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Efficient Indexing Methods for Temporal Relations 
Himawan Gunadhi and Arie Segev, Member, EE’,!? 

Abstract-The size of temporal databases and the semantics 
of temporal queries pose challenges for the design of efhcient 
indexing methods. The primary issues that affect the design of 
indexing methods are examined, and propose several structures 
and algorithms for specific cases. Indexing methods for time- 
based queries are developed, queries on the surrogate or time- 
invariant key and time, and temporal attribute and time. In the 
latter case, several methods are presented that partition the time- 
line, in order to balance the distribution of tuple-pointers within 
the index. The methods are analyzed against alternatives, and 
present appropriate empirical results. 

Index Terms -Indexing, physical organization, query process- 
ing, searching, temporal databases. 

I. INTRODUCTION 

T HE main focus of research in temporal databases has 
been on the modeling and representation of temporal data 

[4]-[6], [13], [16]-[20], [22]. Until recently, concerns about 
the performance of temporal databases have, to a large extent, 
been ignored. There are two major issues that separate the 
physical design of temporal databases from conventional ones: 
the size of data, which may be several orders of magnitude 
larger; and the extended semantics of temporal queries, e.g., 
[5], [8], [17], [ 151, which increase the complexity of query 
processing. Previous studies in physical temporal database de- 
sign tended to focus on narrowly defined objectives. Methods 
to index the surrogate (time-invariant) key with sequential 
access to history were explored by [lo], [12], [23]. Partitioning 
and indexing of static databases was studied in [7], [14]. 
The performance of traditional indexing methods for temporal 
queries was investigated by [2], [21], and methods to organize 
current and historical versions proposed in [l], [3]. 

In this paper, we investigate methods of indexing time- 
dependent data, within the context of a a first normal form 
(1NF) relational representation of temporal data. A framework 
by which to develop and evaluate physical design architectures 
for temporal databases is given. We subdivide a temporal 
database into two or possibly three segments, based on the 
time-related view or version of the data, i.e., current, a moving 
window (if it is defined), and the archived history. The major 
factors that influence design are 1) the physical organization 
of each portion, 2) the index construction on each portion, and 
3) functionality of queries on the database. Several interesting 
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cases are subsequently investigated: 1) Dynamic structures for 
surrogate and time indexing (ST); 2) Static and dynamic 
partitioning algorithms for the time-line in the context of 
temporal attribute and time indexing; and 3) Time-indexing 
for append-only database. In all the designs, the focus is on 
the role of the time attribute. 

The paper is organized as follows. In Section II, we discuss 
the relational representation of data in the temporal context, 
followed by a framework for analyzing the physical design 
of a temporal database. In Section III, we introduce the AP- 
tree, which is designed for time-based query operations on an 
append-only database, and is subsequently incorporated into 
our surrogate-time index of Section IV. In Section V, we 
discuss the issue of indexing time and one or more temporal 
attributes, and delve into techniques for efficiently partitioning 
the time line. In Section VI conclusions and future directions 
are outlined. 

II. FUNDAMENTAL CONCEPTS AND DESIGN CONSIDERATIONS 

In this section, we look at the fundamental approach under- 
taken for the paper. We adopt a tuple versioning approach 
with interval time representation, and look at the possible 
architectures of a temporal database. 

A. Relational Representation of Temporal Data 

A convenient way to look at temporal data is through the 
concepts of time sequences (TS) and time sequence collection 
(TSC) [16]. A TS represents a history of a temporal attribute(s) 
associated with a particular instance of an entity or a relation- 
ship. The entity or the relationship are identified by a surrogate 
(or equivalently, the time-invariant key [13]). For example, in 
the MANAGER relation of Fig. 1, the manager history of em- 
ployee #l is a TS. A TS is characterized by several properties, 
such as the time granularity, lifespan, type, and interpolation 
rule to derive data values for nonstored time points. In this 
paper, we are concerned with two types-stepwise constant 
and discrete. Stepwise constant (SWC) data represents a state 
variable whose values are determined by events and remain the 
same between events; the salary attribute represents SWC data. 
Discrete data represents an attribute of the event itself, e.g., 
number of items sold. Time sequences of the same surrogate 
and attribute types can be grouped into a time sequence 
collection (TSC), e.g., the manager history of all employees 
forms a TSC. 

There are various ways to represent temporal data in the 
relational model; detailed discussion can be found in [ 171. In 
this paper we assume first normal form relations (1NF). Fig. 
1 shows two ways of representing SWC data. 
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Fig. 1. Representing step-wise constant data with lifespan=[l, 20] (a) Time 
interval representation. (b) Time-point representation. 

The representations can be different at each level (external, 
conceptual, physical), but we are concerned with the tuple 
representation at the physical level. Fig. l(a) shows time- 
interval representation of the MANAGER and COMMISSION 
relations. On the other hand, the representation in Fig. l(b) 
stores data only for event points and requires explicit storage 
of nuZ2 values to indicate the transition of the state variable into 
a nonexistence state. Also, the tuples should be ordered by time 
in order to determine the values between two consecutive event 
points. Both representations require the use of the lifespan 
metadata; it is required for the time-interval representation 
since we do not store nonexistence nulls explicitly, e.g., the 
lifespan is needed in order to correctly answer the query 
“what was the commission rate of E2 at time 12?” We select 
time-interval representation for the purpose of generalization, 
although the indexes can be adapted to event-point represen- 
tation. 

We use the terms surrogate(S), temporal attribute(A), 

and time attribute(T) when referring to attributes of a 
relation. For example, in Fig. 1, the surrogate of the MAN- 
AGER relation is E#, MGR is a temporal attribute, and TS 

and TE are time attributes. We assume that all relations are 
in first temporal normal form (1TNF) [ 171. 1TNF requires 
that for each combination of surrogate instance, time point 
in the lifespan and temporal attribute (or attributes) there 
is at most one temporal value (or a unique combination of 
temporal values). Note that 1NF does not imply lTNF, e.g., 
the relation COMMISSION in Fig. l(a) would not be in 1TNF 
if for any surrogate instance there were two tuples with the 
same commission rate value and intersecting time intervals. 
The temporal normal form (TNF) definition given in [13] is 
deemed too restrictive, since enforcing it would mean that 
most relations will contain only a single temporal attribute. 

B. Lifespan and Organization of a Relation 

The physical design requirements of a temporal relation 
may be viewed according to its lifespan relative to current 
time. Let the lifespan of relation r be identified by a pair of 
start-end time-points LS, .START and LS, . E ND. Current 

‘We refer to the data construct as a “relation,” but we mean a “temporal 
relation.” It is different from a standard relation because of the associated 
meta-data. 

data, i.e., those tuples with TE = NOW, form the current 
snapshot; all others make up the history of r. In many 
instances, a moving time window (MTW) may be defined 
on the relation, defined by the closed interval [max{ NOW - 

INT+l, LS,.START}, NOW], where INT is the length of 
the window. A relation may thus be subdivided into these three 
segments, or versions - current snapshot, MTW history, and 
archived versions. 

Several design issues result from this dichotomy. First is the 
physical organization of each version, i.e., whether they should 
be organized jointly or separately. We adopt the position that 
the data that is covered by the MTW should be physically 
separated from the archived history, which is presumed to be 
less frequently needed to answer queries. The indexes should 
also be separated, so as to improve efficiency by reducing the 
size of each. There are other associated design issues related 
to this approach, including the media selection and indexing, 
e.g., the adoption of WORM optical disks for archival and 
design of suitable indexes for such media; and the issue of 
migration strategies for moving tuples from one level of the 
hierarchy to the next, e.g., “vacuuming” techniques in [23], 
[24]. In this paper, our focus is on indexing only. 

For the time window, current data may be separated or 
stored together with the historical portion. There are several 
tradeoffs to either approach. If they are separated, overheads 
will always be incurred in order to move them from one 
level to another in storage. On the other hand, all current 
snapshot queries should retain the efficiency of conventional 
database management systems. Conversely, if the tuples are 
stored together, the efficiency of snapshot queries can only 
be preserved if data has been clustered according to the time 
dimension, and the indexes are specifically designed to allow 
rapid retrieval of current tuples. 

C. Functionality of Queries 

Various operators for temporal databases are discussed in 
[16], [17] within the context of the TSC, in [13], [19] 
with respect to an extended relational model, and in [8], 
[15] for joins involving time. The functionality of queries is 
our primary interest, i.e., how data should be organized and 
retrieved at minimum cost. Cost is measured in both storage 
and disk access time. The following are the main types of 
temporal queries: 

1) 

2) 

3) 

ST Queries: What would have been primary key queries 
in a conventional relation, is now a query on a conjunc- 
tion of S and T. Functionally, there are four distinct 
time specifications, i.e., the current time NOW, an 

arbitrary point, an interval [t,, t,], or the whole lifespan 
of the entity. A specific time point can also be further 
qualified as a TS or TE time attribute in the relation, 
which is semantically different than the specification of 
an arbitrary time or event point. 
AT Queries: These are queries based on the temporal 
attribute value at some point or interval in time. 
T Queries: These apply to queries that are primarily 
qualified on time, i.e., for such queries as aggregates, 
time ordering or where initial restriction on T is more 
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TABLE I 
SUMMARY OF NOTATIONS 

Variable(s) Description 

Start, end times of T’S lifespan 

Order of index S 

Search values for an index 

Height of index type X for query 
type 1’ 

Total number of keys in a given 
index 

Total number of keys being deleted 
from an index 

Size of relation (tuples), surrogate 
domain and time-sequence (tuples) 

Byte size of a tuple, surrogate, time 
attributes and tuple pointer 

tl t2 t3 t4 = tuples with Ts = 1 
I 

Root Pointer 

lT----l- 
t5 t6 t7 = tuples with Ts = 4 

Leaf Pointer 

- 

tl 12 t3 t4 15 t6 t7... 

Fig. 2. Example of AP-tree of Order 4. 

selective for a conjunctive query with S or A. 
4) Multidimensional Queries: These queries can have arbi- 

trary conjunctions on relational attributes. 

D. General Notations 

Table I summarizes notations that are used throughout the 
paper. 

III. THE APPEND-ONLY TREE 

In this section we present a multiway tree to index time 
values, that is a modification of the standard B-+-tree; it 
was first introduced to optimize event-join operations [15]. 
The primary reason that it is most suitable for append-only 
databases is the fact that it is designed to increase node loading 
and ease insertions at the expense of complicating deletions. 
This structure is also useful in the case of the ST nested 
index that will be introduced in the following section, where 
the values of time arrive in order. 

A. Definition B. Searching an AP-Tree 

The Append-only Tree, which we call AP-tree, is a multiway 
search tree that is a hybrid of an ISAM index and a @--tree. 
The leaves of the tree contain all the TS values in the relation; 
for each Z-” value, the leaf points to the last (toward the end 
of the file) tuple with the specific 57s value. Each nonleaf node 
indexes nodes at the next level. Fig. 2 gives an example of an 
AP-tree of order 4. 

Note that the pointer associated with a nonleaf key value, 
with the exception of the first pointer, points to a node at the 

next level having this key value as the smallest node value. The 
significance of this decision is explained later on. Access to the 
tree is either through the root or through the right-most leaf. 
The AP-tree is different than the @--tree in several respects. 
First, if the tree is of degree d, there is no constraint that a node 
must have at least [d/21 children. Second, there is no node 
splitting when a node gets full. Third, the online maintenance 
of the tree is done by accessing the right-most leaf. 

Given the premise that deletions are treated as offline2 
storage management, only the right-hand side of the tree can 
be affected. The only online transactions that affects the TS 
values in an append-only database is appending a new tuple. In 
most cases, just the right-most leaf is affected, either a pointer 
is updated or a new key-pointer pair is added, but if it is full 
a new leaf has to be created to its right, and in the worst case 
either a new node along the path from the root to the new leaf, 
or a new root have to be created. These conditions lead to the 
following formal definition. 

Definition: An AP-tree of order d is a d-way tree in which 

1) All internal nodes except the root have at most d 
(nonempty) children, and at least 2 (nonempty) children. 

2) The number of keys in each internal node is one less 
than the number of its children, and these keys partition 
the keys in the children in the fashion of a search tree. 

3) The root has at most d children, and at least 2 if it is not 
a leaf, or none if the tree consists of the root alone. 

4) For a tree with n children (n > 0), and a height of h, 
each of the first n, - 1 children is the root of a subtree 

where 

a) all leaves in each subtree are on the same level, 

b) all subtrees have a height of h - 1, 

9 each subtree’s internal nodes have d - 1 keys. 
d) For the rightmost subtree rooted at the nth child: 

9 it has a height of at least 1, and no more than 
h - 1, 

9 when its height reaches /A - 1, and each internal 
node has d - 1 keys, the next key insertion into 
the A&tree creates a new right subtree. 

The fourth point in the definition ensures that the AP-tree is 
balanced for all but the right subtree, and that this subtree will 
continue to grow until it reaches the same height and maximal 
node loading as its siblings, before a new right subtree is 
created. There are various implementation details of the AP- 
tree that differ from B-trees and ISAM indexes, and these 
will be described as we proceed. 

The AP-tree’s search procedures is similar to that of a 
standard B+-tree for secondary key indexing, except for two 
primary differences. First, direct access to the rightmost leaf 
is available, so that insertions can be made rapidly; since 
access to the tree for insertions is always made through the 
rightmost leaf, two-way pointers are used to link a node with 

2 Reorgani zing the tree to reflect deletions can be done during idle periods 
or low load periods. All the procedures function correctly regardless of the 
timing; the only issue is performance. 
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Fig. 3. Example of AP-tree with B-tree key organization. 

its parent. 3 Second, the semantics of time-based queries allow 
modifications aimed at improving the efficiency of retrieval. 
A search through the tree may be based on the TE value or 
a given time point, which requires a backward scan of tuples 
starting from those with a key value v+ = max{ uiu 5 V}. By 
maintaining metadata about the first Ts value and the largest 
TE value indexed by the tree, the fact that all but the first 
child in an internal node indexes lower level nodes based on 
the smallest rather than the largest key values, ensures that 
only one leaf node is visited. In Fig. 3, an AP tree for the data 
in Fig. 2 is shown with a search organization based on the 
largest key value; for a query that requests tuples that have 
V = 32, vs will be found in the visited leaf of the tree in Fig. 
2, but not for the tree in Fig. 3, where the key resides in the 
left sibling of the visited node. 

In order to optimize searching time, an AP-tree’s root node 
contains the following metadata: Ts, which is the minimum 
of all the TS values indexed by the tree; LS, l END,4 which is 
the end point of the lifespan of the relation ri being indexed; 
the leftmost leaf pointer; and the rightmost leaf pointer. We 
assume that the beginning of the data file pointer for T is 
resident in main memory or is easily accessible, thus not 
requiring its inclusion as metadata. Further, due to the need 
for backward as well as forward sequential scans through the 
data file, the data blocks are linked by two-way pointers. 

In the following procedures, we ignore certain details such 
as pointer maintenance for brevity. When a query is based 
explicitly on Ts, using the index is beneficial, but when the 
query is based on some arbitrary point in time, then it is not 
possible to determine a priori whether an index search is more 
useful than a simple forward scan. On the other hand, further 
qualification, such as the specification of a surrogate value(s) 
in the query, or additional knowledge about the data, may 
allow a choice of either forward scan or index-based search 
for optimal response time. We provide only a general search 
algorithm on the basis of time alone. 

SearchTimeStart 

[For V = Ts] 

1) If V < Ts or V > LS,. END, search fails; 
else if V = Tg perform task. 

2) If v = LS, .END, go to RighMostLeafi 
if V is not found, search fails; 
else perform task. 

3 Two adjac ent leaves of the tree are also linked by two-way pointers 
although this detail is not clearly shown in the figures. 

4T,- is not the same as the beginning of the lifespan of T, since the tree 
may index a moving time window. 

3) Starting from Root, follow pointer corresponding to 
v+ = max{ ulv 5 V} until leaf is reached. 
if V is not found in leaf, search fails; 
else perform task. 

SearchArbitraryTime 

[For arbitrarv Vl 

1) 

2) 

3) 

If V < & 0; V > LS,. END, search fails; 
else if V = LS,.END perform step 3; 

else perform step 2 or 3. 
[Index search ] 
Starting from Root, follow pointer corresponding to 
v+ II max{ w Iv < V} until leaf is reached. 
Carry out backward scan, starting from tuple accessed 
by leaf pointer, to the beginning of data file. For each 
tuple x, if V E [x(Ts), x(TE)] perform task. 
[Nonindex search] 
Scan tuples from beginning of file until a tuple with 
TS > V is found. For each tuple x, if V E 
[x(Ts), I] perform task. 

C. Insertion into the AP-Tree 

Insertions into the tree are made by first accessing the 
rightmost leaf. One of the advantages of the AP-tree is that 
it requires no splitting of filled nodes, and when new nodes 
have to be created, it is done so only on two levels- the leaf 
and its parent; no other level will be affected. The only nodes 
of the tree that are relevant during an insertion procedure are 
the root, the rightmost child of the root, the rightmost leaf, and 
the parent of the rightmost leaf and its parent. If the root and 
rightmost leaf are not stored in main memory, at most five 
disk blocks have to be retrieved during an insertion; unlike 
the B-tree, recursive procedures are not required. The insertion 
algorithm below consists of two subroutines- InsertLeaf and 
AdjustTree. The following definitions are used: Zsib and rsib 
are the left and right sibling of a leaf node respectively (they 
are null for nonleaf nodes). LowPtr is a pointer to a node’ss 
child that contains keys less than the node’s smallest key. 
Insert Leaf 

1) 

2) 

3) 

9 

IF RootPtr = null, create Root and insert NewKey; 
ELSE, 
Retrieve RightMostLeaf; IF NewKey is found in 
RightMostLea f update tuple pointer if necessary. ELSE, 
If RightMostLeaf is not full, insert NewKey into 
RightMostLeaf. ELSE, 
[RightMostLeaf is full] 
Create NewLeaf and insert NewKey; 
Set the parent of NewLeaf to the parent of 

RightMostLeaf; 
rsib(RightMostLeaf) = NewLeaf; rsib(NewLeaf)= 
null; lsib (NewLeaf)=RightMostLeaf; 
call AdjustTree(); RightMostLeaf =NewLeaf. 

AdjustTkee() 

1) CurrentNode = parent(NewLea fk 
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2) IF (CurrentNode is null): (12461 
create NewRoot; insert NewKey into NewRoot; 

child(NewRoot.NewKey) = NewLeaf; 

LowPointer(NewRoot) = RightMostLeaf; 

parent(NewLeaf) = NewRoot; 

parent(RightMostLeaf) = NewRoot; return; ELSE, 
3) (CurrentNode is not null) 

IF (path to RightMostLeaf = TreeHeight): 

IF (CurrentNode is not full): 
Insert NewKey and Pointer pair in CurrentNode; 
parent(NewLeaf) = CurrentNode; return; 

ELSE (CurrentNode is Full), 
X = parent(CurrentNode); 
WHILE(X is not null and X is full) X = 

parent(CurrentNode); ENDWHILE 
IF (X is not null): 

0 a 

insert NewKey and Pointer pair in X; 
parent(NewLeaf)= X; return; 

ELSE, 
create NewRoot; insert NewKey and pointer 

pair in NewRoot; 

parent(NewLeaf) = NewRoot; 

LowPointer(NewRoot) = Root; 
parent(Root) = New Root; return; ELSE, 

4) (path to RightMostLeaf < TreeHeight) 

IF (level(RighMostLeaJ)-level(CurrentNode) > 1): 
create NewNode; parent(NewNode) = CurrentNode; 
child(CurrentNode.RightmostKey) = NewNode; 

insert NewKey and pointer pair in NewNode; 
parent(NewLeaJ) = NewNode; 
parent(RightMostLeaJ) = NewNode; 

LowPointer(NewNode) = RightMostLeafi return; 
5) IF (level(RightMostLeaJ)-level(CurrentNode) == 1): 

IF (CurrentNode is full): 
create NewNode; parent(CurrentNode) = NewNode; 

child(parent(CurrentNode)LastKey) = NewNode; 
insert NewKey and pointer pair in NewNode; par- 

ent(NewLeaJ) = NewNode; 
parent(NewNode) = parent(CurrentNode); 

LowPointer(NewNode) = CurrentNode; return; 

ELSE, 
insert NewKey and pointer in CurrentNode; 

parent(NewLeaJ) = CurrentNode; return; 

In InsertLeaf, the appropriate location for the new key is 
determined; when the rightmost leaf is full, a new rightmost 
leaf is created and the key inserted into it. The parent pointer of 
this new leaf is set to the same parent of the former rightmost 
leaf. The adjustments are then accomplished by AdjustTree; 
the examples given in Fig. 4 help to illustrate some of the 
cases. 

The operations of the APTREE can be summarized as 
follows. 

Case 1: The currrent node which is the parent of the 
NewLeaf is null so a NewRoot must be created as in Fig. 
4(b), and the NewKey must be inserted into it and the pointers 
updated. 

Case 2: The parent node of NewLeaf isn’t full so consid- 
erthe following two subcases. 

7 

0 1246 7 

(4 

Fig. 4. Examples of Insertions into the AP-tree. (a) After insertion of keys 
1, 2, 4, and 6. (b) After insertion of key 7. (c) After insertion of key 40 into 
a two-level tree that has 100% loading. (d) After insertion of keys 42, 42, 

44, and 45. 

Subcase 2.1: The number of nodes in the path to the 
RightMostLeaf equals the number of levels in the tree so if 
the parent of the NewLeaf isn’t full just insert NewKey into 
it. Otherwise, search up the rightmost branch of the tree until 
a nonfull node is found and do the insert there. If no nonfull 
node is found, create a NewRoot, insert there, and make the 
NewLeaf its only child as in Fig. 4(c). 

Subcase 2.2: The number of nodes in the path to the 
RightMostLeaf is less than the number of levels in the tree 
consider the following two cases: 

Subcase 2.2.1: The parent of the NewLeaf is more than 
one levelabove the NewLeaf so create a NewNode between 
them and insert there as in Fig. 4(d). 

Subcase 2.2.2: The parent of the NewLea f is exactly one 
levelabove the NewLeaf so if the parent is not full insert here 
otherwise, the rightmost subtree isn’t full but the parent is full 
so create a NewNode as the parent of the current parent node 
and insert the NewKey into the NewNode. The NewNode 

also becomes a child of the current root. 
Note; The pointers must be updated in each case as de- 

scribed in thealgorithms. 

D. Deletions from the AP-tree 

Deletions are made in order to reduce the current time- 
window of the database. There are two relevant types of 
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0 a 

I 
@I 

Fig. 5. Deletion of Keys 1,4,6 and 7 from AP-tree of Fig. 1. (a) Maintaining 
100% fill factor for leftmost leaf. (b) Allowing less 

P, 
100% fill factor for 

leftmost leaf ‘, 

i 

deletions: one based on change points, i.e., TS values; and on 
event points, i.e., some given point along the time dimension. 
Unlike the B-tree, deletions from the AP-tree require com- 
plete reconstruction of the tree in order to maintain balance; 
in other words, the complexity is proportional to NV, the total 
number of keys. If we were to allow the leftmost leaf to be 
less than 100% full after a delete operation, the complexity 
is reduced; Fig. 5 provides an illustration of the differences 
between the two approaches. 

The second method is useful for the deletion of a small 
number of keys from the leftmost node, since in such an 
instance, the internal nodes remain unaltered. Otherwise, this 
technique presents difficulties due to 1) in the worst case, the 
parent-pointer of most leaves have to be changed, so they need 
to be read, and 2) modification of the internal nodes means that 
they have to be chained together for efficient retrieval. In the 
following algorithms, we adopt the first approach. We call the 
new cutoff key Cutoff: if Cutoff is not a Ts, then Ts 
is set to the leftmost key along the leaf level after deletion 
is completed, else Ts = Cutoff. For simplicity, we ignore 
below the treatment of the data tuples and any index search 
needed, since that would use the search procedures previously 
given. Further, housekeeping of pointers and metadata are 
ignored unless explicit treatment is important. 

DeleteTimeStart 

1) [For Cutoff = Ts] 
2) For CurrentNode, delete all v  < Cutoff in it and 

any left siblings. 
if CurrentNode 

new Cur 

else shift 
#rentNode 

remaining 

becomes empty make right sibling the 
and 
keys 

delete empty node; 
(and their associated pointers) 

leftward. 
3) Let Ti = Cutoff. 
4) If CurrentNode has no siblings, set Root to 

CurrentNode; 

else call RebuildTree. 

DeleteArbitraryTime 

1) [For arbitrary Cutoff point] 
2) From leftmost leaf until v  > Cutoff, delete a key v if 

all tuples with TS = v  have TE < Cutoff; 

if a node becomes empty, delete it. 
3) Consolidate nonempty nodes leftwards; 

delete resulting empty nodes. 
4) Let T; = smallest key of leftmost leaf. 
5) If leftmost node has no siblings, set it as Root; 

else call RebuildTree. 

RebuildTree 

1) Create NewN ode for every d children and enter appro- 

priate keys. 
if the rightmost node has only one child, do not create 

it, and treat that child as if it were a node on this level. 
2) If only a single node is created, set it to Root; 

else call RebuildTree. 

While the DeleteTimeStart routine is self explanatory, the 
DeleteArbitraryTime routine requires elaboration: since a 
key may be associated with tuples of varying TE values, 
the best approach is to do a forward scan and eliminate a 
key only if all associated tuples have been eliminated. After 
the Cutoff point is reached, the remaining keys have to be 
consolidated and this is accomplished by shifting the keys 
left to right. The RebuildTree procedure recursively rebuilds 
the tree toward the root; it also has to make provision for an 
unbalanced rightmost subtree. Since two-way pointers between 
a key and its child are necessary, to avoid having to read a node 
twice, the above procedures could be rewritten as depth-first 
recursion, as opposed to breadth-first recursion. 

E. Analysis and Comparison with B+ Trees 

In analyzing the performance characteristics of the AP-tree, 
we will compare it to a B+ -tree constructed for time indexing. 
This B-+-tree incorporates some of the properties of the AP- 

tree that can be easily included without major changes to the 
general algorithms. These modifications are: two-way pointers 
between leaves, so that forward and backward scans can be 
performed; and metadata on the minimum TS and maximum 
TE values. We do not consider the case of two-way pointers 
between parent-child, because many modifications would be 
needed in the deletion and insertion procedures. 

Height: The A&tree, with the exception of the rightmost 
subtree will have a fill factor of 100%. In contrast, a B+-tree 
will almost always be very close to its minimum loading factor 
of 50%; the reason is that due to the progressive arrival of key 
values, each leaf node is split just once, and subsequently is 
never needed for further insertions. Thus the height of the 
A&tree is 

hAI’ = L1o&+, (Nv + ‘)I + ‘7 (1) 

which is equivalent to the lower bound height of a general 
B-+-tree. The @--tree’s height is 

hB(T) = [1%[d/2]+l (Nu + ‘)I + ’ (2) 
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Comparing the two heights, ~B(T) can be represented in 
terms of a factor that is a function of d times h&T), i.e., 

As an example, if d = 70, then hB(T) =N 1.2h~p(T). 
Searching: Searching cost difference is a function of the 

height difference, if index search is used. 
Insertion: Let us ignore the I/OS needed to insert tuples 

into the data file; we are concerned only with the I/OS for 
the index. The lower bounds for both the AP-tree and B+- 
tree are equal to two disk I/OS: one read and one write. The 
upper bound for an insertion into the B-+-tree is 3hB(T): i.e., 
h is the cost of traversing the tree to the current leaf, and for 
each level of the tree, a split is required, which necessitates an 
additional read and write per level. In the case of the AP-tree, 
the upper bound for insertion is 10 I/OS. 

As long as hB(T) > 3, the AP-tree performs better for 
insertions. 

Deletion: In considering deletions from the tree, we ignore 
the cost of tuple deletions from the data file, and assume 
only TS deletions in order to simplify comparisons. The lower 
bounds for both trees are again two disk I/OS. For the @-tree, 
the worst case performance for a deletion of a set of keys with 
cardinality Ndv consists of the following sequence of actions: 
1) traverse tree down to first leaf, 2) keep deleting keys until 
balancing is required, 3) carry out worst case balancing from 
leaf to root, and return to step 2) until no more keys need to 
be deleted. The total cost is 

*(3hB(T) - 2) 
P/21 

(4) 

For the A&tree, all but the leaves left of the cutoff point 
have to be read and written once; as for higher levels, only 
writes of new internal nodes are needed. The total cost comes 
to 

2r 
NV - Ndv 

d l+ 
&4P(~>-1 - 1 

d-l 
(5) 

If deletions are based on arbitrary time points, the upper 
bound costs are of the same order as above. In general, 
deletions for the A&tree are more costly, since it is dependent 
on the number of nodes in the tree, as opposed to just the 
height of the B+-tree. Fig. 6 shows the behavior of the deletion 
costs for the two indexes as a function of the percentage of 
keys deleted, where NV is 10 000 and d is 40. At very high 
percentages of key deletions, the cost for the B+-tree becomes 
worse than the AP-tree. 

IV. INDEXING SURROGATES AND TIME 

ST indexes have to take into consideration the efficiency of 
answering current as well as historical queries, and the need 
to answer combinations of range and point specifications. It 
is more likely that range qualification is given for the time 
attribute. In order to provide a higher degree of selectivity, 
we present a structure that is based on nested trees, where the 
first level index is based on the @-tree, while the second 
level index is based on the AP-tree. In order to evaluate 

1 2 3 4 5 6 7 a 9 10 

Pet. of Keys Dewed 

Fig. 6. Deletion cost comparison. 

Root 

Islo] 

B+ -tree 

Fig. 7. Nested ST indexing. 

the performance of this method, we compare it with two 
alternative methods, both of which are also based on variants 
of the B-tree. 

A. Nested ST-Tree 

The nested ST-tree was introduced for the static database 
in [7], which is similar to the concept of the K - b tree of [ 111. 
We introduce a modified structure which is designed for 1) a 
dynamic database, 2) takes advantage of the natural ordering 
of time stamps for each given S thus enabling the use of 
an A&tree, and 3) is independent of the physical ordering 
of data. This approach is designed to answer queries where 
the primary qualification is on S. Fig. 7 illustrates the basic 
constructs of the tree. 
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S-superindex: The first level of the hierarchy is a B+- to balancing. We assume for simplicity, that the tuples are 
tree, with the following modifications: Each leaf entry has uniformly distributed across the surrogate instances. We denote 
two pointers associated with it- a direct pointer to the current the nested structure as “Nested” or 1~, the composite key 
tuple, and one that points to the root node of the T-subindex. index as “Composite” or Ic, and the S-index and accession 

T-subindex: The T-subindex is structured as an AP-tree. list as “Sparse” or Isp. 
Unlike a solo T-index to the relation, the subindex always Heights: Let hN(ST), hc(ST), and hSp(ST) denote the 
maintains a single time entry per S-value. In order to compress 
further the height of the tree, the subindex can be constructed 
sparsely 9 i.e., each leaf entry will lead to a tuple-pointer block, 
rather than to the data block itself. The adoption of the A&tree 
for this level of indexing is not dependent on an append- 
only database, since a dynamic database that allows delete 

heights of 1 N, Ic, and Isp respectively. Further, let Nr and 
Ns denote the cardinality of the relation and surrogate domain 
respectively; &is is the mean number of time values for each 
surrogate instance, i.e., the average length of a time ch ain; Bsr, 
represents the blocking factor for the accession list of Isp; and 
d(e) is the order of the tree for the specified key. 

operations would delete tuples only on the basis of maintaining 
some current time-window. 

B. Nested Tree Procedures 

The insertion procedure for the Nested ST-tree is two-stage: 

- 
hN(ST) = hB(S) + hAP(NTls) (6) 

= P”g~d(S)/21+dNs + l>1 

+ ~~%(T)+I(~T~s + I)1 + 2 (uB> 

- - llog,(s)+l CNs + l>J 

InsertSuperindex 

1) If S is found in leaf, InsertSubindex. 
2) Create new leaf entry; 

+ lkd(T)+d~T~~ + l>J + 2 (LB) 

hC(ST) = hB(ST) (7) 
- - 

110g[d(S+T)/21 +I ( NT + l)] + 1 (UB) 

Create new root node for T-subindex. 

InsertSubindex: Same as in AP-tree. 

= llo&(S+T)+I(Nr + ‘>A + ’ (LB) 
- 

The search procedures consists of traversing the B+-tree 
NTIS 

hSp(sT) = hB(S) + r-1. 

superindex, and then using the appropriate procedures for the 
BSP 

(8) 

A&tree subindex. Deletions can be of two types, one to delete The difference between the lower and upper bounds of the 

some tuples of an S-entry, and the other to delete all history first two techniques is in the fanout of the BS-trees. There are 

of the entry. two types of height comparisons-the first relates to current 
time queries, in which case hN(ST) is never worse than the 

DeleteTuple other two alternatives. 

1) If T range= ALL, delete S entry in superindex. The second type of comparison relates to the maximum 

2) Delete appropriate T entries in subindex. height of the three, i.e., in retrieving an arbitrary ST query. 

In insert and delete operations, any reconstruction is 
In comparing lower bounds of the nested tree versus the other 

bounded by the complexity of the sum of B+-tree and AP-tree 
two 

? 

balancing. 
hN(ST) = f&$-j (9 

C. Alternative Structures 

We introduce two structures for comparison purposes: the 
first is based on a conventional B+-tree for the composite key 

hN(ST) 2 h&ST) + 1. (10) 

S and T, while the second is similar to the idea introduced 

by w 
The height difference is due to the fact that an additional level 
of indirection is needed to find the T value for the nested 

Composite Index: The key is made up of the concatenation 
of the two attributes, employing a B-+-tree. There are many 

tree, given that the loading factor of all trees involved is the 

ways in which the height of the tree can be reduced, including 
maximum possible. 

the use of prefix - B-trees, compression, and allowing sparse 
In terms of upper bound differences: 

indexing on the T portion of the key. 
S-Index and Accession L ist: In this case, only the S values 

- 

hN(ST) < f-&p - 
NTIs 

- hAP(T) - [- 
BSP 

(11) 

is indexed, and the associated T values are stored in a list 
accessible from the appropriate leaf entry. The list is made up that is, the difference is due to the logarithmic versus linear 

of the concatenation of disk pages, each containing pairs of complexity of the two time-indexes. On the other hand, for 

time-value and tuple-pointer. The list can be reduced in length the nested versus composite approaches, assume that d(S) = 

by compression. d(T) = a: 

D. Analytical Comparison of Approaches 
hN(ST) = 

We will look at the performance of the three indexes 
llog,l,(Ns + ‘>J + ll’& %ls + ‘1 + 2h 

analytically, in terms of heights and complexity with respect ll%&,,(N~ + l>J + 1 
c l 

(ST) 
(12) 
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* Nested u Composite -*-Sparse TABLE II 
TABLE OF VALUES FOR TESTS 

Variable Value 

N7- 1OOK and 1M tuples 

Nq 1 K to lOK, in 1K increments 

l(r), I(S), Z(T). l(PTR) 40B tuple, 8B S & T, 4B pointer 

FILL-INDEX 100% for ,W-tree, 75% for B+-tree 

FILLDATA 75% 

CR 50% 

2 ---------:-------:-------:-------:-------b-------I-------I.------:-------.~ 

0 1 I 1 I 1 I 1 1 , I I I I I I 

1 2 3 4 5 6 7 8 9 10 

Surn>gateDomainSize(OOOk) 

*Nesttd/sparsc ~Composite 

Fig. 8. Upper bound heights, N, =l M tuples. 
4 Cl-Q 

m 
u 

In Fig. 8, the upperbound comparisons are made for the 
three methods, letting Q = 50, A& = 1 million tuples, 

Bsp = 100, and NS varying between 1000 < to 10000 <. 
We label the three methods “Nested,” “Composite,” and 

“Sparse” in the graphs that follow. As the graph shows, for 
the given parameter values, 1~ is always one level lower than 
Ic, while Isp fluctuates, depending on the size of the history 
chain. Since the relation size is fixed, the distance of index 
traversal carried out by Isp is inversely proportional to the 
size of the S domain. 

0 r 
1 2 

I I L I 
3 4 5 6 7 8 9 10 

SunqateJIomainSize(OOOk) 

0 a 

+ Ne.stexl/!Jparse 0 Composite 

6 T . ..___...__________... ~....................... i. .,. ., . : _,. . : 

Insertions: For an insertion that requires only the insertion 
of a new T value, the lower bounds is 3 I/OS for IN and Isp, 

and 2 for the 1~; the worst case costs on the other hand, are 
hi + 3, hB (S) + 10, and 3h~ (ST) respectively. On the 
other hand, when a new S value is inserted, the lower bounds 
remain the same as before; for the the worst case, while the 
cost for 1~ also remains unchanged, it increases for the other 
two methods, i.e., 3/~ (S) +3 for Isp, and 3/2~ (S)+ 10 for 1~. 

Deletions: The case for deletion costs mirror those pre- 
sented above for the best case scenarios, while for the worst 
case, they are a function of the worst case costs of the B+-tree 
and AP-tree, as presented previously in Section IV. 

2 _.____. _.__.__.__ ..,._; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..;. : + 3 

1 -_...................... i . . . . . . . . . . . . . . . . . . . . . . . i . . . . . . . . . . . . . . !‘....................... f . . . ;. __.._ . 

O* 1 I 1 I 

1 2 3 4 5 6 7 8 9 10 
Smogate Domain Size (OWs) 

(b) 

Fig. 9. Query on current tuple cost comparison (a) lVr =lOO K tuples. 

Cb) Nr =l M tuples 

E. Empirical Test of Alternative Structures 

In this subsection, we provide results of some tests of 
the tree indexing techniques. In executing the tests, it was 
decided that sparse indexing and compression of index entries 
should be ignored, since they can be applied to each approach. 
Furthermore, the idea of using prefix&trees was rejected, 
since it can again be applied to varying degrees to each index, 
and this method of compacting the index’s storage requirement 
is known not to be very effective [26]. 

for the three alternatives - since IN and Isp have identical 
superindexes, they have identical costs. The graphs show that 
the average cost of accessing the current tuple is cheaper by 
1 or 2 disk accesses for these two methods when compared 
to 1~. Only in Fig. 9(a), with NS = 10000 < was the cost 
identical; the reason is that at this point, the time chain is 
only 10 tuples long on average, and there is little benefit in 
maintaining two-level indexing. 

The parameter settings used are shown below, where the 
relation size is set at 100K and 1M tuples, and the S domain 
varied in increments of lK, from 1K to 10K. 

The I() represents the byte size of the argument, and 
FILLINDEX and FILL~ATA are the fill factors for the 
index and data pages respectively. CR is the compression 
ratio, and is set to 50%, which is about the best most existing 
algorithms can achieve. (See Table II) 

Figs. 9 to 11 exhibit some of the results of the tests. In 
Fig. 9, the current query cost in terms of disk I/OS is graphed 

Fig. 10 shows the I/O costs associated with arbitrary queries 
involving historical data. When the relation size is 100K 
tuples (Fig. 10 (a)), lsP is more efficient than the other two 
techniques, which share the same cost for all values except 
at the right extreme, when the short time chain yields higher 
overheads for the nested index. When the relation size is fixed 
at 1 M tuples, the results fluctuate much more-the composite 
index performs worst. The reason that the sparse index yielded 
better performance in these two tests, is due to the assumption 
of a high compression ration of 50%, which allows each block 
to hold around 300 tuple-pointers. Since our tests are limited 
to history chains of 1000 in maximum length, and we assumed 
uniform distribution of tunles among surrogate instances, the 
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Fig. 10. Arbitrary query cost comparison (a) NT- =lOO K tuples (b) NT- = 
1 M tuples 
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Fig. 11. Index storage cost, NT- =l M tuples. 

Fig. 12. AT indexing. 

V. AT-INDEXING AND TIME PARTITIONING 

In this section, we look at the problems of indexing a 
relation on the temporal attribute and time, and the related 
issue of partitioning the time-line into segments. 

A. AT Indexing Using Nested Trees 

use of chained lists appear to be the most efficient on average. 
In Fig. 11, the index storage costs for the three methods, 

for the case of a 1 million tuple relation is examined. The 
composite approach on the average is the most expensive 
to maintain-this is due to the fact that it is a single tree. 
Other tests undertaken, but for which results are not displayed, 
included sequential query retrieval costs under conditions of 
sorted and unsorted data (with S as the primary sort key). 
The results show little differences between the three methods, 
since the cost of retrieving data blocks overwhelms the index 
search costs. 

To conclude, the nested approach is an efficient method 
of retrieving data for ST queries. The insertions are easily 
carried out, and balancing of one level can be separated from 
the other; Deletions on the A&tree level is not a primary 
concern, thus the weaknesses of the tree is not exposed often. 
Further, the nested index is much more efficient in answering 
current queries, and is efficient storage-wise. Compared to the 
sparse indexing, although the average case analysis for random 
queries is either worse or equal, it has a lower upper bound. 

Fig. 12 illustrates our approach to indexing for AT queries. 
The basic concepts are similar to that of the ST-index, whereby 
the fist level indexes the nontime attribute, and the second 
level indexes time. The difference relates to the multiplicity 
of qualifying tuples for a given A value. Since the temporal 
attribute is not a unique key, tuples that qualify on it are likely 
to overlap over their associated time intervals. A straightfor- 
ward way of indexing the time line in such a case, would be to 
use a conventional index, such as the B-tree, with one of the 
two time-attributes, i.e., TS or TE as the search key. A major 
limitation to this is that many queries are not based on the 
start or end time, rather on an arbitrary point in time or time 
interval. Using the above method of indexing the time line, 
multiple overlaps among tuples will occur, meaning that the 
index will not be highly selective. The greater the degree of 
overlap, the more time will be spent traversing sibling nodes 
of the index tree in search of overlapping tuples. We will thus 
look at methods by which the tuples associated with a given 
temporal attribute value, or even a range of such values, can 
be partitioned along the time dimension, such that minimal 
overlap is achieved. 
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B. Basic Approach and Objectives of Partitioning 

The time-line is partitioned into several segments, each 
segment being represented by a leaf entry in the index. The 
associated pointer leads to a bucket of tuple pointers, for all 
tuples where [Y& Z-‘E] intersects with the segment delimiters, 
[I,$, r/i+1 ). Each bucket consists of one or more disk pages, and 
in the event of an overflow, additional pages are chained to 
it, thus increasing the search time along that segment. The 
objective is thus to minimize overflow resulting from the 
partitioning, which requires that duplication of tuple pointers 
across the relevant buckets be minimized. We develop the 
algorithms from an initial point where the number of tuples 

are known. These are then extended to the dynamic case. 

C. Simple Allocation Approach 

In this algorithm, divide the bucket capacity into the total 
pointer count, to derive the starting number of buckets. We 
then assign pointers to buckets, which will likely cause over- 
flows. A balancing routine is then executed, which attempts a 
reallocation of overflow pointers between neighboring buckets 
in an iterative manner. At each step, the bucket with the worst 
overflow is selected, and the length of its associated segment 
is reduced by setting Vmax higher, Vmax +1 lower, or both, 
if doing so reduces its tuple count without increasing that 
of its neighbors. The balancing is completed when no more 
improvement is possible. 

Algorithm Simple 

1) 

2) 
3) 

4) 

[Initial Allocation] 
Divide total count of tuple pointers by desired bucket 
capacity to derive number of buckets and segments. 
Allocate pointers to buckets. 
[Balancing] 
Find bucket with highest overflow. Compute the changes 
in allocations, if the left boundary is moved to the right, 
the right boundary to the left, or both. Execute change 
if feasible and until no more adjustment is possible. 
Eliminate any redundant buckets. 
Repeat Step 3 until there is no overflow or all buckets 
have been iterated through. 

D. Optimal Allocation Approach 

There are two major drawbacks that the first algorithm pos- 
sesses. First, it does not consider the probability distribution 
of pointers as a function of time. Secondly, the duplication 
of pointers, which takes place as the partitioning is carried 
out is ignored. An optimal solution approach is to use a 
dynamic programming algorithm to solve the problem. We 
recursively allocate pointers to buckets, such that each receives 
its optimal allocation, given that its immediate predecessor has 
also received an optimum assignment of the tuple pointers. Let 
gH the optimal allocation to buckets i, i + 1, . + . , max given that 
buckets l,*+- 1 were allocated; the optimal solution to our 
problem is given by gi. The recursive equation is as follows. 

$-I = min(max(0, N(B;) - 7) + gt) 
2, 

where B; is ith bucket, 2: = 1, l l l , malr:, x:; is right boundary 
point for B;; y is set capacity for buckets; N(&)-is the 
number of data records whose time interval intersects the 
interval [xi - 1, xi); gka, is max{O, N(B,,,)}. 

This algorithm will require exponential time in order to 
solve, with a worst case of NT!. We develop two heuristics to 
imp1 .ement the formulation, taking into consideration the rep- 
etition of pointers as the lifespan is partitioned into intervals. 
The heuristics differ in the decision to terminate assignment to 
the current bucket: in the first version, assignment is terminated 
when either the capacity is reached or exceeded; in the second 
version, termination occurs if the next assignment will cause 

an overflow, unless that assignment will be the only one for 
the bucket. These heuristics also require balancing, since there 
is a good probability that the procedures will be less effective 
in assigning tuples as the end of the lifespan is reached. Thus 
the balancing algorithm is carried out right to left, under the 
assumption that tuple pointers have to redistributed from the 
last bucket toward the first. 

Algorithm Dynamic-Overflow 

1) 

2) 

3) 

[Allocation] 
Starting from LS,.START, allocate to bucket one 
until its capacity is reached or exceeded. Determine the 
rightmost boundary of the associated segment. 
Continue for bucket two to max, until all tuples have 
been assigned. For each subsequent bucket, start with a 
count of the predecessor bucket’s overlapping intervals. 

[Balancing] 
Perform balancing algorithm similar to that given in 
Algorithm Simple, but starting from bucket max to 0, 
execute a single scan. 

Algorithm Dynamic-UnderJlow:Starting from LS, START, 
make an initial allocation of pointers. 

1) If the bucket is not full, continue allocating the next 
batch of pointers ifs they do not cause an overflow; 
else determine the boundary of the associated segment 
of current bucket. 

2) Carry out Steps 2 and 3 of Algorithm Dynamic- 
Overflow. 

E. Nonredundant Allocation of Pointers’ Time Intervals 

Our objective of reducing redundancy of pointer assignment 
was motivated by the need to minimize search time in order to 
retrieve the relevant tuples associated with a query. A major 
problem that arises from this approach is that a given time 
segment does not tightly bind all tuples that it is indexing. In 
other words, a query that is directed at a particular segment 
needs to scan all tuples within that segment in order to 
determine if any of them is relevant in answering the query. 
To avoid actual physical retrieval of data, each data pointer 
can be stored together with its time-stamps; but this will 
dramatically reduce the fanout factor of any indexing tree 
employed. 

A method that eliminates the need to maintain time-stamps 
for each tuple pointer is one in which each bucket contains 
only intervals or subintervals that will span the bucket. This 
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TABLE III 

RANGE OF VALUES FOR EMPIRICAL TEST 

Variable Value 

K 200 k to 1000 k 

Nt 1000 

NA 100 

Ps 0.70 and 0.90 

KPTR Page pointer capacity = 70 

requires the pointer intervals to be divided into as many 
buckets as there are unique starting or ending points along 
the lifespan. Another advantage with this approach is that a 
variety of aggregate operations can be facilitated more easily, 
since each bucket has an identical set of intervals/subintervals. 
The drawback is that there will be a much larger number 
of buckets and therefore the indexing tree will be taller. 
This algorithm does not consider the capacity of the buckets, 
but it is unlikely that many of them require more than one 
data page, unless the distribution of the event points are not 
uniform. 

Algorithm Tight-Bound: Create the first bucket, with start- 
ing point equal to the first starting time found among the tuples. 
Take note of the ending time for this first tuple. 

Allocate tuples into this bucket, until 1) another tuple is 
found with the same starting time as the first tuple, but has an 
earlier ending time, or 2) another tuple is found with a starting 
time earlier than the first tuple’s ending time. 

Determine the segment of the first bucket, and create the 
next bucket. 

Repeat Steps 1 to 3 until the end of the lifespan is reached. 

F. Empirical Testing of Partitioning Algorithms 

There are several factors involved in the performance of the 
algorithms. We retained the assumption of uniformity in the 
occurrence of events. The parameters in Table III were used. 

The relation size is fixed between 200 k to 1 M tuples in 
increments of 200 k. Nt is the number of time points in the 
lifespan of the relation. We generate time sequences, where 
once an event is generated, ps indicates the probability that 
for the next time point, the event remains valid, i.e., there has 
been no change. By varying this probability between 0.70 
and 0.90, we allow for varying mean intervals for events, and 
thus affect the count of actual tuples, i.e., the changepoints 
associated with each A value. Fixing the A and 2’ domains at 
arbitrary values should not affect the general results, since we 
vary the mean length of events and thus relation size. 

Fig. 13 and 14 display two sets of results from the ex- 
periments, where an arbitrary value of A is selected. In the 
graphs, the four algorithms are labeled as S, DO, DU and 
TB respectively. Fig. 13 shows the number of buckets that 
result from each partitioning algorithm, where in (a) ps is 0.7, 
while in (b) it is 0.9. 

Regardless of ps or relation size, Alg. TB, which is the 
R+ [25] equivalent in terms of partitioning technique, utilizes 
almost the same number of buckets. The reason is the high 
degree of overlaps, as opposed to identical intervals, that exist 
for any attribute value. Thus, for almost every point in the 
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Fig. 13. Comparison of number of buckets used (a) pS = 0.7; NT = 1000 c. 

09 Ps = 0.9; NT 5000 <. 

time line, there is a single bucket associated with it. This is 
why the number of buckets for the algorithm peaks at 1000, 
which is the size of the T domain. 

On the other hand, the other three algorithms explicitly 
allocate pointers as a function of the capacity of buckets. Thus, 
for a given ps the number of buckets rise in proportion to the 
size of the relation. For all cases, Alg. S has the lowest number 
of buckets, followed by Alg. DO and Alg. DU. This is due to 
the linear relationship between Alg. S’s bucket generation and 
the number of tuples. But, the two dynamic algorithms assign 
tuples in an incremental way, leading to nonlinear growth, 
since at higher values of ps and Nr, the increasing number of 
overlaps cause suboptimal use of many buckets. As expected, 
Alg. DU is inferior to Alg. DO. In Fig. 13 (b), we see that 
Alg. DO, DU and TB converge as the relation size increases. 

Fig. 14 shows two graphs pertaining to the performance 
of the four algorithms in terms of the average fill factor of 
buckets, over the same range of parameters as in Fig. 13. 

Alg. TB has the lowest fill factor, exceeding 100% only in 
the extreme. The low average utilization of the disk pages is 
another explanation for the high number of buckets required 
for the method. On the other hand, Alg. S almost always has 
an overflow, although it is usually below 100% - this means 
that most of the time, an additional page is needed for each 
bucket. The two dynamic algorithms are the most efficient in 
space utilization - there is little distinction between Alg. DO 
and DU otherwise. 
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Fig. 14. Comparison of bucket fill factors. 

G. Performance of Balancing Routines 

The first three algorithms included balancing routines. It 
was found that the first method required balancing most. The 
result of the balancing was not so much a reduction in the total 
pointer count, but in the distribution of pointers across buckets. 
In most tests, the total count remained about the same, but the 
high count and standard deviation of bucket count dropped 
within the range of 10% to 40%. On the other hand, Alg. DO 
and DU did not require balancing, with minor exceptions; even 
when balancing took place, no noticeable difference occurred 
in the high count and standard deviation of allocations. One 
intervening factor is uniformity of the generated sample data, 
which means that the intervals associated with tuples were 
uniformly distributed across the lifespan. Nonetheless, these 
two methods can be easily adapted to dynamic databases, since 
new data will only extend the ending time of the lifespan, 
requiring new segments to be created independent of the 
existing assignment. 

H. Implications for Query Performance 

We reject the second dynamic algorithm - Alg. Dynamic- 
Underflow, since it never performs better than its variant, the 
Dynamic-Overflow. Among the three remaining algorithms, 
we have to distinguish Alg. Simple from the other two: the 
former is more suitable for static data, since the partitioning is 
a function of the total count of tuples and a balancing routine 
is needed to optimize its performance. It clearly outperforms 

the others, especially when there is a larger density of tuples 
for a given time point being considered, and also the interval 
of a tuple is longer. 

On the other hand, Alg. Dynamic-Overflow and Tight- 
Bound are more suitable for dynamic databases. The difference 
between the two is the tradeoff between the number of tuples 
retrieved in order to respond to a given query on the one hand, 
and the number of index pages that have to be retrieved on the 
other hand. Although Alg. Tight-Bound should provide only 
data that is valid for a specified query interval, its partitions 
are degenerate, i.e., it quickly converges toward the worst case 
of one partition for each time point. Thus, it has very low 
selectivity for an arbitrary query. Both algorithms generally 
have no overflow: thus, Alg. Dynamic-Overflow is clearly 
superior. Even if we take into consideration the desirability 
of adding a pair of time-stamps for each pointer in a given 
bucket, the reduced bucket capacity utilization in Alg. DO 
does not negate its advantages over Alg. TB. 

The difficulties of allocating intervals is clearly the result 
of the fact that time intervals, unlike geometric objects, do 
not have natural clustering tendencies. Therefore, partitioning 
methods similar to those in spatial indexes, such as R-tree [9] 
and R+ tree [25], need not be suitable, as discovered in [lo]. 

VI. CONCLUSION 

In this paper we have investigated various issues associated 
with the indexing of temporal databases. We looked at the 
organization of a database in terms of current and historical 
data, the functional requirements of queries, and the links 
between physical order of data and indexing. We then looked 
at several structures, each aimed at optimizing data retrieval 
for a specific context. The A&tree is aimed at indexing 
data for append-only databases, in order to help event-join 
optimization and queries that can exploit the inherent time 
ordering of such databases. Two variable indexing for the 
surrogate and time was studied-we showed that a nested 
index could be a very efficient structure in this context, 
and overall is preferable to a composite B-tree or an index 
that involves linear lists of historical tuples. We discussed in 
detail the problems of indexing time intervals, as related to 
nonsurrogate joint-indexing. Several algorithms to partition the 
time line were introduced, and we concluded that the Dynamic- 
Overflow method seems to yield good performance for the 
case of a dynamic database, while the Simple algorithm can 
be effective for static data organizations. We also outlined a 
two-variable AT index based on nested indexing. Indexing 
of temporal attributes and time has not been explored in the 
literature before, where focus has been on the surrogate and 
time. 

For future research, we would like to explore further the 
issue of time partitioning, primarily in the context of multi- 
dimensional search structures. It has already been mentioned, 
how difficult it can be in partitioning time jointly with other 
variables, since the latter are inherently point data, and fur- 
ther, there is no natural ordering within them. Thus, we 
should not follow too closely the research already done in 
the multidimensional partitioning area, since they are more 
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often than not applied to spatial/CAD/geometric data. Another 
topic of interest is the construction and use of indexing for 
certain classes of temporal queries, which by their complex 
nature, may benefit from indexing. Finally, the organization 
and maintenance of a multilevel storage structure for temporal 
data is an important topic worth exploring. 
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