
Efficient Inference of Partial Types

Dexter Kozen∗

kkozen@cs.cornell.edu

Jens Palsberg
palsberg@daimi.aau.dk

Michael I. Schwartzbach
mis@daimi.aau.dk

Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Aarhus C, Denmark

April 1992

Abstract

Partial types for the λ-calculus were introduced by Thatte in 1988
[3] as a means of typing objects that are not typable with simple
types, such as heterogeneous lists and persistent data. In that paper
he showed that type inference for partial types was semidecidable.
Decidability remained open until quite recently, when O’Keefe and
Wand [2] gave an exponential time algorithm for type inference.

In this paper we give an O(n3) algorithm. Our algorithm con-
structs a certain finite automaton that represents a canonical solution
to a given set of type constraints. Moreover, the construction works
equally well for recursive types; this solves an open problem stated in
[2].

∗Supported by the Danish Research Academy, the National Science Foundation, and the
John Simon Guggenheim Foundation. On sabbatical from: Computer Science Department,
Cornell University, Ithaca, New York 14853, USA.

1

1 Introduction

Partial types for the pure λ-calculus were introduced by Thatte in 1988 [3]
as a way to type certain λ-terms that are untypable in the simply-typed
λ-calculus. They are of substantial pragmatic value, since they allow the
typing of such constructs as heterogeneous lists and persistent data that
would otherwise be untypable.

Formally, partial types comprise a partially ordered set (T,≤), where T is
the set of well-formed terms over the constant symbol Ω and the binary type
constructor →, and ≤ is the partial order defined inductively as follows:

(i) t ≤ Ω for any t;

(ii) s → t ≤ s′ → t′ if and only if s′ ≤ s and t ≤ t′.

Intuitively, the type constructor → represents the usual function space con-
structor, and Ω is a universal type that includes every other type. The partial
order ≤ can be thought of as type inclusion or coercion; that is, s ≤ t if it is
possible to coerce type s into type t.

Clause (ii) in the definition of ≤ models the fact that a function with
domain s and range t can be coerced to a function with domain s′ and range
t′ provided s′ can be coerced to s and t can be coerced to t′; thus the coercion
order on functions is monotone in the range and antitone in the domain. That
≤ is antitone in the domain is considered to be the main source of difficilty
in type inference algorithms.

More λ-terms are typable with partial types than with simple types. For
example, the term λf.(fK(fI)), where K = λx.(λy.x) and I = λz.z, has
partial type

(Ω → (Ω → Ω)) → Ω,

but no simple type. The typing rules for the λ-calculus with partial types
are the standard ones for subtypes [3].

As with any type discipline, the question of type inference is of paramount
importance:

Given a λ-term E, is E typable? If so, give a type for it.

For this particular discipline, the type inference question can be rephrased in
terms of solving a finite system of type constraints, which are just inequalities

2

over terms with type variables. Rephrased, the problem becomes:

Given a system of inequalities of the form s ≤ t, where s and t
are terms over → and variables ranging over T , does the system
have a solution in (T,≤)? If so, give a solution.

In his original paper [3], Thatte showed that the type inference problem
for partial types is semidecidable. The problem of decidability remained
unsolved until quite recently, when O’Keefe and Wand [2] presented an ex-
ponential time algorithm. Their algorithm involves iterated substitution and
gives no hint of the possibility of the existence of canonical solutions; indeed,
there exist satisfiable constraint systems with no ≤-minimal solution.

In this paper we show that the type inference problem for partial types
is solvable in time 0(n3), where n is the size of the λ-term. Moreover, the
solutions we construct are canonical in the sense that they are least in the
so-called Böhm order, a natural order different from ≤.

Our algorithm constructs a certain finite automaton with O(n2) states from
the given system of type constraints. The canonical solution to the system
is just the regular language accepted by the automaton, where we represent
types as binary trees and binary trees as prefix-closed sets of strings over
a two-letter alphabet. In this representation, the Böhm order is just set
inclusion ⊆.

The canonical solution always exists, but it may not be finite; however,
since it is contained in all other solutions, we can check for the existence of a
finite solution by checking whether the canonical solution is finite. Thus the
typability question reduces essentially to the finiteness problem for regular
sets.

Our construction works equally well for recursive types; this solves an open
problem stated in [2].

Despite the fact that our polynomial-time algorithm now makes automatic
type inference for partial types feasible, we feel that the more important
contribution of this work is theoretical: namely, the precise mathematical
characterization of the set of solutions to a system of type constraints and the
identification of a canonical solution. We hope that the automata-theoretic
approach developed here will be useful in dealing with other type systems.

3

2 From Types to Trees

In this section we rephrase the type inference problem and generalize to
infinite trees. This allows us to isolate the essential combinatorial structure
of the problem independent of type-theoretic syntax.

2.1 Systems of Type Constraints

Given a λ-term, the type inference question can be rephrased in terms of
a system of type constraints as follows. Assume that the λ-term has been
α-converted so that all bound variables are distinct. To each subterm E we
assign a type variable [[E]]. For every subterm of the form λx.E we generate
the inequality [[λx.E]] ≥ [[x]] → [[E]]. For every subterm of the form EE ′ we
generate the inequality [[E]] ≤ [[E ′]] → [[EE ′]]. The solutions of this system of
constraints correspond exactly to the possible types [3, 2].

2.2 Trees

Partial types are essentially binary trees. We represent binary trees as cer-
tain sets of strings over the binary alphabet {L, R}.

Definition 2.1 Let α, β, . . . denote elements of {L, R}∗. The parity of α
is the number mod 2 of L’s in α. The parity of α is denoted πα. A string α
is said to be even (respectively, odd) if πα = 0 (respectively, 1).

A tree is a subset σ ⊆ {L, R}∗ that is

• nonempty,

• closed under prefix, and

• binary, in the sense that for all α, αR ∈ σ iff αL ∈ σ.

We use σ, τ, . . . to denote trees. The set of all trees is denoted ̂T .

A tree is finite if it is finite as a set of strings. A path in a tree σ is
a maximal subset of σ linearly ordered by the prefix relation. By König’s
Lemma, a tree is finite iff it has no infinite paths.

4

An element α ∈ σ is a leaf of σ if it is not a proper prefix of any other
element of σ. ✷

For A, B ⊆ {L, R}∗ and α ∈ {L, R}∗, define

A · B = {ε} ∪ {Lα | α ∈ A} ∪ {Rβ | β ∈ B}
A ↓ α = {β | αβ ∈ A}.

For trees σ, τ , σ · τ is the tree with left subtree σ and right subtree τ , and
σ ↓ α is the subtree of σ at α if α ∈ σ, ∅ if not.

The following lemma establishes some elementary properties of the opera-
tors · and ↓ on trees.

Lemma 2.2

(i) (σ · τ) ↓ L = σ and (σ · τ) ↓ R = τ

(ii) σ = σ ↓ L · σ ↓ R.

(iii) (σ ↓ α) ↓ β = σ ↓ αβ.

(iv) α is a leaf of σ iff σ ↓ α = {ε}.

Proof. All properties are immediate consequences of the definitions. ✷

The types T are in a natural one-to-one correspondence with the finite
trees in ̂T under the embedding e : T → ̂T given by

e(Ω) = {ε}
e(s → t) = e(s) · e(t).

Under this embedding, an occurrence of Ω at the fringe of a type s corre-
sponds to a leaf of e(s).

We now wish to define a partial order on ̂T that agrees with the order ≤
on T under the embedding e.

Definition 2.3 For σ, τ ∈ ̂T , define σ ≤ τ if both of the following con-
ditions hold for any α:

(i) if α is an even leaf of σ, then αR /∈ τ ;

(ii) if α is an odd leaf of τ , then αR /∈ σ.

✷

5

Lemma 2.4 The relation ≤ is a partial order on trees, and agrees with the
order ≤ on types under the embedding e. In particular, for any σ, τ, σi, τi,

(i) σ ≤ {ε}
(ii) {ε} ≤ τ if and only if τ = {ε};
(iii) σ1 · σ2 ≤ τ1 · τ2 if and only if τ1 ≤ σ1 and σ2 ≤ τ2.

Proof. We first show that ≤ is a partial order. It is trivially reflexive. To
show transitivity, let σ ≤ τ ≤ ω and assume for a contradiction that α is an
even leaf of σ and αR ∈ ω. Let β be the longest prefix of αR in τ . If β = αR,
then Definition 2.3(i) is violated for σ, τ . Otherwise β is a prefix of α and a
leaf of τ . If β is even, then Definition 2.3(i) is violated for τ, ω. If β is odd,
then Definition 2.3(ii) is violated for σ, τ . In all three cases we contradict the
assumption σ ≤ τ ≤ ω. A symmetric argument under the assumption that
α is an odd leaf of ω and αR ∈ σ likewise leads to a contradiction

For antisymmetry, assume σ ≤ τ ≤ σ. Let α ∈ σ and let β be the longest
prefix of α in τ . If β /∈ α, then β is a leaf of τ but then either β is even,
which contradicts τ ≤ σ, or β is odd, which contradicts σ ≤ τ . Thus β = α
and α ∈ τ . Since α ∈ σ was arbitrary, σ ⊆ τ . A symmetric argument shows
that τ ⊆ σ.

We next establish the properties (i)—(iii) in turn.

(i) If a is an even leaf in σ, then clearly αR /∈ {ε}. There are no odd leaves
in {ε}.

(ii) The if follows by reflexivity; only if follows by (i) and antisymmetry.

(iii) Let σ = σ1 ·σ2 and τ = τ1 ·τ2. For if, assume that α is an even leaf in σ.
We proceed by induction on the length of α. The case α = ε is not possible.
If α = Lβ then β is an odd leaf in σ1, so βR /∈ τ1, so LβR /∈ τ1 · τ2, so
αR /∈ τ . If α = Rβ then β is an even leaf in σ2, so βR /∈ τ2, so RβR /∈ τ1 · τ1,
so αR /∈ τ . Assume now that α is an odd leaf in τ . We proceed by induction
on the length of α. The case α = ε is not possible. If α = Lβ then β is an
even leaf in τ1, so βR /∈ σ1, so LβR /∈ σ1 · σ2, so αR /∈ σ. If α = Rβ then β
is an odd leaf in τ2, so βR /∈ σ2, so RβR /∈ σ1 · σ2, so αR /∈ σ.

For only if, assume that α is an even leaf in τ1; then Lα is an odd leaf in
τ , so LαR /∈ σ, so αR /∈ σ1. If α is an odd leaf in σ1, then Lα is an even leaf
in σ, so LαR /∈ τ , so αR /∈ τ1. If α is an even leaf in σ2, then Rα is an even

6

leaf in σ, so RαR /∈ τ , so αR /∈ τ2. If α is an odd leaf in τ2, then Rα is an
odd leaf in τ , so RαR /∈ σ, so αR /∈ σ2.

Finally, we show that the order on types agrees with the order on trees
under the embedding e, i.e., s ≤ t if and only if e(s) ≤ e(t). We proceed
by induction on the structure of s and t. If t = Ω then the result follows
from (i). If s = Ω then the result is immediate from (ii). If s = s1 → s2 and
t = t1 → t2 then the induction hypothesis tells us that t1 ≤ s1 if and only if
e(t1) ≤ e(s1) and s2 ≤ t2 if and only if e(s2) ≤ e(t2). The result now follows
from (iii) and the definitions of e and ≤ on types. ✷

Amadio and Cardelli [1] give an alternative definition of a partial order on
recursive types involving infinite chains of finite approximations. Definition
2.3 is equivalent to theirs.

Lemma 2.5 The following properties hold for all σ, τ .

(i) (R ∈ σ ∧ R ∈ τ ∧ σ ≤ τ) ⇒ (σ ↓ L ≥ τ ↓ L) ∧ (σ ↓ R ≤ τ ↓ R);

(ii) (σ ≤ τ ∧ R ∈ τ) ⇒ R ∈ σ.

Proof. Property (i) follows immediately from Lemma 2.4(iii) 7 and (ii)
follows immediately from Lemma 2.4(ii). ✷

3 From Constraints to Graphs

Instead of systems of type constraints involving type variables, we consider
a more general notion of a constraint graph.

Definition 3.1 A constraint graph is a directed graph G = (S, L, R,≤)
consisting of a set of nodes S and three sets of directed edges L, R,≤, We

write s
L→ t to indicate that the pair (s, t) is in the edge set L, and similarly

s
R→ t, s

≤→ t. A constraint graph must satisfy the properties:

• any node has at most one outgoing L edge and at most one outgoing
R edge;

• a node has an outgoing L edge if and only if it has an outgoing R edge.

A solution for G is any map h : S → ̂T such that

7

(i) if u
L→ v and u

R→ w, then h(u) = h(v) · h(w);

(ii) if u
≤→ v, then h(u) ≤ h(v).

The solution h is finite if h(s) is a finite set for all s. ✷

A system of type constraints as described in §2.1 gives rise to a constraint
graph by associating a unique node with every subterm, defining L and R
edges from a term to its left and fight subterms, and defining ≤ edges for the
inequalities.

Definition 3.2 A constraint graph is closed if whenever the following solid
edges exist, then so do the dashed ones.

That is, the edge relation ≤ is reflexive, transitive, and closed under rules re-
sembling the two implications of Lemma 2.4(iii). The closure of a constraint
graph G is the smallest closed graph containing G as a subgraph. ✷

Lemma 3.3 A constraint graph and its closure have the same set of so-
lutions.

Proof. Any solution of the closure of G is also a solution of G, since G has
fewer constraints. Conversely, the closure of G can be constructed from G
by iterating the closure rules, and it follows inductively by Lemma 2.4 that
any solution of G satisfies the additional constraints added by this process.

✷

8

4 From Graphs to Automata

In this section we define two automata M and N and describe their relation-
ship. These automata will be used to characterize the canonical solution of a
given constraint graph G. An intuitive account follows the formal definitions.

Definition 4.1 Let a closed constraint graph G = (S, L, R,≤) be given.
The automaton M is defined as follows. The input alphabet of M is {L, R}.
The states of M are S2 ∪ S1 ∪ S0. States in S2 are written (s, t), those in
S1 are written (s), and the unique state in S0 is written (). The transitions
are defined as follows.

(u, v)
ε→ (u, v′) if v

≤→ v′ in G

(u, v)
ε→ (u′, v) if u′ ≤→ u in G

(u, v)
R→ (u′, v′) if u

R→ u′ and v
R→ v′ in G

(u, v)
L→ (v′, u′) if u

L→ u′ and v
L→ v′ in G

(u, v)
ε→ (v) always

(v)
ε→ (v′) if v

≤→ v′ in G

(v)
R→ (v′) if v

R→ v′ in G

(v)
L→ () if v

L→ v′ in G

If p and q are states of M and α ∈ {L, R}∗, we write p
α→ q if the au-

tomaton can move from state p to state q under input α, including possible
ε-transitions.

The automaton Ms is the automaton M with start state (s, s). All states
are accept states; thus the language accepted by Ms is the set of strings α
for which there exists a state p such that (s, s)

α→ p. We denote this language
by L(s). ✷

Informally, we can think of the automaton Ms as follows. We start with
two pebbles, one green and one red, on the node s of the constraint graph
G. We can move the green pebble forward along a ≤ edge at any time, and
we can move the red pebble backward along a ≤ edge at any time. We can
move both pebbles simultaneously along R edges leading out of the nodes
they occupy. We can also move them simultaneously along outgoing L edges,
but in the latter case we switch their colors. At any time, we can elect to
remove the red pebble; thereafter, we can move the green pebble forward

9

along ≤ or R edges as often as we like, and forward along an L edge once, at
which point the pebble must be removed. The sequence of L’s and R’s that
were seen gives a string in L(s), and all strings in L(s) are obtained in this
way.

The intuition motivating the definition of M is that we want to identify
the conditions that require a path to exist in any solution. Thus L(s) is the
set of α that must be there; this intuition is made manifest in Lemma 4.2.
It turns out that once we identify this set, we are able to show that it is a
solution itself.

We now show that M accepts only essential strings.

Lemma 4.2 If h : S → ̂T is any solution and (s, s)
α→ p, then α ∈ h(s).

Moreover,

(i) if p = (u, v) then h(u) ≤ h(s) ↓ α ≤ h(v);

(ii) if p = (v) then h(s) ↓ α ≤ h(v);

Proof. We proceed by induction on the number of transitions. If this is
zero, then p = (s, s) and α = ε, and the result is immediate. Otherwise,
assume that (s, s)

α→ p and the lemma holds for this sequence of transitions.
We argue by cases, depending on the form of the next transition out of p.

If p if of the form (u, v), then the induction hypothesis says that α ∈ h(s)
and h(u) ≤ h(s) ↓ α ≤ h(v).

If (u, v)
ε→ (u′, v′), then u′ ≤→ u and v

≤→ v′ so αε = α ∈ h(s) and

h(u′) ≤ h(u) ≤ h(s) ↓ α ≤ h(v) ≤ h(v′).

If (u, v)
R→ (u′, v′), then u

R→ u′ and v
R→ v′, so h(u′) = h(u) ↓ R and

h(v′) = h(v) ↓ R. Then R ∈ h(v), so by Lemmas 2.2 and 2.5, R ∈ h(s) ↓ α
and αR ∈ h(s) and

h(u′) = h(u) ↓ R ≤ h(s) ↓ αR ≤ h(v) ↓ R = h(v′).

If (u, v)
L→ (v′, u′), then u

L→ u′ and v
L→ v′, so h(u′) = h(u) ↓ L and

h(v′) = h(v) ↓ L. Then L ∈ h(v), so by Lemmas 2.2 and 2.5, L ∈ h(s) ↓ α
and αL ∈ h(s) and

h(u′) = h(u) ↓ L ≥ h(s) ↓ αL ≥ h(v) ↓ L = h(v′).

10

If (u, v)
ε→ (v), then αε = α ∈ h(s) and h(s) ↓ α ≤ h(v).

If p is of the form (v), then the induction hypothesis says that α ∈ h(s)
and h(s) ↓ α ≤ h(v).

If (v)
ε→ (v′), then v

≤→ v′, so αε = α ∈ h(s) and

h(s) ↓ α ≤ h(v) ≤ h(v′).

If (v)
R→ (v′) then (v)

R→ (v′), so h(v′) = h(v) ↓ R. Then R ∈ h(v) so by
Lemmas 2.2 and 2.5, R ∈ h(s) ↓ α and αR ∈ h(s), and

h(s) ↓ αR ≤ h(v) ↓ R = h(v′)

Finally if (v)
L→ (), then (v)

L→ v′, so h(v′) = h(v) ↓ L. Then L ∈ h(v), so
by Lemmas 2.2 and 2.5, L ∈ h(s) ↓ α and αL ∈ h(s). ✷

Here we give a useful alternative characterization of L(s) in terms of a
different automaton N .

Definition 4.3 Let G = (S, L, R,≤) be given as above. We define the
automaton N over the input alphabet {L, R} as follows. The states of N
are S × {0, 1}; we use square brackets for states of N to distinguish them
from states of M. The transitions are

[s, 0]
ε→ [t, 0] if s

≤→ t in G

[s, 1]
ε→ [t, 1] if t

≤→ s in G

[s, b]
R→ [t, b] if s

R→ t in G

[s, b]
L→ [t, b̄] if s

L→ t in G

As above, we write [s, b]
α→ [t, c] if [s, b] can go to [t, c] under α, including

possible ε-transitions. ✷

The automaton N has states [s, b] where b is a Boolean value. The second
component is used to keep track of the parity of the spanned string. We can
think of [s, b] as a pebble on s; the second component gives the color of the
pebble. If the pebble is green (b = 0), we can move it forward along ≤ edges.
If the pebble is red (b = 1), we can move it backward along ≤ edges. We can
move the pebble forward along R or L edges at any time but if we move it
along an L edges then we switch the color.

11

The following lemmas relate M and N .

Lemma 4.4

(i) (s, s)
α→ (u, v) if and only if both

(a) [s, πα]
α→ [v, 0]

(b) [s, πα]
α→ [u, 1]

(ii) (s)
α→ (t) if end only if α = Rk for some k and [s, 0]

α→ [t, 0].

(iii) (s)
α→ () if end only if α = RkL for some k and [s, 0]

α→ [t, 1]
for some t.

Proof. We prove the three parts in turn. In each case we proceed by
induction on α.

(i) If α = ε then

(s, s)
ε→ (u, v) ⇔ u

≤→ s ∧ s
≤→ v

⇔ [s, 0]
ε→ [v, 0] ∧ [s, 1]

ε→ [u, 1]

⇔ [s, πε]
ε→ [v, 0] ∧ [s, πε]

ε→ [u, 1]

If α = βL then

(s, s)
β→ (p, q)

L→ (q′, p′)
ε→ (u, v).

By the induction hypothesis, this is equivalent to

[s, πβ]
β→ [q, 0] ∧ [s, πβ]

β→ [p, 1]∧
p

L→ p′ ∧ q
L→ q′ ∧ u

≤→ q′ ∧ p′
≤→ v

⇔ [s, πβ]
β→ [q, 0]

L→ [q′, 1]
ε→ [u, 1]∧

[s, πβ]
β→ [p, 1]

L→ [p′, 0]
ε→ [v, 0]

⇔ [s, πβ]
βL→ [v, 0] ∧ [s, πβ]

βL→ [u, 1]

⇔ [s, πβL]
βL→ [v, 0] ∧ [s, πβL]

βL→ [u, 1]

If α = βR then

(s, s)
β→ (p, q)

R→ (p′, q′)
ε→ (u, v).

By the induction hypothesis, this is equivalent to

[s, πβ]
β→ [q, 0] ∧ [s, πβ]

β→ [p, 1]∧

12

p
R→ p′ ∧ q

R→ q′ ∧ u
≤→ p′ ∧ q′

≤→ v

⇔ [s, πβ]
β→ [q, 0]

R→ [q′, 0]
ε→ [v, 0]∧

[s, πβ]
β→ [p, 1]

R→ [p′, 1]
ε→ [u, 1]

⇔ [s, πβ]
βR→ [v, 0] ∧ [s, πβ]

βR→ [u, 1]

⇔ [s, πβR]
βRL→ [v, 0] ∧ [s, πβR]

βR→ [u, 1]

(ii) If α = ε then

(s)
ε→ (t) ⇔ s

≤→ t

⇔ ε = R0 ∧ [s, 0]
ε→ [t, 0]

If α = βR then

(s)
β→ (p)

R→ (p′)
ε→ (t).

By the induction hypothesis, this is equivalent to

β = Rk ∧ [s, 0]
β→ [p, 0] ∧ p

R→ p′ ∧ p′
≤→ t

⇔ βR = Rk+1 ∧ [s, 0]
βR→ [t, 0].

The case α = βL is not possible.

(iii) The cases α = ε and α = βR are not possible. If α = βL then

(s)
β→ (p)

L→ ().

Using (ii), this is equivalent to

β = Rk ∧ [s, 0]
β→ [p, 0] ∧ p

L→ t

⇔ α = RkL ∧ [s, 0]
βL→ [t, 1].

✷

Lemma 4.5 For any string α, α ∈ L(s) if and only if there exist β, k, u, v
such that

(i) α = βRk or α = βRkL,

(ii) [s, πβ]
α→ [v, πα ⊕ πβ], and

(iii) [s, πβ]
β→ [u, 1].

13

Here ⊕ denotes addition mod 2.

Proof. First assume α ∈ L(s). Then (s, s)
α→ p for some state p. If

p = (u, v) then (s, s)
α→ (u, v), so by Lemma 4.4 we have

[s, πα]
α→ [v, 0] ∧ [s, πα]

α→ [u, 1].

But then we can choose α = β and k = 0. If p = (v) then for some β, γ we
have

(s, s)
β→ (u, q)

ε→ (q)
γ→ (v).

so by Lemma 4.4 we have

γ = Rk ∧ [s, πβ]
β→ [q, 0]

γ→ [v, 0] ∧ [s, πβ]
β→ [u, 1].

Since πα = πβ, this is equivalent to

α = βRk ∧ [s, πβ]
α→ [v, πα ⊕ πβ] ∧ [s, πβ]

β→ [u, 1]

and we are done. If p = () then for some β, γ we have

(s, s)
β→ (u, q)

ε→ (q)
γ→ ().

so by Lemma 4.4 we have

γ = RkL ∧ [s, πβ]
β→ [q, 0]

γ→ [v, 1] ∧ [s, πβ]
β→ [u, 1].

Since πα �= πβ, this is equivalent to

α = βRkL ∧ [s, πβ]
α→ [v, πα ⊕ πβ] ∧ [s, πβ]

β→ [u, 1]

and we are done.

Conversely, assume (i)–(iii). We have α = βγ where γ = Rk or RkL, and

[s, πβ]
α→ [v, πγ]

[s, πβ]
β→ [u, 1].

We must have
[s, πβ]

β→ [p, 0]
γ→ [v, πγ]

for some p. From Lemma 4.4 we have

(s, s)
β→ (u, p)

ε→ (p)

and either (p)
γ→ (v) or (p)

γ→ (), depending on whether γ = Rk or RkL. In
either case α ∈ L(s). ✷

14

5 Main Result

In this section we prove the main result: that L(s) gives the canonical solu-
tion of G.

Theorem 5.1 The sets L(s) are trees, and the function L : S → ̂T is a so-
lution of G. Moreover, if h : S → ̂T is any other solution, then L(s) ⊆ h(s)
for any s.

Proof. We first show that L(s) ∈ ̂T . It is clearly non-empty, since (s, s)
ε→

(s, s); it is prefix closed by definition; and it is binary because G always has
L and R edges in pairs.

In order to show that L is a solution of G, we need to show

(i) if u
L→ v and u

R→ w, then L(u) = L(v) · L(w);

(ii) if u
≤→ v then L(u) ≤ L(v).

First, we show (i) as two inclusions. Assume that α ∈ L(v) · L(w). We
proceed by induction on α. If α = ε then we are done, since ε ∈ L(u). If

α = Lβ then β ∈ L(v), so (v, v)
β→ p for some p. From

(u, u)
L→ (v, v)

β→ p

we conclude that Lβ ∈ L(u). If α = Rβ then β ∈ L(w), so (w, w)
β→ p for

some p. From

(u, u)
R→ (w, w)

β→ p

we conclude that Rβ ∈ L(u).

Assume that α ∈ L(u). We proceed by induction on α. If α = ε then we
are done, since ε ∈ L(v) · L(w). If α = Lβ then from Lemma 4.5 there exist
γ, k, p, and q such that β = γRk or β = γRkL and

[u, πLγ]
α→ [p, πα ⊕ πLγ] ∧ [u, πLγ]

Lγ→ [q, 1]

Since [u, πLγ]
L→ [v, πγ], [u, πLγ]

L→ [v, πγ], and πα ⊕ πLγ = πβ ⊕ πγ it
follows that

[v, πγ]
β→ [p, πβ ⊕ πγ] ∧ [v, πγ]

γ→ [q, 1]

15

so β ∈ L(v) and α ∈ L(v) · L(w). If α = Rβ then from Lemma 4.5 there
exist γ, k, p, and q such that β = γRk or β = γRkL and

[u, πRγ]
α→ [p, πα ⊕ πRγ] ∧ [u, πRγ]

Rγ→ [q, 1]

Since [u, πRγ]
R→ [w, πγ], [u, πRγ]

R→ [w, πγ], and πα ⊕ πRγ = πβ ⊕ πγ it
follows that

[w, πγ]
β→ [p, πβ ⊕ πγ] ∧ [w, πγ]

γ→ [q, 1]

so β ∈ L(w) and α ∈ L(v) · L(w).

Second, we show (ii). We need to show that for any u, v, α,

• if u
≤→ v, α even, α ∈ L(u), and αR ∈ L(v), then αR ∈ L(u);

• if u
≤→ v, α odd, α ∈ L(v), and αR ∈ L(u), then αR ∈ L(v).

Using the characterization in terms of N , these two cases can be rolled into
one: it suffices to show for any s, t, α,

• if [s, πα]
ε→ [t, πα], α ∈ L(s), and αR ∈ L(t), then αR ∈ L(s).

By Lemma 4.5, we have

[s, πβ]
α→ [u, πα ⊕ πβ] (1)

[s, πβ]
β→ [v, 1] (2)

[t, πβ′]
αR→ [u′, παR ⊕ πβ′] (3)

[t, πβ′]
β′
→ [v′, 1]

Since αR ends with R, we must have αR = β′Rk for some k and παR = πβ′;
thus from (3) and [s, πα]

ε→ [t, πα] we get

[s, πα]
αR→ [u′, 0] (4)

If πα = πβ, we use (4) and (2) to get

[s, πβ]
αR→ [u′, πα ⊕ πβ]

[s, πβ]
β→ [v, 1]

16

If πα �= πβl, we use (4) and (1) to get

[s, πα]
αR→ [u′, παR ⊕ πα]

[s, πα]
α→ [u, 1]

In either case we have αR ∈ L(s) by Lemma 4.5.

To show that L is minimal, we need to show that for any other solution
h : S → ̂T ,L(s) ⊆ h(s) for all s. This follows directly from Lemma 4.2. ✷

Recursive types are just regular trees [1]. The canonical solution we have
constructed, although possibly infinite, is a regular tree. Thus we have solved
the type inference problem for recursive types left open in [2]. Specifically,
given a λ-term, we construct the corresponding constraint graph and automa-
ton M. Every subterm corresponds to a node s in the constraint graph, and
its Böhm-minimal type annotation is represented by the language L(s).

Note that the Böhm-minimal type of any typable λ-term trivially is Ω.
What we compute is the unique minimal Church-style explicit type annota-
tion. For simple types we have that types and type annotations are isomor-
phic. This is not so for partial types. For example, the Böhm-minimal type
of λf.(fK(fI)) is just Ω, but its Böhm-minimal type annotation which our
algorithm computes, is

λf : (Ω → (Ω → Ω)).(f(λx : Ω.λy : Ω.x)(f(λz : Ω.z)))

In the following section we give an efficient decision procedure for the exis-
tence of a finite types

6 An algorithm

We have argued that the type inference problem studied in [3, 2] is equiva-
lent to the following: given a finite constraint graph G, does G have a finite
solution? Using the characterization of the previous section we can answer
this question easily.

Theorem 6.1 We can decide in time O(n3) whether a constraint graph of
size n has a finite solution.

Proof. By Theorem 5.1, there exists a finite solution if and only if the
canonical solution is finite. To determine this, we need only check whether

17

any L(s) contains an infinite path, We first form the constraint graph, then
close it; this gives a graph with n vertices and O(n2) edges. This can be done
in time O(n3). We then form the automaton M, which has n2 +n+1 states
but only O(n3) transitions, at most O(n) from each state. We then check for
a cycle with at lest one non-ε transition reachable from some (s, s). This can
be done in linear time in the size of the graph using depth-first search. The
entire algorithm requires time O(n3). ✷

A λ-term of size n yields a constraint graph with O(n) nodes and O(n)
edges. This gives

Corollary 6.2 The type inference problem for partial types is solvable in
time O(n3).

7 A Characterization of All Solutions

We have shown that any solution h : S → ̂T of a constraint graph G =
(S, L, R,≤) contains the canonical solution L in the sense that L(s) ⊆ h(s)
for all s ∈ S. However, there certainly exist functions h : S → ̂T containing
L in this sense that are not solutions. In this section we give a precise
characterization of the set of all solutions of G.

In the followings we write LG for L to denote the dependence on G.

Theorem 7.1 Let G = (S, L, R,≤) be a constraint graph. A function
h : S → ̂T is a solution of G if and ony if there exists a (possibly infi-
nite) constraint graph G′ = (S ′, L′, R′,≤′) containing G as a subgraph such
that h = LG′ on S.

Proof. First we show that if G is a subgraph of G′, then LG′ gives a solution

of G. Suppose u, v, w ∈ S, u
L→ v, and u

R→ w. Since G is a subgraph of

G′, u
L′
→ v and u

R′
→ w. By Theorem 5.1, LG′ is a solution of G′, therefore

LG′(u) = LG′(v) · LG′(w). Similarly, if u, v ∈ S and u
≤→ v, then u

≤′
→ v,

therefore LG′(u) ≤ LG′(v). The two conditions of Definition 3.1 are met.

Conversely, let h : S → ̂T be any solution of G. We construct a constraint
graph G′ from h containing G as a subgraph and show that h and LG′ agree

18

on S. Define

S ′ = S ∪ {(s, α) | s ∈ S, α ∈ h(s)}
L′ = L ∪ {((s, α), (s, αL)) | s ∈ S, αL ∈ h(s)}
R′ = R ∪ {((s, α), (s, αR)) | s ∈ S, αR ∈ h(s)}
≤′ = ≤ ∪{((s, ε), s) | s ∈ S} ∪ {(s, (s, ε)) | s ∈ S}.

The graph G′ = (S ′, L′, R′,≤′) is a constraint graph, since each node has an
L′ successor iff it has an R′ successor, and L′ and R′ successors are unique.

We show now that h agrees with LG′ on S. If α ∈ h(s), then (s, α) ∈ S ′,
and therm is a path from (s, ε) to (s, α) in G′ with label α. In the automaton
M′ constructed from G′, (s, s)

α→ ((s, α), (s, α)), thus α ∈ LG′(s).

To show the reverse inclusion, we extend h in a natural way to a solution
h′ of G′, and then appeal to Theorem 5.1 to conclude that h′ contains LG′ .
Define

h′(s) = h(s)

h′(s, α) = h(s) ↓ α.

It remains to show that h′ is a solution of G′. If s, t, u ∈ S, s
L→ t, and

s
R→ u, then

h′(s) = h(s) = h(t) · h(u) = h′(t) · h′(u).

If αL, αR ∈ h(s), then by Lemma 2.2,

h′(s, α) = h(s) ↓ α

= (h(s) ↓ α) ↓ L · (h(s) ↓ α) ↓ R

= h(s) ↓ αL · h(s) ↓ αR

= h′(s, αL) · h′(s, αR).

Finally, if s, t ∈ S and s
≤→ t, then

h′(s) = h(s) ≤ h(t) = h′(t)

and to satisfy the inequalities s ≤′ (s, ε) ≤′ s we have

h(s) = h(s) ↓ ε = h′(s, ε).

✷

19

References

[1] Ruberto M. Amadio and Luca Cardelli. Subtyping recursive types. In
Eighteenth Symposium on Principles of Programming Languages. ACM
Press, January 1991.

[2] Patrick M. O’Keefe and Mitchell Wand, Type inference for partial types
is dicidable, In Proc. ESOP’92, European Symposium on Programming.
Springer-Verlag (LNCS 582), 1992.

[3] Satish Thatte. Type inference with partial types. In Proc. International
Colloquium on Automata, Languages, and Programming 1988. Springer-
Verlag (LNCS 317), 1988.

20

