
496 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 3, JUNE 1993

Efficient Indexing Methods for Temporal Relations
Himawan Gunadhi and Arie Segev, Member, EE’,!?

Abstract-The size of temporal databases and the semantics
of temporal queries pose challenges for the design of efhcient
indexing methods. The primary issues that affect the design of
indexing methods are examined, and propose several structures
and algorithms for specific cases. Indexing methods for time-
based queries are developed, queries on the surrogate or time-
invariant key and time, and temporal attribute and time. In the
latter case, several methods are presented that partition the time-
line, in order to balance the distribution of tuple-pointers within
the index. The methods are analyzed against alternatives, and
present appropriate empirical results.

Index Terms -Indexing, physical organization, query process-
ing, searching, temporal databases.

I. INTRODUCTION

T HE main focus of research in temporal databases has
been on the modeling and representation of temporal data

[4]-[6], [13], [16]-[20], [22]. Until recently, concerns about
the performance of temporal databases have, to a large extent,
been ignored. There are two major issues that separate the
physical design of temporal databases from conventional ones:
the size of data, which may be several orders of magnitude
larger; and the extended semantics of temporal queries, e.g.,
[5], [8], [17], [151, which increase the complexity of query
processing. Previous studies in physical temporal database de-
sign tended to focus on narrowly defined objectives. Methods
to index the surrogate (time-invariant) key with sequential
access to history were explored by [lo], [12], [23]. Partitioning
and indexing of static databases was studied in [7], [14].
The performance of traditional indexing methods for temporal
queries was investigated by [2], [21], and methods to organize
current and historical versions proposed in [l], [3].

In this paper, we investigate methods of indexing time-
dependent data, within the context of a a first normal form
(1NF) relational representation of temporal data. A framework
by which to develop and evaluate physical design architectures
for temporal databases is given. We subdivide a temporal
database into two or possibly three segments, based on the
time-related view or version of the data, i.e., current, a moving
window (if it is defined), and the archived history. The major
factors that influence design are 1) the physical organization
of each portion, 2) the index construction on each portion, and
3) functionality of queries on the database. Several interesting

Manuscript received April 3, 1990; revised May 9, 1991. This work was
supported in part by an NSF Grant Number IRI-9 000 619 and in part by the
Applied Mathematical Sciences Research Program of the Office of Energy
Research, U.S. Department of Energy under Contract DE-AC03-76SFOO 098.

The authors are with the Walter A. Haas School of Business, University of
California at Berkeley and Computing Sciences Research and Development
Department, Lawrence Berkeley Laboratory, Berkeley, CA 94720.

IEEE Log Number 9208078.

cases are subsequently investigated: 1) Dynamic structures for
surrogate and time indexing (ST); 2) Static and dynamic
partitioning algorithms for the time-line in the context of
temporal attribute and time indexing; and 3) Time-indexing
for append-only database. In all the designs, the focus is on
the role of the time attribute.

The paper is organized as follows. In Section II, we discuss
the relational representation of data in the temporal context,
followed by a framework for analyzing the physical design
of a temporal database. In Section III, we introduce the AP-
tree, which is designed for time-based query operations on an
append-only database, and is subsequently incorporated into
our surrogate-time index of Section IV. In Section V, we
discuss the issue of indexing time and one or more temporal
attributes, and delve into techniques for efficiently partitioning
the time line. In Section VI conclusions and future directions
are outlined.

II. FUNDAMENTAL CONCEPTS AND DESIGN CONSIDERATIONS

In this section, we look at the fundamental approach under-
taken for the paper. We adopt a tuple versioning approach
with interval time representation, and look at the possible
architectures of a temporal database.

A. Relational Representation of Temporal Data

A convenient way to look at temporal data is through the
concepts of time sequences (TS) and time sequence collection
(TSC) [16]. A TS represents a history of a temporal attribute(s)
associated with a particular instance of an entity or a relation-
ship. The entity or the relationship are identified by a surrogate
(or equivalently, the time-invariant key [13]). For example, in
the MANAGER relation of Fig. 1, the manager history of em-
ployee #l is a TS. A TS is characterized by several properties,
such as the time granularity, lifespan, type, and interpolation
rule to derive data values for nonstored time points. In this
paper, we are concerned with two types-stepwise constant
and discrete. Stepwise constant (SWC) data represents a state
variable whose values are determined by events and remain the
same between events; the salary attribute represents SWC data.
Discrete data represents an attribute of the event itself, e.g.,
number of items sold. Time sequences of the same surrogate
and attribute types can be grouped into a time sequence
collection (TSC), e.g., the manager history of all employees
forms a TSC.

There are various ways to represent temporal data in the
relational model; detailed discussion can be found in [171. In
this paper we assume first normal form relations (1NF). Fig.
1 shows two ways of representing SWC data.

1041-4347/93$03.00 0 1993 IEEE

GUNADHI AND SEGEV: EFFICIENT INDEXING METHODS FOR TEMPORAL RELATIONS 497

Fig. 1. Representing step-wise constant data with lifespan=[l, 20] (a) Time
interval representation. (b) Time-point representation.

The representations can be different at each level (external,
conceptual, physical), but we are concerned with the tuple
representation at the physical level. Fig. l(a) shows time-
interval representation of the MANAGER and COMMISSION
relations. On the other hand, the representation in Fig. l(b)
stores data only for event points and requires explicit storage
of nuZ2 values to indicate the transition of the state variable into
a nonexistence state. Also, the tuples should be ordered by time
in order to determine the values between two consecutive event
points. Both representations require the use of the lifespan
metadata; it is required for the time-interval representation
since we do not store nonexistence nulls explicitly, e.g., the
lifespan is needed in order to correctly answer the query
“what was the commission rate of E2 at time 12?” We select
time-interval representation for the purpose of generalization,
although the indexes can be adapted to event-point represen-
tation.

We use the terms surrogate(S), temporal attribute(A),

and time attribute(T) when referring to attributes of a
relation. For example, in Fig. 1, the surrogate of the MAN-
AGER relation is E#, MGR is a temporal attribute, and TS

and TE are time attributes. We assume that all relations are
in first temporal normal form (1TNF) [171. 1TNF requires
that for each combination of surrogate instance, time point
in the lifespan and temporal attribute (or attributes) there
is at most one temporal value (or a unique combination of
temporal values). Note that 1NF does not imply lTNF, e.g.,
the relation COMMISSION in Fig. l(a) would not be in 1TNF
if for any surrogate instance there were two tuples with the
same commission rate value and intersecting time intervals.
The temporal normal form (TNF) definition given in [13] is
deemed too restrictive, since enforcing it would mean that
most relations will contain only a single temporal attribute.

B. Lifespan and Organization of a Relation

The physical design requirements of a temporal relation
may be viewed according to its lifespan relative to current
time. Let the lifespan of relation r be identified by a pair of
start-end time-points LS, .START and LS, . E ND. Current

‘We refer to the data construct as a “relation,” but we mean a “temporal
relation.” It is different from a standard relation because of the associated
meta-data.

data, i.e., those tuples with TE = NOW, form the current
snapshot; all others make up the history of r. In many
instances, a moving time window (MTW) may be defined
on the relation, defined by the closed interval [max{ NOW -

INT+l, LS,.START}, NOW], where INT is the length of
the window. A relation may thus be subdivided into these three
segments, or versions - current snapshot, MTW history, and
archived versions.

Several design issues result from this dichotomy. First is the
physical organization of each version, i.e., whether they should
be organized jointly or separately. We adopt the position that
the data that is covered by the MTW should be physically
separated from the archived history, which is presumed to be
less frequently needed to answer queries. The indexes should
also be separated, so as to improve efficiency by reducing the
size of each. There are other associated design issues related
to this approach, including the media selection and indexing,
e.g., the adoption of WORM optical disks for archival and
design of suitable indexes for such media; and the issue of
migration strategies for moving tuples from one level of the
hierarchy to the next, e.g., “vacuuming” techniques in [23],
[24]. In this paper, our focus is on indexing only.

For the time window, current data may be separated or
stored together with the historical portion. There are several
tradeoffs to either approach. If they are separated, overheads
will always be incurred in order to move them from one
level to another in storage. On the other hand, all current
snapshot queries should retain the efficiency of conventional
database management systems. Conversely, if the tuples are
stored together, the efficiency of snapshot queries can only
be preserved if data has been clustered according to the time
dimension, and the indexes are specifically designed to allow
rapid retrieval of current tuples.

C. Functionality of Queries

Various operators for temporal databases are discussed in
[16], [17] within the context of the TSC, in [13], [19]
with respect to an extended relational model, and in [8],
[15] for joins involving time. The functionality of queries is
our primary interest, i.e., how data should be organized and
retrieved at minimum cost. Cost is measured in both storage
and disk access time. The following are the main types of
temporal queries:

1)

2)

3)

ST Queries: What would have been primary key queries
in a conventional relation, is now a query on a conjunc-
tion of S and T. Functionally, there are four distinct
time specifications, i.e., the current time NOW, an

arbitrary point, an interval [t,, t,], or the whole lifespan
of the entity. A specific time point can also be further
qualified as a TS or TE time attribute in the relation,
which is semantically different than the specification of
an arbitrary time or event point.
AT Queries: These are queries based on the temporal
attribute value at some point or interval in time.
T Queries: These apply to queries that are primarily
qualified on time, i.e., for such queries as aggregates,
time ordering or where initial restriction on T is more

498 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 3, JUNE 1993

TABLE I
SUMMARY OF NOTATIONS

Variable(s) Description

Start, end times of T’S lifespan

Order of index S

Search values for an index

Height of index type X for query
type 1’

Total number of keys in a given
index

Total number of keys being deleted
from an index

Size of relation (tuples), surrogate
domain and time-sequence (tuples)

Byte size of a tuple, surrogate, time
attributes and tuple pointer

tl t2 t3 t4 = tuples with Ts = 1
I

Root Pointer

lT----l-
t5 t6 t7 = tuples with Ts = 4

Leaf Pointer

-

tl 12 t3 t4 15 t6 t7...

Fig. 2. Example of AP-tree of Order 4.

selective for a conjunctive query with S or A.
4) Multidimensional Queries: These queries can have arbi-

trary conjunctions on relational attributes.

D. General Notations

Table I summarizes notations that are used throughout the
paper.

III. THE APPEND-ONLY TREE

In this section we present a multiway tree to index time
values, that is a modification of the standard B-+-tree; it
was first introduced to optimize event-join operations [15].
The primary reason that it is most suitable for append-only
databases is the fact that it is designed to increase node loading
and ease insertions at the expense of complicating deletions.
This structure is also useful in the case of the ST nested
index that will be introduced in the following section, where
the values of time arrive in order.

A. Definition B. Searching an AP-Tree

The Append-only Tree, which we call AP-tree, is a multiway
search tree that is a hybrid of an ISAM index and a @--tree.
The leaves of the tree contain all the TS values in the relation;
for each Z-” value, the leaf points to the last (toward the end
of the file) tuple with the specific 57s value. Each nonleaf node
indexes nodes at the next level. Fig. 2 gives an example of an
AP-tree of order 4.

Note that the pointer associated with a nonleaf key value,
with the exception of the first pointer, points to a node at the

next level having this key value as the smallest node value. The
significance of this decision is explained later on. Access to the
tree is either through the root or through the right-most leaf.
The AP-tree is different than the @--tree in several respects.
First, if the tree is of degree d, there is no constraint that a node
must have at least [d/21 children. Second, there is no node
splitting when a node gets full. Third, the online maintenance
of the tree is done by accessing the right-most leaf.

Given the premise that deletions are treated as offline2
storage management, only the right-hand side of the tree can
be affected. The only online transactions that affects the TS
values in an append-only database is appending a new tuple. In
most cases, just the right-most leaf is affected, either a pointer
is updated or a new key-pointer pair is added, but if it is full
a new leaf has to be created to its right, and in the worst case
either a new node along the path from the root to the new leaf,
or a new root have to be created. These conditions lead to the
following formal definition.

Definition: An AP-tree of order d is a d-way tree in which

1) All internal nodes except the root have at most d
(nonempty) children, and at least 2 (nonempty) children.

2) The number of keys in each internal node is one less
than the number of its children, and these keys partition
the keys in the children in the fashion of a search tree.

3) The root has at most d children, and at least 2 if it is not
a leaf, or none if the tree consists of the root alone.

4) For a tree with n children (n > 0), and a height of h,
each of the first n, - 1 children is the root of a subtree

where

a) all leaves in each subtree are on the same level,

b) all subtrees have a height of h - 1,

9 each subtree’s internal nodes have d - 1 keys.
d) For the rightmost subtree rooted at the nth child:

9 it has a height of at least 1, and no more than
h - 1,

9 when its height reaches /A - 1, and each internal
node has d - 1 keys, the next key insertion into
the A&tree creates a new right subtree.

The fourth point in the definition ensures that the AP-tree is
balanced for all but the right subtree, and that this subtree will
continue to grow until it reaches the same height and maximal
node loading as its siblings, before a new right subtree is
created. There are various implementation details of the AP-
tree that differ from B-trees and ISAM indexes, and these
will be described as we proceed.

The AP-tree’s search procedures is similar to that of a
standard B+-tree for secondary key indexing, except for two
primary differences. First, direct access to the rightmost leaf
is available, so that insertions can be made rapidly; since
access to the tree for insertions is always made through the
rightmost leaf, two-way pointers are used to link a node with

2 Reorgani zing the tree to reflect deletions can be done during idle periods
or low load periods. All the procedures function correctly regardless of the
timing; the only issue is performance.

GUNADHI AND SEGEV: EFFICIENT INDEXING METHODS FOR TEMPORAL RELATIONS

Fig. 3. Example of AP-tree with B-tree key organization.

its parent. 3 Second, the semantics of time-based queries allow
modifications aimed at improving the efficiency of retrieval.
A search through the tree may be based on the TE value or
a given time point, which requires a backward scan of tuples
starting from those with a key value v+ = max{ uiu 5 V}. By
maintaining metadata about the first Ts value and the largest
TE value indexed by the tree, the fact that all but the first
child in an internal node indexes lower level nodes based on
the smallest rather than the largest key values, ensures that
only one leaf node is visited. In Fig. 3, an AP tree for the data
in Fig. 2 is shown with a search organization based on the
largest key value; for a query that requests tuples that have
V = 32, vs will be found in the visited leaf of the tree in Fig.
2, but not for the tree in Fig. 3, where the key resides in the
left sibling of the visited node.

In order to optimize searching time, an AP-tree’s root node
contains the following metadata: Ts, which is the minimum
of all the TS values indexed by the tree; LS, l END,4 which is
the end point of the lifespan of the relation ri being indexed;
the leftmost leaf pointer; and the rightmost leaf pointer. We
assume that the beginning of the data file pointer for T is
resident in main memory or is easily accessible, thus not
requiring its inclusion as metadata. Further, due to the need
for backward as well as forward sequential scans through the
data file, the data blocks are linked by two-way pointers.

In the following procedures, we ignore certain details such
as pointer maintenance for brevity. When a query is based
explicitly on Ts, using the index is beneficial, but when the
query is based on some arbitrary point in time, then it is not
possible to determine a priori whether an index search is more
useful than a simple forward scan. On the other hand, further
qualification, such as the specification of a surrogate value(s)
in the query, or additional knowledge about the data, may
allow a choice of either forward scan or index-based search
for optimal response time. We provide only a general search
algorithm on the basis of time alone.

SearchTimeStart

[For V = Ts]

1) If V < Ts or V > LS,. END, search fails;
else if V = Tg perform task.

2) If v = LS, .END, go to RighMostLeafi
if V is not found, search fails;
else perform task.

3 Two adjac ent leaves of the tree are also linked by two-way pointers
although this detail is not clearly shown in the figures.

4T,- is not the same as the beginning of the lifespan of T, since the tree
may index a moving time window.

3) Starting from Root, follow pointer corresponding to
v+ = max{ ulv 5 V} until leaf is reached.
if V is not found in leaf, search fails;
else perform task.

SearchArbitraryTime

[For arbitrarv Vl

1)

2)

3)

If V < & 0; V > LS,. END, search fails;
else if V = LS,.END perform step 3;

else perform step 2 or 3.
[Index search]
Starting from Root, follow pointer corresponding to
v+ II max{ w Iv < V} until leaf is reached.
Carry out backward scan, starting from tuple accessed
by leaf pointer, to the beginning of data file. For each
tuple x, if V E [x(Ts), x(TE)] perform task.
[Nonindex search]
Scan tuples from beginning of file until a tuple with
TS > V is found. For each tuple x, if V E
[x(Ts), I] perform task.

C. Insertion into the AP-Tree

Insertions into the tree are made by first accessing the
rightmost leaf. One of the advantages of the AP-tree is that
it requires no splitting of filled nodes, and when new nodes
have to be created, it is done so only on two levels- the leaf
and its parent; no other level will be affected. The only nodes
of the tree that are relevant during an insertion procedure are
the root, the rightmost child of the root, the rightmost leaf, and
the parent of the rightmost leaf and its parent. If the root and
rightmost leaf are not stored in main memory, at most five
disk blocks have to be retrieved during an insertion; unlike
the B-tree, recursive procedures are not required. The insertion
algorithm below consists of two subroutines- InsertLeaf and
AdjustTree. The following definitions are used: Zsib and rsib
are the left and right sibling of a leaf node respectively (they
are null for nonleaf nodes). LowPtr is a pointer to a node’ss
child that contains keys less than the node’s smallest key.
Insert Leaf

1)

2)

3)

9

IF RootPtr = null, create Root and insert NewKey;
ELSE,
Retrieve RightMostLeaf; IF NewKey is found in
RightMostLea f update tuple pointer if necessary. ELSE,
If RightMostLeaf is not full, insert NewKey into
RightMostLeaf. ELSE,
[RightMostLeaf is full]
Create NewLeaf and insert NewKey;
Set the parent of NewLeaf to the parent of

RightMostLeaf;
rsib(RightMostLeaf) = NewLeaf; rsib(NewLeaf)=
null; lsib (NewLeaf)=RightMostLeaf;
call AdjustTree(); RightMostLeaf =NewLeaf.

AdjustTkee()

1) CurrentNode = parent(NewLea fk

500 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 3, JUNE 1993

2) IF (CurrentNode is null): (12461
create NewRoot; insert NewKey into NewRoot;

child(NewRoot.NewKey) = NewLeaf;

LowPointer(NewRoot) = RightMostLeaf;

parent(NewLeaf) = NewRoot;

parent(RightMostLeaf) = NewRoot; return; ELSE,
3) (CurrentNode is not null)

IF (path to RightMostLeaf = TreeHeight):

IF (CurrentNode is not full):
Insert NewKey and Pointer pair in CurrentNode;
parent(NewLeaf) = CurrentNode; return;

ELSE (CurrentNode is Full),
X = parent(CurrentNode);
WHILE(X is not null and X is full) X =

parent(CurrentNode); ENDWHILE
IF (X is not null):

0 a

insert NewKey and Pointer pair in X;
parent(NewLeaf)= X; return;

ELSE,
create NewRoot; insert NewKey and pointer

pair in NewRoot;

parent(NewLeaf) = NewRoot;

LowPointer(NewRoot) = Root;
parent(Root) = New Root; return; ELSE,

4) (path to RightMostLeaf < TreeHeight)

IF (level(RighMostLeaJ)-level(CurrentNode) > 1):
create NewNode; parent(NewNode) = CurrentNode;
child(CurrentNode.RightmostKey) = NewNode;

insert NewKey and pointer pair in NewNode;
parent(NewLeaJ) = NewNode;
parent(RightMostLeaJ) = NewNode;

LowPointer(NewNode) = RightMostLeafi return;
5) IF (level(RightMostLeaJ)-level(CurrentNode) == 1):

IF (CurrentNode is full):
create NewNode; parent(CurrentNode) = NewNode;

child(parent(CurrentNode)LastKey) = NewNode;
insert NewKey and pointer pair in NewNode; par-

ent(NewLeaJ) = NewNode;
parent(NewNode) = parent(CurrentNode);

LowPointer(NewNode) = CurrentNode; return;

ELSE,
insert NewKey and pointer in CurrentNode;

parent(NewLeaJ) = CurrentNode; return;

In InsertLeaf, the appropriate location for the new key is
determined; when the rightmost leaf is full, a new rightmost
leaf is created and the key inserted into it. The parent pointer of
this new leaf is set to the same parent of the former rightmost
leaf. The adjustments are then accomplished by AdjustTree;
the examples given in Fig. 4 help to illustrate some of the
cases.

The operations of the APTREE can be summarized as
follows.

Case 1: The currrent node which is the parent of the
NewLeaf is null so a NewRoot must be created as in Fig.
4(b), and the NewKey must be inserted into it and the pointers
updated.

Case 2: The parent node of NewLeaf isn’t full so consid-
erthe following two subcases.

7

0 1246 7

(4

Fig. 4. Examples of Insertions into the AP-tree. (a) After insertion of keys
1, 2, 4, and 6. (b) After insertion of key 7. (c) After insertion of key 40 into
a two-level tree that has 100% loading. (d) After insertion of keys 42, 42,

44, and 45.

Subcase 2.1: The number of nodes in the path to the
RightMostLeaf equals the number of levels in the tree so if
the parent of the NewLeaf isn’t full just insert NewKey into
it. Otherwise, search up the rightmost branch of the tree until
a nonfull node is found and do the insert there. If no nonfull
node is found, create a NewRoot, insert there, and make the
NewLeaf its only child as in Fig. 4(c).

Subcase 2.2: The number of nodes in the path to the
RightMostLeaf is less than the number of levels in the tree
consider the following two cases:

Subcase 2.2.1: The parent of the NewLeaf is more than
one levelabove the NewLeaf so create a NewNode between
them and insert there as in Fig. 4(d).

Subcase 2.2.2: The parent of the NewLea f is exactly one
levelabove the NewLeaf so if the parent is not full insert here
otherwise, the rightmost subtree isn’t full but the parent is full
so create a NewNode as the parent of the current parent node
and insert the NewKey into the NewNode. The NewNode

also becomes a child of the current root.
Note; The pointers must be updated in each case as de-

scribed in thealgorithms.

D. Deletions from the AP-tree

Deletions are made in order to reduce the current time-
window of the database. There are two relevant types of

GUNADHI AND SEGEV: EFFICIENT INDEXING METHODS FOR TEMPORAL RELATIONS 501

0 a

I
@I

Fig. 5. Deletion of Keys 1,4,6 and 7 from AP-tree of Fig. 1. (a) Maintaining
100% fill factor for leftmost leaf. (b) Allowing less

P,
100% fill factor for

leftmost leaf ‘,

i

deletions: one based on change points, i.e., TS values; and on
event points, i.e., some given point along the time dimension.
Unlike the B-tree, deletions from the AP-tree require com-
plete reconstruction of the tree in order to maintain balance;
in other words, the complexity is proportional to NV, the total
number of keys. If we were to allow the leftmost leaf to be
less than 100% full after a delete operation, the complexity
is reduced; Fig. 5 provides an illustration of the differences
between the two approaches.

The second method is useful for the deletion of a small
number of keys from the leftmost node, since in such an
instance, the internal nodes remain unaltered. Otherwise, this
technique presents difficulties due to 1) in the worst case, the
parent-pointer of most leaves have to be changed, so they need
to be read, and 2) modification of the internal nodes means that
they have to be chained together for efficient retrieval. In the
following algorithms, we adopt the first approach. We call the
new cutoff key Cutoff: if Cutoff is not a Ts, then Ts
is set to the leftmost key along the leaf level after deletion
is completed, else Ts = Cutoff. For simplicity, we ignore
below the treatment of the data tuples and any index search
needed, since that would use the search procedures previously
given. Further, housekeeping of pointers and metadata are
ignored unless explicit treatment is important.

DeleteTimeStart

1) [For Cutoff = Ts]
2) For CurrentNode, delete all v < Cutoff in it and

any left siblings.
if CurrentNode

new Cur

else shift
#rentNode

remaining

becomes empty make right sibling the
and
keys

delete empty node;
(and their associated pointers)

leftward.
3) Let Ti = Cutoff.
4) If CurrentNode has no siblings, set Root to

CurrentNode;

else call RebuildTree.

DeleteArbitraryTime

1) [For arbitrary Cutoff point]
2) From leftmost leaf until v > Cutoff, delete a key v if

all tuples with TS = v have TE < Cutoff;

if a node becomes empty, delete it.
3) Consolidate nonempty nodes leftwards;

delete resulting empty nodes.
4) Let T; = smallest key of leftmost leaf.
5) If leftmost node has no siblings, set it as Root;

else call RebuildTree.

RebuildTree

1) Create NewN ode for every d children and enter appro-

priate keys.
if the rightmost node has only one child, do not create

it, and treat that child as if it were a node on this level.
2) If only a single node is created, set it to Root;

else call RebuildTree.

While the DeleteTimeStart routine is self explanatory, the
DeleteArbitraryTime routine requires elaboration: since a
key may be associated with tuples of varying TE values,
the best approach is to do a forward scan and eliminate a
key only if all associated tuples have been eliminated. After
the Cutoff point is reached, the remaining keys have to be
consolidated and this is accomplished by shifting the keys
left to right. The RebuildTree procedure recursively rebuilds
the tree toward the root; it also has to make provision for an
unbalanced rightmost subtree. Since two-way pointers between
a key and its child are necessary, to avoid having to read a node
twice, the above procedures could be rewritten as depth-first
recursion, as opposed to breadth-first recursion.

E. Analysis and Comparison with B+ Trees

In analyzing the performance characteristics of the AP-tree,
we will compare it to a B+ -tree constructed for time indexing.
This B-+-tree incorporates some of the properties of the AP-

tree that can be easily included without major changes to the
general algorithms. These modifications are: two-way pointers
between leaves, so that forward and backward scans can be
performed; and metadata on the minimum TS and maximum
TE values. We do not consider the case of two-way pointers
between parent-child, because many modifications would be
needed in the deletion and insertion procedures.

Height: The A&tree, with the exception of the rightmost
subtree will have a fill factor of 100%. In contrast, a B+-tree
will almost always be very close to its minimum loading factor
of 50%; the reason is that due to the progressive arrival of key
values, each leaf node is split just once, and subsequently is
never needed for further insertions. Thus the height of the
A&tree is

hAI’ = L1o&+, (Nv + ‘)I + ‘7 (1)

which is equivalent to the lower bound height of a general
B-+-tree. The @--tree’s height is

hB(T) = [1%[d/2]+l (Nu + ‘)I + ’ (2)

502 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 3, JUNE 1993

Comparing the two heights, ~B(T) can be represented in
terms of a factor that is a function of d times h&T), i.e.,

As an example, if d = 70, then hB(T) =N 1.2h~p(T).
Searching: Searching cost difference is a function of the

height difference, if index search is used.
Insertion: Let us ignore the I/OS needed to insert tuples

into the data file; we are concerned only with the I/OS for
the index. The lower bounds for both the AP-tree and B+-
tree are equal to two disk I/OS: one read and one write. The
upper bound for an insertion into the B-+-tree is 3hB(T): i.e.,
h is the cost of traversing the tree to the current leaf, and for
each level of the tree, a split is required, which necessitates an
additional read and write per level. In the case of the AP-tree,
the upper bound for insertion is 10 I/OS.

As long as hB(T) > 3, the AP-tree performs better for
insertions.

Deletion: In considering deletions from the tree, we ignore
the cost of tuple deletions from the data file, and assume
only TS deletions in order to simplify comparisons. The lower
bounds for both trees are again two disk I/OS. For the @-tree,
the worst case performance for a deletion of a set of keys with
cardinality Ndv consists of the following sequence of actions:
1) traverse tree down to first leaf, 2) keep deleting keys until
balancing is required, 3) carry out worst case balancing from
leaf to root, and return to step 2) until no more keys need to
be deleted. The total cost is

*(3hB(T) - 2)
P/21

(4)

For the A&tree, all but the leaves left of the cutoff point
have to be read and written once; as for higher levels, only
writes of new internal nodes are needed. The total cost comes
to

2r
NV - Ndv

d l+
&4P(~>-1 - 1

d-l
(5)

If deletions are based on arbitrary time points, the upper
bound costs are of the same order as above. In general,
deletions for the A&tree are more costly, since it is dependent
on the number of nodes in the tree, as opposed to just the
height of the B+-tree. Fig. 6 shows the behavior of the deletion
costs for the two indexes as a function of the percentage of
keys deleted, where NV is 10 000 and d is 40. At very high
percentages of key deletions, the cost for the B+-tree becomes
worse than the AP-tree.

IV. INDEXING SURROGATES AND TIME

ST indexes have to take into consideration the efficiency of
answering current as well as historical queries, and the need
to answer combinations of range and point specifications. It
is more likely that range qualification is given for the time
attribute. In order to provide a higher degree of selectivity,
we present a structure that is based on nested trees, where the
first level index is based on the @-tree, while the second
level index is based on the AP-tree. In order to evaluate

1 2 3 4 5 6 7 a 9 10

Pet. of Keys Dewed

Fig. 6. Deletion cost comparison.

Root

Islo]

B+ -tree

Fig. 7. Nested ST indexing.

the performance of this method, we compare it with two
alternative methods, both of which are also based on variants
of the B-tree.

A. Nested ST-Tree

The nested ST-tree was introduced for the static database
in [7], which is similar to the concept of the K - b tree of [111.
We introduce a modified structure which is designed for 1) a
dynamic database, 2) takes advantage of the natural ordering
of time stamps for each given S thus enabling the use of
an A&tree, and 3) is independent of the physical ordering
of data. This approach is designed to answer queries where
the primary qualification is on S. Fig. 7 illustrates the basic
constructs of the tree.

GUNADHI AND SEGEV: EFFICIENT INDEXING METHODS FOR TEMPORAL RELATIONS 503

S-superindex: The first level of the hierarchy is a B+- to balancing. We assume for simplicity, that the tuples are
tree, with the following modifications: Each leaf entry has uniformly distributed across the surrogate instances. We denote
two pointers associated with it- a direct pointer to the current the nested structure as “Nested” or 1~, the composite key
tuple, and one that points to the root node of the T-subindex. index as “Composite” or Ic, and the S-index and accession

T-subindex: The T-subindex is structured as an AP-tree. list as “Sparse” or Isp.
Unlike a solo T-index to the relation, the subindex always Heights: Let hN(ST), hc(ST), and hSp(ST) denote the
maintains a single time entry per S-value. In order to compress
further the height of the tree, the subindex can be constructed
sparsely 9 i.e., each leaf entry will lead to a tuple-pointer block,
rather than to the data block itself. The adoption of the A&tree
for this level of indexing is not dependent on an append-
only database, since a dynamic database that allows delete

heights of 1 N, Ic, and Isp respectively. Further, let Nr and
Ns denote the cardinality of the relation and surrogate domain
respectively; &is is the mean number of time values for each
surrogate instance, i.e., the average length of a time ch ain; Bsr,
represents the blocking factor for the accession list of Isp; and
d(e) is the order of the tree for the specified key.

operations would delete tuples only on the basis of maintaining
some current time-window.

B. Nested Tree Procedures

The insertion procedure for the Nested ST-tree is two-stage:

-
hN(ST) = hB(S) + hAP(NTls) (6)

= P”g~d(S)/21+dNs + l>1

+ ~~%(T)+I(~T~s + I)1 + 2 (uB>

- - llog,(s)+l CNs + l>J

InsertSuperindex

1) If S is found in leaf, InsertSubindex.
2) Create new leaf entry;

+ lkd(T)+d~T~~ + l>J + 2 (LB)

hC(ST) = hB(ST) (7)
- -

110g[d(S+T)/21 +I (NT + l)] + 1 (UB)

Create new root node for T-subindex.

InsertSubindex: Same as in AP-tree.

= llo&(S+T)+I(Nr + ‘>A + ’ (LB)
-

The search procedures consists of traversing the B+-tree
NTIS

hSp(sT) = hB(S) + r-1.

superindex, and then using the appropriate procedures for the
BSP

(8)

A&tree subindex. Deletions can be of two types, one to delete The difference between the lower and upper bounds of the

some tuples of an S-entry, and the other to delete all history first two techniques is in the fanout of the BS-trees. There are

of the entry. two types of height comparisons-the first relates to current
time queries, in which case hN(ST) is never worse than the

DeleteTuple other two alternatives.

1) If T range= ALL, delete S entry in superindex. The second type of comparison relates to the maximum

2) Delete appropriate T entries in subindex. height of the three, i.e., in retrieving an arbitrary ST query.

In insert and delete operations, any reconstruction is
In comparing lower bounds of the nested tree versus the other

bounded by the complexity of the sum of B+-tree and AP-tree
two

?

balancing.
hN(ST) = f&$-j (9

C. Alternative Structures

We introduce two structures for comparison purposes: the
first is based on a conventional B+-tree for the composite key

hN(ST) 2 h&ST) + 1. (10)

S and T, while the second is similar to the idea introduced

by w
The height difference is due to the fact that an additional level
of indirection is needed to find the T value for the nested

Composite Index: The key is made up of the concatenation
of the two attributes, employing a B-+-tree. There are many

tree, given that the loading factor of all trees involved is the

ways in which the height of the tree can be reduced, including
maximum possible.

the use of prefix - B-trees, compression, and allowing sparse
In terms of upper bound differences:

indexing on the T portion of the key.
S-Index and Accession L ist: In this case, only the S values

-

hN(ST) < f-&p -
NTIs

- hAP(T) - [-
BSP

(11)

is indexed, and the associated T values are stored in a list
accessible from the appropriate leaf entry. The list is made up that is, the difference is due to the logarithmic versus linear

of the concatenation of disk pages, each containing pairs of complexity of the two time-indexes. On the other hand, for

time-value and tuple-pointer. The list can be reduced in length the nested versus composite approaches, assume that d(S) =

by compression. d(T) = a:

D. Analytical Comparison of Approaches
hN(ST) =

We will look at the performance of the three indexes
llog,l,(Ns + ‘>J + ll’& %ls + ‘1 + 2h

analytically, in terms of heights and complexity with respect ll%&,,(N~ + l>J + 1
c l

(ST)
(12)

504 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 3, JUNE 1993

* Nested u Composite -*-Sparse TABLE II
TABLE OF VALUES FOR TESTS

Variable Value

N7- 1OOK and 1M tuples

Nq 1 K to lOK, in 1K increments

l(r), I(S), Z(T). l(PTR) 40B tuple, 8B S & T, 4B pointer

FILL-INDEX 100% for ,W-tree, 75% for B+-tree

FILLDATA 75%

CR 50%

2 ---------:-------:-------:-------:-------b-------I-------I.------:-------.~

0 1 I 1 I 1 I 1 1 , I I I I I I

1 2 3 4 5 6 7 8 9 10

Surn>gateDomainSize(OOOk)

*Nesttd/sparsc ~Composite

Fig. 8. Upper bound heights, N, =l M tuples.
4 Cl-Q

m
u

In Fig. 8, the upperbound comparisons are made for the
three methods, letting Q = 50, A& = 1 million tuples,

Bsp = 100, and NS varying between 1000 < to 10000 <.
We label the three methods “Nested,” “Composite,” and

“Sparse” in the graphs that follow. As the graph shows, for
the given parameter values, 1~ is always one level lower than
Ic, while Isp fluctuates, depending on the size of the history
chain. Since the relation size is fixed, the distance of index
traversal carried out by Isp is inversely proportional to the
size of the S domain.

0 r
1 2

I I L I
3 4 5 6 7 8 9 10

SunqateJIomainSize(OOOk)

0 a

+ Ne.stexl/!Jparse 0 Composite

6 T . ..___...__________... ~....................... i. .,. ., . : _,. . :

Insertions: For an insertion that requires only the insertion
of a new T value, the lower bounds is 3 I/OS for IN and Isp,

and 2 for the 1~; the worst case costs on the other hand, are
hi + 3, hB (S) + 10, and 3h~ (ST) respectively. On the
other hand, when a new S value is inserted, the lower bounds
remain the same as before; for the the worst case, while the
cost for 1~ also remains unchanged, it increases for the other
two methods, i.e., 3/~ (S) +3 for Isp, and 3/2~ (S)+ 10 for 1~.

Deletions: The case for deletion costs mirror those pre-
sented above for the best case scenarios, while for the worst
case, they are a function of the worst case costs of the B+-tree
and AP-tree, as presented previously in Section IV.

2 _.____. _.__.__.__ ..,._; ..;. : + 3

1 -_...................... i . i !‘....................... f . . . ;. __.._ .

O* 1 I 1 I

1 2 3 4 5 6 7 8 9 10
Smogate Domain Size (OWs)

(b)

Fig. 9. Query on current tuple cost comparison (a) lVr =lOO K tuples.

Cb) Nr =l M tuples

E. Empirical Test of Alternative Structures

In this subsection, we provide results of some tests of
the tree indexing techniques. In executing the tests, it was
decided that sparse indexing and compression of index entries
should be ignored, since they can be applied to each approach.
Furthermore, the idea of using prefix&trees was rejected,
since it can again be applied to varying degrees to each index,
and this method of compacting the index’s storage requirement
is known not to be very effective [26].

for the three alternatives - since IN and Isp have identical
superindexes, they have identical costs. The graphs show that
the average cost of accessing the current tuple is cheaper by
1 or 2 disk accesses for these two methods when compared
to 1~. Only in Fig. 9(a), with NS = 10000 < was the cost
identical; the reason is that at this point, the time chain is
only 10 tuples long on average, and there is little benefit in
maintaining two-level indexing.

The parameter settings used are shown below, where the
relation size is set at 100K and 1M tuples, and the S domain
varied in increments of lK, from 1K to 10K.

The I() represents the byte size of the argument, and
FILLINDEX and FILL~ATA are the fill factors for the
index and data pages respectively. CR is the compression
ratio, and is set to 50%, which is about the best most existing
algorithms can achieve. (See Table II)

Figs. 9 to 11 exhibit some of the results of the tests. In
Fig. 9, the current query cost in terms of disk I/OS is graphed

Fig. 10 shows the I/O costs associated with arbitrary queries
involving historical data. When the relation size is 100K
tuples (Fig. 10 (a)), lsP is more efficient than the other two
techniques, which share the same cost for all values except
at the right extreme, when the short time chain yields higher
overheads for the nested index. When the relation size is fixed
at 1 M tuples, the results fluctuate much more-the composite
index performs worst. The reason that the sparse index yielded
better performance in these two tests, is due to the assumption
of a high compression ration of 50%, which allows each block
to hold around 300 tuple-pointers. Since our tests are limited
to history chains of 1000 in maximum length, and we assumed
uniform distribution of tunles among surrogate instances, the

GUNADHI AND SEGEV: EFFICIENT INDEXING METHODS FOR TEMPORAL RELATIONS 505

* Nested u Composite *- Sparse ROOT

,

4 5 6 7 8 9 10

surrogate Domain size (Ws)

0 a

+ Nested ct composite -*- sparst

2 3 4 5 6 7 8 9 10

Surrogate Domain Size (OWs)

04

Fig. 10. Arbitrary query cost comparison (a) NT- =lOO K tuples (b) NT- =
1 M tuples

* Nested u Composite -*- Sparse

1 80

r
70

c 60
e 50
n

t
40

30

20

10

0

I I Pointer Pages

f

PlP2... Pj... Pn -

PlP2 .I.

al a2 a4
IIL

PlP2 . . . Pn

Attribute
Superindex

Time
Subindex

s4 al 4 7

Data
Tuples

:
. . . <&i_______. j . . . ____ i . .

- . . I 3 . . . i 3 ‘i. i. . . i (- .

1 I 1 I
I i

1 2 3 4 5 6 7 8 9 10

Surrogate Domain Size (0003)

Fig. 11. Index storage cost, NT- =l M tuples.

Fig. 12. AT indexing.

V. AT-INDEXING AND TIME PARTITIONING

In this section, we look at the problems of indexing a
relation on the temporal attribute and time, and the related
issue of partitioning the time-line into segments.

A. AT Indexing Using Nested Trees

use of chained lists appear to be the most efficient on average.
In Fig. 11, the index storage costs for the three methods,

for the case of a 1 million tuple relation is examined. The
composite approach on the average is the most expensive
to maintain-this is due to the fact that it is a single tree.
Other tests undertaken, but for which results are not displayed,
included sequential query retrieval costs under conditions of
sorted and unsorted data (with S as the primary sort key).
The results show little differences between the three methods,
since the cost of retrieving data blocks overwhelms the index
search costs.

To conclude, the nested approach is an efficient method
of retrieving data for ST queries. The insertions are easily
carried out, and balancing of one level can be separated from
the other; Deletions on the A&tree level is not a primary
concern, thus the weaknesses of the tree is not exposed often.
Further, the nested index is much more efficient in answering
current queries, and is efficient storage-wise. Compared to the
sparse indexing, although the average case analysis for random
queries is either worse or equal, it has a lower upper bound.

Fig. 12 illustrates our approach to indexing for AT queries.
The basic concepts are similar to that of the ST-index, whereby
the fist level indexes the nontime attribute, and the second
level indexes time. The difference relates to the multiplicity
of qualifying tuples for a given A value. Since the temporal
attribute is not a unique key, tuples that qualify on it are likely
to overlap over their associated time intervals. A straightfor-
ward way of indexing the time line in such a case, would be to
use a conventional index, such as the B-tree, with one of the
two time-attributes, i.e., TS or TE as the search key. A major
limitation to this is that many queries are not based on the
start or end time, rather on an arbitrary point in time or time
interval. Using the above method of indexing the time line,
multiple overlaps among tuples will occur, meaning that the
index will not be highly selective. The greater the degree of
overlap, the more time will be spent traversing sibling nodes
of the index tree in search of overlapping tuples. We will thus
look at methods by which the tuples associated with a given
temporal attribute value, or even a range of such values, can
be partitioned along the time dimension, such that minimal
overlap is achieved.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 3, JUNE 1993

B. Basic Approach and Objectives of Partitioning

The time-line is partitioned into several segments, each
segment being represented by a leaf entry in the index. The
associated pointer leads to a bucket of tuple pointers, for all
tuples where [Y& Z-‘E] intersects with the segment delimiters,
[I,$, r/i+1). Each bucket consists of one or more disk pages, and
in the event of an overflow, additional pages are chained to
it, thus increasing the search time along that segment. The
objective is thus to minimize overflow resulting from the
partitioning, which requires that duplication of tuple pointers
across the relevant buckets be minimized. We develop the
algorithms from an initial point where the number of tuples

are known. These are then extended to the dynamic case.

C. Simple Allocation Approach

In this algorithm, divide the bucket capacity into the total
pointer count, to derive the starting number of buckets. We
then assign pointers to buckets, which will likely cause over-
flows. A balancing routine is then executed, which attempts a
reallocation of overflow pointers between neighboring buckets
in an iterative manner. At each step, the bucket with the worst
overflow is selected, and the length of its associated segment
is reduced by setting Vmax higher, Vmax +1 lower, or both,
if doing so reduces its tuple count without increasing that
of its neighbors. The balancing is completed when no more
improvement is possible.

Algorithm Simple

1)

2)
3)

4)

[Initial Allocation]
Divide total count of tuple pointers by desired bucket
capacity to derive number of buckets and segments.
Allocate pointers to buckets.
[Balancing]
Find bucket with highest overflow. Compute the changes
in allocations, if the left boundary is moved to the right,
the right boundary to the left, or both. Execute change
if feasible and until no more adjustment is possible.
Eliminate any redundant buckets.
Repeat Step 3 until there is no overflow or all buckets
have been iterated through.

D. Optimal Allocation Approach

There are two major drawbacks that the first algorithm pos-
sesses. First, it does not consider the probability distribution
of pointers as a function of time. Secondly, the duplication
of pointers, which takes place as the partitioning is carried
out is ignored. An optimal solution approach is to use a
dynamic programming algorithm to solve the problem. We
recursively allocate pointers to buckets, such that each receives
its optimal allocation, given that its immediate predecessor has
also received an optimum assignment of the tuple pointers. Let
gH the optimal allocation to buckets i, i + 1, . + . , max given that
buckets l,*+- 1 were allocated; the optimal solution to our
problem is given by gi. The recursive equation is as follows.

$-I = min(max(0, N(B;) - 7) + gt)
2,

where B; is ith bucket, 2: = 1, l l l , malr:, x:; is right boundary
point for B;; y is set capacity for buckets; N(&)-is the
number of data records whose time interval intersects the
interval [xi - 1, xi); gka, is max{O, N(B,,,)}.

This algorithm will require exponential time in order to
solve, with a worst case of NT!. We develop two heuristics to
imp1 .ement the formulation, taking into consideration the rep-
etition of pointers as the lifespan is partitioned into intervals.
The heuristics differ in the decision to terminate assignment to
the current bucket: in the first version, assignment is terminated
when either the capacity is reached or exceeded; in the second
version, termination occurs if the next assignment will cause

an overflow, unless that assignment will be the only one for
the bucket. These heuristics also require balancing, since there
is a good probability that the procedures will be less effective
in assigning tuples as the end of the lifespan is reached. Thus
the balancing algorithm is carried out right to left, under the
assumption that tuple pointers have to redistributed from the
last bucket toward the first.

Algorithm Dynamic-Overflow

1)

2)

3)

[Allocation]
Starting from LS,.START, allocate to bucket one
until its capacity is reached or exceeded. Determine the
rightmost boundary of the associated segment.
Continue for bucket two to max, until all tuples have
been assigned. For each subsequent bucket, start with a
count of the predecessor bucket’s overlapping intervals.

[Balancing]
Perform balancing algorithm similar to that given in
Algorithm Simple, but starting from bucket max to 0,
execute a single scan.

Algorithm Dynamic-UnderJlow:Starting from LS, START,
make an initial allocation of pointers.

1) If the bucket is not full, continue allocating the next
batch of pointers ifs they do not cause an overflow;
else determine the boundary of the associated segment
of current bucket.

2) Carry out Steps 2 and 3 of Algorithm Dynamic-
Overflow.

E. Nonredundant Allocation of Pointers’ Time Intervals

Our objective of reducing redundancy of pointer assignment
was motivated by the need to minimize search time in order to
retrieve the relevant tuples associated with a query. A major
problem that arises from this approach is that a given time
segment does not tightly bind all tuples that it is indexing. In
other words, a query that is directed at a particular segment
needs to scan all tuples within that segment in order to
determine if any of them is relevant in answering the query.
To avoid actual physical retrieval of data, each data pointer
can be stored together with its time-stamps; but this will
dramatically reduce the fanout factor of any indexing tree
employed.

A method that eliminates the need to maintain time-stamps
for each tuple pointer is one in which each bucket contains
only intervals or subintervals that will span the bucket. This

GUNADHI AND SEGEV: EFFICIENT INDEXING METHODS FOR TEMPORAL RELATIONS 507

TABLE III

RANGE OF VALUES FOR EMPIRICAL TEST

Variable Value

K 200 k to 1000 k

Nt 1000

NA 100

Ps 0.70 and 0.90

KPTR Page pointer capacity = 70

requires the pointer intervals to be divided into as many
buckets as there are unique starting or ending points along
the lifespan. Another advantage with this approach is that a
variety of aggregate operations can be facilitated more easily,
since each bucket has an identical set of intervals/subintervals.
The drawback is that there will be a much larger number
of buckets and therefore the indexing tree will be taller.
This algorithm does not consider the capacity of the buckets,
but it is unlikely that many of them require more than one
data page, unless the distribution of the event points are not
uniform.

Algorithm Tight-Bound: Create the first bucket, with start-
ing point equal to the first starting time found among the tuples.
Take note of the ending time for this first tuple.

Allocate tuples into this bucket, until 1) another tuple is
found with the same starting time as the first tuple, but has an
earlier ending time, or 2) another tuple is found with a starting
time earlier than the first tuple’s ending time.

Determine the segment of the first bucket, and create the
next bucket.

Repeat Steps 1 to 3 until the end of the lifespan is reached.

F. Empirical Testing of Partitioning Algorithms

There are several factors involved in the performance of the
algorithms. We retained the assumption of uniformity in the
occurrence of events. The parameters in Table III were used.

The relation size is fixed between 200 k to 1 M tuples in
increments of 200 k. Nt is the number of time points in the
lifespan of the relation. We generate time sequences, where
once an event is generated, ps indicates the probability that
for the next time point, the event remains valid, i.e., there has
been no change. By varying this probability between 0.70
and 0.90, we allow for varying mean intervals for events, and
thus affect the count of actual tuples, i.e., the changepoints
associated with each A value. Fixing the A and 2’ domains at
arbitrary values should not affect the general results, since we
vary the mean length of events and thus relation size.

Fig. 13 and 14 display two sets of results from the ex-
periments, where an arbitrary value of A is selected. In the
graphs, the four algorithms are labeled as S, DO, DU and
TB respectively. Fig. 13 shows the number of buckets that
result from each partitioning algorithm, where in (a) ps is 0.7,
while in (b) it is 0.9.

Regardless of ps or relation size, Alg. TB, which is the
R+ [25] equivalent in terms of partitioning technique, utilizes
almost the same number of buckets. The reason is the high
degree of overlaps, as opposed to identical intervals, that exist
for any attribute value. Thus, for almost every point in the

Bkt Count (log)

10000

I

+S 0 DO *- DU 0 TB

h h

600

Relation Size (000’s)

0 a

+s U DO -a-DU 0 TB

loo00

I

___._._____ __~ .

law <> A ”

Bkt Count (log)

10

200

1 I 1 1 1 I I

400 600 800 IO00

Relation Size (000’s)

(b)

Fig. 13. Comparison of number of buckets used (a) pS = 0.7; NT = 1000 c.

09 Ps = 0.9; NT 5000 <.

time line, there is a single bucket associated with it. This is
why the number of buckets for the algorithm peaks at 1000,
which is the size of the T domain.

On the other hand, the other three algorithms explicitly
allocate pointers as a function of the capacity of buckets. Thus,
for a given ps the number of buckets rise in proportion to the
size of the relation. For all cases, Alg. S has the lowest number
of buckets, followed by Alg. DO and Alg. DU. This is due to
the linear relationship between Alg. S’s bucket generation and
the number of tuples. But, the two dynamic algorithms assign
tuples in an incremental way, leading to nonlinear growth,
since at higher values of ps and Nr, the increasing number of
overlaps cause suboptimal use of many buckets. As expected,
Alg. DU is inferior to Alg. DO. In Fig. 13 (b), we see that
Alg. DO, DU and TB converge as the relation size increases.

Fig. 14 shows two graphs pertaining to the performance
of the four algorithms in terms of the average fill factor of
buckets, over the same range of parameters as in Fig. 13.

Alg. TB has the lowest fill factor, exceeding 100% only in
the extreme. The low average utilization of the disk pages is
another explanation for the high number of buckets required
for the method. On the other hand, Alg. S almost always has
an overflow, although it is usually below 100% - this means
that most of the time, an additional page is needed for each
bucket. The two dynamic algorithms are the most efficient in
space utilization - there is little distinction between Alg. DO
and DU otherwise.

508 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 3, JUNE 1993

*s 42 DO -+- DU 0 TB

80 _ . ..i.. ,.

Fill Factor (9b)

60 . j. __ :’ . .

0-l 1 1 1 I 1 1 I

200 400 600 800 1000

Relation Size (0003)

0 a

*S UDO *- DU 0-I-B

250 T" :
__ __.______ ~~~~.~..~~~~~~~~.~~~.......................~..~

150

Fill Factor (%I)

100

I I

600

Relation Size (000’s)

Fig. 14. Comparison of bucket fill factors.

G. Performance of Balancing Routines

The first three algorithms included balancing routines. It
was found that the first method required balancing most. The
result of the balancing was not so much a reduction in the total
pointer count, but in the distribution of pointers across buckets.
In most tests, the total count remained about the same, but the
high count and standard deviation of bucket count dropped
within the range of 10% to 40%. On the other hand, Alg. DO
and DU did not require balancing, with minor exceptions; even
when balancing took place, no noticeable difference occurred
in the high count and standard deviation of allocations. One
intervening factor is uniformity of the generated sample data,
which means that the intervals associated with tuples were
uniformly distributed across the lifespan. Nonetheless, these
two methods can be easily adapted to dynamic databases, since
new data will only extend the ending time of the lifespan,
requiring new segments to be created independent of the
existing assignment.

H. Implications for Query Performance

We reject the second dynamic algorithm - Alg. Dynamic-
Underflow, since it never performs better than its variant, the
Dynamic-Overflow. Among the three remaining algorithms,
we have to distinguish Alg. Simple from the other two: the
former is more suitable for static data, since the partitioning is
a function of the total count of tuples and a balancing routine
is needed to optimize its performance. It clearly outperforms

the others, especially when there is a larger density of tuples
for a given time point being considered, and also the interval
of a tuple is longer.

On the other hand, Alg. Dynamic-Overflow and Tight-
Bound are more suitable for dynamic databases. The difference
between the two is the tradeoff between the number of tuples
retrieved in order to respond to a given query on the one hand,
and the number of index pages that have to be retrieved on the
other hand. Although Alg. Tight-Bound should provide only
data that is valid for a specified query interval, its partitions
are degenerate, i.e., it quickly converges toward the worst case
of one partition for each time point. Thus, it has very low
selectivity for an arbitrary query. Both algorithms generally
have no overflow: thus, Alg. Dynamic-Overflow is clearly
superior. Even if we take into consideration the desirability
of adding a pair of time-stamps for each pointer in a given
bucket, the reduced bucket capacity utilization in Alg. DO
does not negate its advantages over Alg. TB.

The difficulties of allocating intervals is clearly the result
of the fact that time intervals, unlike geometric objects, do
not have natural clustering tendencies. Therefore, partitioning
methods similar to those in spatial indexes, such as R-tree [9]
and R+ tree [25], need not be suitable, as discovered in [lo].

VI. CONCLUSION

In this paper we have investigated various issues associated
with the indexing of temporal databases. We looked at the
organization of a database in terms of current and historical
data, the functional requirements of queries, and the links
between physical order of data and indexing. We then looked
at several structures, each aimed at optimizing data retrieval
for a specific context. The A&tree is aimed at indexing
data for append-only databases, in order to help event-join
optimization and queries that can exploit the inherent time
ordering of such databases. Two variable indexing for the
surrogate and time was studied-we showed that a nested
index could be a very efficient structure in this context,
and overall is preferable to a composite B-tree or an index
that involves linear lists of historical tuples. We discussed in
detail the problems of indexing time intervals, as related to
nonsurrogate joint-indexing. Several algorithms to partition the
time line were introduced, and we concluded that the Dynamic-
Overflow method seems to yield good performance for the
case of a dynamic database, while the Simple algorithm can
be effective for static data organizations. We also outlined a
two-variable AT index based on nested indexing. Indexing
of temporal attributes and time has not been explored in the
literature before, where focus has been on the surrogate and
time.

For future research, we would like to explore further the
issue of time partitioning, primarily in the context of multi-
dimensional search structures. It has already been mentioned,
how difficult it can be in partitioning time jointly with other
variables, since the latter are inherently point data, and fur-
ther, there is no natural ordering within them. Thus, we
should not follow too closely the research already done in
the multidimensional partitioning area, since they are more

GUNADHI AND SEGEV: EFFICIENT INDEXING METHODS FOR TEMPORAL RELATIONS 509

often than not applied to spatial/CAD/geometric data. Another
topic of interest is the construction and use of indexing for
certain classes of temporal queries, which by their complex
nature, may benefit from indexing. Finally, the organization
and maintenance of a multilevel storage structure for temporal
data is an important topic worth exploring.

1

3

1

1

REFERENCES

I. Ahn, “Toward an implementation of database management systems
with temporal support,” in Proc. Int. Conj Data Eng., Feb. 1986, pp.
374-381.
I. Ahn and R. Snodgrass, “Performance evaluation of a temporal data-
base management system,” in Proc. ACM-SIGMOD Conf: Management
of Data, May 1987, pp. 96-107.
-7 “Partitioned storage for temporal databases,” Inform. Syst., vol.
13, no. 4, 1988, pp. 269-391.
G, Ariav, “A temporally oriented data model,” ACM Trans. Database
Syst., vol. 11, no. 4, pp. 499-527, Dec. 1986.
J. Clifford and A. Croker, “The historical relational data model (HRDM)
and algebra based on lifespans,” in Proc. Int. ConJ: Data Eng., Feb.
I987, pp. 528-537.
J. Clifford and A. Tansel, “On an algebra for historical relational
databases: two views,” in Proc. ACM-SIG’MOD Conj Management of

Data, May 1985, pp. 247-265.
H. Gunadhi and A. Segev, “Physical design of temporal databases,”
Dept. Computing Sci. Res. and Development, Lawrence Berkeley Lab.,
CA, Tech. Rep. LBL-24 578, Jan. 1988.
H. Gunadhi and A. Segev, “A framework for query optimization in
temporal databases,” in Proc. 5th Int. Conf Statistical and Scientific
Database Management, 1990, pp. 131-147.
A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proc. ACM-SIGMOD Conj Management of Data, June 1984, pp.
47-57.
C. P. Kolovson, M. Stonebraker, “Indexing techniques for historical
databases,” in Proc. Int. Conf Data Eng., Feb. 1989, pp. 127-139.
H. P. Kriegel, “Peformance comparison of index structures for multi-
key retrieval,” in Proc. ACM-SIGMOD Conf: Management of Data, May
1984, pp, 186-196.
V. Lum, P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H.
Werner, and J. Woodfill, “Designing DBMS support for the temporal
dimension,” in Proc. ACM-SIGMOD Conf Management of Data, May
1984, pp. 115-130.
S. B. Navathe and R. Ahmed, “TSQL-A language interface for history
data bases,” in Proc. Int. Conf: Temporal Aspects of Inform. Syst., 1987,
pp. 113-128.
D. Rotem and A. Segev, “Physical organization of temporal data,” in
Proc. Int. Conf Data Eng., Feb. 1987, pp. 547-553.
A. Segev and H. Gunadhi, “Event-join optimization in temporal rela-
tional databases,” in Proc. Int. Co@ Very Large Data Bases, Sept. 1989,
pp. 205-215.
A. Segev and A. Shoshani, “Logical modeling of temporal databases,”
in Proc. ACM-SIGMOD Conf: Management of Data, May 1987, pp.
454-466.

-9 “The representation of a temporal data model in the relational
environment,” in Lecture Notes in Computer Science, vol. 339, M.
Rafanelli, J.C. KIensin, and P. Svensso, Eds. New York: Springer-
Verlag, 1988, pp. 39-61.

[181 A. Shoshani and K. Kawagoe, “Temporal data management,” in Proc.
Int. Con. Very Large Data Bases, Aug. 1986, pp. 79-88.

[191 R. Snodgrass, “The temporal query language TQuel,” ACM Trans.
Database Syst., vol. 12, no. 2, pp. 247-298, June 1987.

[20] R. Snodgrass and I. Ahn, “A taxonomy of time in databases,” in Proc.
ACM-SIGMOD Con.. Management of Data, May 1985, pp. 236-246.

[21] R. Snodgrass and I. Ahn, “Performance analysis of temporal queries,”
Dept. of Comp. Sci., Univ. of North Carolina, Chappel-Hill, TempIS
Dot. no. 17, Aug. 1987.

1221 Special issue of Bull. Technical Committee on Data Eng., vol. I 1, no.
4, 1988.

[231 M. Stonebraker, “The design of the POSTGRES storage system,” in
Proc. Int. Conf: Very Large Data Bases, Sept. 1987, pp. 289-300.

[24] M. Stonebraker and L. Rowe, “The design of POSTGRES,” in Proc.
ACM-SIGMOD Conf Management of Data, May 1986, pp. 340-355.

[25] M. Stonebraker, T. Sellis, and E. Hanson, “An analysis of rule indexing
implementations in data base systems,” in Proc. Int. Conf. Expert
Database Syst., Apr. 1986, pp. 353-364.

[26] T. J. Teorey and J. P. Fry, Design of Database Structures. Englewood
Cliffs, NJ: Prentice-Hall, 1982.

Himawan Gunadhi (S’88-M’90) received the
B.B.A. degree from the National University of
Singapore and the Ph.D. degree in management in-
formation systems from the University of California,
Berkeley.

He is currently a Lecturer in the Department
of Decision Sciences at the National University of
Singapore. His research interests include logical and
physical database design, query optimization and
expert systems.

Dr. Gunadhi is a member of the Association for
Computing Machinery, the IEEE Computer Society, and the Institute of
Management Sciences.

Arie Segev (M’85) received the Ph.D. degree in
computers and information systems in 1984 from
the University of Rochester, Rochester, NY.

He is currently an Associate Professor and Di-
rector of the Information Technology Management
Program at the Walter A. Haas School of Business,
the University of California at Berkeley, with a joint
appointment at the Information & Computing Sci-
ences Division of Lawrence Berkeley Laboratory.
His research interests include physical and logical
database design, temporal and expert databases,

distributed query optimization, and heterogeneous databases. He has pub-
lished more than 50 papers in ACM Transactions on Database Systems,
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, Information Sciences, Networks, Com-
puters and Operations Research, The Computer Journal, and the proceedings
of leading conferences.

Dr. Segev is currently the Editor-in-Chief of ACM SIGMOD Record, and
is a member of the Association for Computing Machinery, 1EEE Computer
Societv. and the Institute of Management Sciences.

