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Abstract

Spatiotemporal objects, i.e., objects which change their position and/or extent over time appear in many
applications. In this paper we examine the problem of indexing large volumes of such data. Important in
this environment is how the spatiotemporal objects move and/or change. We consider a rather general case
where object movements/changes are defined by combinationsof polynomial functions. We further concentrate
on ”snapshot” as well as small ”interval” queries as these are quite common when examining the history of
the gathered data. The obvious approach that approximates each spatiotemporal object by an MBR and uses
a traditional multidimensional access method to index themis inefficient. Objects that ”live” for long time
intervals have large MBRs which introduce a lot of empty space. Clustering long intervals has been dealt in
temporal databases by the use of partially persistent indices. What differentiates this problem from traditional
temporal indexing, is that objects are allowed to move/change during their lifetime. Better ways are thus needed
to approximate general spatiotemporal objects. One obvious solution is to introduce artificial splits: the lifetime
of a long-lived object is split into smaller consecutive pieces. This decreases the empty space but increases the
number of indexed MBRs. We first give an optimal algorithm anda heuristic for splitting a given spatiotemporal
object in a predefined number of pieces. Then, given an upper bound on the total number of possible splits,
we present three algorithms that decide how the splits are distributed among all the objects so that the total
empty space is minimized. The number of splits cannot be increased indefinitely since the extra objects will
eventually affect query performance. Using a query cost model, our algorithms can identify a good number
of splits, as well. Finally, extensive experiments are presented showing the performance gains of our methods
against straightforward indexing approaches.

1 Introduction

There are many applications that create spatiotemporal data. Examples include transportation (cars moving in the
highway system), satellite and earth change data (evolution of forest boundaries), planetary movements, etc. The
common characteristic is that spatiotemporal objects moveand/or change their extent over time.

Recent works that address indexing problems in a spatiotemporal environment include [36, 15, 14, 28, 38, 3, 24, 25,
16, 32, 36]. Two variations of the problem are examined: approaches that optimize queries about the future positions
of spatiotemporal objects [15, 28, 3, 25, 27] and those that optimize historical queries [36, 38, 14, 21, 24, 25, 16, 32]
(i.e., queries about past states of the spatiotemporal evolution). Here we concentrate on historical queries, so for
brevity the term “historical” is omitted. Furthermore, we assume the “off-line” version of the problem, that is, all
data from the spatiotemporal evolution has already been gathered and the purpose is to index it efficiently.

For simplicity we assume that objects move/change on a 2-dimensional space that evolves over time; the extension
to a 3-dimensional space is straightforward. An example of such a spatiotemporal evolution appears in figure 1.
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Thex andy axes represent the 2-dimensional space while thet axis corresponds to the time dimension. For the rest
of this discussion time is assumed to be discrete, describedby a succession of non-decreasing integers. At timet1
objectso1 (which is a point) ando2 (which is a 2D region) are inserted. At timet2, objecto3 is inserted whileo1
moves to a new position ando2 shrinks. Objecto1 moves again at timet5; o2 continues to shrink and disappears
at timet5. Based on its behavior in the spatiotemporal evolution, each object is assigned a record with a “lifetime”
interval [ti; tj) created by the time instants when the object was inserted anddeleted (if ever). For example, the
lifetime of o2 is [t1; t5). During its lifetime, an object is termedalive.

Figure 1:An example of spatiotemporal object evolution.

An important decision for the index design is the class of queries that the index optimizes. In this paper we are
interested in optimizing topological snapshot queries of the form: “find all objects that appear in areaS during timet”. That is, the user is typically interested on what happenedat a given time instant (or even for small time periods
around it). An example snapshot query is illustrated in figure 1: “find all objects inside areaS at timet3”; only
objecto1 satisfies this query.

One approach for indexing spatiotemporal objects is to consider time as another (spatial) dimension and use a
3-dimensional spatial access method (like an R-Tree [11] orits variants [5]). Each object is represented as a
3-dimensional rectangle whose “height” corresponds to theobject’s lifetime interval, while the rectangle “base”
corresponds to the largest 2-dimensional minimum boundingrectangle (MBR) that the object obtained during its
lifetime. While simple to implement, this approach does nottake advantage of the specific properties of the time
dimension. First, it introduces a lot of empty space. Second, objects that remain unchanged for many time instants
will have long lifetimes and thus, they will be stored as longrectangles. A long-lived rectangle determines the
length of the time range associated with the index node (page) in which it resides. This creates node overlapping
and leads to decreased query performance [17, 18, 29, 32, 36,16]. Better interval clustering can be achieved by
using “packed” R-Trees (like the Hilbert R-Tree [13] or the STR-Tree [19]); another idea is to perform interval
fragmentation using the Segment R-Tree [17]. However, the query performance is not greatly improved [16].

Another approach is to exploit the monotonicity of the temporal dimension, and transform a 2-dimensional spatial
access method to become partially persistent [38, 21, 14, 16, 32]. A partially persistent structure “logically” stores
all its past states and allows updates only to its most current state [9, 20, 4, 39, 18, 29]. A historical query about
time t is directed to the state the structure had at timet. Hence, answering such a query is proportional to the
number of alive objects the structure contains at timet. That is, it behaves as if an “ephemeral” structure was
present for timet, indexing the alive objects att. Two ways have been proposed to achieve partial persistence: the
overlapping [6] and multi-version approaches [9]. In the overlapping approach [21, 38], a 2-dimensional index is
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conceptually maintained for each time instant. Since consecutive trees do not differ much, common (overlapping)
branches are shared between the trees. While easy to implement, overlapping creates a logarithmic overhead on
the index storage requirements [29]. Conceptually, the multi-version approach [20, 4, 39, 18, 32] also maintains a
2-dimensional index per time instant, but the overall storage used is linear to the number of changes in the evolution.
In the rest we use a partially persistent R-Tree (PPR-Tree) [18, 32] (a short description of a PPR-Tree appears in
the next section).

Our approach for improving query performance is to reduce the empty space introduced by approximating spa-
tiotemporal objects by their MBRs. This can be accomplishedby introducing artificial object updates. Such an
update issued at timet, artificially “deletes” an alive object att and reinserts it at the same time. The net effect
is that the original object is represented by two records, one with lifetime that ends att and one with lifetime that
starts att. Consider for example a spatiotemporal object created by the linear movement shown in figure 2. Here,
the 2-dimensional rectangle moved linearly, starting att1 from the lower left part of the(x; y) plane an reaching the
upper right part att2. The original MBR is shown, as well. However, if this object is split (say, at the middle of its
lifetime) the empty space is reduced since two smaller MBRs are now used (see figure 3 where the(x; t) plane is
presented).
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x

Figure 2:A spatiotemporal object in linear motion.
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Figure 3:An example of splitting an object.

Clearly an artificial split reduces empty space and thus we would expect that query performance improves. However,
it is not clear if the 3D R-Tree query performance will improve by these splits. An intuitive explanation is based
on Pagel’s query cost formula [23]. This formula states thatthe query performance of any bounding box-based
index structure depends on the total (spatial) volume, the total surface and the total number of data nodes. Using
the artificial splits, we try to decrease the total volume of the data nodes (by decreasing the size of the objects
themselves). On the other hand, the total number of indexed objects increases. In contrast, for the PPR-Tree the
number of alive records (i.e., the number of indexed records) at any time instant remains the same while the empty
space and the total volume is reduced. Therefore, it is expected that the PPR-Tree performance for snapshot and
small interval queries will be improved.

In [16] we addressed the problem of indexing spatiotemporalobjects that move or change extent usinglinear
functions of time. Assuming we are given a number of possiblesplits that are proportional to the number of spa-
tiotemporal objects (i.e., the overall storage used remains linear) a greedy algorithm was presented that minimizes
the overall empty space. In particular the algorithm decides (i) which objects to split and (ii) how the splits are
distributed among objects. The algorithm’s optimality is based on a specialmonotonicityproperty which holds for
linearly moving/changing objects. The monotonicity property states that given a spatiotemporal object and a num-
ber of splits, the gain in empty space decreases as the numberof splits applied to the object increases. Equivalently,
the first few splits will yield big gain in empty space, while the more we split the less gain is obtained.

In this paper we address the more difficult problem where objects are allowed to move/change using combinations
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of polynomial functions. Using such functions we can describe quite general classes of object movements/changes.
Unfortunately, the previous monotonicity property does not hold. An example is shown in figure 4. One split will
give much less gain in empty space than two.

x

t t t

x x

Figure 4:An example where the monotonicity property does not hold.

Hence, new approaches are needed. We first present a dynamic programming algorithm and a heuristic for deciding
how to apply splits on a given, general spatiotemporal object. Furthermore, we provide a dynamic programming
algorithm for optimally distributing a total number of splits among a collection of general spatiotemporal objects.
Finally, we implement two greedy algorithms that give results close to the optimal algorithm but with huge gain in
terms of running time. The first algorithm assigns each splitto the object that yields the biggest gain in empty space
at any step. The second algorithm takes into account the factthat some objects might not follow the monotonicity
property. It looks ahead for the biggest gain in empty space given k splits per object at every step, thus, producing
a nearly optimal result very fast. While by using more splitsthe gain is increased, after a while the increase will be
minimal. A related problem is how to decide on the number of artificial splits. Assuming that a model for predicting
the query cost of the index method used, is available [35, 33], the number of splits can be easily decided.

To show the merits of our approach the collection of objects (including objects created by the artificial splits) are
indexed using a PPR-Tree and a 3D R*-Tree [5]. Our experimental results show that the PPR-Tree consistently
outperforms the R*-Tree for snapshot as well as small interval queries.

We note that some special cases of indexing general spatiotemporal objects have also been considered in the lit-
erature: (i) when the objects have no spatial extents (moving points) [24, 25], and (ii) when the motion of each
object can be represented as a set of linear functions (piecewise linear trajectories) [10, 16]. For the case that points
move with linear functions of time, extensions to the R-Treehave been proposed (Parametric R-Tree [7] and the PSI
approach in [25]). The problem examined here is however morecomplex as objects are allowed to move/change
with a general motion over time.

The rest of the paper is organized as follows. Section 2 formalizes the notion of general movements/changes and
provides background on the partially persistent R-Tree. Section 3 elaborates on how a general spatiotemporal object
should be split given a number of splits and how to distributesplits among a collection of spatiotemporal objects.
Section 4 discusses how to use analytical models to find a goodnumber of splits for a given dataset. Section 5
contains experimental results and section 6 reviews related work. Finally, section 7 concludes the paper.
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2 Preliminaries

2.1 Formal Notion of General Movements

Consider a set ofN spatiotemporal objects that move independently on a plane.Suppose that the objects move/change
with linear functions of time:x = Fx(t), y = Fy(t), t 2 [ti; tj). We define a representation of a spatiotemporal
objectO as:

Definition 1: A spatiotemporal objectO is defined as a set of tuplesO = f([ts; tj); Fx1(t); Fy1(t)); : : : ; ([tk; te); Fxn(t); Fyn(t))g
where ts is the object creation time,te is the object deletion time,tj; : : : ; tk are the intermediate time
instants when the movement of the object changes characteristics andFx1 ; : : : ; Fxn , Fy1 ; : : : ; Fyn are the
corresponding functions.

In the general case, objects can move arbitrarily towards any direction. Representing the position of such objects is
more demanding and cannot be approximated by linear functions, since the number of segments required cannot be
bounded. A direct extension of the above definition could usetuples with polynomial functions of greater degree to
approximate general movements.

An example of a point moving on the(x; t) plane with the corresponding functions describing its movement
is shown in figure 5. The following three tuples are used to represent it: O = f(0; 20; 3;�0:0045; 0; 0; 35),(20; 30; 2;�1; 50;�600), (30; 35; 2;�1; 65;�1050:25)g. The last two polynomials have been expanded and the
tuple format is the following:T : (ts; te; d; d; : : : ; 0); herets is the starting time,te is the ending time,d is
the degree of the function andd; : : : ; 0 are the coefficients. For two dimensional movements every tuple would
contain two functions, the first giving a movement on the x-axis and the second on the y-axis. This results to an
object following a trajectory which is a combination of bothfunctions. An alteration in the object’s shape could
be described in the same way. An example is shown in figure 6 where the object follows a general movement,
keeps constant extent along the x-axis and changes extent along the y-axis. By restricting the degree of the poly-
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Figure 5: A moving point and a corresponding set of polynomial
functions representing the movement.
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Figure 6:A moving object that follows a general trajectory
while changing shape.

nomials up to a maximal value and choosing only monotonically increasing or decreasing functions, most common
movements can be approximated or even represented exactly by using only a few tuples. As the number of tuples
increases, more complicated movements may be represented and better approximations can be obtained. The use
of monotonic functions allows us to find the MBR of any movement quite easily just by calculating the position of
the object at the end points of every time interval and findingthe global minimum and maximum.
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The advantage of this approach is two-fold. It is storage efficient, since few tuples are required for the rep-
resentation of any movement in the general case. It guarantees that for a given objectO, between any two
consecutive time instantstk; tk+1 the movement of the object is bounded by the MBR defined by the points[xk; Fx(tk)℄; [xk+1; Fx(tk+1)℄. These observations have straightforward extensions to 2-dimensional movements.

2.2 The Partially Persistent R-Tree

Consider the example in figure 1 and assume that the objects attime t1 are indexed by a 2-dimensional R-Tree. As
time advances, this 2D R-Tree evolves, by applying the updates (object additions/deletions) as they occur. Storing
this 2D R-Tree evolution corresponds to making a 2D R-Tree partially persistent. The following discussion is based
on [18]. While conceptually the partially persistent R-Tree (PPR-Tree) [18] records the evolution of an ephemeral
R-Tree, it does not physically store snapshots of all the states in the ephemeral R-Tree evolution. Instead, it records
the evolution updates efficiently so that the storage remains linear, while still providing fast query time.

The PPR-Tree is actually a directed acyclic graph of nodes (anode corresponds to a disk page). Moreover, it has
a number of root nodes, each of which is responsible for recording a consecutive part of the ephemeral R-Tree
evolution. The various roots can be easily accessed througha linear array called theroot* . Each entry in theroot*
contains a time interval and a pointer to the root that is responsible for that interval.

Data records in the leaf nodes of a PPR-Tree maintain the temporal evolution of the ephemeral R-Tree data objects.
Each data record is thus extended to include the two lifetimefields: insertion-timeanddeletion-time. Similarly,
index records in the directory nodes of a PPR-Tree maintain the evolution of the corresponding index records of the
ephemeral R-Tree and are also augmented withinsertion-timeanddeletion-timefields.

An index or data record isalive for all time instants during its lifetime interval. A leaf ora directory node is called
alive if it has not beensplit. With the exception of root nodes, for all times that a node isalive it must have at leastD alive records (D < B, whereB is the maximum node capacity). This requirement enables clustering the objects
that are alive at a given time instant in a small number of nodes (pages), which in turn will minimize the query I/O.
The PPR-Tree is created incrementally following the updatesequence. Consider an update (insertion or deletion)
at timeti. To process this update the PPR-Tree is searched to locate the target leaf node where the update must
be applied. This step is carried out by taking into account the lifetime intervals of the index and the data records
visited. This implies that the search visits records that are alive at timeti. After locating the target leaf node, an
insertion update adds a data record with an interval[ti; now) to the target leaf node (now is a variable representing
the ever increasing current time). A deletion update will update the deletion-time of a data record fromnow to ti.
An update leads to astructuralchange if at least one new node is created.Non-structuralare those updates which
are handled within an existing node. An insertion update triggers a structural change if the target leaf node already
hasB records. A deletion update triggers a structural change if the resulting node ends up having less thanD alive
records as a result of the deletion. The former structural change is anode overflow; the latter is aweak version
underflow[4]. Node overflow and weak version underflow need special handling: asplit is performed on the target
leaf node. This is reminiscent of the time-split operation reported in [20] and the page copying concept proposed in
[37]. Splitting a nodex at timet is performed by copying to a new nodey the records alive in nodex at t. Nodex
is considereddeadafter timet.
To avoid having a structural change on nodey soon, when a new node is created the number of alive records must
be in the rangeD+e andB�e (wheree is a predetermined constant). This allows at leaste non-structural changes
on this node before a new structural change occurs. Thus before the new node is incorporated in the structure it
may have to be merged with another node (this happens ify has less thanD+ e alive records and is called astrong
version underflow), or, ”key-split” into two nodes (ify has more thanB � e alive nodes, i.e., astrong version
overflow). For details we refer to [18, 39, 4].
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Figure 7:Various object MBRs.

An example of a PPR-Tree is shown in figure 9 using the evolution presented in figure 7 and figure 8. In particular,
figure 7 shows the MBRs of 20 objects (numbered from 1 to 20) that appeared in an evolution while figure 8 depicts
the lifetimes of these objects. For simplicity, the objectsdo not change extent neither move during their lifetimes.
HereB = 5, D = 2 ande is set to 1. Theroot* entries show the time intervals associated with each pointer and the
pointers to the root nodes of the PPR-Tree. Similarly, indexnodes depict the time intervals and the corresponding
pointers to the next level of the tree. For clarity, data nodes show only the stored object ids (and not their lifetimes).
Note that an object can be stored in more than one data page. For example object 14 is stored in five data pages
since it has a long lifetime.
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1 10 20
time sequence

Figure 8:Corresponding object lifetimes.

Answering a query about regionS and timet has two parts. First, the root which is alive att is found. This part
is conceptually equivalent to accessing the root of the ephemeral R-Tree which indexes timet. Second, the objects
intersectingS are found by searching this tree in a top-down fashion as in a regular R-Tree. The lifetime interval
of every record traversed should contain timet, and its MBR should intersect regionS. Answering a query that
specifies a time interval[t; t0) is similar. First, all roots with lifetime intervals intersecting [t; t0) are found and the
procedure continues in the same manner. Since the PPR-Tree is a graph, some nodes are accessible by multiple
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Figure 9:The PPR-Tree created from the above object evolution.

roots. Re-accessing nodes can be avoided by keeping a list ofvisited nodes. We should mention that another
approach is to use the MV3R-tree [32] instead of the PPR-tree, but the results will be qualitatively the same.

An object is represented in the PPR-Tree as 2-dimensional MBR and a time interval. Next, we discuss how we can
improve the representation of a general spatiotemporal object such that the query performance of the PPR-Tree is
improved.

3 Representation of Spatiotemporal Objects

Consider a spatiotemporal objectO that moved from its initial position at time instantt0 to a final position at timetn
with a general movement pattern. We can represent this object using its bounding box in space and time. However,
this creates large empty space and overlap among the index nodes (we assume that an index like the 3D R-Tree or
the PPR-Tree is used). A better approach is to represent the object using multiple boxes. An example is shown in
figure 10, where only one dimension is shown, for simplicity.Using three boxes a better approximation is obtained
and the empty space is reduced. The object is split into threeconsecutive objects and each one is approximated
with a smaller bounding box. Note that we consider splittingalong thetime axis only, since the time dimension is
the main reason of the increased empty space and overlap.

Time

X

Figure 10: A 1-dimensional example of representing an object with one and three MBRs.
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Next, we present methods for splitting objects in spatiotemporal datasets in order to decrease the overall empty
space and increase the query performance. We break the problem into two sub-problems. First, we are given an
object and a number of splits and we have to find how to split theobject such that the maximum possible gain in
empty space is obtained. For the second problem, we have a collection of objects and a number of available splits
and we try to distribute the splits among all objects in orderto optimize the query performance of the index.

3.1 Splitting One Object

Consider a spatiotemporal objectO with lifetime [t0; tn). Assume that we want to split the object intok consecutive
objects in an way that minimizes the total volume of its representation. As we discussed above, we use splits in the
form of artificial updates.

3.1.1 An Optimal Algorithm (DPSplit)

LetOPTV [i; l℄ be the volume of the MBRs corresponding to the part of the spatiotemporal object betweent0 andti after usingl optimal splits. Then, the following holds:OPTV [i; l℄ = min0�j<ifOPTV [j; l � 1℄ + V ol[j + 1; i℄g
whereV ol[j; i℄ is the volume of the MBR that contains the part of the spatiotemporal object betweentj and ti.
The formula states that in order to find the optimal solution for splitting the object betweent0 andti, we have to
consider all intermediate time instants and combine it withthe previous solutions. Using the above formula we
obtain a dynamic programming algorithm that computes the optimal positions for thek splits and the total volume
after these splits. This is achieved by computing the valueOPTV [n; k℄.

Theorem 1: Splitting one object optimally usingk splits can be done inO(n2k), where the lifetime of the
object is[t0; tn).
Proof: We have to compute thenk values of the arrayOPTV [i; j℄. Each value in the array can be found
by computing the minimum ofn values using the formula above.

3.1.2 An Approximate Algorithm (MergeSplit)

The dynamic programming algorithm is quadratic to the lifetime of the object. For objects that live for long time
periods the above algorithm is not very efficient. A faster algorithm is based on a greedy approach. The idea is to
start withn different boxes, one for each time instant and merge the boxes in a greedy way (figure 11.) The running
time of the algorithm isO(n log n). To improve the running time we can merge all consecutive boxes that give a
small increase in volume. Then, we can run the greedy algorithm starting with fewer boxes. This greedy algorithm
gives in general sub-optimal solutions.

3.2 Splitting a Collection of Objects

In this subsection we discuss methods for distributing a number of splitsK among a collection ofN spatiotemporal
objects. While using more splits to approximate the objectsimproves query performance by reducing the empty
space, every split corresponds to a new record (the new MBR) and thus increases the storage requirements. Hence,
if we are given a total number of splitsK (which may correspond to an upper limit on the disk space) anda set of
spatiotemporal objects, we want to decide which objects to split and how many splits each object is allocated.
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Input: A spatiotemporal objectO as a sequence ofn spatial objects, one at each time instant.
Output: A set of MBRs that coverO.

1. For0 � i < n compute the volume of the MBR for mergingOi with Oi+1. Store the results in a
priority queue.

2. Repeatn times: Use the priority queue to merge the pair of consecutive MBRs that give the smallest
increase in volume. Update the priority queue with the new MBR.

Figure 11: The greedy heuristic.

3.2.1 An Optimal Algorithm

Assuming an ordering on the spatiotemporal objects (each object gets a number between1 andN ), we observe that:OPTK[i; l℄ = min0�j�ifOPTK[i� 1; l � j℄ +OV ol[i; j℄g
whereOPTK[i; l℄ is the minimum total space for the firsti objects with optimall splits, andOV ol[i; j℄ is the total
volume for approximating theith object usingj splits (e.g. withj + 1 boxes.)

We use the above formula to find the total volume for each number of splits. A dynamic programming algorithm can
be used with running timeO(N2K). To compute the optimal solution first we should know the optimal solutions
for each object, which can be found by using the dynamic programming algorithm presented in section 3.1. Hence,
the following theorem holds:

Theorem 2: Optimally distributingK splits amongN objects can be done inO(N2K).
Note however, that the real objective of the splitting algorithms is not to minimize the total volumeper se, but
to reduce the cost of answering a query from a predefined set ofqueries. The objective function that should be
optimized must represent this cost. Therefore, we need to define a function that is evaluated after each split and
gives the average number of I/Os for answering a query. This function will help us find the number of splits that
gives the best query results. We discuss possible ways to express this function and choose a good value for the total
number of splits in section 4.

3.2.2 The Greedy Algorithm

The dynamic programming algorithm described above is quadratic to the number of spatiotemporal objects. That
makes the algorithm impractical for many real life applications. Therefore, it is intuitive to look for an approximate
solution. The simplest form of such a solution would be a greedy algorithm that allocates splits one at a time to the
object that if split once more would yield the maximum possible total volume reduction. The algorithm is shown in
figure 12. The complexity of the main loop isO(K) and the complexity of the algorithm isO(K +N logN).
3.2.3 The Look-Ahead Greedy Algorithm (LAGreedy)

The above algorithm also requires the calculation of the minimum volume for a specific number of splits for some
of the objects, depending on the particular dataset. The result of this algorithm will not be optimal in the general
case. One problem is the following: consider an object that if split once gives a very small improvement in empty
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Input : A set of spatiotemporal objects with cardinalityN .
Output : A near optimal minimum volume required to approximate all objects of the set withK splits.

1. Store in a priority queue all objects according to the total volume change if one split is assigned to
each one.

2. ForK iterations: Remove the top element of the queue. Assign the split to the corresponding object.
Calculate the total volume change if an extra split was used.Place the object back in the queue.

3. Remove all elements from the priority queue and calculatethe total volume according to the splits
assigned to each object.

Figure 12: Greedy Algorithm.

space but if split twice most of its empty space is removed (see figure 4 for an example). Using the above algorithm
most probably this object will not be allocated a split, because the first split is poor and other objects will be chosen
before it. However, if we allow the algorithm to consider more than one splits for every object at a time, the
possibility for this object to be split is much higher.

This observation gives an intuition about how the greedy strategy could be improved to give a better result, closer
to the optimal. At every step, instead of finding the object that yields the largest gain by performing one more split,
we could look ahead and find objects that result in even largergain if two, three or more splits are used all at once
(look-ahead-2, look-ahead-3, etc). The algorithm is shownin figure 13.

The look-ahead-2 algorithm works as follows. First, all splits are allocated one by one in a greedy fashion, as
before. Then, one new priority queuePQla1 is created, which sorts the objects by the minimum gain offered by the
last split allocated to them, and a second priority queuePQla2 which sorts the objects by the maximum gain if two
more splits are allocated to each one. If the gain of the top element ofPQla2 is bigger than the sum of the gains of
the two top elements ofPQla1 the two splits are allocated to the object ofPQla2 and they are removed from the
others. The queues are updated and the same procedure continues until there is no more change in the distribution
of splits.

Input : A set of spatiotemporal objects with cardinalityN .
Output : A near optimal minimum volume required to approximate all objects of the set withK splits.

1. Allocate splits be calling theGreedy Algorithm.PQla1 sorts objects by minimum gain given by the last split.PQla2 sorts objects by maximum gain given with two more splits.

2. While there is a change: Remove top two elements fromPQla1, letO1; O2. Remove top element fromPQla2, letO3. Make sure thatO1 6= O2 6= O3. If the gain ofO3 with two more splits is bigger than
the combined gain ofO1 andO2 from their last splits, redistribute the splits and update the priority
queues.

Figure 13: LAGreedy Algorithm.
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The algorithm has the same worst case complexity as the greedy approach. However, experimental results show
that is achieves much better results for the small time penalty it entails.

4 Finding the Number of Splits

The splitting algorithms discussed in the previous sectiontake as input the total number of splits and generate a new
dataset with smaller total volume. However, it is importantto choose a number of splits that gives a good trade-off
between query time and space overhead. The choice of a good value for this parameter affects the performance of
the index structure. If the number of splits is small, the query performance may be much worse than the performance
that we can get by using the optimal number of splits. On the other hand, if the number of splits is much larger
than the optimal one, we create many artificial objects that waste disk space. Also, the query performance may
deteriorate if the height of the tree is increased. In this section, we discuss methods for automatically computing a
good value for this parameter. This is not always easy, sincethe optimal number of splits depends on the distribution
and shape of the spatiotemporal objects and the distribution of queries. We briefly discuss two general methods to
optimize the performance of the splitting algorithms (moredetails will appear in the full version of the paper).
The first method is based on using analytical models to predict the performance of the index. The second method,
experimentally evaluates a small sample of the dataset overa representative set of queries and decides the best total
number of splits.

4.1 Using Analytical Models

The basic idea here is to use an analytical model and predict the performance of an index using this model. For
a given number of splits, we compute the best distribution ofsplits and estimate some statistics about the datasets
generated after the splits. We use the statistics as an inputto the analytical model and we get a prediction on the
number of disk accesses required to answer a random query from a query distribution. Thus, instead of trying to
minimize the total volume, we try to minimize the average query cost which is our ultimate goal.

In particular, for the R-Tree approach, we can use one of the proposed analytical models that estimate the I/O
complexity of an R-Tree given a dataset and a query [35, 26]. These papers provide formulas that use statistical
information of the datasets to predict the performance of a (uncreated) R-Tree. In our case, we evaluate the formula
in each iteration of the splitting algorithms in section 3 and we keep the number of splits that give the smallest
access overhead. Depending on the dataset and the query, a new split may result in a higher or lower access
overhead. Therefore, we need again to give an upper bound on the number of possible splits, but the splits that we
choose at the end can be much smaller. In the extreme case thatthe dataset is static, the choice will be0 splits. For
the PPR-Tree, a formula proposed recently in [33] can be used. Finally, another approach is to use non-parametric
statistical summaries of the datasets (e.g. spatial histograms) [12, 2, 1, 40, 31].

4.2 Using Cross-Validation

Another way to find the best number of splits among a set of possible values is by cross validation. For each number
of splits, an index is created and a set of (the same) representatives queries are evaluated on each index. The number
that gives the best query performance is then chosen. However, instead of using the full dataset, it is possible to
use a small sample and create the indices over this sample. The number of splits should be normalized to the full
dataset. For example, if the dataset containsN objects, the sample size iss, and the best number of splits for the
sample isl, Nls number of splits must be chosen for the full dataset. Note, that if the sample is small, the index can
be built in main memory.
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5 Experimental Results

To test our algorithms we created four random datasets (uniform) of various sizes with moving rectangles in 2D
space, and another four datasets with trains moving on a railway system (skewed). All object trajectories were
approximated with MBRs. First, each object is split with theoptimal (DPSplit) algorithm and the merge heuristic
(MergeSplit) and the results are stored. Then, the optimal (Optimal), greedy (Greedy) and look-ahead-2 greedy
(LAGreedy) algorithms are used to distribute various numbers of splits (from 1% to 150% of the total number of
objects) among the objects; again the splitting results arestored. In the rest of the section,a% splits means that
we use a100N total number of splits on a dataset withN spatiotemporal objects. For comparison purposes we
also generated datasets using the simpler approach of splitting the objects in a piecewise manner, i.e., at the points
in time where the polynomial representing the movement changes characteristics [25]. This method resulted in a
number of splits about 400% of the total number of objects. Finally, we used the 3D R*-Tree and the PPR-Tree to
index the resulting data. We decided not to use any packing algorithms for the R*-Tree, since from our previous
experience [16], packing does not help substantially with datasets of moving objects. Packing algorithms tend to
cluster together objects that might be consecutive in ordereven though they may correspond to large and small
intervals. This leads to more overlapping and empty space [16]. Details about all datasets are presented in Tables 1
and 2.

For the moving rectangles time extents from 0 to 999 timestamps. The lifetime of each object is randomly selected
between 1 and 100 time instants. The object movement is approximated with a random number of polynomials
between 1 and 10. The polynomials have randomly generated coefficients but are either of first or second degree.
All movements are normalized in the unit square[0; 1℄2. The extents of the rectangles are randomly selected
between 1/1000 and 1/100 of the total space.

For the railway datasets we generated a map containing 22 cities and 51 railways. The map approximates the states
of California and New York with most of the tracks connectingintra state cities with each other. Few cities belong
to different states in-between and there is a number of tracks connecting all the states across country. The distances
of the cities were approximated to match reality. The trainsare allowed to make up to 10 stops and travel for as
long as 36 hours with a speed that is randomly selected between 60 and 75 miles per hour. No train is allowed to
go back to the city were it originated without stopping somewhere else in-between. After all the parameters of the
route have been calculated, a series of linear functions is generated, describing the trajectories in time. The railway
tracks are considered to be straight lines. For these datasets also, time extents from 0 to 999 timestamps.

For both index structures page capacity was set to 50 entriesand we used a 10 page LRU buffer. In addition, for
the PPR-Tree we set the minimum alive records per node parameter toPversion = 0:22, the strong version overflow
parameter toPsvo = 0:8 and the strong version underflow toPsvu = 0:4. Also, the objects were first sorted by
insertion time. For the R*-Tree objects were inserted in random order, but the time dimension was scaled down to
the unit range first [32]. For the PPR-Tree the time dimensionextent does not matter. To test the resulting structures
we randomly generated four snapshot and two range query setswith 1000 queries each. Details about these sets
are summarized in Tables 3 and 4. For all experiments the buffer was reset before the execution of any query. All
experiments where run on an Intel Pentium III 1GHz personal computer, with 1GB of main memory.

5.1 Comparison of Single-Object Splitting Algorithms

First, we compare the dynamic programming (DPSplit) and thegreedy (MergeSplit) algorithms for splitting a
single object. In order to test their efficiency, we calculated the best splits of all objects contained in the random
datasets, using as many splits as necessary and computed theCPU time needed. In figure 14, time is represented
in a logarithmic scale, since for the large datasets the DPSplit algorithm needed almost one day to finish splitting
the objects. On the other hand, the MergeSplit algorithm wasvery fast, requiring from a few minutes to a few
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Dataset 10k 30k 50k 80k
Total Objects 10000 30000 50000 80000
Objects Per Instant (Avg.) 545.873 642.25 2749.97 4390.54
Total Segments 37179 111774 186539 297413
Object Lifetime (Avg.) 50 50 50 50
Object Extent (%) 0.1%-1% 0.1%-1% 0.1%-1% 0.1%-1%

Table 1:Random datasets.

Dataset 10k 30k 50k 80k
Total Objects 10000 30000 50000 80000
Objects Per Instant (Avg.) 190.605 570.7 948.026 1522.78
Total Segments 27678 82792 137011 220996
Object Lifetime (Avg.) 18 18 18 18

Table 2:Railway datasets (skewed).

Query Set Cardinality Extents (%) Duration (timestamps)
Tiny 1000 0.01-0.1 1
Small 1000 0.1-1 1
Mixed 1000 0.1-5 1
Large 1000 1-5 1

Table 3:The snapshot query sets.

Query Set Cardinality Extents (%) Duration (timestamps)
Small 1000 0.1-1 1 - 10
Medium 1000 0.1-1 10 - 50

Table 4:The interval query sets.

hours. In order to show that the MergeSplit algorithm produces good splits, we optimally distributed 50% splits
on all random datasets, and calculated the total volume of the resulting MBRs. The results are shown in figure 15.
Clearly, MergeSplit behaves very closely to DPSplit.

5.2 Comparison of Split Distribution Algorithms

Next, we evaluate the performance of the Greedy and LAGreedyalgorithms, in comparison with the optimal dy-
namic programming approach. We distributed 50% splits on the random datasets using all three algorithms and
calculated the CPU cost of each approach. The results are shown in figure 16. Time is represented again in a loga-
rithmic scale, since the optimal algorithm requires up to a few hours to distribute the splits for the bigger datasets.
On the other hand, the two greedy approaches are much faster with the LAGreedy algorithm performing about only
10% slower than the Greedy algorithm, both requiring from a few seconds to a few minutes. To test the efficiency
of our algorithms we distributed 150% splits using the LAGreedy algorithm on the random datasets and indexed
the resulting MBRs using the PPR-Tree. Finally, we queried the resulting structures with the mixed snapshot query
set, recording the average number of disk accesses needed. The results are shown in figure 17. For all the datasets
that we tried, the LAGreedy algorithm performed as well as the optimal algorithm, while the Greedy approach was
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Figure 14:CPU time in seconds (logarithmic scale) for theone
objectsplit algorithms, using the random datasets.

Figure 15:Total volume for theone objectsplit algo-
rithms and 50% splits distributed with the LAGreedy
algorithm, using the random datasets.

always inferior.

Figure 16: CPU time in seconds (logarithmic scale) for 50%
splits distributed with allsplit distributionalgorithms, using the
random datasets.

Figure 17:Average number of disk accesses for 150%
splits distributed with allsplit distributionalgorithms,
using a PPR-Tree and mixed snapshot queries with the
random datasets.

5.3 Benefits and Drawbacks of Splitting

In order to show that splitting a dataset is beneficial only for the partial persistence indexing approach, we distributed
a series of different numbers of splits on all datasets usingthe LAGreedy algorithm. Then, we indexed the resulting
MBRs using the 3D R*-Tree and the PPR-Tree. We queried the resulting structures using the small range queries
and recorded the average number of disk accesses needed. Theresults for the 50k random dataset are shown in
figure 18. Observe that as the number of splits increases the average number of disk accesses needed decreases
substantially for the PPR-Tree, while there is a negative effect for the 3D R*-Tree. For completeness, in figure 19
we present the disk space required by the two structures, foran increasing number of splits. We can see that the
PPR-Tree requires almost twice as much space as the 3D R*-Tree, which is a reasonable tradeoff considering the
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gain in query performance. The LAGreedy combined with the PPR-Tree achieves an improvement of 30% in query
performance over the best alternative (75 vs 110 I/Os).

Figure 18:Average number of disk accesses for the PPR-Tree
and R*-Tree, with various numbers of splits distributed with
the LAGreedy algorithm, using small range queries and the 50k
random dataset.

Figure 19: Number of pages for the PPR-Tree and
R*-Tree, with various numbers of splits distributed
with the LAGreedy algorithm, using the 50k random
dataset.

5.4 Comparing Partially Persistent and Straightforward Approaches

Finally, we performed a number of snapshot and range queriesin order to test how the partially persistent and the
normal R-Tree structures react when increasing the number and type of objects. For the small range queries the 3D
R*-Tree is somewhat better for un-cut data and 1% up to 5% splits, while the PPR-Tree becomes much better when
the number of splits increases. In figure 20 we plot the average number of disk accesses for small range queries
and 150% splits for the PPR-Tree and 1% splits for the 3D R*-Tree, distributed with the LAGreedy algorithm.
We also plot the performance of the 3D R*-Tree with the piecewise data. It is obvious that the partial persistence
approach is by far superior after splitting. For all datasets and any number of splits we observed that the PPR-Tree
is consistently better than the 3D R*-Tree approaches for small, large and mixed snapshot queries. An example is
shown in figure 21 for the mixed snapshot queries. We used 150%splits for PPR-Tree, 1% splits for the 3D R*-Tree
and the piecewise 3D R*-Tree. The interesting result here isthat the piecewise approach [25] is much worse than
the no splits approach. The benefit from splitting the spatiotemporal objects ranges from 20% for small interval
queries to more than 50% for snapshot queries.

The results for the railway datasets are shown in figures 22 and 23. We observe that the PPR-Tree is again superior
for all cases.

6 Related Work

Spatiotemporal data management has received increased interest in the last few years and a number of interesting
articles appeared in this area. As a result, a number of new index methods for spatiotemporal data have been
developed.

The most related work with our paper includes [16, 25, 24]. In[16] we discuss methods for indexing the history
of spatial objects that move with a linear function of time. In the current paper we address the problem of objects
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Figure 20: Average number of disk accesses for small range
queries, using the random datasets.

Figure 21: Average number of disk accesses for
mixed snapshot queries, using the random datasets.

Figure 22: Average number of disk accesses for small range
queries, using the railway datasets.

Figure 23: Average number of disk accesses for
mixed snapshot queries, using the railway datasets.

moving with more complex functions. [25] examines indexingmoving points that have piecewise linear trajectories.
Two approaches are used, the Native Space Indexing where a 3DR-tree is used to index the line segments of
object’s trajectories and the Parametric Space Indexing, where a parametric approach to store the moving points
is used. An idea similar to Parametric Space Indexing is usedin [7]. [24] presents methods to answer efficiently
navigational and trajectory historical queries. These queries are different than the topological queries examined
here and therefore the methods presented in [24] will not be optimized for answering the type of queries that
we investigate in the current paper. Another related paper is [22] that addresses the problem of approximating
spatial objects with small number of z-values, trying to balance the number of z-values with the extra space of the
approximation.

Methods that can be used to index static spatiotemporal objects include [32, 21, 38, 7, 36]. These approaches are
based either on the overlapping or on the multi-version approach for transforming a spatial structure in to a partially
persistent one. Another related paper is [10] where generalstructures to index spatiotemporal objects are discussed.

Finally, methods to index the future location of moving points appeared in [15, 27, 28, 34, 8, 3]. These methods
assume that the function that describes the future positions of each point is known. Three different approaches have
been proposed for indexing objects in this environment for range and nearest neighbor queries. One is based on
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the space-time representation [34, 8, 30], the other using adual transformation [15, 3] and the last one using time
parameterized spatial structures (R-Trees) [28, 27].

7 Conclusions

In this paper we investigated the problem of indexing spatiotemporal data. We assume that objects move with
general motion patterns and we are interested in answering efficiently snapshot and small interval spatiotemporal
range queries. The obvious approach to index spatiotemporal objects is to approximate each object with a minimum
bounding (hyper-)rectangle (MBR) and use a spatial access method to index these MBRs. However this approach
is problematic due to extensive empty space and overlap. In this paper we show how to split a set of spatiotemporal
objects in order to reduce this overlap and empty space and improve the query performance. We present algorithms
to find good split positions for a single spatiotemporal object and methods to distribute a given number of splits
to a collection of spatiotemporal objects. Also, we discusshow to find a good value for the number of splits that
achieves a good trade-off between query time and space overhead. Experimental results validate the efficiency of
the proposed methods. Among the presented approaches, the two greedy algorithms, namely the MergeSplit and the
LAGreedy, provide the best performance for a small processing overhead. The combination of splitting algorithms
and the PPR-tree can achieve up to 50% better query time than the best previous alternative. An interesting avenue
for future work is addressing the on-line version of the problem. Furthermore, we plan to address the spatiotemporal
indexing problem in an environment of high update rates thatappears in various spatiotemporal applications. Using
parallel and distributed spatiotemporal index methods is one promising approach.

References

[1] A. Aboulnaga and J. Naughton. Accurate estimation of thecost of spatial selections. InProc. of IEEE ICDE,
pages 123–134, 2000.

[2] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in spatial databases. InProc. of ACM
SIGMOD, pages 13–24, 1999.

[3] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In Proc. of the 19th ACM Symp. on
Principles of Database Systems (PODS), pages 175–186, 2000.

[4] B. Becker, T. Ohler S. Gschwind, B. Seeger, and P. Widmayer. An Asymptotically Optimal Multiversion
B-Tree.VLDB Journal 5(4), pages 264–275, 1996.

[5] N. Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R* - tree: An Efficient and
Robust Access Method for Points and Rectangles.Proceedings of ACM SIGMOD, pages 220–231, June 1990.

[6] F. Burton, J. Kollias, V. Kollias, and D. Matsakis. Implementation of overlapping btrees for time and space
efficient representation of collection of similar files.The Computer Journal, Vol.33, No.3, pages 279–280,
1990.

[7] M. Cai and P. Revesz. Parametric r-tree: An index structure for moving objects. InProc. of the COMAD,
2000.

[8] H. D. Chon, D. Agrawal, and A. El Abbadi. Storage and retrieval of moving objects. InMobile Data Man-
agement, pages 173–184, 2001.

18



[9] J. Driscoll, N. Sarnak, D. Sleator, and R.E. Tarjan. Making Data Structures Persistent.Journal of Computer
and System Sciences, Vol. 38, No. 1, pages 86–124, 1989.

[10] R. Guting, M. Bohlen, M. Erwig, C.Jensen, N. Lorentzos,M. Schneider, and M. Vazirgiannis. A Foundation
for Representing and Querying Moving Objects.In ACM TODS, Vol. 25, No 1, pages 1–42, 2000.

[11] A. Guttman. R-trees: A dynamic index structure for spatial searching. InProc. of ACM SIGMOD, pages
47–57, 1984.

[12] J. Jin, N. An, and A. Sivasubramaniam. Analyzing range queries on spatial data. In16th International
Conference on Data Engineering (ICDE’ 00), pages 525–534, Washington - Brussels - Tokyo, March 2000.
IEEE.

[13] I. Kamel and C. Faloutsos. Hilbert R-tree: An Improved R-tree Using Fractals.Proceedings of VLDB, pages
500–510, September 1994.

[14] G. Kollios, D. Gunopulos, and V. Tsotras. Indexing Animated Objects.In Proc. 5th Int. MIS Workshop, Palm
Springs Desert, CA, 1999.

[15] G. Kollios, D. Gunopulos, and V. Tsotras. On Indexing Mobile Objects.In Proc. of the 18th ACM Symp. on
Principles of Database Systems (PODS), pages 261–272, June 1999.

[16] G. Kollios, D. Gunopulos, V. Tsotras, A. Delis, and M. Hadjieleftheriou. Indexing Animated Objects Using
Spatio-Temporal Access Methods.IEEE Trans. Knowledge and Data Engineering, pages 742–777, September
2001.

[17] C. Kolovson and M. Stonebraker. Segment Indexes: Dynamic indexing techniques for multi-dimensional
interval data. InProc. of ACM SIGMOD, pages 138–147, 1991.

[18] A. Kumar, V.J. Tsotras, and C. Faloutsos. Designing access methods for bitemporal databases.IEEE Trans.
Knowledge and Data Engineering, 10(1):1–20, 1998.

[19] S.T. Leutenegger, M.A. Lopez, and J.M. Edgington. STR:A simple and efficient algorithm for r-tree packing.
In Proc. of IEEE ICDE, 1997.

[20] D. Lomet and B. Salzberg. Access Methods for Multiversion Data. In Proceedings of ACM SIGMOD
Conf.,Portland, Oregon, pages 315–324, 1989.

[21] M. Nascimento and J. Silva. Towards historical r-trees. Proc. of SAC, 1998.

[22] J. A. Orenstein. Redundancy in spatial databases. InProceedings of the 1989 ACM SIGMOD International
Conference on Management of Data, pages 294–305, Portland, Oregon, 31 May–2 June 1989.

[23] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer. Towards an analysis of range query performance in
spatial data structures. InProc. of ACM PODS, pages 214–221, 1993.

[24] D. Pfoser, C. Jensen, and Y. Theodoridis. Novel Approaches in Query Processing for Moving Objects.In
Proceedings of VLDB, Cairo Egypt, September 2000.

[25] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying mobile objects in spatio-temporal databases. InProc. of
7th SSTD, July 2001.

19



[26] G. Proietti and C. Faloutsos. I/O complexity for range queries on region data stored using an R-tree. In15th
International Conference on Data Engineering (ICDE ’99), pages 628–635, Washington - Brussels - Tokyo,
March 1999. IEEE.

[27] S. Saltenis and C. Jensen. Indexing of Moving Objects for Location-Based Services.To Appear in Proc. of
IEEE ICDE, 2002.

[28] S. Saltenis, C. Jensen, S. Leutenegger, and Mario A. Lopez. Indexing the Positions of Continuously Moving
Objects.In Proceedings of the ACM SIGMOD, pages 331–342, May 2000.

[29] B. Salzberg and V. Tsotras. Comparison of access methods for time-evolving data.ACM Computing Surveys,
31(2):158–221, 1999.

[30] Z. Song and N. Roussopoulos. Hashing moving objects. InMobile Data Management, pages 161–172, 2001.

[31] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. Exploring spatial datasets with histograms. InProc.
of IEEE ICDE, 2002.

[32] Y. Tao and D. Papadias. Mv3r-tree: a spatio-temporal access method for timestamp and interval queries. In
Proc. of the VLDB, 2001.

[33] Y. Tao and D. Papadias. Cost models for overlapping and multi-version structures. InProc. of IEEE ICDE,
2002.
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