
Efficient Indexing of Repeated n-Grams

Samuel Huston

Center for Intelligent
Information Retrieval

University of Massachusetts
Amherst

Amherst, MA, 01002, USA

sjh@cs.umass.edu

Alistair Moffat

Department of Computer
Science and Software

Engineering
The University of Melbourne

Victoria 3010, Australia

ammoffat@unimelb.edu.au

W. Bruce Croft

Center for Intelligent
Information Retrieval

University of Massachusetts
Amherst

Amherst, MA, 01002, USA

croft@cs.umass.edu

ABSTRACT

The identification of repeated n-gram phrases in text has many
practical applications, including authorship attribution, text reuse
identification, and plagiarism detection. We consider methods for
finding the repeated n-grams in text corpora, with emphasis on
techniques that can be effectively scaled across a cluster of pro-
cessors to handle very large amounts of text. We compare our
proposed method to existing techniques using the 1.5 TB TREC
ClueWeb-B text collection, using both single-processor and multi-
processor approaches. The experiments show that our method of-
fers an important tradeoff between speed and temporary storage
space, and provides an alternative to previous approaches that scales
almost linearly in the length of the sequence, is largely independent
of n, and provides a uniform workload balance across the set of
available processors.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and soft-
ware—performance evaluation.; H.3.1 [Content Analysis and In-

dexing]: Indexing methods; H.3.3 [Information Search and Re-

trieval]: Information filtering

General Terms

Algorithms, experimentation, performance

Keywords

Repeated phrase, n-gram, hash filter, text reuse, scalability

1. INTRODUCTION
Many important tasks in information retrieval require the iden-

tification and indexing of n-word phrases or n-grams. For exam-
ple, similarity search in large collections uses n-grams as one of
the important features in computing a document’s score (see Met-
zler and Croft [2005] and Croft et al. [2009]). Another example is
the identification of reused, duplicated, or plagiarized text in docu-
ments. Techniques developed for this task rely heavily on n-gram

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
xx xx
Copyright 20xx ACM xxx-x-xxxxx-xxx-DD/YY/MM ...$10.00.

indexing to improve efficiency for reuse discovery [Manber, 1994,
Bernstein and Zobel, 2006, Seo and Croft, 2008].

The question as to how to identify the repeated n-word phrases
in a corpus of text is, at face value, simple. All that is required is
that the text be parsed, that each of the n-grams be indexed using
some kind of dictionary data structure, and then the ones that occur
more than once (or in general, more than m times) be identified and
reported.

Thwarting this simple approach is the reality of dealing with
large volumes of data. Consider, for example, a (mere) gigabyte
of text. Allowing for a modest amount of markup, it probably con-
tains around 100 million words over a vocabulary of maybe 1 mil-
lion distinct words, and hence contains 100 million 5-grams, each
of which requires (say) 15 bytes to represent, presuming that words
are represented as 3-byte integers. All of these 5-grams are poten-
tially different, so any dynamic data structure for managing them
must be capable of storing 100 million objects, each of which re-
quires a total of 18 bytes of storage to keep the n-gram itself as
well as a 3 byte location. Including the pointer overheads associ-
ated with a dynamic search structure, as much as 3 GB of random
access storage might be required. This might be just feasible on
current commodity platforms, but when n = 10 and the collection
contains a terabyte rather than a gigabyte, the problem is challeng-
ing, even on high-end machines. Nor does this simple approach
offer a parallel implementation, since partitioning the data across a
set of processing nodes and having each report on their duplicates
in a localized sense fails to identify inter-node repetitions.

More complex methods are thus required. This paper describes
a variety of techniques that have evolved, and then introduces a
new approach that has the particular benefit of being amenable
to a distributed implementation. Experiments with 1.5 TB of text
show that the proposed approach does indeed provide an important
balance between execution speed, execution-time random-access
memory, and temporary disk space requirements.

2. FINDING REPEATED N-GRAMS
We commence by examining some well-known “textbook” ap-

proaches to the problem of finding repeated n-grams. It is assumed
throughout that the source document has been parsed into words,
and that those words have been converted (via a corresponding vo-
cabulary) into a stream of integer identifiers. We thus assume, as an
abstraction, that the sequence S that is to be processed consists of
N +n−1 integer word identifiers, each in the range 1 to |V |. That
is, sequence S is a representation of text that contains N n-grams.

2.1 The simple algorithm
The in-memory dictionary-based algorithm sketched above is

Algorithm MEMORY-BASED ONE-PASS

1: for i← 1 to N do

2: s← S[i · · · (i + n− 1)]
3: D[s]← D[s] ∪ {i}
4: end for

5: for s ∈ domain(D) do

6: if |D[s]| ≥ m then

7: output (s, D[s])
8: end if

9: end for

Algorithm DISK-BASED ONE-PASS

1: for i← 1 to N do

2: s← S[i · · · (i + n− 1)]
3: append (s, i) to the output file F
4: end for

5: sort F , coalescing paired entries (s, ℓ1) and (s, ℓ2) to
(s, ℓ1 ∪ ℓ2) as soon as they are identified

6: for (s, ℓ) ∈ F do

7: if |ℓ| ≥ m then

8: output (s, ℓ)
9: end if

10: end for

codified in MEMORY-BASED ONE-PASS. In this procedure, D is
a dictionary data structure that is indexed by n-grams, with D[s]
storing the set of offsets in S at which the n-gram s appears. In
practice, D is a hash table or a search tree of some sort, each ele-
ment of which is a linked list or variably-sized array. In total, D
will require impossibly large amounts of main memory, typically
something like n times as much as is required by the sequence be-
ing processed. So when N (where N is the number of n-grams) is
a million, algorithm MEMORY-BASED ONE-PASS is tractable; but
when N is a billion, it probably is not.

2.2 A file-based approach
The first (and widely-known) improvement to the simple mecha-

nism is to use a post-processing sorting phase to bring together the
occurrences of each n-gram, rather than require a dynamic data
structure. In this process, described as algorithm DISK-BASED

ONE-PASS, every possible n-gram in the sequence S is added to
an output set F , stored on disk as a sequential file. That file is then
sorted into n-gram order, and like n-grams collected together to
form the index. Sorting is a well understood problem, even when
only sequential-access storage is available, and in this approach the
per-item cost of sorting approximately corresponds to the cost of
searching D in Algorithm MEMORY-BASED ONE-PASS, depend-
ing on which exactly data structure is used to represent D.

The drawback of this DISK-BASED ONE-PASS approach is that
F contains one record for each of the N n-grams present in the se-
quence S, meaning that the peak disk space required is as much as
n + 1 times as big as S, assuming that an address component takes
(at least) the space of one integer. Moreover, this amount of space
is required regardless of the degree (or otherwise) of repetition. But
no random-access data structures are required – the space required
by the dictionary D of the MEMORY-BASED ONE-PASS algorithm
is moved to disk, and processed sequentially via the sorting algo-
rithm, rather than as an in-memory search structure.

If merge-based sorting is used, and a cascading coalescing step
undertaken every time an in-memory output buffer of moderate

Algorithm HASH-BASED TWO-PASS

1: for i← 1 to N do

2: s← S[i · · · (i + n− 1)]
3: h← hashb1

(s)
4: append (h, 1) to the output file F1

5: end for

6: sort F1, coalescing paired entries (h, f1) and (h, f2) to
(h, f1 + f2) as soon as they are identified

7: for (h, f) ∈ F1 do

8: if f ≥ m then

9: append the b2 low-order bits of h to the output file F2

10: end if

11: end for

12: sort F2, discarding any duplicates
13: H ← read(F2)
14: for i← 1 to N do

15: s← S[i · · · (i + n− 1)]
16: h← hashb2

(s)
17: if h ∈ H then

18: append (s, i) to the output file F3

19: end if

20: end for

21: apply steps 5 to 10 of DISK-BASED ONE-PASS to the file F3

size is filled with grams, the peak disk space requirement might be
reduced, because frequently-occurring grams will be stored only
once. But even so, the space cost must be proportional to N , since
every gram address is stored in the sorted output file prior to the
final post-processing step that identifies the ones that occur more
than m times.

2.3 Hashing, and two passes
The next method, HASH-BASED TWO-PASS, builds on two in-

dependent observations – first, that hash-derived surrogates can be
stored instead of the n-grams, saving space; and second, that the
actual locations of the n-grams need only be collected once the
values of the repeated n-grams have been identified. The key idea
is that the probabilistic hash filter H certainly contains the hash-
surrogate of every n-gram that does occur more than m times in S,
and might contain the hash-surrogate of some n-grams that do not.

The first for loop at steps 1 to 5 processes the sequence and gen-
erates the n-grams. A relatively wide b1-bit hash value for each
is computed via the function hashb(s), and recorded to an output
file F1, together with an initial frequency count of one. That is,
each n-gram s is condensed into a non-unique b1-bit string on a
many-to-one basis, and that hash string is used as a fixed-width
hash-surrogate. When b1 is large – for example, 40-bits or more –
the number of collisions will be small. File F1 is then processed to
generate a set of hash values that correspond to n-grams that might
occur more than m times in S (steps 6 to 11), and that set of hash
values used (step 17) to (perhaps greatly) reduce the number of full
n-grams that get processed by step 21. In generating the file F2,
only a b2-bit suffix of the hash bits, where b2 < b1, are used, in
a delicate balance between collision probability and space required
by the table H .

In terms of disk space used, file F1 still contains as many as
N records, even if the sorting and coalescing process indicated at
step 6 is carried out in a cascading block-interleaved manner. But
now each record is a b1-bit integer plus a frequency count (the latter
requiring only ⌈log2(m+1)⌉ bits), and for b1 = 40 (say, the choice
of b is discussed below) and m ≤ 255 (say), the requirement for

file F1 is at most 6N bytes. File F2 is never larger than F1, and
so does not affect the peak disk space requirement; as was already
noted, the reason for taking only b2 < b1 bits of hash into the file
F2 is to control the amount of memory required for the table H .

The third disk file, F3, is potentially very large – for pathological
sequences, as large as the approximately (n + 1)N words required
by algorithm DISK-BASED ONE-PASS. But note that it only con-
tains information about n-grams that either (a) do indeed appear in
S more than m times; or (b) by chance, hash to a value that corre-
sponds to some other n-gram(s) that collectively appear more than
m times in S. That is, provided that the number of false positives
is controlled, the size of F3 is primarily determined by the total
number of occurrences in S of n-grams that appear more than m
times, and (disregarding any compression that might be applied to
the final index) is of the same magnitude as the n-gram index that
is being generated.

In an implementation, the set H can be stored as a bitvector of
2b2 bits for O(1)-time random access (which is, of course, imprac-
tical when b2 is larger than around 32 or so); or can be stored as
a sorted array of b2-bit integers with a logarithmic access cost; or
can be stored using a compressed queryable structure that requires
less space than either of these two alternatives, while still providing
logarithmic-time lookup. Sanders and Transier [2007] describe one
such hybrid mechanism.

For small files it may be possible to take b1 = b2. For larger
files, having b1 > b2 ensures that the first-pass filter can be highly
discriminating (giving rise to only a small number of collisions);
while the smaller value b2 is chosen so that the second-pass filter
H can be accommodated in main memory. This “two b” strategy
still gives rise to collisions between repeats and non-repeats during
the second pass, but at least prevents the great majority of the first-
pass false positives that would arise from non-repeats colliding with
non-repeats. (Note that there are many more non-repeats than there
are repeats.)

To gauge the extent to which these various costs become bottle-
necks, consider a scenario in which a sequence of N = 109 words
is being processed (1 billion, corresponding to around 10–20 GB
of HTML data), and that n = 9. Further, suppose that on average
one n-gram in five in the file occurs more than m times, and that
the average number of repetitions for n-grams that do reoccur is 4.
If these estimates are appropriate, then there are 5×107 distinct re-
peated n-grams. Under these assumptions, and with b1 = b2 = 40,
file F1 might be as large as 6 GB; file F2 contains a little more
than 5× 107 entries (the extras arising because of the probabilistic
nature of the filter H) and occupies around 250 MB; and file F3

contains a little over 2× 108 entries, each occupying 10 words (40
bytes), for a total of 8 GB. As well, during the second pass, file F2

must be present in memory as an array-based lookup structure H ,
meaning that of the order of 250 MB of main memory is required
through steps 14 to 20 of HASH-BASED TWO-PASS. In terms of
disk traffic, several gigabyte-sized input files must be sequentially
processed, including being sorted.

The final n-gram index must then include 5 × 107 9-gram de-
scriptions, plus, for each of them, an average of four addresses
in the sequence, for a total uncompressed requirement of approxi-
mately 2.6 GB. Non-trivial savings arise once the list of n-grams
is compressed, since they can be stored as incremental differences
relative to each other [Witten et al., 1999].

The scenario portrayed in the two previous paragraphs is clearly
within the limits of what might be achieved with a single “standard”
computer; and the data listed in Table 1(a), derived from Newswire
data, confirms the appropriateness of the estimates. For less well
curated data, the situation is not so tolerable, and parts (b) and (c)

n
N = 250 × 10

6 N = 500 × 10
6

single multi repeat single multi repeat

1 0.1 0.2 99.7 0.1 0.1 99.7
2 5.5 3.7 90.7 4.6 3.1 92.3
3 27.3 9.2 63.4 24.5 8.7 66.8
4 52.9 10.0 37.1 50.6 10.2 39.2
5 68.4 8.4 23.2 67.8 8.7 23.6
6 75.8 7.0 17.2 76.2 7.3 16.6
7 79.3 6.3 14.4 80.2 6.4 13.4
8 81.4 5.8 12.8 82.3 5.9 11.7
9 82.8 5.5 11.7 83.7 5.6 10.7

10 83.9 5.2 10.9 84.8 5.4 9.8

20 89.2 3.7 7.1 89.5 4.0 6.4

30 91.4 3.0 5.5 91.4 3.4 5.2

(a) TREC Newswire data (Disks 1-5 of TREC)

n
N = 250 × 10

6 N = 1,000× 10
6

single multi repeat single multi repeat

1 0.3 0.3 99.4 0.2 0.2 99.6
2 6.5 4.3 89.2 4.0 3.0 92.9
3 26.3 9.6 64.0 19.0 8.6 72.4
4 46.7 10.7 42.6 37.4 11.3 51.3
5 58.8 9.8 31.4 49.9 11.4 38.7
6 65.2 8.9 25.9 56.9 10.8 32.3
7 68.7 8.2 23.1 60.9 10.3 28.8
8 71.0 7.8 21.2 63.4 10.0 26.7
9 72.7 7.4 19.9 65.2 9.7 25.1

10 74.1 7.1 18.8 66.7 9.4 23.9

20 81.1 5.5 13.4 74.4 7.9 17.7

30 84.4 4.7 10.9 78.1 7.1 14.9

(b) TREC GOV2 data

n
N = 250 × 10

6 N = 1,000× 10
6

single multi repeat single multi repeat

1 0.5 0.4 99.0 0.4 0.3 99.3
2 8.3 4.9 86.8 6.1 3.8 90.1
3 26.2 9.5 64.3 21.9 8.5 69.6
4 40.9 10.4 48.7 37.1 10.2 52.7
5 48.4 9.9 41.6 46.1 10.0 43.9
6 51.9 9.5 38.6 50.4 9.6 40.0
7 53.7 9.2 37.1 52.7 9.3 38.1
8 54.9 9.1 36.0 54.1 9.1 36.8
9 55.9 8.9 35.2 55.2 8.9 35.9

10 56.7 8.8 34.5 56.1 8.8 35.1

20 61.8 8.0 30.2 62.0 8.0 30.0

30 65.0 7.6 27.4 65.9 7.4 26.7

(c) TREC ClueWeb-B data

Table 1: Percentages of n-grams in three categories: “single”, dis-
tinct n-grams appearing exactly once; “multi”, distinct n-grams
appearing more than once; and “repeat”, the total of the second
and subsequent appearance counts of the n-grams that appear more
than once. In total, each row in each section of the table adds up to
100%, since every one of the N n-grams in each file is assigned to
exactly one of the three categories.

of Table 1 show what happens when the dataset contains repeated
documents. Significant repetitions of long sequences result, and in
excess of one third of the n-grams in the sequence appear more
than once.

If the sequence is enlarged by a factor of 10 – to process 100–
200 GB, of source text, say – the memory space required pushes
towards the limits of plausibility. If the factor is instead 100, and
1 TB of HTML data is to be processed, the memory requirement
for array H – now 25 GB – makes HASH-BASED TWO-PASS in-

Algorithm SPEX MULTI-PASS

1: compute H1, a list of the 1-grams in the sequence S, together
with their occurrence frequencies

2: allocate an empty hash filter H2

3: for k← 2 to n do

4: for i← 1 to N do

5: h1 ← hashb(S[i · · · (i + k − 2)])
6: h2 ← hashb(S[(i + 1) · · · (i + k − 1)])
7: if Hk−1[h1] ≥ m and Hk−1[h2] ≥ m then

8: s← S[i · · · (i + k − 1)]
9: h← hashb(s);

10: if Hk[h] < m then

11: Hk[h]← Hk[h] + 1
12: end if

13: end if

14: end for

15: free Hk−1, and reallocate a new hash filter Hk+1

16: end for

17: apply steps 13 to 21 of HASH-BASED TWO-PASS using the
filter Hn

tractable in terms of memory space required.

2.4 Hash-filter size
The memory required by HASH-BASED TWO-PASS is deter-

mined by the tension between b2, the number of bits in each even-
tual hash value, and the number of such values that must be stored,
which by definition must be less than 2b2 . But choosing a value
of b2 that is too small renders the filter ineffective. In the limit,
if (for example) b2 < log2 N , then it is likely that the great ma-
jority of the 2b2 possible b2-bit values will be generated as the N
n-grams are processed. The behavior of HASH-BASED TWO-PASS

will then degenerate to that of DISK-BASED ONE-PASS, but with a
futile first pass over the sequence S that serves no purpose. In this
case, file F3 is likely to approach (n + 1)N words, and represent a
significant resource expectation.

At the other extreme, when b2 is large, the file F3 that is gener-
ated by HASH-BASED TWO-PASS will be only fractionally bigger
than the n-gram index that is being constructed, because the false
positive rate during the filtering step will be low.

Between these two extremes, when b2 ≈ log2 N + k for some
relatively small value of k like 3 or 5, the hash filter reduces the
number of false positives to around N/8 or N/32, and compared to
the N/5 true positives (working from the data in Table 1), meaning
that the temporary file F3 is less than twice the size of the final
n-gram index, once the like entries have been coalesced.

When b2 is chosen in this way, representing H as a bit-map of
2b2/8 bytes is also reasonably efficient – it implies that H occupies
somewhere between N and 4N bytes, confirming the expectation
established in the previous section that for sequences of more than
around a billion symbols, the HASH-BASED TWO-PASS approach
should not be used in single-processor environments. That is, once
terabyte-scale problems are reached, parallel implementations must
be employed. But first, before considering the extent to which these
disk-based and hash-based algorithms can be parallelized, we con-
sider one further approach to determining repeated n-grams.

2.5 SPEX
The SPEX MULTI-PASS approach to finding repeated n-grams

was developed by Bernstein and Zobel [2006]. It makes n passes
through the sequence S to construct a set of n probabilistic filters,

building on the key observation that any n-gram consists of two
(n − 1)-grams; and that if either of those two (n − 1)-grams oc-
curs fewer than m times, then the n-gram in question must also
occur fewer than n times. Hence, starting with a plain vocabulary
of 1-grams, successive passes over the source sequence generate
increasingly longer sets of n-grams. Two generations of the hash
filters are required to be active at any given time.

Bernstein and Zobel argue that the multiple passes made by SPEX
MULTI-PASS are justified because the memory space required for
the filters is reduced compared to any possible “all in one” approach
that seeks to directly generate a hash-filter for n-grams. In fact,
compared to using a wide b1-based hash in the first pass of Algo-
rithm HASH-BASED TWO-PASS, the additional passes serve little
purpose except to save the disk space used by the file F1 (required
in algorithm HASH-BASED TWO-PASS), and come at a consid-
erable cost in terms of execution time. In particular, the SPEX
MULTI-PASS approach does not result in any saving in terms of
memory space, because during the final resolution pass at step 15
when the hash filter Hn is being used, exactly the same amount of
memory is required as by algorithm HASH-BASED TWO-PASS for
any given level of false positive performance. Nor is the removal
of file F1 a great saving, since file F1 is smaller than the final file
F3, which is still required if the output of the SPEX MULTI-PASS

algorithm is to be deterministic rather than probabilistic.
In their experiments, Bernstein and Zobel process a file of N =

226 = 64×106 symbols derived from 476 MB of newspaper stories
using filters Hk−1 and Hk each of 64 MB of memory. This require-
ment matches the estimates made in Section 2.4, falling (when the
two filters are combined) in the middle of the N to 4N bytes range
estimated as being a reasonable memory requirement for algorithm
HASH-BASED TWO-PASS. Bernstein and Zobel also report that for
a collection of 5 GB (presumably approximately 500 million sym-
bols) of Newswire data that their SPEX MULTI-PASS implementa-
tion required a little over four hours on a Pentium III processor with
768 MB of memory. The repeated 8-gram index that was generated
occupied a total of 2.5 GB, including the 8-gram vocabulary.

Figure 1 helps explain why the multiple passes of final SPEX
MULTI-PASS are no more effective than a single pass that gener-
ates the n-grams directly. The top graph shows what happens when
randomly generated text is processed into n-grams for varying val-
ues of n, plotting gram frequency as a function of gram rank when
sorted by decreasing frequency. The cascading pattern of lines
demonstrates that as n gets larger, the frequency of commonly-
occurring n-grams gets lower, the fraction of the n-grams that re-
peat gets smaller, and the tail of the distribution gets longer. The
bottom graph shows what happens when the same analysis is un-
dertaken on an equivalent volume of English text. The difference is
marked – on the English text, the distributions of 6-, 7-, and 8-gram
frequencies are almost identical. That is, with high probability, any
particular repeated (k − 1)-gram is extended to form a repeated
k-gram. The same effect is demonstrated in Table 1.

The SPEX MULTI-PASS algorithm builds successive hash-filters
for k = 1, k = 2, and so on, through until k = n − 1, in the final
pass the n− 1 filter is applied to the text and the passing n-grams
are indexed. In total n passes through the data are made. The num-
ber of passes can be reduced to log n by pausing at fewer values of
k, and checking for more subsequences at step 7. For example, if
the values of k are drawn from {1, 2, 3, 5, 8, 13, . . .}, then a total
of four 5-grams are used in a quest to eliminate each 8-gram as H8

is constructed from H5. We call this approach SPEX LOG-PASS,
and have tested it as an alternative to the SPEX MULTI-PASS ap-
proach. It relies on the same assumptions as SPEX MULTI-PASS,
namely that the number of repeated n-grams for any given value of

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
e
rm

 F
re

q
u
e
n
c
y

Term Rank in Frequency Table

1-grams
2-grams
3-grams
4-grams
5-grams
6-grams
7-grams

(a) Random data, N = 109

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
e
rm

 F
re

q
u
e
n
c
y

Term Rank in Frequency Table

1-grams
2-grams
3-grams
4-grams
5-grams
6-grams
7-grams

(b) English text, N = 109

Figure 1: Frequency of n-grams as a function of n-gram rank, for
different values of n, for: (a) randomly generated Zipfian data; and
(b) English text from the TREC GOV2 collection. In both cases the
source sequence contains approximately N = 109 symbols.

n is a diminishing fraction of the number of distinct n-grams. As
Table 1 and Figure 1 demonstrate, this assumption is not valid for
typical text.

3. SCALABLE IMPLEMENTATIONS
Scalability is a desirable property for any algorithm to possess.

Informally, it represents the extent to which additional resources
are required as problem instances get larger. When assessing scal-
ability, three resources are of interest: the time taken to execute
the algorithm; the peak amount of memory space required to exe-
cute the algorithm; and the peak amount of disk space required for
temporary files while the algorithm is executing. It is assumed that
there is sufficient disk space available for the inputs and outputs of
the algorithm to be stored.

Two scalability scenarios need to be considered. The first is
when a single machine, with a fixed amount of main memory, is
available. If the algorithm neither requires more and more memory
as the problem instance increases, nor requires excessive execu-
tion time, then it is clearly scalable. But it is also usual to allow

increased memory usage too, even though memory is a fixed re-
source, and even though a program that cannot execute in the avail-
able memory cannot execute at all. That is, in single-processor en-
vironments, scalability is determined by an evaluation of the asymp-
totic growth in execution time of the algorithm – heapsort is a scal-
able algorithm even though it cannot be used on data sets that are
too large for main memory. As a general demarcation, algorithms
that require quadratic execution times would not be defended as
being scalable, whereas execution times in O(N log N), where N
is a measure of the problem size, would be. Roughly speaking, if
an algorithm is scalable in this first sense, then if the problem size
grows by a factor of p, the time taken to execute the algorithm will
grow by not much more than p.

The second situation is the more complex one. In a parallel com-
puting environment, scalability has a slightly different meaning.
Now what is required is that, as the problem size is increased and
the number of processors is increased by a matching proportion, a
distributed implementation of the algorithm executes in time that
remains fixed, or grows only slowly. In addition, while there might
be a memory-imposed limit on how much data can be loaded on to
any single processor, there must not be any overall memory limit
imposed. Communication costs must also be shown to be bounded
as a function of the expected running time, before an algorithm can
be argued to be scalable. More precisely, if a problem of size N
can be executed on a single processor in time t, then a problem
of size pN when distributed over p machines, should be solvable
in time not significantly greater than t. Moffat and Zobel [2004]
discuss issues to do with performance evaluation in distributed en-
vironments.

3.1 Parallel implementations
Consider the behavior of the DISK-BASED ONE-PASS, SPEX

MULTI-PASS, and HASH-BASED TWO-PASS methods if a clus-
ter of computers is available, and the computational load is to be
shared across them so as to reduce the elapsed execution time.

Algorithm DISK-BASED ONE-PASS translates naturally to a dis-
tributed processing model. If the input sequence S is split into
p equal length parts (with some slight overlap at the fringes so
that none of the N n-grams are lost) steps 1–4 can be performed
across p processors to make p intermediate files. Those files are
then sorted on their respective host machines, before being parti-
tioned into a total of p2 components that are written to a shared
file system so that they can be accessed by all of the machines, and
then combined in a set of p independent p-way merge operations,
one per machine. This approach to sorting is well understood for
parallel computation (see, for example, Tridgell and Brent [1993])
and accounts for steps 5 to 10. Finally, the p separate sorted lists
of repeated n-grams are combined into a single file via a sequence
of concatenations. Throughout these processing phases all p ma-
chines are equally busy, provided that the p2 subfiles are all of ap-
proximately the same size; furthermore, there is no additional work
introduced by the partitioning. That is, algorithm DISK-BASED

ONE-PASS is scalable in both the first single-processor sense, and
also in the second distributed sense. In a parallel implementa-
tion it continues to have the drawback of requiring approximately
(n + 1)N words of temporary disk space, spread across the p pro-
cessors.

On the other hand, Algorithms SPEX MULTI-PASS and SPEX
LOG-PASS do not readily parallelize. The problem is the amount
of memory required by the hash filters Hk−1 and Hk, shown in use
at step 7 and step 10 of Algorithm SPEX MULTI-PASS. These two
arrays must be sized in proportion to the total number of distinct n-
grams that are anticipated to occur in the sequence, and as is shown

Algorithm SEQUENCE-BLOCKED TWO-PASS

1: apply steps 1 to 6 of DISK-BASED ONE-PASS to generate file
F2

2: for i← 1 to N do

3: s← S[i · · · (i + n− 1)]
4: h← hashb(s)
5: append (h, s, i) to the in-memory buffer B
6: if B has reached the memory limit then

7: sort B
8: for (h, s, i) ∈ B where h ∈ F2 do

9: append (s, i) to the output file F3

10: end for

11: B ← {}
12: end if

13: end for

14: apply steps 5 to 10 of DISK-BASED ONE-PASS to the file F3

in Table 1, even for curated text such as the Newswire collection,
the number of repeated n-grams is a non-decreasing fraction of the
sequence length. Worse, the hash-filters are required in full at every
processing node, and, by their very randomized nature, cannot be
partitioned into segments that correspond to the partitioning of the
sequence. In terms of single-processor scalability, the two SPEX
MULTI-PASS-based methods can be said to be scalable through un-
til the memory limit is reached, but even so, note that the execution
time grows as a linear function of both N and n.

Bernstein and Zobel [2006] comment in their paper that “early
experiments on the 426 GB GOV2 collection have also indicated
that DECO [and hence SPEX] is able to scale to collections of this
size on a standard production server”, but in a subsequent docu-
ment note that “indexing of the 426 GB GOV2 collection has thus
far proved impossible . . . due to . . . the extremely high level of
duplication within GOV2” [Bernstein, 2006, p. 107].

3.2 Sequential processing of the filter
We now turn to the question of whether a scalable parallel im-

plementation of Algorithm HASH-BASED TWO-PASS is possible.
It also uses a hash filter that (step 16) is presumed to be searchable,
and thus available in random-access memory at every processing
node. We have explored two different ways of avoiding that re-
quirement while still retaining the underlying nature of the process.

The first is shown as Algorithm SEQUENCE-BLOCKED TWO-
PASS. In this approach, subsegments of S are extracted, joined
with their hash key, and added to a buffer B whose size is deter-
mined by the amount of available main memory. Once the buffer
is full, it is sorted by hash key, and then that sorted buffer merge-
intersected with the sorted on-disk file F2, which contains all of the
hash keys of interest. The ones that appear in both B and F2 are
identified, and condensed to form the n-gram index in the second
pass. In a parallel implementation, each of the p processors is as-
sumed to have local memory, and is able to work with a local buffer,
it’s own full copy of the file F2, and its own slightly overlapping
subsequence of S. Once the n-grams of interest have been identi-
fied, they are sorted back into n-gram order and the index built in
the usual manner, at step 14.

The SEQUENCE-BLOCKED TWO-PASS approach avoids the need
for an unknown amount of memory for H , and replaces that need
by a buffer B of pre-determined size. However, there is a cost –
the smaller the size of B, the more often the file F2 needs to be
merge-intersected against it. So halving the size of B relative to
N doubles the overall cost of executing steps 3 to 12. Or, put an-

Algorithm LOCATION-BASED TWO-PASS

1: for i← 1 to N do

2: s← S[i · · · (i + n− 1)]
3: h← hashb(s)
4: append (h, i) to the output file F1

5: end for

6: sort F1, coalescing paired entries (h, ℓ1) and (h, ℓ2) to
(h, ℓ1 ∪ ℓ2) as soon as they are identified

7: for (h, ℓ) ∈ F1 do

8: if |ℓ| ≥ m then

9: append the whole of ℓ to the output file F2

10: end if

11: end for

12: sort F2

13: for i ∈ F2 do

14: s← S[i · · · (i + n− 1)]
15: append (s, i) to the output file F3

16: end for

17: apply steps 5 to 10 of DISK-BASED ONE-PASS to the file F3

other way, for any given fixed B, and assuming that the number of
n-grams is a fixed fraction of N (as is shown in Table 1), then the
running time of the merge-intersect phase grows as N2.

3.3 Sorting by location
The second alternative is to store more information into the in-

termediate file F2. The repeated merge-intersect can be eliminated
if F2 is stored in sequence address order rather than hash-value or-
der. To get F2 into sequence order requires that disk locations be
included in it, in addition to the hash values that are the sort key
used at first.

Algorithm LOCATION-BASED TWO-PASS describes the resul-
tant process. Like Algorithm DISK-BASED ONE-PASS, there is
very little memory used at each processing node. File F1 is a list
of hash and location pairs, with the hash values taking up more
space than the n-gram frequencies that are maintained in Algorithm
HASH-BASED TWO-PASS, but less space than the n-grams them-
selves, as stored in Algorithm DISK-BASED ONE-PASS. After the
second sorting phase at step 12, file F2 is a sorted list of “locations
of interest” in S. So if there are very few repeated n-grams, file F2

will be relatively short, and the second “pass” at steps 13 to 16 will
only process a minority of the n-grams in S, rather than all of them.
That is, LOCATION-BASED TWO-PASS can be expected to have an
advantage over HASH-BASED TWO-PASS in terms of execution
speed, with the advantage greater when the repeated n-grams are
sparser.

To parallelize this method across p processors, the same ap-
proach is taken as when parallelizing DISK-BASED ONE-PASS.
The source sequence is partitioned into p slightly overlapping sub-
sequences, and each of the processors generates an F1 file for its
subsequence. Those p files are then globally sorted, by creating and
exchanging p2 smaller segments, and carrying out p independent p-
way merges. Following that first sort, each processor then carries
out steps 7 to 11 on the sorted F1 segment that it holds, before again
slicing it into p subsegments and swapping across the p processors,
in preparation for the second sort at step 12. Each processor then
checks (steps 13 to 16) a subset of the locations of interest against
the same subsequence of S that it originally worked with in the first
pass. Finally, at step 17, the n-gram index is built from the file F3

via a third sorting stage.

Name Size Documents Words

TREC Newswire 5.20 GB 1.6× 106 0.75× 109

TREC Gov2 426 GB 25 × 106 22.5× 109

TREC ClueWeb-B 1.46 TB 50 × 106 40.7× 109

Table 2: The three datasets used in the experiments.

4. EXPERIMENTAL EVALUATION
We have undertaken an exhaustive evaluation of these various

techniques. This section documents the results of that evaluation.
The data sets used and experimental environment are discussed
first. The second subsection then describes a range of experiments
on a single processor in which first N is varied with n fixed; and
then N is fixed and n is varied. Section 4.3 then repeats those ex-
periments, but using a cluster of processing nodes, and shows the
extent to which the methods can genuinely be regarded as being
scalable in the parallelized sense. Section 4.4 reports the peak disk
space required during processing; and then Section 4.5 summarizes
the performance of the LOCATION-BASED TWO-PASS method on
the full 1.5 TB ClueWeb collection.

4.1 Dataset and test environment
We use the ClueWeb09-TREC-B collection to test the time and

space efficiency of each of these indexing techniques. This collec-
tion contains fifty million English web documents. Compressed us-
ing gzip, it requires around 226 GB; uncompressed, nearly 1.5 TB.
Table 2 lists the characteristics of this and two other smaller data
collections, including the length N of the sequence of words con-
tained in the collection when the document boundaries are ignored.

To provide a straightforward basis for the experimental evalua-
tion, the data was pre-processed to form a sequence of word tokens,
stored as 32-bit integers. All WARC header data and document seg-
mentation information were discarded, as was embedded markup
and other non-text content such as executable scripts; and then the
resultant data was treated as a continuous stream of words. In a
practical system, n-grams would not be permitted to span docu-
ment boundaries, but the difference is small, and our experiments
are realistic. Where smaller test sequences were required, prefixes
of this long whole-collection sequence were used. We note that
there may be some bias resulting from this method of collection
sampling, however, this bias is constant within each experiment, so
the comparison of the various techniques remains valid. In all of
the experiments reported below m = 2 was used, and the output
was thus a list of all of the n-integer patterns that appeared twice or
more in the input sequence, together with their locations as ordinal
offsets from the start of the sequence.

The pre-processing stage significantly reduced the amount of
data to be stored during the actual experiments, by a ratio of around
10:1. That is, each 1 GB ClueWeb file produced around 100 MB
of numeric data, containing approximately 25 million integers rep-
resenting parsed words. Pre-processing also reduces the I/O costs
and parsing costs associated with handling text (rather than binary)
input data. The complete conversion took approximately one day
using a single CPU and over 20 GB of RAM to store the vocabulary
of the collection, implemented as a hash table.

The experimental hardware consisted of a cluster of 32 dual-core
64-bit Intel processors with a 3.2 GHz clock speed, and 4 GB of
RAM each. The experiments were all configured so that only one
core and only 2 GB of memory were used on each processor, with
the other core on each machine forced to be idle. Inter-process
communication was via a shared network attached file system, with
all processors able to write files to the shared disk, and to read the

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 200 400 600 800 1000 1200 1400

T
im

e
 (

S
e
c
o
n
d
s
)

Corpus Size (Millions of Symbols)

SPEX - MP
Log SPEX - LP

Sequence Blocked - TP
Hash Based - TP

Location Based - TP
Disk Based - OP

Figure 2: Execution time as a function of N , when comput-
ing repeated 8-grams using a single processor. The SEQUENCE-
BLOCKED TWO-PASS method requires time that grows super-
linearly; over this range of N the other methods are all essentially
linear in the volume of data being processed. All data points in this
graph represent an average of 10 timed runs.

files written by other processors.
Two values of b were used, dependent on whether the hash-filter

was required to be memory resident or not. In the HASH-BASED

TWO-PASS, SPEX MULTI-PASS, and SPEX LOG-PASS methods,
b2 = 32 was used for the size of the in-memory hash table, and it
was stored as a direct-access. With this value the hash-filter con-
tains four billion entries, and at two bits per entry, requires 1 GB
of main memory, the largest amount that could be usefully man-
aged on the experimental hardware (and note that SPEX MULTI-
PASS and SPEX LOG-PASS require two such filters to be concur-
rently available). A filter of this size provides useful discrimina-
tion for sequences of up to approximately N = 109 in length for
HASH-BASED TWO-PASS, and four to five times larger for SPEX
MULTI-PASS and SPEX LOG-PASS, the difference arising because
of the iterative and more selective nature of the insertion policy in
the two SPEX MULTI-PASS variants. For the hash-filter meth-
ods where the filter is stored only on disk – SEQUENCE-BLOCKED

TWO-PASS and LOCATION-BASED TWO-PASS – a hash function
of b1 = 56 bits was used in all experiments, and provided a high
degree of discrimination and a low false match rate.

4.2 Processing on a single machine
Figure 2 shows evaluation time as a function of N , for a sin-

gle fixed value of n = 8, and single-CPU execution. Five of the
methods have execution times that grow linearly as a function of
N , with the DISK-BASED ONE-PASS the fastest of the six meth-
ods tested. The SEQUENCE-BLOCKED TWO-PASS algorithm has
performance that grows super-linearly, a consequence of the fixed
memory allocation, and the increasing number of blocks B that
must be processed against the hash-filter stored in file F2. The two
SPEX MULTI-PASS approaches are not competitive, and while
they can physically process data files of more than 109 symbols, are
hindered by the time taken to perform their multiple passes. False
matches do not affect the execution time in any significant way, but
do result in large temporary disk files F3 being created. From that
point of view, for large N , it becomes preferable to abandon the
SPEX MULTI-PASS approach entirely, and simply use the DISK-

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 3 4 5 6 7 8 9 10 11

T
im

e
 (

S
e
c
o
n
d
s
)

n

SPEX - MP
Log SPEX - LP

Sequence Blocked - TP
Hash Based - TP

Location Based - TP
Disk Based - OP

Figure 3: Execution time as a function of n, processing a total of
N = 125 × 106 symbols representing English words. Each pass
that is made adds considerably to the time taken to identify the
repeated n-grams. All data points in this graph represent an average
of 10 timed runs.

BASED ONE-PASS method – it uses the same disk space, and is n
times faster.

Figure 3 then fixes N , and varies n, again working on a sin-
gle CPU. The effect of the multiple passes undertaken by the two
SPEX MULTI-PASS variants is apparent, and even the second pass
through the sequence associated with the hash-filter based variants
adds to the running time, meaning that the DISK-BASED ONE-
PASS method is the fastest. It, and also the three hash-filter based
methods (HASH-BASED TWO-PASS, SEQUENCE-BLOCKED TWO-
PASS, and LOCATION-BASED TWO-PASS) are relatively insensi-
tive to n, and the cost of evaluating the md5 hash function is not
a significant factor in the overall running time, at least over this
spectrum of n values.

Measurement of the reading and hashing loop in isolation (steps 1
to 3 of HASH-BASED TWO-PASS, and also used in several of the
other approaches) on a sequence of N = 500 × 106 symbols
showed that there was some small increase in execution time, from
around 2,800 seconds when n = 2 to around 3,120 seconds when
n = 10, indicating that the cost of the hash evaluation to generate
a b = 32-bit value, while varying as n, has only a small effect on
overall execution time. Without the call to the hashing function,
the same loop required 2,100 seconds at n = 2 and 2,400 seconds
when n = 10, confirming that the md5 hash routine is a non-trivial,
but also non-dominant part of the first processing loop, and is rela-
tively unaffected by the length of the n-gram it is acting on.

It is also possible to compute the hash function over a sliding
window of n symbols in such a way that each new evaluation after a
unit shift of the window requires only O(1) time, but we do not use
such an approach in our experiments, preferring the demonstrated
reliability of the md5 mechanism.

4.3 Processing on a cluster
A critical claim in this paper is that the LOCATION-BASED TWO-

PASS approach is scalable, and can readily be implemented across
a cluster of computers in order to deal with very large sequences.
Figure 4 demonstrates the validity of that claim. To generate this
graph different length prefixes of the ClueWeb sequence were taken,
and split over 5, 10, 15, 20, and then 25 processing nodes, with

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1.31 / 5 2.62 / 10 3.93 / 15 5.24 / 20 6.55 / 25

D
is

tr
ib

u
te

d
 T

im
e
 (

S
e
c
o
n
d
s
)

Corpus Size (Billions of Symbols) / # Processors

SPEX - MP
Log SPEX - LP

Sequence Blocked - TP
Hash Based - TP

Location Based - TP
Disk Based - OP

Figure 4: Elapsed time required by parallel implementations. All
data points in this graph represent an average of 5 timed runs.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7

S
p
a
c
e
 (

G
B

)

Corpus Size (Billions of Terms)

SPEX - MP
Log SPEX - LP

Sequence Blocked - TP
Hash Based - TP

Location Based - TP
Disk Based - OP

8-gram Index Size
Corpus Size

Figure 5: Peak temporary disk space required as a function of N ,
when computing repeated 8-grams.

the prefix lengths varied in proportion to the number of process-
ing nodes involved. In Figure 4, each processing node hosts ap-
proximately 270 × 106 sequence values. With this experimental
design, elapsed time for a scalable algorithm should be either con-
stant, or slightly growing if there is a logarithmic overhead on a
per-processor basis. (Details of the computational cost of handling
the entire ClueWeb-TREC-B sequence are presented in Section 4.5
below.)

Five of the methods show the required trend, while the sixth,
for the SEQUENCE-BLOCKED TWO-PASS method, does not – as
was anticipated above, it cannot be regarded as being scalable. The
HASH-BASED TWO-PASS and the two SPEX MULTI-PASS vari-
ants do scale in a “CPU cost only” sense as the sequence length
increases, and the breakdown in the performance of the hash-filter
as N increases is not dramatic in terms of execution time. However,
as is discussed in the next section, they are not as well behaved in
terms of disk space requirements.

4.4 Disk space required
Figure 5 plots the peak temporary disk space required by each

method, as a function of N when n = 8, for sequences in the range
approximately 1 × 109 symbols to 6 × 109 symbols. The DISK-
BASED ONE-PASS method is very expensive, a consequence of the
fact that around (n + 1)N words are required in the temporary file
F . It takes more than twice the peak disk space of the hash-filter
methods.

Working down the graph, the next most expensive method is the
HASH-BASED TWO-PASS approach. The issue raised by the b2 =
32 bit hash size is now clearly apparent; hashing a billion or more
objects into a b2 = 32 table yields a significant number of false
matches, and all of these create entries in the F3 file. This problem
is exacerbated as more and more symbols are indexed. For smaller
values of N (not shown in the graph), HASH-BASED TWO-PASS is
more competitive, but like the SPEX MULTI-PASS variants, when
N is large it is simpler and more efficient to revert to the DISK-
BASED ONE-PASS approach.

The next two curves are for the SPEX LOG-PASS and SPEX
MULTI-PASS algorithms. These methods do not write a hash-filter
to disk at all, but both generate a large F3 file even for small N ,
primarily because the hash-filter that is constructed by the incre-
mental process is not completely precise – it generates many false
matches. This stems from the use of the b = 32 bit hash size
throughout these algorithms. It is clear that for a fixed, maximal
hash size, as the collection size increases the effectiveness of the
final filter is slowly diminished.

The LOCATION-BASED TWO-PASS method performs well, de-
spite requiring more space for the F1 file than does the HASH-
BASED TWO-PASS approach (recall that the difference is that a
five-byte sequence location offset is stored with each b1 = 56
bit hash value, rather than a 2-bit counter). Storing the first tem-
porary file F1 is the dominant space cost for this amount of data
and this degree of reuse. That is, compared to DISK-BASED ONE-
PASS, Algorithm LOCATION-BASED TWO-PASS requires signifi-
cantly less disk space, and executes less than two times more slowly.

The two (red) lines at the bottom of Figure 5 show, respectively,
the cost of storing the eventual 8-gram index, computed assuming
that each 8-gram requires eight words to store the gram, plus one
address per gram occurrence; and the actual sequence size, stored
one value per word. The peak temporary disk space requirement
for all of the methods still exceeds the final index size, and also
exceeds the corpus size. It may be that this gap represents room
for further improvement, but it seems likely that a fundamentally
different paradigm will be required before that possibility can be
realized. Note also that at least some of the apparent gap is a conse-
quence of the data being distributed across nodes – the “coalescing
of like entries during sorting” steps of the various algorithms be-
come less effective as the data is partitioned across more machines.

4.5 Very large data sets
Table 3 documents the cost of applying the LOCATION-BASED

TWO-PASS technique to the full 1.46 TB TREC ClueWeb-B data
set on a cluster of Xeon 5355 computers, each with eight cores
operating at 2.66 GHz and sharing 16 GB of memory (that is, 2 GB
per core). Of these, 50 cores were used for the half-sized data set,
and 101 for the full-sized dataset. (There was insufficient spare
disk space available on this cluster to execute the DISK-BASED

ONE-PASS method over the full 1.46 TB dataset.)
As the table shows, the LOCATION-BASED TWO-PASS algo-

rithm is capable of identifying the repeated 8-gram symbols in this
collection in a scalable and distributed implementation, and while
the LOCATION-BASED TWO-PASS approach requires more execu-
tion time that the well-known DISK-BASED ONE-PASS approach,
it also requires significantly less temporary disk space.

DISK-BASED LOCATION TP

Corpus size (TB) 0.715 0.715 1.46
Grams required, n, m 8, 2 8, 2 8, 2
Sequence length, N (×10

9) 20.15 20.15 40.7
Numerical Data Size, GB 75.1 75.1 151.7
Processors, p 50 50 101
N/p (×10

6) 402.9 402.9 402.9
Elapsed time (sec× 10

3) 8.50 12.38 13.23
Peak disk Usage (GB) 417.4 159.9 386.3

Final 8-gram Index Size (GB) 103.0 103.0 202.8
Fraction single (% of N) 49.9 49.9 40.5
Fraction multi (% of N) 9.8 9.8 10.4
Fraction repeat (% of N) 40.3 40.3 49.1

Table 3: Measured performance of two algorithms, DISK-BASED

ONE-PASS and LOCATION-BASED TWO-PASS over two large col-
lections. The last three rows follow on from the n = 8 rows in Ta-
ble 1(c). The first two columns use the first half of the data from the
ClueWeb-TREC-B collection. The third column uses all of the data
from the ClueWeb-TREC-B collection. Resource limitations meant
that DISK-BASED ONE-PASS and LOCATION-BASED TWO-PASS

were the only two mechanisms that could be executed on this vol-
ume of data.

Further experiments are currently underway to demonstrate the
extent to which the various algorithmic relativities are affected by
choice of m. Worth noting is that m = 2 is the most resource-
intensive choice, and as m gets larger, the computational resources
decrease, since fewer candidate repeated strings need to be repre-
sented in the hash filter.

5. RELATED WORK
As already noted, Bernstein and Zobel [2006] considered the

problem of computing repeated n-grams for large text sequences.
They motivate their SPEX MULTI-PASS algorithm in the context
of DECO, a tool for determining co-occurring text.

Fingerprinting techniques have been used for some time to de-
termine the similarity of documents or parts of documents. These
techniques are often designed such that there is no explosion of in-
termediate data. Current techniques focus on keeping only a small
sample of repeated n-grams. This makes these techniques inappro-
priate for many n-gram applications, such as NLP tasks and Search.

In the first paper to suggest fingerprinting technique, Manber
[1994] controlled the number of n-grams produced using a mod p
method. If the hash value of the n-gram equals zero modulus p,
then the n-gram is used as a fingerprint. Thus reducing the size of
the data by approximately a factor of p. There have been a vari-
ety of newer fingerprinting techniques that try to reduce the size of
the intermediate data further without any significant decline in per-
formance. Seo and Croft [2008] provide a good summary of these
techniques. Seo and Croft also present a novel technique to match
similar fingerprints based upon the discrete cosine transformation
(DCT) algorithm. Their technique enables their system to match
similar n-grams.

Locality sensitive hashing (LSH), originally presented by Gio-
nis et al. [1999], was developed for the similar problem of finding
similar documents in large collections. Andoni and Indyk [2008]
presents a recent summary of both exact and approximate LSH
based approaches to a high dimensional nearest neighbor problem.

Depending on the purpose, it may be useful to use this family of
hash functions within our n-gram indexing algorithms. The algo-
rithm would need to be modified such that each n-gram is anno-
tated with its hash value. This would enable us to collect matching

n-grams. The direct consequence would be an increase in the re-
quired intermediate space. Another option would be to produce
an index of the hash values. We postulate that an index of similar
n-grams may have many important uses within corpora with exces-
sive spelling or OCR errors. However, it should be recognized that
many linguistic and natural language problems require that simi-
lar n-grams be considered distinct, in which case these techniques
would be inappropriate.

There has been a recent spate of brute-force style map-reduce
based approaches to similar problems such as document level sim-
ilarity computations [Elsayed et al., 2008, Lin, 2009]. A reused
n-gram index produced by one of the techniques presented in this
paper might be used for these types of problems by considering the
set of n-grams in a document to be a set of fingerprints. This would
avoid some of the problems of intermediate space, without any loss
of precision.

Zhang et al. [2010] present a method of using a shingle index
to find reused text sequences. They show that sequence reuse de-
tection using a lossy sequence fingerprinting technique provides
similar performance as when using 4-grams. They use a traditional
one pass indexing approach to produce the sequence fingerprint in-
dexes. Within their paper; sentence boundaries were used to signifi-
cantly reduce the total number of 4-grams produced. Our approach
allows for the indexing of larger values of n, as well as provid-
ing the ability to index all repeated n-grams in the collection. A
combined approach may produce additional instances of interest-
ing sequence reuse.

Use of a simple map-reduce approach to the problem of identi-
fying repeated n-grams is also, at face value at least, a possibility.
A single front-end processor would process the input sequence and
hash the grams identified, distributing fixed ranges of hash values
to different machines (the “map” step) to be sorted and counted.
The “reduce” phase would then consist of sort-merging the resul-
tant lists of duplicate hash values, and checking subsequences of
S against that set of hash values. However such an approach has
no parallelism during the two gram-processing steps, and hence the
mechanism as a whole is completely throttled by the speed – and
and also the memory capacity for the hash filter – of the coordinat-
ing machine. In contrast the method described in Section 3.3 has
the distinct advantage that the gram-processing steps are also par-
allelized. That is, the volume of data being processed, and the need
for inter-processor exchange of information, means that a a gen-
uinely distributed approach is, for repeated n-gram identification,
superior to a mechanism based on map-reduce.

6. CONCLUSION
We have explored the problem of constructing an index of re-

peated n-grams for text corpora in the multi-gigabyte range. Our
new LOCATION-BASED TWO-PASS algorithm provides a useful
blend of attributes, in that it requires less than half the amount of
temporary disk space of the traditional DISK-BASED ONE-PASS

approach, while requiring less than twice as much processing time.
This represents a significant benefit in terms of practical usefulness.

We have also demonstrated that our approach can readily be
adapted for use across a cluster of computers, and is scalable in
this distributed sense, a virtue that more than compensates for its
slightly slower execution speed. Our experiments included the pro-
cessing of 1.5 TB of ClueWeb data using m = 2, and as a result
we have been able to demonstrate the ability to identify repeated
n-grams on a much larger scale than previous work.

Acknowledgment. This work was supported in part by National
Science Foundation grant IIS-0534383 and in part by the Australian
Research Council grant DP0880065. Any opinions, findings and
conclusions or recommendations expressed in this material are the
authors, and do not necessarily reflect those of the sponsors.

References
A. Andoni and P. Indyk. Near-optimal hashing algorithms for approxi-

mate nearest neighbor in high dimensions. Comm. ACM, 51(1):117–122,
2008.

Y. Bernstein. Detection and Management of Redundancy for Information

Retrieval. PhD thesis, School of Information Technology and Computer
Science, RMIT University, Australia, 2006.

Y. Bernstein and J. Zobel. Accurate discovery of co-derivative documents
via duplicate text detection. Information Systems, 31:595–609, 2006.
doi: 10.1016/j.is.2005.11.006.

W. B. Croft, D. Metzler, and T. Strohman. Search Engines: Information Re-

trieval in Practice. Addison-Wesley, USA, 2009. ISBN 9780136072249.

T. Elsayed, J. Lin, and D. W. Oard. Pairwise document similarity in large
collections with MapReduce. In Proc. 46th Ann. Meeting of the ACL on

Human Language Technologies, pages 265–268, Columbus, OH, June
2008. Association for Computational Linguistics.

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions
via hashing. In Proc. 25th Int. Conf. on Very Large Data Bases, pages
518–529, Edinburgh, Scotland, September 1999. Morgan Kaufmann.

J. Lin. Brute force and indexed approaches to pairwise document similarity
comparisons with MapReduce. In Proc. 32nd Ann. Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, pages 155–162,
Boston, MA, 2009. ACM Press, NY.

U. Manber. Finding similar files in a large file system. In Proc. USENIX

Winter 1994 Technical Conf., pages 1–10, San Francisco, January 1994.
Usenix Association, CA.

D. Metzler and W. B. Croft. A Markov random field model for term de-
pendencies. In Proc. 28th Ann. Int. ACM SIGIR Conf. on Research

and Development in Information Retrieval, pages 472–479, Salvador,
Brazil, 2005. ACM Press, NY. doi: http://doi.acm.org/10.1145/1076034.
1076115.

A. Moffat and J. Zobel. What does it mean to “measure performance”? In
Proc. 5th Int. Conf. on Web Informations Systems, pages 1–12, Brisbane,
Australia, November 2004. LNCS 3306, Springer.

P. Sanders and F. Transier. Intersection in integer inverted indices. In Proc.

10th ALENEX Workshop on Algorithm Engineering and Experiments,
pages 71–83, New Orleans, LA, January 2007. SIAM.

J. Seo and W. B. Croft. Local text reuse detection. In Proc. 31st Ann. Int.

ACM SIGIR Conf. Research and Development in Information Retrieval,
pages 571–578, Singapore, 2008. ACM Press, NY.

A. Tridgell and R. P. Brent. An implementation of a general-purpose par-
allel sorting algorithm. Technical Report TR-CS-93-01, Australian Na-
tional University, 1993. URL http://gan.anu.edu.au/~brent/pd/
rpb140tr.pdf.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing

and Indexing Documents and Images. Morgan Kaufmann, San Fran-
cisco, second edition, 1999. ISBN 1-55860-570-3.

Q. Zhang, Y. Zhang, H. Yu, and X. Huang. Efficient partial-duplicate de-
tection based on sequence matching. In Proc. 33rd Ann. Int. ACM SI-

GIR Conf. on Research and Development in Information Retrieval, pages
675–682, Geneva, Switzerland, July 2010. ACM Press, NY.

