A) = 3 > distq(E,A) = 2. The other three are deviation-avoidance

trees.

Eqg. 2 contains the factoapr(u,v). Its minimal value is 1 whem # v. Consequently,

it is desirable that each sensor’s parent is one of its neighbors. Only the tree in Fig. 3(d)
satisfies this criterion. By selecting neighboring sensors as parents, the average value of
distr(u, lea(u,v))+distr(v, lca(u,v)) in EQ. 1 can be minimized. For example, the average
values ofdistr(u, lca(u,v))

+ distr(v,lca(u,v)) are 3.591, 2.864, and 2.227 for the trees in Fig. 3(a), 3(c), and 3(d),

respectively.

In Eq. 1, the weightvg (u, v) will be multiplied by distr(u, lca(u, v)) + distr(v, lea(u, v)).
For two edgequ,v) and (uv',v") € Eg such thatwg(u,v) > we(v',v'), it is desirable
thatdistr(u, lca(u, v)) + distr(v, lca(u,v)) < distp(u', lea(u’,v")) + distp (V' lca(u',v")).
Combining this observation with the second observation, an @dge with a highervg (u, v)
should be included int@' as early as possible apfv) should be setta if dists(u, sink) <

distq (v, sink), and vice versa. We call this tinéghest-weight-firsprinciple.

Based on above observations, we develop our algorithm DAT. Initially, DAT treats each node as

a singleton subtree. Then we will gradually include more links to connect these subtrees together.

In the end, all subtrees will be connected into one tfeeThe detailed algorithm is shown in

Algorithm 1, where notatiomoot(x) represents the root of the temporary subtree that contains

To begin with,E(; is sorted into a list. in a decreasing order of links’ weights. Based on the third
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Figure 3: Four possible location tracking trees for the graph in Fig. 1(b).
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observation, algorithm DAT will examine edgesiinone by one for possibly being included into
treeT. For each edgéu, v) in L being examined by algorithm DATy, v) will be included intoT’
only if w andv are currently located in different subtrees. Algo,v) will be included intol” only

if at least one of: andwv is currently the root of its temporary subtree and the other is on a shortest
path inG from the former node to the sink (these conditions are reflected bif thatements

in lines 5 and 7). An edge it passing these checks will then be included ito Note that
without these conditions, deviations may occur. It can be seerftigmbalways a subgraph @f
andwy(u,v) = 1 forall (u,v) € Ep. For example, Fig. 4(a) is a snapshot of an execution of DAT.
When(F, G) is examined by DAT, it will not be included intd, because neithef nor G is the
root of its temporary subtree. Another snapshot is shown in Fig. 4(b). \WBeR) is examined,

it will not be included intoT'. Although D is the root of its temporary subtre®, is not on the
shortest path fronD to A, i.e.,distq(D, A) # distq(B,A) + 1. (A, D) will be then examined
after(B, D). (A, D) can be included int@’, becauseéD is the root of its temporary subtree aAd

is on the shortest path froi to A.

Algorithm 1 DAT(G)
1: LetT = (Vr, Er) such thal’; = Vi andEr = ¢
2: SortEg into a list L in a decreasing order of their event rates.
3: for each(u,v) € Egin L do

4:  if (root(u) # root(v)) then
5: if (u=root(u)) A (distg(u, sink) = distg(v, sink) + 1) then
6: Let B = Er U (u,v) and let the root of the new subtree het (v).
7: else if(v = root(v)) A (distg(v, sink) = distg(u, sink) + 1) then
8: Let Er = Er U (u,v) and let the root of the new subtree het(u).
9 end if
10:  endif
11: end for

Theorem 2. If GG is connected, the trég constructed by algorithm DAT is a connected deviation-

12



® Root node ® Root node
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Figure 4: Snapshots of an execution of DAT. Solid lines are those that have been includEd into

avoidance tree rooted at the sink.

Proof. First, we show thaf’ is connected. Each sensor is the root of a singleton subtree in the
beginning and we will prove that only one senor will be the root in the ending. Sinisecon-
nected, when a sensor+# sink is the root of a subtree (i.er, = root(x)), it always can find a
neighboring sensay such thatlists(z, sink) = dists(y, sink) + 1. Itis clear thatroot(y) # x,
becauselists(root(y), sink) < distg(y, sink). Hence, edgéz, y) can be included int@”, and

x will not be the root anymore. By repeating such arguméntsust be connected and rooted

at the sink. Second, we show thatis a deviation-avoidance tree. This can be derived from two
observations. First, when an edgev) is included intdl’, DAT will choosev as the child ofu if

distq (v, sink) is larger thanlists(u, sink), and vice versa. Therefore, if the path from the sink to
sensoru is one of the shortest paths, the path from the sink to sensoalso one of the shortest

paths. Second, assumitityt (v, sink) = distg(u, sink) + 1, DAT will include (v, v) only when
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v itself is the root of a subtree. This guarantees that all descendant noflestirze(v) will not

deviate from their shortest paths to the sink. Hence, the theorem follows. O

3.2 Algorithm Z-DAT (Zone-based Deviation-Avoidance Tree)

The Z-DAT is derived based on the following locality concept. Assumedhat’s parent inT'.
According to Eqg. 2, for any edger,y) € Eg such thatr € Subtree(v) andy ¢ Subtree(v),
arrival/departure events betweerandy will cause a message to be transmitted pfv), v), thus
increasing the value Of , \c ponvesubtree(v)ryg subtree(w) WG (T, Y). Therefore, the perimeter that
bounds the sensing area of sensors in €adfiree(v) will impact the update cost (7). A longer
perimeter would imply more events crossing the boundary. For example, in the three subtrees
in Fig. 5, although all subtrees have the same number of sensors, the perimeter of the subtree in
Fig. 5(a) is smaller than that in 5(b), which is in turn less than that in 5(c). In geometry, it is
clear that a circle has the shortest perimeter to cover the same area as compared with other shapes.
Circle-like shapes, however, are difficult to be used in an iterative tree construction. As a result,

Z-DAT will be developed based on square-like zones.

(a) (b) ()

ool d
GO 0660 £

O OO0 Ow

C)p(w - g P (v)é

Figure 5: Possible structures of subtrees with nine sensors.

Z-DAT is derived based on the deviation-avoidance principle and the above locality concept.

The algorithm builds" in an iterative manner based on two parameterandd, wherea is a

14



power of2 andJ is a positive integer. To begin with, Z-DAT first usgs — 1) horizontal lines to

divide the sensing field inta strips. For each horizontal line between two strips, we are allowed

to further move it up and down within a distance no more thanits. This give4 + 1 possible
locations of each horizontal line. For each location of the horizontal line, we can calculate the total
event rate that objects may move across the line. Then we pick the line with the lowest total event
rate as its final location. After all horizontal lines are determined, we then further partition the
sensing field intay* regions by usinga — 1) vertical lines. Following the adjustment as above,
each vertical line is also allowed to move left and right within a distance no more’ thaits and

the one with the lowest total event rate is selected as its final location.

After the above steps are completed, the sensing field is dividechingmuare-like zones.
First, we run DAT on the sensors in each zone. This will result in one or multiple subtrees in each
zone. Next, we will merge subtrees in the aba¥eones recursively as follows. First, we combine
these zones together infox § larger zones, such that each larger zone containg neighboring
zones. Then we merge subtrees in these2 zones by sorting all inter-zone edges (i.e., edges
connecting these x 2 zones) according to their event rates into a lisand feedingL to steps
3 ~ 11 of the original DAT algorithm. Second, we further combine the above larger zones together
into § x 7 even larger zones, such that each even larger zone coatairzsneighboring larger
zones. This process is repeated until one single tree is obtained. The algorithm is summarized in
Algorithm 2. An illustrated example is shown in Fig. 6.

To summarize, Z-DAT is similar to DAT except that it examines linksiyf in a different
order. By partitioning the sensing field into zones, each subtréasrikely to cover a square-like
region, thus avoiding the problem pointed out in Fig. 5. Also, by using the paratmeténe-tune
the lowest-level zones, Z-DAT tends to avoid high-weight links becoming inter-zone edges. In

fact, this is a consequence of the the highest-weight-first design principle.
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Algorithm 2 Z-DAT(G, «, 9)
1: Divide the network intax x « zones based on parametearands.
Run DAT on the sensors in each zone.
71— 1
while 5 # 0 do
The network is divided intg; x & zones.
Run DAT on each zone to merge its subtrees.
1+—1+1
end while

© N Ok W

Zonel Zone2

A - Zone3 Zone4

(a) (b)

Figure 6: An example of the Z-DAT algorithm with = 4. (a) In the first iteration, we divide the
field into o x o zones and adjust their boundaries according @) In the second iteration, each
2 x 2 neighboring zones is combined into a larger zone.

Theorem 3.If GG is connected, the tréE constructed by algorithm Z-DAT is a connected deviation-

avoidance tree rooted at the sink.

Proof. Z-DAT will examine all links of G, but in a different order from DAT. However, the proof
of Theorem 3 is independent of the order of the links being examined for being included.into

Therefore, the same proof is still applicable here. O
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3.3 Algorithm QCR (Query Cost Reduction)

The above DAT and Z-DAT only try to reduce the update cost. The query cost is not taken into
account. QCR is designed to reduce the total update and query cost by adjusting the object tracking
tree obtained by DAT/Z-DAT. To begin with, we define the query rAte of each sensor as the
average number of queries that refer to objects within the sensing rang@eaf unit time in
statistics.

Given a tre€l’, we first derive its query cosP(7"). Suppose that an objectis within the
sensing range af. Whenz is queried, ifv is a non-leaf node, the query message is required to be
forwarded tov sincep(v) only indicates that is in the subtree rooted at On the other hand, if
is a leaf node, the query message only has to be forwardga tpbecause senspfv) knows that
the object is currently monitored hy The following equation give®(T') by taking into account

the number of hops that query requests and query replies have to trdiel on

Q(T) =2 x Z q(v) x distr(v, sink) + Z q(v) x distp(p(v), sink) |, (3)

veVpA vEVA
v¢leaf node v€leaf node

We make two observations @p(7"). First, becauséist(p(v), sink) is always smaller than
distr(v, sink), Eg. 3 indicates that placing a node as a leaf can save the query cost instead of
placing it as a non-leaf. For example, when query rates are extremely high, it is desirable that
every node will become a leaf node ahdwvill become a star-like graph. Second, the second term
in Eq. 3 implies that the value a@fist;(p(v), sink) should be made as small as possible. Thus, we
should choose a node closer to the sink’agparent (however, this is at the expense of the update
COst).

Based on the above observations, QCR tries to adjust thé'todained by DAT or Z-DAT. In
QCR, we examiné’ in a bottom-up manner and try to adjust the location of each noddoynthe

following operations.
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1. If a nodev is not a leaf node, we can make it a leaf by cutting the links to its children and
connecting each of its children fgv). (Note that we can do so becauBés regarded as a

logical tree.) Letl” be the new tree after modification. We derive that

C(T) = C(T") = Q(T) = QT +U(T) ~U(T) =2 x | qv) + > a(i)

i€children(v)A
i€leaf node

— Z wG(x,i) — Z Z wg(x,y)

i€neighbors(v) iEchildren(v) (z,y)EEGAy¢ESubtree(i)
A€ Subtree(v) Az € Subtree(i)

(z,y)EEGAYy¢ESubtree(v)
Az€Subtree(v)Az#v

The derivation of Eq. 4 is in Appendix A. If the amount of reduction is positive, we replace

T by T'. Otherwise, we keepp’ unchanged. Fig. 7 illustrates this operation.

i
/
\ !

\ i
\ !
\ !

nm e
AR AR
YR 1

Figure 7: Making a non-leaf nodea leaf node.

2. Ifanodev is a leaf node, we can makév) closer to the sink by cutting’s link to its current

parentp(v) and connect to its grandparent(p(v)). Let7” be the new tree. We derive that

C(T) - C(T") = Q(T) = Q(T") + U(T) — U(T")
(z,9)

s i -2 Y ] @
(z,y)EEgAy¢Subtree(v)A

z€Subtree(v)AyESubtree(p(v))
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where

(0) = 0 if p(v) has more than one child ifi
T\ =9 q(p(v)) otherwise :

The derivation of Eq. 5 is in Appendix A. If the amount of reduction is positive, we replace

T by T'. Otherwise I’ remains unchanged. Fig. 8 illustrates this operation.

Figure 8: Connecting a leaf nodeto p(p(v;)).

Note that Eq. 4 and Eq. 5 allow us to compute the reduction of cost without compuifgy
andQ(T"). This saves computational overhead. Also note #has examined in a bottom-up
manner in a layer-by-layer manner. Nodes that are moved to an upper layer will have a chance
to be reexamined. However, to avoid going back and forth, nodes that are not moved will not be
reexamined.

For example, suppose that we are given a DAT tree in Fig. 9(a) (which is constructed from
Fig. 1(b)), where the number labelled on each node is its query rate. When examining the bottom
layer, we will apply step 2 to sensof$, .J, and K and obtain reductions d974, —62, and—6,
respectively. Hence, onl¥ is moved upward as shown in Fig. 9(b). When examining the second
layer, we will apply step 1 to senso¥ and/ and apply step 2 to sensof§ F, and H. Only
when applying to sensdt, it will result in a positive reduction of970. This updates the tree to

Fig. 9(c). Finally, sensor®, D, andF' are examined. Only) has a positive reduction di42.
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Figure 9: An execution example of algorithm QCR.

Thus, D will become a leaf and all its children are connectedts parent as shown in Fig. 9(d).

Overall, the cost is reduced from 7121 to 5150, 3180, and then 1338 after each step respectively.

4 Simulation Results

We have simulated a sensing field of sZ& x 256. Unless otherwise stated)96 sensors are
deployed in the sensing field. Two deployment models are considered. In the first one, sensors
are regularly deployed astd x 64 grid-like network. In the second model, sensors are randomly
deployed. In both models, the sink may be located near the center of the network or one corner of
the network.

Event rates are generated based on a model similar wtiheobility modein [8]. Assuming

the sensing field as a square of size r, the model divides the field intd x 2 sub-squares called
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level-1subregions. Each level-1 subregion is further divided into2 sub-squares callddvel-2
subregions. This process is repeated recursively. Given an object located in any position in the
sensing field, it has a probabilipf to leave its current level-1 subregion, and a probability p,

to stay. In the former case, the object will move either horizontally or vertically with a distance of
r/2. In the latter case, the object has a probabijlityo leave its current level-2 subregion, and a
probability 1 — p, to stay. Again, in the former case, the object will move either horizontally or
vertically with a distance af /22, and in the latter case it may cross level-3 subregions. The process
repeats recursively. The probabilityis determined by an exponential probability= ¢=¢2*"",

where(C' is a positive constant and is the total number of levels. In fact, the above behavior
only formulates how objects move in the sensing field. After sensors are deployed in the network
(no matter the sensors are deployed in a regular or random way), the movement patterns of these
objects will generate event rates between neighboring sensors. Also, objects are queried by the
sink with the same probability. Since objects may be located at different sensors with different
probabilities, the query rates may vary in different sensors.

We compare our schemes with a naive scheme and the DAB scheme [8]. In the naive scheme,
any update is sent to the sink (i.e., there is no in-network processing capability.) In this case, the
guery cost is always zero, so it is preferable when the query rates are relatively high. For the DAB
scheme, all sensors are considered leaf nodes, and a logical structure is used to connect these leaf
nodes. When two subtrees are merged into one, the root of the subtree which is closer to the sink
will become the root of the merged tree (note that this may still cause deviation).

First, we observe the advantage of using in-network processing to reduce update cost. Fig. 10
shows the result under different values(ofor regular and random sensor deployment. As can be
seen, a large€' implies a higher moving locality, thus leading to a lower update cost. The naive

scheme has the highest update cost, which is reasonable. By exploiting the concept of deviation
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Figure 10: Comparison of update costs. In the Z-DAT scheme,8 andé = 0.

avoidance and taking the physical topology into account, DAT and Z-DAT further outperform
DAB.

Next, we investigate the effect of deployment models. By comparing, the graphs in Fig. 10, we
see that Z-DAT outperforms DAT under regular deployment, but the advantage is almost negligible
under random deployment. This is because maintaining the shapes of subtrees in Z-DAT is difficult.
For example, Fig. 11 shows snapshots of DAT trees and Z-DAT trees under regular and random
deployments. As can be seen, Z-DAT does exploit the locality of sensors by partitioning sensors
into zones under regular deployment. However, this is not true for the random case.

To get further insight into the performance of Z-DAT, we varnandd, and show the results

in Fig. 12, where a 4096- and a 2500-node sensor networks are simulated. Note that whien
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(a) A DAT tree. (Regular Deployment) (b) A Z-DAT tree. (Regular Deployment)

7 H - - < - - 7

(c) A DAT tree. (Random Deployment) (d) A Z-DAT tree. (Random Deployment)

Figure 11: Snapshots of trde obtained by DAT and Z-DAT under regular and random deploy-
ments. There are 1024 sensors with the sink at the lower-left cotner)(= (8, 0) for Z-DAT.)
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Figure 12: Comparison of update costs under diffefent) for Z-DAT. Sinks are located at the
center of the network.

andd = 0, Z-DAT is equivalent to DAT. For regular deployment, Z-DAT performs well when

is larger than 4. However, for random deployment, the Z-DAT does not perform well, because
maintaining the shapes of subtrees in Z-DAT is difficult. Furthermore, it can be seen that when
0 = 0, Z-DAT has better performance. This means that a square-like zone is better than a rectangle-
like zone. Also, note that the trend in both 4096- and 2500-node sensors networks (the latter has a
non-power-of-2 number of nodes) are quite similar.

Next, we examine the query cost. The result is shown in Fig. 13. In general, the query cost
increases linearly with the aggregate query rate. As mentioned earlier, the query cost of the naive
scheme is always zero. Both query costs for DAT and Z-DAT are lower than that of DAB. This
is attributed to the fact that query messages are always transmitted along the shortest paths be-
tween the sink and sensors in DAT and Z-DAT. Also due to the similar reason, the query cost is

independent of the shape 6f thus, DAT and Z-DAT perform similarly despite the deployment
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models.

Finally, we examine the effectiveness of algorithm QCR by showing the total update and query
costs of different schemes in Fig. 14. (For visual clarity, the cost of DAT are not shown.) The
naive scheme has a constant cost because it is not affected by the query rate. The costs of DAB
and Z-DAT increase linearly with respect to the query rate. As a result, they are outperformed
by the naive scheme after the query rate reaches a certain level. Our Z-DAT with QCR scheme
performs the best at all query rates. When the query rate is low, it performs close to Z-DAT. On

the other hand, when the query rate increases, it works similar to the naive schemes. This verifies

(c) random deployment, sink at a corner

(d) random deployment, sink at the center

Figure 13: Comparison of query cost§! € 1.0)

the advantage of the proposed DAT/Z-DAT with QCR schemes.
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Figure 14: Comparison of total costs. & 1.0)
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5 Conclusions

In this paper, we have developed several efficient ways to construct a logical object tracking tree in
a sensor network. We have shown how to organize sensor nodes as a logical tree so as to facilitate
in-network data processing and to reduce the total communication cost incurred by object tracking.
For the location update part, our work can be viewed as the extension of the work in [8], and we
enhance the work by exploiting the physical structure of the sensor network and the concept of
deviation avoidance. In addition, we also consider the query operation and formulate the query
cost of an object tracking tree given the query rates of sensors. In particular, our approach tries to
strike a balance between the update cost and query cost. Performance analyses are presented with
respect to factors such as moving rates and query rates. Simulation results show that by exploiting
the deviation-avoidance trees, algorithms DAT and Z-DAT are able to reduce the update cost. By
adjusting the deviation-avoidance trees, algorithm QCR is able to significantly reduce the total cost

when the aggregate query rates is high, thus leading to efficient object tracking solutions.
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Appendix A

In this appendix, we show how to derive Eq. 4 and Eq. 5. To begin with, we present two implicit
facts used in the following derivations. First, according to Theorem 1, we can conclude that if the
members ofSubtree(v) are not changed, the number of messages transmitted or{edge))
T will be unchanged. Second, when a nads being examined by QCRy7(p(v), p(p(v))) must
be 1. This fact holds because the input of QCR algorithm is a DAT/Z-DAT tree and the tree is
examined in a bottom-up manner.

First, we derive the)(T) — Q(T") in Eg. 4. Whenv becomes a leaf and the queried object
locates at the sensing field of the query only has to be sentj¢v). In addition, when one of

v’s children, sayi, is connected tp(v) and: is a leaf,p(v) also can reply the query if the queried
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object locates at the sensing fieldiofThus, we have

QT = QT =2x [qw)+ Y aqli)
iEchild;en(v)
Ni€lea fnode

Now we derive thd/(T) — U(7") in Eq. 4. The operation of QCR ensures that when one of

v’s children, sayi, changes its parent fgv), the update cost will be increased by

2 2. walw)

iE€children(v) (z,y)€EEqAy¢Subtree(i)
zAESubtree(i)

In addition, the events betweenandi, wherei € neighbors(v) andi € Subtree(v), will be
reported tg(v) rather than) whenv becomes a leaf. Thus,must forward an additional message

to p(v). The increased cost is

Z we(x,1).

i€neighbors(v)A
i€Subtree(v)

However, when) becomes a leaf, the event across an €dge) € E such thaty ¢ Subtree(v),

x € Subtree(v), andx # v will not be transmitted ortv, p(v)). The cost is reduced by

Z we(x,y).

(z,y)EEGAy¢ESubtree(v)
Az € Subtree(v)AzF#v

Combining above three factors, we have

U -y =-S5 welwi)- 3 S weley)

i€neighbors(v) iechildren(v) (z,y)EEGAy¢Subtree(i)
A€ Subtree(v) Az€Subtree(i)

+ Z we(x,y).

(z,y)EEgAygSubtree(v)
Az€Subtree(v)Az#v

Next, we derive Eq. 5. To se@(T) — Q(T1"), observe that when changes its parent from

p(v) to p(p(v)), the saved query cost igv). Furthermore, whep(v) has only one child, the
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adjustment ob will make p(v) a leaf. This saves a query cost@p(v)). Therefore, we have
Q(T) — Q(T") =2 x (q(v) + ¢'(v))-
The value ofU(T") — U(T") is affected by three factors, wherchanges its parent from(v)
to p(p(v)). The update cost will be increased by

Z we(z,y).

(z,9y)EEG Ay¢Subtree(v)
Az € Subtree(v)

For edges that have one incident verteXSimbtree(v) and one incident vertex is ifiubtree(p(v))
but not inSubtree(v), the events across these edges cannot be absorbé¢d)@afterv changes its
parent fromp(v) to p(p(v)). The increased update cost will be:

Z we(T,y).

(z,y)EEgAygSubtree(v)A
z€Subtree(v)AyeSubtree(p(v)

However, for edges that have one incident verteXibtree(v) and one incident vertex is not
in Subtree(p(v)), the events across these edges will be transmittewon(p(v))) rather than
(v, p(v)) when we connects to p(p(v)). The update cost will be decreased by

Z wa(z,y).

(z,y)EEgAzESubtree(v)
Ayé¢Subtree(p(v))

Combing these terms leads to the following equation

!
(z,y)€EEgAy¢Subtree(v) (z,y)EEgAy¢Subtree(v)A
Az €Subtree(v) z€Subtree(v)AyESubtree(p(v))
+ E wG(‘rvy>:_ 2x § wG(x,y)
(z,y) e Eg Az Subtree(v) (z,y)EEgAy¢Subtree(v)A
AygSubtree(p(v)) z€Subtree(v)AyESubtree(p(v))
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