
Efficient Indexing of Billion-Scale datasets of deep descriptors

Artem Babenko

Yandex

Moscow Institute of Physics and Technology

artem.babenko@phystech.edu

Victor Lempitsky

Skolkovo Institute of Science and Technology

(Skoltech)

lempitsky@skoltech.ru

Abstract

Existing billion-scale nearest neighbor search systems

have mostly been compared on a single dataset of a bil-

lion of SIFT vectors, where systems based on the Inverted

Multi-Index (IMI) have been performing very well, achiev-

ing state-of-the-art recall in several milliseconds. SIFT-like

descriptors, however, are quickly being replaced with de-

scriptors based on deep neural networks (DNN) that pro-

vide better performance for many computer vision tasks.

In this paper, we introduce a new dataset of one billion

descriptors based on DNNs and reveal the relative ineffi-

ciency of IMI-based indexing for such descriptors compared

to SIFT data. We then introduce two new indexing struc-

tures, the Non-Orthogonal Inverted Multi-Index (NO-IMI)

and the Generalized Non-Orthogonal Inverted Multi-Index

(GNO-IMI). We show that due to additional flexibility, the

new structures are able to adapt to DNN descriptor distri-

bution in a better way. In particular, extensive experiments

on the new dataset demonstrate that these data structures

provide considerably better trade-off between the speed of

retrieval and recall, given similar amount of memory, as

compared to the standard Inverted Multi-Index.

1. Introduction

Modern image retrieval systems[19] have to search

through billion-scale databases in several milliseconds to

respond to user queries. This imposes strict demands on

scalability and efficiency of the underlying nearest-neighbor

search algorithms. As exhaustive search is mostly infeasible

at this scale, approximate nearest neighbor (ANN) methods

that restrict the part of a dataset that is being considered in

response to a query have to be used.

State-of-the-art ANN algorithms of this kind [13, 2, 9,

14, 5] avoid exhaustive search by organizing dataset points

using an indexing structure. For a given query the in-

dexing structure allows to retrieve a short-list of candidate

points that are likely to be close to this query. The candi-

date points are then reranked according to their distances

using such methods as Asymmetric Distance Computation

(ADC) [12]. In general, the reranking runtime is approxi-

mately linear in the size of the short-list. Consequently, the

ability to obtain compact short-lists with high enough recall

leads to fast reranking and overall time efficiency.

One of the first billion-scale retrieval systems for billion-

scale datasets have been presented by Jegou et al. [13].

Their system called IVFADC divides data space into sep-

arate cells, corresponding to Voronoi regions obtained via

k-means clustering. Given a query, IVFADC returns the

short list with the points from the cells that are the clos-

est to it. The Inverted Multi-Index (IMI)[2] generalizes

IVFADC by decomposing the dataspace into several sub-

spaces and splitting each subspace into cells independently.

The system [14], based on the IMI indexing structure and

the Product Quantization (PQ) compression provides state-

of-the-art performance on the SIFT1B dataset of one billion

SIFT descriptors [13], which invariably serves as the testbed

for such systems.

Recently, the focus in computer vision has shifted from

SIFT descriptors to descriptors produced by deep neural

networks (DNN). Several works [17, 7, 11, 18, 4] have

shown that DNN-based descriptors significantly improve

the state-of-the-art on common retrieval benchmarks. Fur-

thermore, [7] have shown that deep descriptors can be com-

pressed by PCA with almost no loss in performance.

Despite such shift to deep descriptors, to the best of our

knowledge, billion-scale ANN with deep descriptors has

not been investigated. One potential problem with relying

on the SIFT1B dataset is its particular suitability for IMI-

based systems. This is because, the SIFT construction pro-

cedure uses different halves of a SIFT vector to describe

disjoint regions of an image patch. Thus, the correlations

between the two halves are likely to be small and the de-

composition in the IMI is justified. Deep descriptors do not

possess such structure and therefore the good performance

of IMI might not be achieved.

This paper seeks to develop a good indexing structure

for deep descriptors. We begin with experiments illustrat-

ing that for this type of data the Inverted Multi-Index indeed

12055

2 1 0 1 2 3

2

1

0

1

2

2 1 0 1 2 3 2 1 0 1 2 3

IMI NO-IMI GNO-IMI

Figure 1. The cell centroids (red points) produced by different indexing structures for the same sample of two-dimensional data (blue

points). For all structures parameter K was set to four, hence 16 centroids were produced. The left plot corresponds to the IMI structure

and large blue points on the axes denote the codewords of the underlying PQ decomposition. The middle and right plots correspond to the

NO-IMI and the GNO-IMI structures respectively. On the both plots green points correspond to the “first-order centroids” S1, . . . , S4. The

GNO-IMI centroids represent the actual data distribution more accurately than the other structures.

produces a particularly large number of redundant cells that

do not contain any points. This deficiency arises from the

space decomposition, implicitly performed in the IMI. We

conclude that for deep data the correlations between sub-

spaces are significant and independent codebooks for each

subspace cannot represent the global data distribution ade-

quately.

We then introduce two new indexing structures, the

Non-Orthogonal Inverted Multi-Index (NO-IMI) and the

Generalized Non-Orthogonal Inverted Multi-Index (GNO-

IMI). The NO-IMI forms index cells centroids as sums

of two vectors from two non-orthogonal codebooks, fol-

lowing the well-known residual vector quantization (RVQ)

scheme [8], thus avoiding any decomposition into orthogo-

nal subspaces. As a result, the NO-IMI provides more rea-

sonable index cells with the centroids representing actual

data distribution more accurately. The GNO-IMI pushes the

representation accuracy even further by forming cell cen-

troids as linear combinations of codewords. As the extra

linear coefficients are learned from the data, the GNO-IMI

exhibits higher efficiency while indexing complex data as

compared to the NO-IMI.

We demonstrate that better indexing by the (G)NO-IMI

results in more compact and precise short-lists and, there-

fore, more efficient retrieval. Overall, we show that for

the same time budget the new structures provide higher re-

call compared to the existing top-performing schemes. Our

evaluation is based on a new dataset of one billion deep de-

scriptors with hold-out query and learning sets. The dataset

is the first publicly available billion-scale dataset of deep

descriptors.

2. Related work

We briefly describe several ideas from the previous work

that are essential to the description of the our structures.

Along the way, we introduce notation for this description.

Product quantization (PQ) is a lossy compression

scheme for high-dimensional vectors [12]. PQ encodes

each vector x ∈ R
D as a concatenation of M codewords

from M D
M

-dimensional codebooks C1, . . . , CM , each con-

taining K codewords. In other words, PQ decomposes a

vector into M separate subvectors and applies vector quan-

tization (VQ) to each subvector, while using a separate

codebook. As a result each vector x is encoded by a tu-

ple of codewords indices [i1, . . . , iM] and approximated by

x ≈ [C1(i1), . . . , CM (iM)]. Fast Euclidean distance com-

putation becomes possible via efficient ADC procedure [12]

using lookup tables:

‖q − x‖2 ≈ ‖q − [C1(i1), . . . , CM (iM)]‖2 = (1)

M
∑

m=1

‖qm − Cm(im)‖
2

where qm — mth subvector of a query q. This sum can be

calculated in M additions and lookups given that distances

from query subvectors to codewords are precomputed.

From the geometry viewpoint, PQ effectively partitions

the original vector space into KM cells, each being a Carte-

sian product of M lower-dimensional cells. Such product-

based approximation works better if the D
M

-dimensional

components of vectors have independent distributions. The

degree of dependence is affected by the choice of the split-

ting, and can be further improved by orthogonal transforma-

tion applied to vectors as preprocessing. Two recent works

have therefore looked into finding an optimal transforma-

tion [10, 16]. Following one of them, the modification of

PQ corresponding to such pre-processing transformation is

referred below as Optimized Product Quantization (OPQ).

Non-orthogonal quantizations. Several works [8, 3,

21, 6] have proposed modifications of PQ that do not de-

compose the dataspace into orthogonal subspaces. In fact,

they generalize the idea of Product Quantization by approx-

imating each vector by a sum of M codewords instead of

concatenation. In this case the ADC procedure is still effi-

cient while the approximation accuracy is increased.

2056

The first approach, Residual Vector Quantization [8],

quantizes original vectors, and then iteratively quantizes the

approximation residuals from the previous iteration. [8]

also introduces the IVFRVQ system that allows to perform

non-exhaustive search. IVFRVQ prunes large portions of

database points based on the distances from a query to

the “coarse approximations”, produced by the first several

quantizers. Another approach, Additive Quantization (AQ)

[3], is the most general as it does not impose any constraints

on the codewords from the different codebooks. Usually,

AQ provides the smallest compression errors, however, it

is much slower than other methods, especially for large

M . Composite Quantization (CQ) [21] learns codebooks

with a fixed value of scalar product between the codewords

from different codebooks. Finally, Tree Quantization (TQ)

[6] performs decomposition into subspaces while constrain-

ing the non-orthogonality relations between different code-

books to form a tree graph. Under this constraint, efficient

encoding is possible.

Overall, non-orthogonal quantizations achieve higher

approximation accuracy than (O)PQ, especially for non-

histogram data. At the same time, they are slower and re-

quire more complex learning procedures.

IVFADC. One of the first systems capable of dealing

with billion-scale datasets efficiently was IVFADC intro-

duced in [13]. This system combines the inverted index [19]

as indexing structure and Product Quantization for database

compression. IVFADC first splits the space into K cells via

standard K-means and then encodes displacements of each

point from the centroid of a cell it belongs to. The encod-

ing is performed via Product Quantization that uses global

codebooks shared by all cells.

The Inverted Multi-Index and Multi-D-ADC. The In-

verted Multi-Index (IMI) [2] is an indexing algorithm for

high-dimensional spaces and very large datasets. The IMI

generalizes the inverted index by using product codebooks

for cell centroids construction (typically, as few as two com-

ponents in the product are considered). Thus the Inverted

Multi-Index has two D
2 -dimensional product codebooks for

different halves of the vector, each with K sub-codewords,

thus effectively producing K2 cells, which would typically

be orders of magnitude bigger than the number of cells

within the IVFADC system or other systems using inverted

indices. Large number of cells provides very dense parti-

tioning of the space, which means that a small fraction of

dataset has to be traversed to achieve high recall (w.r.t. the

true nearest neighbor). For dataset compression, [2] fol-

lowed the IVFADC system and used Product Quantization

with global codebooks shared across all cells in order to en-

code the displacements of the vectors from centroids (this

system is referred to as Multi-D-ADC).

Further improvements. [9] improved the performance

of Multi-D-ADC by replacing Product Quantization with

Optimized Product Quantization for both indexing and

compression (hence the name of their system OMulti-D-

OADC). OMulti-D-OADC gives the state-of-the-art per-

formance in terms of the search accuracy on the SIFT1B

dataset with global codebooks for database compression.

Another system, called LOPQ [14], is a modification

of IVFADC which uses separate local OPQ codebooks for

database points compression in each cell. As local code-

books represent points distribution in the particular cell

more precisely, the accuracy of reranking in LOPQ is much

higher than in IVFADC. Also, [14] introduces the Multi-

LOPQ system, which uses local codebooks with the In-

verted Multi-Index structure. Currently, Multi-LOPQ sys-

tem provides the highest recall on the SIFT1B dataset.

3. The Non-Orthogonal Inverted Multi-Index

In this section we introduce a new indexing structure, the

Non-Orthogonal Inverted Multi-Index (NO-IMI). We first

describe the design of the NO-IMI and the intuition behind

it. We then provide a procedure of the NO-IMI codebooks

learning. Finally, we explain how candidate lists are ex-

tracted and are reranked using the NO-IMI.

3.1. The NO­IMI structure

Let us assume that a database P = {p1, . . . , pN} of

D-dimensional points is given. As well as the existing

indexing structures the NO-IMI partitions the dataspace

into a large number of cells and distributes database points

over these cells. The cells in the NO-IMI are constructed

based on two codebooks S = {S1, . . . , SK} and T =
{T1, . . . , TK}, each containing K codewords. The code-

words in the codebooks are D-dimensional, S, T ⊂ R
D.

The NO-IMI splits the data space into K2 cells with cen-

troids c
j
i defined by the formula:

c
j
i = Si + Tj , i, j = 1, . . . ,K (2)

Thus, the NO-IMI cells are the regions of the data space

defined by the following:

C
j
i = {x ∈ R

D|i, j = argmin
k,l

‖x− (Sk + Tl) ‖
2} (3)

This construction is similar to how cells within the Inverted

Multi-Index are constructed. We however aim to avoid the

space decomposition, underlying the Inverted Multi-Index,

which is based on product quantization and which ignores

correlations between subspaces of the deep descriptors data.

Based on this consideration, it is reasonable to replace PQ

by some non-orthogonal quantization.

Among non-orthogonal approaches, we chose Residual

Vector Quantization (RVQ) as it allows to perform efficient

short-lists extraction, as will be discussed below. With the

RVQ method in mind, the NO-IMI codewords S1, . . . , SK

2057

can be interpreted as cluster centroids in the original datas-

pace and we refer to them as first-order centroids. Simi-

larly, the codewords T1, . . . , TK can be interpreted as cen-

troids in the space of displacements of data points from the

first-order centroids. We refer to them as second-order cen-

troids. As a result, the indexing structure has K2 centroids

in the form (Si+Tj), i, j = 1, . . . ,K and the same number

of cells, each assigned with the first-order index i and the

second-order index j.

The construction (2) is also directly related to the well-

known Hierarchical K-Means (HKM) method [15]. This

method also clusters the original data space, producing

K first-order centroids. It then clusters the displacements

in each cluster separately, producing K second-order cen-

troids in each cluster. For large K, the usage of HKM is

infeasible as it would require to keep K2 D-dimensional

vectors in the main memory. Such enormous memory con-

sumption can be avoided by using K second-order cen-

troids that are shared by all clusters. Sharing the second-

order centroids makes Hierarchical K-Means equivalent to

the RVQ scheme, described in the previous paragraph.

3.2. The generalized NO­IMI

The NO-IMI assumes that the displacements distribu-

tions within first-order clusters are similar, as it uses shared

second-order centroids. However, this assumption may be

too strong, as e.g. the spatial extent and the shape of the

corresponding Voronoi cells can vary, especially when the

data distribution has dense and sparse regions. To alleviate

this assumption we augment the NO-IMI with an additional

α-matrix, which incorporates cluster-wise information. In

particular, an element α[i, j] is a factor for the j-th second-

order centroid Tj in the i-th first-order cluster. After the

incorporation of these factors, the expression for the corre-

sponding centroid becomes:

c
j
i = Si + α[i, j]Tj , i, j = 1, . . . ,K (4)

The addition of α-matrix allows to represent data distri-

bution adequately even with shared second-order centroids.

Below we refer to the version of the NO-IMI with the

α-matrix as Generalized Non-Orthogonal Inverted Multi-

Index (GNO-IMI). We demonstrate an example of centroids

produced by the original IMI, the NO-IMI, and the GNO-

IMI on a toy 2D dataset in Figure 1.

3.3. Indexing

The parameters of (G)NO-IMI, namely S, T, α, can all

be learned from data as will be discussed below. Let us now

assume that S, T, α are given and describe the process that

distributes the dataset points p1, . . . , pN assigning them to

different (G)NO-IMI cells. More formally, for each point p

we have to find the closest centroid indices:

i, j = argmin
k,l

‖p− (Sk + α[k, l]Tl) ‖
2 (5)

Exhaustive minimization of this function would require

the evaluation of K2 possible solutions, which is impracti-

cal. Instead, we use a simple heuristic to cut out most of the

suboptimal solutions. Let us rewrite the expression above:

‖p− (Sk + α[k, l]Tl) ‖
2 = ‖p− Sk‖

2 + α[k, l]2‖Tl‖
2

−2α[k, l]〈p, Tl〉+ 2α[k, l]〈Sk, Tl〉 (6)

Note, that the first term ‖p−Sk‖
2 is a distance from p to

the first-order centroid Sk. The RVQ heuristic is to inspect

only r values k1, . . . , kr corresponding to the indices of

centroids Sk1
, . . . , Skr

, which are the closest to p. With this

pruning, only rK solutions have to be evaluated. Another

speed optimization is to precompute the terms ‖p − Sk‖
2

and 〈p, Tl〉, which can be done in O(KD) operations. With

these terms precomputed, each solution can be evaluated in

O(1) operations. After all rK possibilities are evaluated, p

is assigned to the cell, corresponding to the optimal index

pair.

The complexity of point assignment is therefore a sum of

complexities of precomputation and pairs evaluation steps,

which are O(DK) and O(rK) respectively. Hence, the

overall complexity is O(DK + rK), while the complex-

ity in the Inverted Multi-Index equals O(DK). In our ex-

periments r is several times smaller than D and the actual

timings of indexing for both the IMI and the (G)NO-IMI are

rather similar.

3.4. Codebooks learning

We now focus on the task of obtaining codebooks S, T

and the α-matrix that fit a given data distribution well. We

suppose that a training dataset P = {p1, . . . , pN} is pro-

vided. The learning is performed by the minimization of

the reconstruction error for all training points:
N
∑

i=1

∥

∥pi − (Ski + α[ki, li]Tli)
∥

∥

2
→ min

Sk∈R
D,|S|=K,

Tk∈R
D,|T |=K,

α∈R
D×D

ki,li∈{1,...,K}

(7)

Overall, the optimization is performed over four groups

of variables, where S, T and α variables are continuous,

while the assignment variables {ki, li} are discrete. We

minimize the function using block-coordinate descent by

optimizing over one variable group at a time with the other

three groups fixed. Below we describe the optimization over

each variable group separately.

Optimization over assignments. At this step the op-

timization is performed over {ki, li} variables given code-

books S, T and α matrix. Thus, this problem is equivalent

to the indexing task and we discuss an efficient method for

that above in Section 3.3.

Optimization over α. We now fix the assignments

{ki, li} and the codebooks S, T and minimize over the el-

ements of the α matrix. Let us show that it is possible to

2058

minimize over each matrix element α[k, l] independently.

For that we decompose the target function as follows:

N
∑

i=1

∥

∥pi − (Ski + α[ki, li]Tli)
∥

∥

2
=

=

K
∑

k=1

K
∑

l=1

∑

i:ki=k,li=l

‖pi − Sk − α[k, l]Tl‖
2

(8)

Note, that each term
∑

i:ki=k,li=l

‖pi − Sk − α[k, l]Tl‖
2

depends on the only element α[k, l]. Hence, the minimiza-

tion of the whole function is equivalent to the independent

minimizations of each term:
∑

i:ki=k,li=l

‖pi − Sk − α[k, l]Tl‖
2
→ min

α[k,l]
(9)

This subproblem can be solved analytically and its

closed-form solution is:

α[k, l] =

∑

i:ki=k,li=l

〈pi − Sk, Tl〉

∑

i:ki=k,li=l

‖Tl‖2
(10)

Optimization over second-order codebook T . Simi-

larly, we optimize over the second-order codewords Tl by

decomposing the target function again:

N
∑

i=1

∥

∥pi − (Ski + α[ki, li]Tli)
∥

∥

2
=

K
∑

l=1

K
∑

k=1

∑

i:ki=k,li=l

‖pi − Sk − α[k, l]Tl‖
2

(11)

Then each term
K
∑

k=1

∑

i:ki=k,li=l

‖pi − Sk − α[k, l]Tl‖
2

is

minimized over Tl independently. This minimization also

can be solved analytically and the solution has the form:

Tl =

K
∑

k=1

α[k, l]
∑

i:ki=k,li=l

(pi − Sk)

K
∑

k=1

∑

i:ki=k,li=l

α[k, l]2
(12)

Optimization over first-order codebook S. This prob-

lem is also decomposable and the minimization is per-

formed completely analogously to the previous step. The

solution to this step has the form

Sk =

K
∑

l=1

∑

i:ki=k,li=l

(pi − α[k, l]Tl)

K
∑

l=1

∑

i:ki=k,li=l

1

(13)

Initialization. We initialize the iterations of the GNO-

IMI learning in the following way. The α-matrix is initial-

ized by all ones and S is initialized by centroids obtained via

K-means clustering of the dataset P . Second-order code-

book T is initialized by centroids obtained via K-means

clustering of the displacements from the database points to

the closest first-order codewords.

Comments. In practice we observed that the method re-

quires quite a few iterations to converge and we used ten

iterations in our experiments. Parameter r was set to eight.

Also note, that for some index pairs k, l there could be no

points and then both the numerator and the denominator in

the expression (10) vanish. In this case we set α[k, l] = 1.

3.5. Short­list extraction

Here we describe the procedure that gets a query q and

produces an ordered sequence of cells that correspond to

the centroids that are the closest to q. The sequence can

be of any desired length L and the points assigned to these

cells form the short-list that is returned by the GNO-IMI in

response to the query. The procedure consists of three steps:

1. First, we compute the distances ‖q − Sk‖
2

between the

query and the first-order centroids. Let us denote by

k1, . . . , kr indices of r first-order centroids that appeared

to be the closest to q.

distances[k] = ‖q − Sk‖
2
, k = 1, . . . ,K

k1, . . . , kr = distances.argsort()[1 : r]

We then discard all the cells with first-order indices

not belonging to the set {k1, . . . , kr}. The subsequent

search is performed among the remaining rK cells only.

cells = {(ki; l)}

ki ∈ {k1, . . . , kr}, l = 1, . . . ,K

The complexity of this step is O(KD +K logK) with

the two terms corresponding to distances calculation and

sorting.

2. Secondly, the procedure creates an array of the length

rK and fills it with the distances to the centroids of the

promising cells selected in step one:

for each cell = (ki; l) in cells :

cellDistances[(ki; l)] = ‖q − Ski
‖2 + α[ki, l]

2‖Tl‖
2

−2α[ki, l]〈q, Tl〉+ 2α[ki, l]〈Ski
;Tl〉

Note, that the terms 〈q, Tl〉 can be precomputed once

and reused for all ki and l. The terms 〈Ski
, Tl〉 and the

norms ‖Tl‖
2 are precomputed before querying and are

kept in lookup-tables. Thus, the complexity of this step

is O(rK).

3. Finally, we apply partial sorting of distances array with

linear average complexity1. For any input array this

partial sorting guarantees that the L smallest elements

will be placed in the first L position of the output array

(possibly unordered), where L is the desired length of

1std::nth element from the standard STL library

2059

cells sequence. Then only L cells corresponding to the

smallest distances are sorted and the sorted sequence is

yielded as a procedure result.

PartialSort(cellDistances[], L)

Output = Sort(cellDistances[1 : L])

The complexity of this step is O(rK + L logL).

The total complexity of the procedure is a sum of com-

plexities for the three steps and equals O(KD+K logK+
rK + L logL). In this sum the terms O(KD) and

O(K logK) are common for existing indexing structures

as they also perform query quantization and sort distances

to centroids. The term O(rK +L logL) is a computational

overhead in the (G)NO-IMI but we show in the next section

that it is insignificant and has no influence on the scheme

applicability.

After forming the sorted sequence of cells as described

above, the method starts to traverse the cells and collects

points from these cells into a candidate list.

3.6. Reranking

After short-list extraction the (G)NO-IMI performs

reranking of candidate points in the same manner as it was

proposed in [2, 14]. During the indexing stage we calcu-

late the displacement of each point from its cell centroid

and compress these displacements via Optimized Product

Quantization (OPQ). In the experiments, we used K sets

of local PQ codebooks, and each set was shared by the cells

with the same first-order index. We used one global rotation

matrix for all database points.

When querying, each candidate point is reconstructed

from its OPQ code and the distance between this reconstruc-

tion and the given query is evaluated. Finally, candidates are

sorted based on the calculated distances.

3.7. Connection to IVFRVQ

The proposed NO-IMI system is similar to the IVFRVQ

scheme proposed in [8]. Here we highlight the differences

between the NO-IMI and IVFRVQ:

1. IVFRVQ is based on RVQ only, while NO-IMI uses

OPQ to compress the data at the fine level. Not relying

on RVQ at all levels is important for high perfromance,

since RVQ degrades when it is applied with large num-

ber of codebooks [8].

2. The NO-IMI does not need to keep the norms of

dataset points. IVFRVQ has to keep them, which needs

extra memory and also extra operations during search.

3. IVFRVQ evaluates distances to all cell centroids and

then explores only several inverted lists corresponding

to the closest cells. The NO-IMI does not evaluate dis-

tances to all centroids and performs more efficient non-

exhaustive evaluation.

IMI NO-IMI
0.0

0.1

0.2

0.3

0.4

0.5

NMI(I1 ,I2)
SIFT1B

DEEP1B

IMI NO-IMI
0

20

40

60

80

100
Empty cells

SIFT1B

DEEP1B

Figure 3. Normalized mutual information between the indices of

the closest codewords in two codebooks (left) and the percent of

empty index cells (right) for the IMI and NO-IMI systems. The

high value of NMI in the case of DEEP1B and the IMI means

that the implicit assumption of independent subspaces in the IMI

does not hold for DEEP1B. The large percent of empty cells also

indicates that cell centroids in the IMI represent DEEP1B data dis-

tribution poorly.

4. Experiments

In this section we provide results of experiments that

compare the Non-Orthogonal Inverted Multi-Indices (NO-

IMI and GNO-IMI) with the standard Inverted Multi-Index.

The experiments were performed on two datasets:

1. SIFT1B dataset[13] that contains one billion of 128-

dimensional SIFT descriptors along with precomputed

groundtruth for 10, 000 queries. A hold-out learning set

of 100 million descriptors is also provided.

2. DEEP1B dataset. This is a new dataset that we intro-

duce to the community2. Descriptors for DEEP1B were

produced in a way similar to [7]. Specifically, we took

the outputs of the last fully-connected layer of a DNN

for a billion images on the Web. Our DNN had the

GoogLeNet[20] architecture and was trained on the Ima-

geNet dataset[1]. The outputs were then compressed by

PCA to 96 dimensions and l2-normalized. We also pre-

pared hold-out sets containing 350 millions of descrip-

tors for learning and 10, 000 for querying (with known

ground truth for nearest neighbors in the main set).

For both datasets we compare three indexing structures:

1. the inverted multi-index (IMI) with global rotation be-

fore dataspace decomposition [9]. The top-performing

systems [14, 5] use this indexing structure, so we use it

as a baseline. We used the authors’ implementation[5];

2. the Non-Orthogonal Inverted Multi-Index (NO-IMI);

3. the Generalized Non-Orthogonal Inverted Multi-Index

(GNO-IMI).

2The dataset and the project code are available on

http://sites.skoltech.ru/compvision/noimi/

2060

0 5 10 15
log2R

0.0

0.2

0.4

0.6

0.8

1.0
R
e
ca
ll@

R

GNO-IMI
NO-IMI
IMI
IVFADC

0 5 10 15
log2R

0.0

0.2

0.4

0.6

0.8

1.0

NO-IMI
IMI

DEEP1B SIFT1B

Figure 2. Recall as a function of the candidate list length. On DEEP1B (left plot) we compare four systems: IVFADC with 2
17 codewords,

the IMI with K = 2
14 and preliminary orthogonal transformation, the NO-IMI and the GNO-IMI with K = 2

14. For all recall levels the

(G)NO-IMI provides much shorter candidate lists. For SIFT1B dataset (right plot) the advantage of the NO-IMI is negligible.

Dataset IMI NO-IMI GNO-IMI

SIFT1B 35923 35207 34981

DEEP1B 0.321 0.272 0.255
Table 1. Average distances from data points to the closest centroid.

Smaller distances usually results in more precise short-lists.

For all the structures we used the same value of K = 214,

hence all the indices have the same number of cells. All

the structures and the codebooks for database compression

were optimized on the hold-out learning sets.

Representation accuracy. We first check our intuition

that the subspaces corresponding to different halves of deep

data are more correlated for deep data compared to SIFT

descriptors. As described in section 2, the IMI centroids are

constructed using codewords from the two codebooks C1

and C2, corresponding to orthogonal data subspaces. Let us

introduce two discrete random variables I1, I2 correspond-

ing to the indices of the closest codewords from C1 and C2

respectively for a certain point. We can measure the nor-

malized mutual information between I1 and I2 using all the

points from the particular dataset. High values of mutual

information would then reveal the correlation between the

halves.

Figure 3 (left) shows values of the normalized mu-

tual information (NMI) for both datasets. For DEEP1B

dataset NMI(I1, I2) is two times higher than for SIFT1B.

This verifies the intuition that the decomposition for deep

data can lead to low performance, even when decorrelating

global rotation (as in OPQ) is fitted during preprocessing.

Figure 3 also shows NMI values for the NO-IMI scheme.

In this case we measure the mutual information between the

indices of the closest codewords in codebooks S and T . For

both SIFT1B and DEEP1B the NMI is markedly smaller in

the case of the NO-IMI index, suggesting better adaptivity

of the RVQ model over PQ. We additionally calculate the

percent of empty cells for both indexing structures, with the

results shown in Figure 3(right). This further reveals that

the NO-IMI significantly reduces a number of empty index

cells compared to IMI, especially for DEEP1B data.

We further demonstrate the advantage of the (G)NO-IMI

for deep data by measuring the average distance from the

data points to the centroids of cells they belong to. This is

a reliable indicator of the indexing quality as smaller dis-

tances mean that cells represent the actual data distribution

better. Furthermore, the small distances mean that the dis-

placements from the points to the closest centroids have

small norms, hence they can be encoded more accurately,

which results in better reranking. The average distances for

two datasets and three systems are shown in Table 1.

For the deep data the NO-IMI reduces average distance

by 15% compared to the IMI scheme with the same number

of cells. This means that the NO-IMI cell centroids rep-

resent data distribution better and we show below that it

results in much more precise short-lists. The more pow-

erful Generalized NO-IMI scheme provides even greater

improvement by 21%. For SIFT1B, the usage of the NO-

IMI allows to reduce average distance by just three percent,

which means that in this metric our approach gives very

small improvement for this dataset.

Short-list quality. We now compare the retrieval per-

formance of different schemes. In most of experiments we

use the commonly used measure Recall@R, which is cal-

culated as a rate of queries for which true nearest neighbor

is present in a short-list of a length R.

We plot the values of Recall@R for different values of R

in Figure 2. For DEEP1B dataset (left), the NO-IMI and the

GNO-IMI provide a great improvement in short-list qual-

ity over the original IMI. For instance, for the recall level

0.5 the GNO-IMI provides short-lists that are eight time

more compact. For SIFT1B dataset (left), the benefit of

the NO-IMI is negligible as short-lists are improved only

by a very small margin. As the (G)NO-IMI has additional

computational overhead comparing to the IMI, such a small

improvement does not justify the usage of non-orthogonal

2061

0 10 20 30 40 50
0.18

0.20

0.22

0.24

0.26

0.28

R
@

1
,
8
 b

y
te

s

GNO-IMI
NO-IMI
IMI

0 10 20 30 40 50
0.30

0.35

0.40

0.45

0.50

0.55

R
@

5
,

8
 b

y
te

s

GNO-IMI
NO-IMI
IMI

0 10 20 30 40 50
0.35

0.40

0.45

0.50

0.55

0.60

0.65

R
@

1
0

,
8

 b
y
te

s

GNO-IMI
NO-IMI
IMI

0 10 20 30 40 50
ms

0.25

0.30

0.35

0.40

0.45

R
@

1
,

1
6

 b
y
te

s

GNO-IMI
NO-IMI
IMI

0 10 20 30 40 50
ms

0.45

0.50

0.55

0.60

0.65

0.70

0.75

R
@

5
,

1
6

 b
y
te

s

GNO-IMI
NO-IMI
IMI

0 10 20 30 40 50
ms

0.5

0.6

0.7

0.8

R
@

1
0

,
1

6
 b

y
te

s

GNO-IMI
NO-IMI
IMI

Figure 4. Comparison of the original IMI, NO-IMI and GNO-IMI in terms of recall after reranking, and runtime on the DEEP1B dataset.

For all systems we used OPQ with local codebooks to compress database points. With few exceptions, for any given time budget above 11

ms the (G)NO-IMI provides considerably higher recall compared to the IMI-based scheme.

multi-indices with SIFT data.

In this experiment we also compare with IVFADC. This

scheme was shown to be less accurate than the IMI on

SIFT1B, but it might potentially offer advantage on other

data distributions, as it does not perform any space decom-

position. For IVFADC we use a considerably larger code-

book of size K = 217, but it still produces noticeably less

accurate short-lists compared to other schemes.

Reranking and runtime. Finally, we evaluate the

(G)NO-IMI in combination with subsequent reranking of

candidate lists. Our baseline here is the state-of-the-art

Multi-LOPQ system (IMI+reranking), which provides the

state-of-the-art on the SIFT1B dataset.

We perform experiments with M = 8 and 16 rerank-

ing codebooks, which corresponds to 8 and 16 bytes per

point respectively. The parameter r in the (G)NO-IMI was

set to 32 in all experiments. For both values of M we plot

Recall@1, Recall@5 and Recall@10 for different lengths

of candidate lists as functions of the corresponding search

runtime. The results are summarized in Figure 4. We high-

light several observations based on it:

• The timings for the (G)NO-IMI start from 11 millisec-

onds as this is the cost of the computational overhead.

This time Multi-LOPQ allows to extract and to rerank a

short-list of approximately 25 thousand points. Figure 2

demonstrates that such a small list for the IMI would con-

tain a true nearest neighbor only for 70% queries, hence

such small lists are quite unreliable.

• For any given time more than eleven milliseconds the

(G)NO-IMI produces higher recall values comparing to

Multi-OPQ. The margin is up to six absolute percent that

corresponds to 13% of relative improvement.

Memory consumption. We also provide the amount of

total memory consumption for all systems. The NO-IMI re-

quires one additional gigabyte to keep the terms 〈Si, Tj〉,
i, j = 1, . . . ,K. The GNO-IMI also requires one gigabyte

to keep K2 elements of α-matrix. Overall, the amount of

additional memory is relatively small. For example, in the

setting with 16 bytes, memory consumption equals 23 giga-

bytes for Multi-LOPQ and 25 gigabytes for the GNO-IMI.

5. Conclusion

We investigated indexing structures for deep descrip-

tors. We have shown that the original Inverted Multi-Index

is suboptimal for deep data and have introduced two sys-

tems for billion-scale indexing, the Non-Orthogonal In-

verted Multi-Index and the Generalized Non-Orthogonal

Inverted Multi-Index, which provide more accurate index-

ing and more precise candidate lists. The advantages of

the (G)NO-IMI come at a price of computational overhead,

which is small for typical settings.

Acknowledgements

We thank Konstantin Lakhman for his help with data col-

lection. Victor Lempitsky is supported by the Russian Min-

istry of Science and Education grant RFMEFI57914X0071.

2062

References

[1] A Berg and J Deng and and L Fei-Fei. Large

scale visual recognition challenge (ILSVRC).

http://www.image-net.org/challenges/LSVRC/2010/,

2010. 6

[2] A. Babenko and V. Lempitsky. The inverted multi-index. In

CVPR, 2012. 1, 3, 6

[3] A. Babenko and V. S. Lempitsky. Additive quantization for

extreme vector compression. In CVPR, 2014. 2, 3

[4] A. Babenko and V. S. Lempitsky. Aggregating deep convo-

lutional features for image retrieval. In International Con-

ference on Computer Vision - ICCV, 2015. 1

[5] A. Babenko and V. S. Lempitsky. The inverted multi-index.

IEEE Trans. Pattern Anal. Mach. Intell., 37(6):1247–1260,

2015. 1, 6

[6] A. Babenko and V. S. Lempitsky. Tree quantization for large-

scale similarity search and classification. In CVPR, 2015. 2,

3

[7] A. Babenko, A. Slesarev, A. Chigorin, and V. S. Lempitsky.

Neural codes for image retrieval. In European Conference

on Computer Vision - ECCV, pages 584–599, 2014. 1, 6

[8] Y. Chen, T. Guan, and C. Wang. Approximate nearest neigh-

bor search by residual vector quantization. In Sensors, 2010.

2, 3, 6

[9] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quanti-

zation. Technical report, 2013. 1, 3, 6

[10] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quan-

tization for approximate nearest neighbor search. In CVPR,

2013. 2

[11] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale

orderless pooling of deep convolutional activation features.

In 13th European Conference on Computer Vision (ECCV),

pages 392–407, 2014. 1

[12] H. Jégou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. TPAMI, 33(1), 2011. 1, 2

[13] H. Jegou, R. Tavenard, M. Douze, and L. Amsaleg. Search-

ing in one billion vectors: Re-rank with source coding. In

ICASSP, 2011. 1, 3, 6

[14] Y. Kalantidis and Y. Avrithis. Locally optimized product

quantization for approximate nearest neighbor search. In in

Proceedings of International Conference on Computer Vi-

sion and Pattern Recognition (CVPR 2014). IEEE, 2014. 1,

3, 6

[15] D. Nistér and H. Stewénius. Scalable recognition with a vo-

cabulary tree. In CVPR, 2006. 4

[16] M. Norouzi and D. J. Fleet. Cartesian k-means. In CVPR,

2013. 2

[17] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carls-

son. CNN features off-the-shelf: An astounding baseline

for recognition. In IEEE Conference on Computer Vision

and Pattern Recognition, CVPR Workshops, pages 512–519,

2014. 1

[18] A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson. Visual

instance retrieval with deep convolutional networks. CoRR,

abs/1412.6574, 2014. 1

[19] J. Sivic and A. Zisserman. Video google: A text retrieval

approach to object matching in videos. In ICCV, 2003. 1, 3

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 6

[21] T. Zhang, C. Du, and J. Wang. Composite quantization for

approximate nearest neighbor search. In ICML, 2014. 2, 3

2063

