
Journal of Artificial Intelligence Research 34 (2009) 707-755 Submitted 08/08; published 04/09

Efficient Informative Sensing using Multiple Robots

Amarjeet Singh AMARJEET@EE.UCLA.EDU

Andreas Krause KRAUSEA@CALTECH.EDU

Carlos Guestrin GUESTRIN@CS.CMU.EDU

William J. Kaiser KAISER@EE.UCLA.EDU

Abstract

The need for efficient monitoring of spatio-temporal dynamics in large environmental applica-

tions, such as the water quality monitoring in rivers and lakes, motivates the use of robotic sensors

in order to achieve sufficient spatial coverage. Typically, these robots have bounded resources, such

as limited battery or limited amounts of time to obtain measurements. Thus, careful coordination of

their paths is required in order to maximize the amount of information collected, while respecting

the resource constraints. In this paper, we present an efficient approach for near-optimally solv-

ing the NP-hard optimization problem of planning such informative paths. In particular, we first

develop eSIP (efficient Single-robot Informative Path planning), an approximation algorithm for

optimizing the path of a single robot. Hereby, we use a Gaussian Process to model the underly-

ing phenomenon, and use the mutual information between the visited locations and remainder of

the space to quantify the amount of information collected. We prove that the mutual information

collected using paths obtained by using eSIP is close to the information obtained by an optimal

solution. We then provide a general technique, sequential allocation, which can be used to extend

any single robot planning algorithm, such as eSIP, for the multi-robot problem. This procedure

approximately generalizes any guarantees for the single-robot problem to the multi-robot case. We

extensively evaluate the effectiveness of our approach on several experiments performed in-field

for two important environmental sensing applications, lake and river monitoring, and simulation

experiments performed using several real world sensor network data sets.

1. Introduction

Global climate change and corresponding impetus on sustainable practices for environment-related

activities has brought forth the challenging task of observing natural phenomena exhibiting dynam-

ics in both space and time. Observing and characterizing these dynamics with high fidelity will

be critical for answering several questions related to policy issues for monitoring and control and

understanding biological effects on activity of microbes and other organisms living in (or dependent

on) these environments. Monitoring algal bloom growth in lakes and salt concentration in rivers, as

illustrated in Fig. 1, are specific examples of related phenomena of interest to biologists and other

environment scientists (MacIntyre, 1993; Ishikawa & Tanaka, 1993; MacIntyre, Romero, & Kling,

2002).

Monitoring environmental phenomena, such as algal bloom growth in a lake, requires mea-

suring physical processes, such as nutrient concentration, wind effects and solar radiation, among

others, across the entire spatial domain. One option to acquire data about such processes would be

to statically deploy a set of sensing buoys (Reynolds-Fleming, Fleming, & Luettich, 2004). Due to

the large spatial extent of the observed phenomena, this approach would require a large number of

sensors in order to obtain high fidelity data. The spatio-temporal dynamics in these environments

c©2009 AI Access Foundation. All rights reserved.

SINGH, KRAUSE, GUESTRIN & KAISER

(a) Confluence of San Joaquin and Merced River (b) Lake Fulmor, San Jacinto mountain reserve

Figure 1: Deployment sites used for performing path planning in-field.

motivate the use of actuated sensors – robots carrying sensors together with an efficient approach

for planning the paths of these actuated sensors. These actuated sensors have been used in the past

(Dhariwal et al., 2006) for measuring the phenomena at various locations and hence providing the

biologists with critical information about the state of the lake.

Typically however, such robots have strict resource constraints, such as storage battery energy,

that limits the distance they can travel or the number of measurements they can acquire before the

observed phenomena varies significantly. These constraints necessitate careful motion planning for

the robots – coordinating their paths in order to maximize the amount of collected information,

while satisfying the given resource constraints. In this paper, we tackle this important problem of

seeking informative paths for a collection of robots, subject to constraints on the cost incurred by

each robot, e.g. due to limited battery capacity.

In order to optimize the paths of these robots, we first need to quantify the informativeness of

any particular chosen path. In this work, we adopt an approach from spatial statistics and employ

probabilistic models of the spatial phenomena. Using these models, informativeness can be viewed

in terms of the uncertainty about our prediction of the phenomena at unobserved locations, given

the observations made by the mobile robots at a subset of locations (the selected path). In partic-

ular, we use a rich class of probabilistic models called Gaussian Processes (GPs) (Rasmussen &

Williams, 2006) that has been shown to accurately model many spatial phenomena (Cressie, 1991),

and apply the mutual information (MI) criterion (Caselton & Zidek, 1984) to quantify the reduction

in uncertainty achieved through selected robot paths.

Unfortunately, the problem of finding an optimal collection of paths, maximizing the mutual

information criterion, is an NP-hard search problem, which is typically intractable even for small

spatial phenomena. In this paper, we will develop an approximation algorithm which efficiently

finds a provably near-optimal solution to this optimization problem. The key insight which will

allow us to obtain such an algorithm is that the mutual information (and several other notions of

informativeness (as discussed in Krause and Guestrin, 2007) satisfies submodularity, an intuitive

diminishing returns property - making a new observation helps more if we have made only a few

observations so far, and less if we have already made many observations (Krause et al., 2008).

The problem of optimizing the path of a single robot to maximize a submodular function over

the visited locations was studied by Chekuri and Pal (2005), who developed an algorithm, recursive-

greedy, with strong theoretical approximation guarantees. Unfortunately, the running time of their

708

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

approach is quasi-polynomial: it scales as M log M , for M possible sensing locations. This property

makes the algorithm impractical for most environmental sensing applications, with typical numbers

(M) of observation locations reaching to several hundreds and more. In this paper, we present two

techniques – spatial decomposition and branch and bound search – for overcoming these limita-

tions of the recursive-greedy approach of Chekuri et al., making it practical for real world sensing

problems. We call this efficient approach for single robot path planning eSIP (efficient Single-robot

Informative Path planning).

We then provide a general approach, sequential-allocation, which can be used to extend any

single robot algorithm, such as eSIP, to the multi-robot setting. We furthermore prove that this

generalization only leads to minimal reduction (independent of the number of mobile robots) of the

approximation guarantee provided by the single robot algorithm. We combine eSIP with sequential-

allocation to develop the first efficient path planning algorithm (eMIP) that coordinates multiple

robots, each having a resource constraint, in order to obtain highly informative paths, i.e. paths that

maximize any given submodular function, such as mutual information. By exploiting submodular-

ity, we prove strong theoretical approximation guarantees for our algorithm.

We extensively evaluate the effectiveness of our approach on several experiments performed

in-field for two important environmental sensing applications, lake and river monitoring. The river

campaign was executed at the confluence of two rivers, Merced river and San Joaquin river, in Cal-

ifornia from August 7-11, 2007. Fig. 1a displays an aerial view of the San Joaquin deployment site.

The lake campaign was executed at a lake located at the University of California, Merced campus

from August 10-11, 2007. Fig. 1b displays an aerial view of lake Fulmor. In both campaigns, the

Networked Info Mechanical System (NIMS) (Jordan et al., 2007), a cable based robotic system, was

used to perform path planning while observing a two dimensional vertical plane (cross-section). In

addition to analyzing data from these deployments, we provide extensive experimental analysis of

our algorithm on several real world sensor network data sets, including the data collected using a

robotic boat at lake Fulmor (Dhariwal et al., 2006).

This manuscript is organized as follows. We formally introduce the Multi-robot Informative

Path Planning (MIPP) problem in Section 2. In Section 3, we discuss the sequential-allocation

approach for extending any single robot path planning algorithm to the multi-robot setting while

preserving approximation guarantees. We then review the recursive-greedy algorithm proposed by

Chekuri et al. (Section 5), an example of such a single-robot algorithm. Subsequently, we present

our spatial decomposition (Section 6) and branch and bound techniques (Section 7) which dras-

tically improve the running time of recursive-greedy and make it practical for real world sensing

applications. In Section 8, we evaluate our approach through in-field experiments as well as in sim-

ulations on real world sensing datasets. In Section 9, we review related work, and we present our

conclusions in Section 10. The proofs for all our results are presented in the Appendix.

2. The Multi-robot Informative Path Planning Problem

We now formally define the Multi-robot Informative Path Planning (MIPP) problem. We assume

that the spatial domain of the phenomenon is discretized into finitely many sensing locations V . For

each subset A ⊆ V , let I(A) denote the sensing quality, i.e. the informativeness, of observing the

phenomenon at locationsA. Details on appropriate choices for the sensing quality I are given below.

We also associate with each location v ∈ V , a sensing cost C(v) > 0, quantifying the expenses of

obtaining a measurement at location v. When traveling between two locations, u and v, a robot in-

709

SINGH, KRAUSE, GUESTRIN & KAISER

curs a traveling cost C(u, v) > 0. A robot traverses a path in this space: an s–t-pathP is a sequence

of l locations starting at node s, and finishing at t. The cost C(P) of path P = (s = v1, v2, . . . , vl =
t) is the sum of sensing costs and traveling costs along the path, i.e. C(P) =

∑l−1
i=2 C(vi) +∑l

i=2 C(vi−1, vi). In the case l = 2, cost of the path P will only involve traveling cost between the

starting and finishing locations C(s, t). We will use the notation P to both refer to the sequence of

nodes in the path, and to the subset of sensing locations P ⊆ V (ignoring their sequence). For a col-

lection of k paths P = {P1, . . . ,Pk}, one for each robot, I(P) = I(P1∪· · ·∪Pk) denotes the sens-

ing quality of the paths, which quantifies the amount of information collected by the k paths. The

goal of the MIPP problem is to find a collection P of k paths, with specified starting and finishing

location si and ti (not necessarily different), such that each path has bounded cost C(Pi) ≤ B for

some specified budget B, and that the paths are the most informative, i.e. I(P) is as large as possible.

Formally, the problem can be defined as:

max
Pi⊆V

I(∪k
i=1Pi); subject to C(Pi) ≤ B,∀ i ∈ {1, . . . , k}. (1)

In our lake monitoring example with the goal of performing surface monitoring using boats,

we first discretized the two-dimensional surface of the lake into finitely many sensing locations (as

depicted in Fig. 1b). For the single robot scenario, we then seek to find the most informative path

P1 (in terms of predicting the algal bloom content) starting from location s and finishing in location

t. The experiment cost C(vi) corresponds to the energy required for making chlorophyll and related

measurements (indicators of amount of algal bloom). The traveling cost C(vi−1, vi) corresponds to

the energy consumption when traveling from location vi−1 to vi. The budget B quantifies the total

energy stored in the boat’s battery.

2.1 Quantifying Informativeness:

How can we quantify the sensing quality I? To model spatial phenomena, a common approach in

spatial statistics is to use a rich class of probabilistic models called Gaussian Processes (GPs, c.f.,

Rasmussen and Williams, 2006). Such models associate a random variable Xv with each location

v ∈ V . The joint distribution P (XV) can then be used to quantify uncertainty in the prediction

P (XV\A | XA = xA) of phenomena at unobserved locations XV\A, after making observations

XA = xA at a small subset A of locations. To quantify this uncertainty we use, for example,

the mutual information (MI) criterion (as discussed by Caselton and Zidek, 1984). For a set of

locations, P , the MI criterion is defined as:

MI(A) ≡ H(XV\A)−H(XV\A | XA) (2)

where H(XV\A) is the entropy of the unobserved locations V \ A, and H(XV\A | XA) is the

conditional entropy of locations V \ A after sensing at locations A. Hence mutual information

measures the reduction in uncertainty at the unobserved locations. Therefore, in our lake monitoring

example, we would like to select the locations that most reduce the uncertainty in the algal bloom

content prediction for the lake environment. Conveniently, in a GP, the mutual information criterion

can be computed efficiently and analytically (Caselton & Zidek, 1984). The effectiveness of mutual

information to select informative sensing locations was studied by Krause et al. (2008). Several

alternative information criteria such as entropy (Ko et al., 1995), information disk model (Bai et al.,

2006) and alphabetical optimality criterion such as A-, D- and E-optimal have also been used to

associate sensing quality with observation locations in related problem domain.

710

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

2.2 Submodularity:

Even if we do not consider the constraints on the length of the paths of the robots, the problem

of selecting locations that maximize mutual information is NP-hard (Krause et al., 2008). Hence,

in general, we most likely cannot expect to be able to efficiently find the optimal set of locations.

Instead, our goal will be to efficiently find near-optimal solutions, for which the sensing quality

(e.g. mutual information), is provably close to the optimal sensing quality.

The key observation, which will allow us to obtain such strong approximation guarantees, is

that mutual information satisfies the following diminishing returns property (Krause et al., 2008):

The more locations we have already sensed, the less information we will gain by sensing a new

location. This intuition is formalized by the concept of submodularity: A function f is submodular

(Nemhauser et al., 1978) if:

∀A ⊆ B ⊆ V and s ∈ V \ B; f(A ∪ s)− f(A) ≥ f(B ∪ s)− f(B). (3)

Another intuitive property is that sensing quality is monotonic1, which means that I(A) ≤ I(B) for

all A ⊆ B ⊆ V . Hence, as we select more and more sensing locations, we will collect more and

more information. Lastly, mutual information is normalized, i.e. I(∅) = 0.

We thus define our MIPP problem as the problem of optimizing paths of length at most B for

k robots, such that the selected sensing locations maximize a normalized, monotonic submodu-

lar function I(·). This definition of the MIPP problem allows our approach to be applied to any

monotonic submodular objective function, not just mutual information. This generalization is very

useful, as several other notions of informativeness can be shown to satisfy submodularity (Krause

& Guestrin, 2007).

2.3 Online vs Offline Path Planning:

Many robotic path planning applications, such as search and rescue, involve uncertain environments

with complex dynamics that can only be partially observed. Informative path planning – selecting

the best locations to observe subject to given sensing constraints, in such uncertain environments

necessitates a trade off between exploration (gathering information about the environment) and

exploitation (using the current belief about the state of the environment most effectively). We dis-

tinguish two different classes of algorithms: nonadaptive (offline) algorithms, that plan and commit

to the paths before any observations are made, and adaptive (online) algorithms, that update and

replan as new information is collected. Both the online and offline settings are NP-hard optimiza-

tion problems. In this paper, we only discuss the approximation algorithms for the offline setting

that exploit the known belief about the environment for efficient path planning. We plan to work to-

wards extending our approach for an exploration-exploitation trade-off to incorporate online model

adaptation in the future.

3. Approximation Algorithm for MIPP

The problem of optimizing the path of a single robot (i.e. k = 1) to maximize a submodular func-

tion of the visited locations, constrained by an upper bound (B) on the path cost, was first studied

by Chekuri and Pal (2005). We will review their recursive-greedy algorithm in detail in Section 5.

1. This monotonicity holds only approximately for mutual information (Krause et al., 2008), which however is sufficient

for all purposes of this paper.

711

SINGH, KRAUSE, GUESTRIN & KAISER

Algorithm:sequential-allocation1

Input: B, k, starting / finishing locations s1, . . . , sk, t1, . . . , tk, V
Output: A set of informative paths P1, . . . ,Pn

begin2

A0 ← ∅;3

for 1 ≤ i ≤ k do4

// Performing path planning for the ith robot

Pi ← SPP (si, ti, B,Ai−1,V);5

// Committing to the previously selected locations

Ai ← Ai−1 ∪ Pi;6

return P1, . . . ,Pk;7

end8

Algorithm 1: Sequential allocation algorithm for multi robot path planning using any single robot path plan-

ning algorithm SPP. Output set of paths P1, . . . ,Pk provides an approximation guarantee of 1 + η where η is the

approximation guarantee of single robot path planning algorithm SPP .

In our lake monitoring problem, we seek to plan multiple paths, one for each robot. One pos-

sibility is to apply the single-path algorithm to the product graph, i.e. plan a path over tuples of

locations simultaneously representing the locations of all robots. However, such straightforward

application of the single-robot planning algorithm would lead to an increase in running time which

is exponential in the number of robots, and therefore intractable in practice. We are not aware

of any sub-exponential approximation algorithm for this challenging multiple-robot path planning

problem. In this paper, we present a simple algorithm for the multi-robot scenario that can exploit

any approximation algorithm for the single robot case, such as the recursive-greedy algorithm, as

discussed by Chekuri and Pal (2005), and (almost) preserve the approximation guarantee, while

avoiding the exponential increase in running time.

Our algorithm, sequential-allocation, successively applies the single robot path planning algo-

rithm k times to get the paths for k robots. Hereby, when planning the jth path, the approach takes

into account the locations already selected by the previous j − 1 paths. Committing to the (approx-

imately) best possible path at each stage before moving on to the next stage makes our approach

“greedy” in terms of paths.

The pseudocode of the algorithm is presented in Algorithm 1 and Fig. 2 illustrates the approach

for three robots. The algorithm takes as input the budget constraint B, number of available robots

k, starting and finishing location for each available robot s1, . . . , sk, t1, . . . , tk and the complete set

of discrete observation locations V to select from. Let us assume that we have a single robot path

planning algorithm, SPP , that takes as input a starting location si, a finishing location ti, budget

constraint B, a set of locations already selected for observation and a set of possible observation

locations that can be visited. In Fig. 2, all the three robots have same starting and finishing location.

While planning the path for the first robot (i = 1), the input set of already selected observation

locations is empty. At each subsequent stage, we commit to the locations selected in all the previous

stages and pass the already observed locations as input to our next call to SPP . LetAi−1 be the lo-

cations already visited by paths P1, . . . ,Pi−1, andA0 = ∅. Then the residual information, IAi−1
for

a path P over unvisited locations is defined as IAi−1
(P) = I(Ai−1∪P)−I(Ai−1). It can be verified

that if I is a normalized, monotonic and submodular function, then so is the residual information

712

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

Figure 2: Illustration of sequential allocation algorithm for three robots, each with the same starting and finishing

location.

IAi−1
. Thus, at stage i we use SPP to find the most informative path with respect to the modified

residual sensing quality function. In Fig. 2, when planning P2, locations selected for P1 are consid-

ered and the sensing quality function used is IP1
. Similarly, while evaluating the path P3, locations

selected for P1 and P2 are taken into account and the sensing quality function used is IP1∪P2
.

Perhaps surprisingly, this straight-forward “greedy” sequential allocation approach is guaran-

teed to perform almost as well as the black box algorithm used for path planning. More formally,

assume we have an η -approximate algorithm for the single robot problem, i.e. an algorithm which,

starting with budget B and a monotonic submodular function f , is guaranteed to find a path re-

covering at least a fraction of 1/η of the optimal information achievable with the same budget. In

this case, the following theorem proves that the sequential allocation procedure has approximation

guarantee close to η as well:

Theorem 1. Let η be the approximation guarantee for the single path instance of the informative

path planning problem. Then our sequential-allocation algorithm achieves an approximation guar-

antee of (1 + η) for the MIPP problem. In the special case, where all robots have the same starting

(si = sj ,∀i, j) and finishing locations (ti = tj ,∀i, j), the approximation guarantee improves to

1/(1− exp (−1/η)) ≤ 1 + η.

The work by Blum et al. (2003) proved Theorem 1 for the special case of additive (modular)

sensing quality functions. In this paper, we extend their result to general submodular functions.

As an example of an η-approximate algorithm for the single robot problem, in the next section,

we review the recursive-greedy algorithm as proposed by Chekuri and Pal (2005). This algorithm

has an approximation guarantee η of O(log2 |P∗|), where |P∗| is the number of locations visited

by an optimal solution P∗. Hence, for this algorithm, the performance guarantee obtained for the

MIPP problem through sequential allocation is O(log2 |P∗|) as well2.

2. In order to apply sequential allocation to the recursive-greedy algorithm, we can, when planning the ith path, simply

pass the set of nodes visited by the previous i − 1 paths as the input parameter R, as is illustrated in Algorithm 2.

713

SINGH, KRAUSE, GUESTRIN & KAISER

(a) (b)

(c) (d)

Figure 3: Illustration of performance of simple greedy approaches compared to an optimal approach.

4. A Note on Greedy Path Planning

The work by Krause et al. (2008) considered the sensor placement problem, where a subset A ⊆ V
of k locations is selected in order to maximize the mutual information, without considering path

costs. By exploiting the submodularity property of MI, they proved that if the discretization V is

fine enough and the GP satisfies mild regularity conditions, greedily selecting locations based on

this criterion is near-optimal. More specifically, the greedy algorithm (which we call GreedySubset

in the following), after selecting the first i locations Ai, picks the location with maximum residual

information i.e. vi+1 = argmaxv IAi({v}) and sets Ai+1 = Ai ∪ {vi+1}. GreedySubset hence

iteratively adds locations which increase mutual information the most. Using a result proposed by

Nemhauser et al. (1978) on the performance of the greedy algorithm for submodular functions,

the work by Krause et al. (2008) showed that GreedySubset selects sets which achieve mutual

information of at least (1 − 1/e) OPT−ε, where OPT is the optimal mutual information among

all sets of the same size, and ε is a small error incurred due to the discretization.

The strong performance of the greedy algorithm in the unconstrained (no traveling costs be-

tween locations) case motivates the question of whether a simple greedy approach could perform

well in the more complex path planning setting considered in this paper. While it is difficult to

give a general impossibility statement for such a question, several natural extensions of the greedy

algorithm can be shown to perform arbitrarily badly.

For example, consider a setting where we define the cost C(A) of a set of nodes as the cost

of the cheapest path connecting the nodes A. Assuming locations Ai have already been picked,

a natural extension of the greedy algorithm will be to add a location v which most improves the

benefit-cost ratio

v∗ = argmax
v∈V\A

IAi(v)

CAi(v)
,

714

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

where CAi(v) = C(Ai ∪{v})−C(Ai) is the increase in cost after adding v to the already selected

locations Ai.

Fig. 3 shows a small example illustrating that this intuitive greedy procedure can perform ar-

bitrarily poorly compared to an optimal approach. The example is illustrated in Fig. 3a, with s as

both the starting and the finishing location and 2B as the total available budget. The reward asso-

ciated with each observation location is displayed in parenthesis with the corresponding locations.

For the ease of illustration, we assume that the reward associated with each observation location is

some modular function (instead of a submodular function). Traveling cost is associated with the

corresponding edges in the example. Starting at location s, possible options for the first observation

location are to select either of o1, g1 or t. Observation location o1 will lead to a cluster of n (=

B/ǫ) locations each separated by a traveling cost ǫ and with an associated reward of 1 (except o1

that has an associated reward of ǫ). o1 is separated from g1 by a traveling cost of B/2 while the

rest of the locations in the cluster are assumed to be unreachable from any other location outside the

cluster. Observation location g1 will lead to a series of m (= B/ǫ) locations, each separated from

the previous one by ǫ traveling cost and with an associated reward of 2ǫ.

As illustrated in Fig. 3b, an optimal approach would select o1 as the first location, paying a

traveling cost of B/2 and earning a very small reward ǫ. Once the robot observes o1, it can then

observe the rest of (B/ǫ−1) locations in the cluster, each providing a reward of 1 and return back to

s while spending a total of 2B as the traveling cost. Thus, the total reward collected by an optimal

approach, for this example, will be 1(B/ǫ− 1) + ǫ.

As illustrated in Fig. 3c, a “greedy” approach based on the reward-cost ratio will select g1 as the

first observation location (with the highest reward to cost ratio of 2). Since o1 is at a distance B/2
away from g1 and only provides a reward of ǫ, this approach will continue along the series, observ-

ing all the locations till gm and returning back to s. Total reward collected by such an approach will

be 2B. On the other hand, a simple “greedy” approach based on reward (as illustrated in Fig. 3d)

will simply select t as the first observation location and return back to s, collecting a total reward

of 1. Since the ratio B/ǫ can be arbitrarily large as ǫ → 0, the reward collected by simple intuitive

greedy approaches (2B or 1) can be arbitrarily poor when compared to the reward collected by an

optimal approach (1(B/ǫ− 1) + ǫ).

Although, the reward function considered in the example was assumed to be a modular func-

tion, the submodular optimal reward can also be arbitrarily large, compared to submodular reward

collected by simple greedy approaches (the difference between the submodular and modular reward

will depend on the correlation of the selected observation locations). This insight necessitates the

development of more complex algorithms for path planning as considered in this paper.

5. The Recursive-greedy Algorithm

We will now review the recursive-greedy algorithm as proposed by Chekuri and Pal, since it forms

the basis for our efficient single robot path planning approach. The basic strategy of the algorithm

is a divide-and-conquer approach. Any path from the starting location (s) to finishing location (t)
has a middle location (vm) such that there are same number of locations (or different by at most 1)

on either side of vm in the s− t path. Thus, the problem of finding a s− t path can be divided into

two smaller subproblems of finding smaller subpaths (s − vm and vm − t) and then concatenating

these small subpaths. While having the same number of locations, the subpaths on either side of the

middle node can have different costs, i.e. the budget for the total path has to be split into two smaller

715

SINGH, KRAUSE, GUESTRIN & KAISER

Algorithm:recursive-greedy (RG)1

Input: s,t,B,R,iter
Output: An informative path P
begin2

if c(s, t) > B then3

return Infeasible;4

P ← s, t;5

Base case: iter=0 return P;6

m← fR(P);7

// Trying each location as middle node

foreach vm ∈ V do8

// Trying all possible budget splits

for 1 ≤ B1 ≤ B do9

// Planning subpath on one side of the middle node

P1 ← RG(s, vm, B1,R, iter − 1);10

// Planning subpath on other side of the middle node,

committing to nodes selected in first subpath

P2 ← RG(vm, t, B −B1,R∪ P1, iter − 1);11

if fR(P1 ∪ P2) > m then12

P ← P1 ∪ P2;13

m← fR(P);14

return P;15

end16

Algorithm 2: Recursive greedy algorithm for single robot instance of MIPP as proposed by Chekuri and Pal

(2005). Output path P provides an approximation guarantee of IX(P) ≥ IX(P∗)/ ⌈1 + log k⌉, where I represent

the submodular reward function, P∗ represent an optimal path and k represent the number of nodes in the optimal

path.

budgets (not necessarily equal), one for each subpath. Searching for the best middle location and

trying all possible budget splits on either side of the middle location, while optimizing the complete

s − t path, would result in an exhaustive search for the optimal solution and therefore will be pro-

hibitively expensive. Instead of performing this exhaustive search, the recursive-greedy algorithm

follows a simple greedy strategy, wherein for each of the possible budget splits and each possible

middle nodes considered, one can first plan the optimal subpath on one side of the middle location,

then commit to the planned subpath and optimize for the subpath on the other side. Such a path,

consisting of independently optimized subpath s−vm and a subpath vm−t optimized subject to ob-

servation locations already selected in s− vm, may result in a suboptimal s− t path. Nonetheless,

Chekuri and Pal proved that such a path has an approximation guarantee of O(log2 |P∗|), where

|P∗| is the number of locations visited by an optimal solution P∗.

In order to implement such a greedy approach, the recursive calls planning the second sub-

path will – similarly as done in sequential allocation – optimize a residual reward function which

measures the incremental gain taking into account the information already obtained by the loca-

tions selected in the first subpath. More formally, let the set P1 refer to the locations selected in

the first subpath, and consider the residual submodular function fP1
over a set of locations A as

716

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

fP1
(A) = f(A∪P1)− f(P1). If P2 is the set of locations in the second subpath, then it holds that

f(P1) + fP1
(P2) = f(P1 ∪ P2). Hence, if the first recursive call (with submodular function f)

returns path P1, and the second recursive call (with submodular function fP1
) returns path P2, then

the sum of the scores of the subproblems exactly equals the score of the concatenated path.

Let us now formalize the intuitive description of the recursive-greedy algorithm. The pseu-

docode of the algorithm is presented in Algorithm 2. The inputs to the algorithm are a starting

location s, a finishing location t, an upper bound on the path cost B, a parameterR that defines the

residual for the submodular function such that the function that needs to be maximized is defined as

fR(P) = f(P ∪R)− f(R), and a parameter i that represents the recursion depth. The maximum

number of locations that can be selected at each stage is calculated using the recursion depth as 2i.

In the base case (recursion depth i = 0), the algorithm simply returns the path P = (s, t) (if the

cost c(s, t) ≤ B).

In the recursive case, the algorithm searches for a s− t path with maximum reward by iterating

over all possible locations (that can be reached with given budget constraint) as middle locations

(Line 8), i.e. locations that could possibly split the required path into two subpaths with equal num-

ber of locations on either side. For each such middle location, the algorithm explores all possible

splits of available budget (Line 9) across the two subpaths on either side of the middle location.

Reducing the recursion depth by 1, for each subpath, ensures that the same number of locations are

selected on either side of the middle location. However, before exploring the second subpath, the

algorithm commits to the locations selected in the first subpath by passing them as input through

the “residual” parameter (Line 11). The two subpaths found in such a way are then concatenated to

provide a complete s − t path. The algorithm stores the best possible s − t path over the already

searched problem space, replacing it with a better path whenever such a path is found.

5.1 Structure of the Search Problem

It is instructive to consider the recursive structure generated by the recursive-greedy algorithm.

Fig. 4 illustrates an example of such a structure when running recursive-greedy for our lake sensing

application with the given starting (s) and finishing (t) location and an upper bound on the path cost

(B). The search using recursive-greedy can be represented graphically as a sum-max tree. At the

root is a max node representing the objective of finding a s− t path with maximum possible reward,

while the cost of the path is bounded by budget B. For each such max node, the children in the

search tree represent sum nodes corresponding to sum of rewards collected from the two subpaths

on either side of the middle location. Therefore, at the end of the first iteration, the graphical repre-

sentation will have a max node as root with several sum nodes as children, for each feasible middle

location and each possible budget splits around that middle location. A partial tree at the end of first

iteration is shown in Fig. 4a.

For each sum node, formed at the end of the first iteration, the algorithm is then applied recur-

sively on the left subpath. Thus the first step of second iteration seeks to find a s − vm path with

maximum possible reward under the budget constraint corresponding to the respective budget split

for the sum node. Then, their approach commits to the selected locations on the left side, and re-

curses on the right subpath (to search for a vm − t path), given these selected locations. As a result,

each sum node will have two max nodes as children, each representing an objective to find a subpath

of maximum reward on either side of the selected middle location. This algorithm is “greedy” in

that it commits to the locations selected in the first subpath before optimizing the second subpath.

717

SINGH, KRAUSE, GUESTRIN & KAISER

(a) recursive-greedy during first iteration (b) recursive-greedy during second iteration

Figure 4: Illustration of recursive greedy algorithm, as proposed by Chekuri and Pal, for the lake sensing application.

Sum-max tree presents the graphical representation of the problem space.

A partial tree at the end of second iteration is shown in Fig. 4b. Despite the greedy nature, the

recursive-greedy approach provides the following approximation guarantee:

Theorem 2. (Chekuri & Pal, 2005) Let P∗ = (s = v0, v1, . . . , vk = t) be an optimal s-t-path

solution. Let P be the path returned by RG(s, t, B,R, i). If i ≥ ⌈1 + log k⌉, then IX(P) ≥
IX(P∗)/ ⌈1 + log k⌉.

Hence, the recursive-greedy solution P obtains at least a fraction of 1
⌈1+log2 k⌉ of the optimal

information, where k ≤ n, i.e. the total number of locations traversed by the optimal path will be

smaller than the total number of locations in the discretized spatial domain. Referring back to The-

orem 1, for the MIPP problem using recursive-greedy as the single robot path planning approach,

η = ⌈1 + log k⌉.

5.2 Running Time

By inspecting the recursive structure, the running time of the recursive-greedy algorithm can be seen

to be quasi-polynomial. More specifically, the running time of the algorithm isO((MB)O(log2 M)),
where B is the budget constraint and M = |V| is the total number of possible observation locations.

So, even for a small problem with M = 64 locations, the exponent will be 6, resulting in a very

large computation time, making the algorithm impractical for observing several real world physical

processes.

The large computational effort required by recursive-greedy can be attributed to two issues: 1)

the large branching factor at each of the max nodes of the recursion tree (sum nodes for each possible

middle node and each possible budget split across that middle node) and 2) (possibly) unnecessary

recursion while exploring subtrees in problem space that can not provide us with an improved re-

ward compared to current best solution. In the following sections, we propose two complementary

approaches (can be used independently of the others) which are intended to ameliorate these con-

cerns: a spatial decomposition technique, and a branch and bound approach. Spatial decomposition

718

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

����������	
��� �
�����	
���

���������������� �
�����������

(a) Spatial decomposition of the phenomenon

�� �������	�����
 ��
��������������

�

� 	

�
��	�
����
������

������������
��

�����	�����

������������������

(b) Cell paths and travel within cells

���������	
��

(c) Cell paths and path smoothing

Figure 5: Illustration of spatial decomposition in recursive-eSIP using surface sensing in lake environment as an

example. The sensing domain ((a), top) is decomposed into a grid of cells ((a), bottom). recursive-eSIP jointly optimizes

over cell-paths ((b), top) and allocations of experiments in the cells ((b), bottom). Within the cells, locations are connected

to cell center. recursive-eSIP concatenates paths between-cell and within cell paths ((c), top) and finally heuristics are

applied in eMIP to smooth the path ((c), bottom).

(discussed in Section 6) seeks to reduce the high branching factor (i.e. the number of sum nodes

in the search tree) by clustering the sensing locations and then running the recursive-greedy over

these clusters instead of actual sensing locations. Branch and bound (discussed in Section 7) seeks

to avoid unnecessary recursion by maintaining a lower and an upper bound on the possible reward

from a subtree in the search tree and pruning the tree accordingly. These two approaches, together

with sequential-allocation (discussed in Section 3) provide an efficient algorithm for multi robot

informative path planning.

6. Spatial Decomposition – Approximating MIPP as SD-MIPP

In this section, we explain in detail the process of spatial decomposition and the corresponding im-

provements in running time achieved through this process. Our approach assumes that the traveling

cost between arbitrary locations is given by their euclidean distance.

An intuitive approach for improving the running time is to spatially decompose the sensing

region into smaller sub-regions, each containing a cluster of sensing locations. We can thus think

about planning informative paths as deciding which sub-regions to explore, and then deciding which

locations to sense within these sub-regions. The idea of exploring the sub-regions motivates the

decomposition of the sensing domain into smaller regions (cells). We can then run the recursive-

greedy algorithm on these cells instead of the actual sensing locations. Since the size of each cellular

region is small, traveling cost within each cell can be ignored3. Once we ignore the traveling cost

within the cells, sensing locations inside the selected cells can be chosen using the GreedySubset

approach (as proposed by Krause et al., 2008), taking advantage of its strong approximation guar-

3. There may be robotic platforms where non-holonomic motion constraints will make small motions much more chal-

lenging and thus traveling cost for smaller distances within a cell may become non-negligible. For such systems,

with large traveling cost for smaller motions, some system specific constraints may be possible to account for while

performing cellular decomposition or the greedy algorithm may be constrained to not select locations that are “too”

close).

719

SINGH, KRAUSE, GUESTRIN & KAISER

antee in an unconstrained setting as discussed in Section 4. Fig. 5 presents an illustration of our

approach and is explained as follows:

1. We decompose the sensing region, containing finitely many discrete sensing locations (c.f.,

Fig. 5a, top), into a collection of non-overlapping cells Ṽ = {C1, C2, . . . , CN} (c.f., Fig. 5a,

bottom). The distance between two cells is defined as the distance between the centroids

of these cells. Each cell Ci contains a set of locations vi ∈ V , representing sensing loca-

tions, such that the coordinates of these locations, in a euclidean metric space, lie within the

boundary of the containing cell.

2. We approximate the original MIPP problem with the spatially decomposed MIPP problem, or

SD-MIPP problem on Ṽ . In SD-MIPP, we jointly optimize over cell-paths in Ṽ (c.f., Fig. 5b,

top) using the recursive-greedy algorithm, and over the allocation of observations within the

cells visited by the paths using the GreedySubset algorithm. Thus, when allocating measure-

ments to a cell, we ignore the traveling cost within the cell (c.f., Fig. 5b, bottom). Since

the cells are not very large, this simplification only leads to a small additional cost when the

SD-MIPP solution is transformed back to the original MIPP problem.

3. We transfer the (approximate) SD-MIPP solution, consisting of a cell-path and an allocation

of observations to cells (c.f., Fig. 5c, top), back to the original MIPP problem. We then smooth

the path (c.f., Fig. 5c, bottom) using heuristics, e.g. the tour-opt heuristics as discussed by

Lin (1965).

Dual optimization of cell paths and budget allocation for observations within each visited cell

motivated splitting the available budget B̃ into a budget Bt for traveling between the cells and a bud-

get Be for making experiments at sensing locations within the visited cells. Such a split can be easily

incorporated in recursive-greedy algorithm as well but was not required as the paths in recursive-

greedy were optimized over observation locations and not cells containing these locations. Formally,

the SD-MIPP problem is the following: We want to find a path P∗
C = (Cs = Ci1 , . . . , Cil = Ct),

for each robot i with starting cell Cs containing the starting node s and finishing cell Ct containing

the finishing node t, with a travel cost of at most Bt. This travel budget is measured in terms of

distances between centers of visited cells, and the cost of traveling within the cells is defined as 0.

In addition, for each visited cell Cij in P∗
C , we want to select a set of sensing locationsAij , such that

the total experimental cost (for making observations within the visited cells) is upper bounded by

Be, i.e. C(Ai1 ∪ · · · ∪Ail) ≤ Be, and that the information I(Ai1 ∪ · · · ∪Ail) is as large as possible.

The optimal SD-MIPP solution uses the optimal split of the budget B̃ into Bt and Be. To simplify

the presentation, we rescale the costs such that the cells form a uniform grid of quadratic cells with

width L, and assume that the sensing cost Cexp is constant over all locations. These assumptions

can easily be relaxed, but they allow us to relate the path costs to the number of cells traversed, to

simplify the discussion.

The following lemma states that there exists an SD-MIPP version (P∗
C) of the MIPP-optimal

path (P∗), with (almost) the same cost, and the same information.

Lemma 3. Let P∗ = (s = v0, v1, . . . , vl = t) be an optimal s-t-path solution to MIPP, constrained

by budget B. Then there exists a corresponding SD-MIPP path P∗
C = (Cs = Ci1 , . . . , Cil = Ct),

traversing through locations Ai1 ∪ · · · ∪ Ail , with budget B̃ of at most 2
√

2B + 4L collecting the

same information.

720

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

Algorithm: eMIP1

Input: B̃, k, starting / finishing locations s1, . . . , sk, t1, . . . , tk
Output: A collection of informative paths P1, . . . ,Pk

begin2

Perform spatial decomposition into cells;3

Find starting and ending cells Csi and Cti ;4

R ← ∅;5

// Path planning for each robot

for i = 1 to k do6

// Trying different combination of traveling and

experimental budget

for iter = 0 to ⌊log2 B̃⌋ do7

Be ← B̃ − 2iter;8

P ′
iter ←recursive-eSIP (Csi , Cti ,Be,R,iter);9

Smooth P ′
iter using tour-opt heuristics;10

Pi ← argmaxiter I(P ′
iter);11

R ← R∪ Pi;12

return P1, . . . ,Pk;13

end14

Algorithm 3: eMIP algorithm for informative multi robot path planning. Procedure from Line 7 to Line 11

effectively implements eSIP algorithm. eSIP is then repeated (Line 6) using sequential allocation described in

Section 3 (Line 6) to get paths for each robot i.

We now present an algorithm for finding an approximately optimal solution to SD-MIPP, and

then we show that this solution gives us an approximate solution to the original MIPP problem, with

just slightly increased cost of 2
√

2B + 4L, for ensuring that the optimal solution for MIPP exists in

the corresponding SD-MIPP setting.

6.1 Algorithm for SD-MIPP

Our eMIP algorithm solves the SD-MIPP problem on Ṽ and then smooths out the paths over the

selected observation locations to provide a solution to MIPP. Let us first clarify the algorithmic

nomenclature specifically:

• recursive-eSIP: implements an approach similar to recursive-greedy for selecting a path over

Ṽ and greedily selects the observation locations within each visited cell using GreedySubset;

• eSIP: iterates through different values of traveling budget by calling recursive-eSIP with cor-

responding values of input Be and i and smoothing the output path from recursive-eSIP using

tour-opt heuristics;

• eMIP: effectively implements sequential-allocation with eSIP as the single robot path plan-

ning algorithm

The complete algorithm works as follows: An outer loop (Line 6 in Algorithm 3) implements

the sequential allocation algorithm for performing path planning for multiple robots. The procedure

721

SINGH, KRAUSE, GUESTRIN & KAISER

inside the outer loop (Line 7 to Line 11 in Algorithm 3) implements the eSIP algorithm. This pro-

cedure iterates through different combination of traveling and experimental budget, allocating Bt

(= 2iter) out of the total budget B̃ for traveling between the cells, and Be(= B̃ −Bt) for making ex-

periments within the visited cells. Stepping through Bt in powers of 2 results in faster performance

(log2 B̃ instead of B̃ iterations). If we increase the input budget B̃ by a factor of 2, the exponential

increase in traveling budget is guaranteed to try traveling budget, Bt (= 2iter ≥ BtApp) where BtApp

is the traveling budget for the best approximation path. Since the overall budget B̃ is increased by a

factor of 2, the remaining experimental budget is also guaranteed to be more than the experimental

budget corresponding to the best approximation path. Therefore, exponential increase in traveling

budget will only increase the required budget B̃ by at most a factor of 2. The eSIP procedure then

calls recursive-eSIP (explained in Algorithm 4), selecting the cells to visit, and greedily allocating

observations in the visited cells. Finally, the eSIP procedure calls tour-opt heuristics to smooth the

output path from recursive-eSIP.

The recursive-eSIP procedure takes as input a starting cell Cs, a finishing cell Ct, an experimen-

tal budget Be, a residual R indicating the locations visited thus far (initially passed empty from

eMIP), and a maximum recursion depth, iter (initially passed log2 Bt from eMIP). We then:

1. Iterate through all possible choices of middle cells Cm (such that there are, almost, equal

number of cells on either side of Cm) and budget splits B̃e (of the available experimental

budget Be) to spend for making experiments on the subpaths from Cs to Cm and Cm to Ct
(c.f., Fig. 5b). The budget splits B̃e can either be linearly (more accurate) or exponentially

(faster) spaced, as described below.

2. Recursively find a subpathP1 from Cs to Cm, constrained by budget B′, leaving the remaining

budget (Be−B′) for the other subpath P2. Reducing recursion depth (iter) by 1, for each

of the subpaths P1 and P2, ensures that equal number of cells are visited on either side Cm.

The lowest level of recursion depth 0 signifies the cell selected for the corresponding path.

At the lowest recursion level, we then use the GreedySubset algorithm (c.f., Section 4) to

select the sensing locations based on the residual information function IR and constrained by

budget B′. As an illustration, the black locations in the middle cell Cm in Fig. 5b bottom,

are selected by the GreedySubset algorithm with budget B′ = 4 such that they provide the

maximum improvement in mutual information.

3. We then commit to the locations selected in P1, and recursively find a subpath P2 from

Cm to Ct, with experimental budget Be − B′. Committing to the locations selected in P1

requires that we greedily select the sensing locations at lowest recursion level based on the

residual information function IR∪P1
.

4. Finally, we concatenate the locations obtained in P1 and P2 to output the best path from the

algorithm (c.f., Fig. 5c, top).

6.2 Linear vs. Exponential Budget Splits

Step 1 of the recursive-eSIP procedure (as explained in Section 6.1) considers different budget splits

B′ ∈ B̃e to the left and right subpaths. Similar to the recursive greedy algorithm, one can choose

B̃e = {0, 1, 2, 3, . . . , Be−1, Be} to be linearly spaced. Since the branching factor is proportional to

the number of considered splits, linear budget splits leads to a large amount of computation effort.

722

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

Algorithm: recursive-eSIP1

Input: Cs, Ct, Be,R, iter
Output: An informative path P from Cs to Ct
begin2

if (d(Cs, Ct) > 2iterL) then return Infeasible;3

// Greedy node selection within starting and finishing cell

P ← GreedySubsetBe,R(vi : vi ∈ Cs ∪ Ct);4

if (iter = 0) then return P;5

reward← IR(P);6

// Trying each cell as middle cell

foreach Cm ∈ C do7

// Trying each possible budget split

for B′ ∈ B̃e do8

// Planning subpath on one side of the middle cell

P1 ← recursive-eSIP (Cs, Cm, B′,R, iter − 1);9

// Planning subpath on other side of the middle cell

while committing to nodes selected in first subpath

P2 ← recursive-eSIP (Cm, Ct, Be −B′,R∪ P1, iter − 1);10

if (IR(P1.P2) > reward) then11

P ← P1.P2;12

reward← IR(P);13

return P;14

end15

Algorithm 4: recursive-eSIP procedure for path planning.

An alternative is to consider only exponential splits: B̃e = {0, 20, 21, 22, . . . , 2log2 Be} ∪ {Be, Be−
20, Be−21, Be−22, . . . , 0}. In this case, the branching factor is only logarithmic in the experimental

budget. Even though we are not guaranteed to find the same solutions as with linear budget splits,

we can both theoretically (as given by Lemmas 4 and 7) and empirically (as illustrated in Fig. 14c

and 14d) show that the performance only gets slightly worse in this case, compared to a significant

improvement in running time. In addition to these two ways of splitting the budget, we also con-

sidered one-sided exponential budget splits (i.e. B̃e = {0, 20, 21, 22, . . . , 2log2 Be}), which further

reduces the branching factor by a factor of 2 compared to the exponential splits defined above. Al-

though we do not provide theoretical guarantees for this third possibility, we experimentally found

it to perform very well (c.f., Section 8).

6.3 Algorithmic Guarantees

Our algorithm is greedy in two ways:

• At recursion depth 0, the sensing locations are selected greedily based on the mutual infor-

mation criterion.

• Before exploring the subpath P2, recursive-eSIP procedure commits to the locations selected

in subpath P1.

723

SINGH, KRAUSE, GUESTRIN & KAISER

Due to the these greedy steps, recursive-eSIP is an approximation algorithm and does not nec-

essarily find an optimal solution. The following lemma, however, guarantees a performance bound

for the path output by the eSIP procedure:

Lemma 4. Let P∗
C = (Cs = C1, . . . , Ck = Ct) be an optimal solution for single robot instance

of SD-MIPP, constrained by budget B̃, where an optimal set of locations are selected within each

visited cell Cj . Let P̂ be the solution returned for eSIP. Then I(P̂) ≥ 1−1/e
1+log2 k I(P∗

C).

6.4 Solving the MIPP Problem

Now, we need to transfer the approximately optimal solution obtained for SD-MIPP back to MIPP.

A path over cells, with observation locations selected greedily within each visited cell, is trans-

formed into a path over observation locations by connecting all locations selected in cell Cij to the

cell’s center, (as indicated in Fig. 5b bottom), then connecting all selected centers to a path (Fig. 5c

top), and finally expanding the resulting tree into a tour by traversing the tree twice (by traversing

each edge of the tree once in each direction, a set of nodes connected by a tree can be converted

into a set of nodes connected by a path). This traversal results in a tour which is at most twice as

long as the shortest tour connecting the selected vertices. (Of course, an even better solution can be

obtained by applying an improved approximation algorithm for TSP, such as the algorithm proposed

by Christofides, 1976). The following Theorem completes the analysis of our algorithm:

Theorem 5. Let P∗ be the optimal solution for the single robot instance of the MIPP problem with

budget constraint B. Then, our eSIP algorithm will find a solution P̂ achieving an information

value of at least I(P̂) ≥ 1−1/e
1+log2 N I(P∗), whose cost is no more than 2(2

√
2B + 4L)(1 + L

√
2

Cexp
) in

the case of linear budget split for B̃e and no more than 2(2
√

2B + 4L)(1 + L
√

2
Cexp

)N log2
3
2 in the

case of exponential budget split for B̃e.

The performance guarantee is w.r.t. the number of cells N instead of the number M of sensing

locations, as was the case in the work by Chekuri and Pal (2005). However, the input budget

constraint is violated by an amount based on the size of cells during the spatial decomposition. This

violation in input budget constraint leads to a tradeoff between computation effort and additional

cost incurred that can be tuned based on specific application requirements. If the size of the cell is

small (in the limit reducing each cell to each observation location), the number of cells will be large

and will result in higher computation time with reduced additional cost. On the other hand, if the

size of the cell is large, the computation time will be small and the algorithm needs to pay higher

additional traveling cost.

Running time analysis of eSIP is straightforward. The algorithm calls the routine recursive-eSIP

log2 B times. If TI is the time to evaluate the mutual information I, then the time for computing

greedy subset Tgs (Line 4, Algorithm 4) is O(N2
C TI), where NC is the maximum number of

locations per cell. At each recursion step we try all the cells that can be reached with the avail-

able traveling budget (Line 7, Algorithm 4). For the possible experimental budget split, we try all

(linearly or exponentially spaced) splits of Be ∈ B̃e among the two subpaths P1 and P2 (Line 8,

Algorithm 4). The recursion depth would be log2(min(N, B̃)). The following proposition states the

running time for eSIP:

724

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

Proposition 6. The worst case running time of eSIP for linearly spaced splits of the experimental

budget is O
(
Tgs log2 B(NB)log2 N

)
, while for the exponentially spaced splits of the experimental

budget it is O
(
Tgs log2 B(2N log2 B)log2 N

)

Comparing this running time to the recursive-greedy algorithm (O((MB)O(log2 M))), we note

a reduction from B to log2 B in the base, and log of the number of locations (log2 M) to log of the

number of cells (log2 N) in the exponent. These two improvements turn the impractical recursive-

greedy approach into a much more viable algorithm.

Varying the number of cells (and correspondingly the size of each cell) results in a trade-off

between the computation effort and the traveling cost within the cell that is ignored by the eSIP

algorithm. Proposition 6 states that the computation effort is directly proportional to the number

of cells “N”. Therefore as we increase the number of cells, corresponding computation effort for

the eSIP algorithm will also increase. On the other hand, reducing the number of cells will result

in increasing the size of each of the cell. Since eSIP algorithm ignores the traveling cost within

the cell, larger cell size will imply larger traveling cost ignored by the eSIP algorithm and hence

larger overshoot in the cost of the resultant output path over the input budget B. Lemma 3 states the

corresponding additional cost incurred by the output path calculated using eSIP algorithm in terms

of the cell size “L”. Based on the specific application requirements, one can decide the appropri-

ate number of cells and fine tune the trade-off between computation effort and additional path cost

incurred. Fig. 14f shows that the corresponding collected reward did not vary significantly as we

varied the number of cells for the application of observing temperature in a lake environment.

7. Branch and Bound

The spatial decomposition technique effectively enables a trade-off between running time com-

plexity and achieved approximation guarantee. However, the eSIP algorithm still has to solve a

super-polynomial, albeit sub-exponential, search problem. In the following, we describe several

branch and bound techniques which allow further reduction in the computation effort making our

approach tractable for real world sensing experiments.

7.1 Problem Representation

The specific structure of the search space representation motivated many of the proposed branch and

bound approaches. Similarly to the recursive structure of the recursive-greedy algorithm (discussed

in Section 5), the recursive-eSIP problem structure can also be represented as a sum-max tree, as

shown in Fig. 6a. A small difference exists in the selection of observation locations along the

solution path. In the case of recursive-greedy, each of the sum nodes traversed in the selected

path represents a physical observation location. However, in the case of recursive-eSIP, each sum

node in the selected path represents a cell in the corresponding traversed path. The observation

locations at the sum node are selected greedily, within the corresponding cell, based on the available

experimental budget. Using the sum-max tree problem structure, we now explain the proposed

branch and bound approaches to prune parts of the tree that will not provide any further improvement

over the currently known best solution path. All of the proposed branch and bound techniques are

outlined in the recursive-eSIP procedure presented in Algorithm 5.

725

SINGH, KRAUSE, GUESTRIN & KAISER

Algorithm: recursive-eSIP with branch and bound1

Input: Cs, Ct, Be,R, iter, rewardLB, α

Output: An informative path P from Cs to Ct
begin2

if (d(Cs, Ct) > 2iterL) then3

return Infeasible4

P ← GreedySubsetBe,R(vi : vi ∈ Cs ∪ Ct);5

if (iter = 0) then6

return P7

filterCells← ∪Ci ∀Ci s.t. d(Cs, Ci) ≤ 2iterL/2 and d(Ci, Ct) ≤ 2iterL/2 ;8

foreach Cm ∈ filterCells do9

for B′ ∈ B̃e do10

// Calculating upper bound using GreedySubset

UBP1
← calculateUB(Cs, Cm, B′, iter − 1,R);11

UBP2
← calculateUB(Cs, Cm, Be −B′, iter − 1,R);12

if ((UBP1
+ UBP2

) > α ∗ rewardLB) then13

// Calculating lower bound for P1

heurP1
← heuristicOP(Cs, Cm, B′,R, iter − 1);14

LBP1
← max(IR(heurP1

), rewardLB − UBP2
);15

// Recursive search for P1

P1 ← recursive-eSIP (Cs, Cm, B′,R, iter − 1, LBP1
, α);16

// Calculating lower bound for P2

heurP2
← heuristicOP(Cm, Ct, Be −B′,R∪ P1, iter − 1);17

LBP2
← max(IR∪P1

(heurP2
), rewardLB − IR(P1));18

// Recursive search for P2

P2 ← recursive-eSIP (Cm, Ct, Be −B′,R∪ P1, iter − 1, LBP2
, α);19

if (Iresid(P1.P2) > rewardLB) then20

P ← P1.P2;21

rewardLB ← Iresid(P1.P2);22

return P;23

end24

Algorithm 5: recursive-eSIP procedure with branch and bound approaches for efficient path planning. Each

procedure corresponds to a max node in the search space with input rewardLB representing the calculated lower

bound. A sum node in the search space effectively combines the recursive calls to each of the subpaths (imple-

mented in Line 16 and Line 19). Since recursion reduces the traveling budget (2iterL) by half, the initial pruning in

Line 8 removes the cells that can not be reached in the next recursion step. Line 15 and Line 18 calculate the lower

bound for subpaths on either side of the selected middle cell. Input α represents the scaling factor for one of the

sub-approximation heuristics. Approximation guarantee for the output path P is given as I(bP) ≥ 1−1/e
1+log

2
N

I(P∗)

where I is the submodular reward function and P∗ is the optimal path.

726

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

(a) sum-max tree

(b) Pruning of sum nodes (c) Tighter lower bounds

Figure 6: Illustration of our branch & bound approach. (a) shows the sum-max tree representing the search space. Each

max node selects a middle cell and a budget allocation, and each sum node combines two subpaths on either side of the

selected middle cell. (b) shows how upper bound at a sum node (e.g. a value of 18 at Sum2), when smaller than the

lower bound of the parent max node (e.g. a value of 20 for Max1) can be used to prune branches in the search tree. (c)

shows how lower bound at a max nodes is tightened (e.g. a value of 7 at Max6 is improved to 9 using upper bound of 11

at sibling Maxn7 and lower bound of 20 at grandparent Max1) to allow further pruning which otherwise may not have

been possible (e.g. pruning of Sum4 with upper bound value of 8).

7.2 Efficient Search of the Problem Space

In a naive implementation of recursive-eSIP, the entire recursion tree would eventually be traversed.

However, many of the considered subpaths may be highly suboptimal. Several heuristics have been

proposed in the past for similar path planning problem with empirical efficiency claims, but without

any approximation guarantee. We use one such heuristic (c.f., Chao et al., 1996, hereafter referred

to as heuristicOP) to calculate a solution path satisfying the budget constraints, while trying to max-

imize the collected reward. Since such a path can be efficiently calculated with small computation

effort, we use this path as an initial known solution. The total reward collected in this path is used as

an input lower bound (input variable rewardLB in Algorithm 5) for the root max node. Since the

computation effort associated with heuristicOP is small, it is also used at the rest of the max nodes

in the search tree to calculate the lower bound for these nodes (discussed in detail in Section 7.2.2).

For each of the child sum nodes, an upper bound for the collected reward is calculated by ex-

ploiting the submodularity of the reward function (procedure calculateUB called in Line 11 and 12

727

SINGH, KRAUSE, GUESTRIN & KAISER

Algorithm:calculateUB1

Input: Cs, Ct, Be, iter,R
Output: An upper bound UB on information gain

begin2

// Selecting set of reachable cells

possibleCells← ∪Ci ∀Ci s.t. d(Cs, Ci) + d(Ci, Ct) ≤ 2iterL ;3

// Greedy node selection within reachable cells

P ← GreedySubsetBe,R(vi : vi ∈ possibleCells);4

UB← Iresid(P);5

return UB;6

end7

Algorithm 6: Procedure for calculating upper bound at max nodes. Upper bound of child max nodes is added

to obtain upper bound at parent sum node.

in Algorithm 5 and explained in detail in Algorithm 6). We then only need to process the sum node

children with upper bounds greater than the current best solution (Line 13 in Algorithm 5). The

current best solution for the parent max node is updated when the collected reward from any of the

child sum nodes is greater than the previously known best solution reward (Line 20 in Algorithm 5).

Fig. 6b presents a graphical illustration of this concept. After completely exploring branch

Sum1, the current best solution of value 20 is updated as a lower bound for Max1. A smaller lower

bound (18) at Sum2 results in pruning of sub-branch rooted at Sum2. However, nodes such as Sum3

with upper bound (24) higher than the current best solution (20), need to be explored further as they

can potentially provide a solution path with a better reward than the current best solution.

7.2.1 UPPER BOUND ON THE Sum NODES

Algorithm 6 presents the calculateUB procedure for obtaining an upper bound on the collected

reward at each max node and is used in recursive-eSIP (Line 11, 12 in Algorithm 5) for pruning the

search space. The upper bound at a sum node is calculated by adding the upper bound of each of the

child max nodes. We calculate the upper bounds by relaxing the path constraints, and then finding

an optimal set of reachable locations for each path (P1 and P2). Since this problem itself is NP-

hard, we exploit the submodularity of reward function and approximate it using the GreedySubset

algorithm. Fig. 7 illustrates an example of calculating the upper bound. We first calculate the set

of reachable locations w.r.t. the remaining traveling budget. These locations are contained within

the cells Ci reachable from cells Cs and Ct (Line 3 in Algorithm 6). Such a boundary for reachable

locations is illustrated by an ellipse in Fig. 7.

Then, we run the GreedySubset algorithm to greedily select best possible Be locations from all

the possible reachable locations (Line 4 of Algorithm 6). As an example, Vi and Vj are selected

using GreedySubset in Fig. 7. Since GreedySubset guarantees a constant factor (1−1/e) approxima-

tion (Nemhauser et al., 1978), multiplying the resulting information value by (1− 1/e)−1 provides

an upper bound on the information achievable by the path (and hence the corresponding max child

node). Therefore, in Fig. 7 the reward collected from locations Vi (MI(Vi)) and Vj (MI(Vj)) when

multiplied by the factor (1−1/e)−1 provides upper bound for the collected reward. However, since

the path cost constraint are relaxed, the total cost of observing Vi and Vj (dsi + dij + djt) may be

728

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

Figure 7: Illustration of calculating upper bound using GreedySubset.

more than the available budget B. In Fig. 6c, for example, we use calculateUB to get upper bounds

13 for Max6 and 11 for Max7, resulting in an upper bound of 13 + 11 = 24 for Sum3
4.

7.2.2 LOWER BOUND ON THE Max NODES:

Effective pruning of subtree rooted at sum nodes would require calculating the lower bounds for the

parent max node efficiently. One way to calculate such lower bounds is by exploring one branch

completely (as explained in Section 7.2). This procedure will be computationally expensive. In-

stead, we implement two other ways for acquiring such lower bounds faster: Using heuristicOP 5

(as explained above for obtaining the initial best solution), and based on the current best solution of

the grandparent max node. We then use the larger of two different lower bounds.

Fig. 6c illustrates the graphical presentation of the procedure for calculating the lower bounds

using the current best solution of the grandparent max node. We call this procedure altLB. We calcu-

late an upper bound (exploiting the submodularity) of 11 for Max7 node. For the node Max6, since

the grandparent node Max1 has a lower bound of 20, the subtree rooted at Max6 has to provide a

reward of at least 9 (20 - 11) to be explored further. The lower bound of value 9 calculated using

altLB is tighter than the lower bound provided by the heuristic (7), and enabled pruning of branch

Sum4 (with upper bound 8).

Lines 15 and 18 in Algorithm 5 illustrate the altLB procedure. While using altLB, the lower

bound for subpath P1 (in Line 15), is calculated using the upper bound of subpath P2. On the other

hand, while calculating the lower bound using altLB for subpath P2 (in Line 18), the exact reward

from P1 (IR(P1)) is used instead of the upper bound. Since the actual reward is always tighter than

the calculated upper bound, the lower bound calculated for subpath P2 (using altLB) will be tighter

than the lower bound calculated for subpath P1. This motivates exploring the subpath with higher

experimental budget first such that the upper bound for the unexplored subpath (with lower exper-

imental budget) is tighter making the lower bound for the first subpath tighter6. The heuristic for

4. We can even compute tighter online bounds for maximizing monotonic submodular functions, as discussed

by Nemhauser et al. (1978).

5. heuristicOP was only proposed for modular functions but we found it to provide good solution paths even in the

submodular setting.

6. We note that with higher experimental budget, GreedySubset (used to calculate the upper bound) can potentially

select more locations that are far apart (since the path cost constraint are ignored). When path cost constraint is

incorporated, such locations will become infeasible and will make the upper bound loose.

729

SINGH, KRAUSE, GUESTRIN & KAISER

exploring the subpath with higher experimental budget first was also exploited to further improve

the computation effort.

Maintaining a lower bound at each node in the search tree also makes our approach anytime,

i.e. the search can be terminated at any point even before it is completed. The current best solution

from the graph already searched will be available after this early termination. Early termination is

particularly advantageous in scenarios when it is required to obtain the best possible path traversed

by the robot with a hard upper bound on the available time to calculate such a path.

7.2.3 NODE ORDERING

The illustration in Fig. 6b demonstrates that a better currently known solution will likely help in

increased pruning of the search tree. In order to improve the current best solution faster, at each

max node we explore the sum nodes in the decreasing order of their upper bounds. The intuitive

idea is that a higher upper bound is a likely indicator for higher reward value. Thus the upper bound

in Line 11 and 12 in Algorithm 5 can be calculated separately and the rest of the computation (in

loops implemented in Line 9 and 10 in Algorithm 5) can then be executed in decreasing order of

upper bound. Such an approach is similar to node ordering that is employed to improve the pruning

efficiency of Depth First Branch and Bound (DFBnB) (Zhang & Korf, 1995).

7.2.4 SUB-APPROXIMATION

Upper and lower bounds derived as explained above can potentially be loose. We can address this

issue, and further trade off collected information with improved execution time, by introducing

several sub-approximation heuristics. As a first heuristic, once the node ordering is performed, we

explore only the top K sum nodes. This heuristic, termed as sub-approximation (Ibaraki et al.,

1983), is found to be effective in practice.

As a second heuristic, instead of comparing the lower bound of a parent max node directly with

the upper bound from the child sum nodes (when deciding which subproblems to prune), we scale

up the lower bound by a factor of α > 1 (Line 13 of Algorithm 5). This scaling often allows us

to prune many branches that would not have been pruned otherwise. Unfortunately, this optimistic

pruning can also potentially cause us to prune branches that should not have been pruned, and de-

crease the information collected by the algorithm. In practice, for sufficiently small α values, this

procedure can speed up the algorithm significantly, without much effect on the quality of the solu-

tion. This performance comparison for both computation effort and collected reward using several

real world sensing datasets is discussed in Section 8.2.

8. Experimental Results

We performed several experiments both in-field as well as in simulation (using real world sensing

datasets) to demonstrate the usefulness of our proposed algorithm for several diverse environmental

sensing applications. In-field experiments were performed using the Networked InfoMechanical

System (NIMS) (Jordan et al., 2007), a tethered robotic system. Real world sensing datasets used

for performing scaling and multi robot experiments in simulation were collected using either a

network of static sensors or a robotic boat.

730

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

(a) Schematic representation of the system (b) Image captured while performing path plan-

ning

Figure 8: Aquatic based NIMS (NIMS-AQ)is a platform in the NIMS family used for performing path planning in the

lake environment.

8.1 In-field Experiments

Several experiments were performed in-field to demonstrate the applicability of modeling a phe-

nomenon as a Gaussian Process and using eMIP to perform path planning for diverse aquatic sens-

ing applications. These include a river monitoring application with the objective of studying salt

concentration, and lake monitoring for several applications of interest to limnologists. In each of

these applications, NIMS was used to monitor a cross-section (two dimensional vertical plane in an

environment) in the aquatic environment. The phenomenon of interest is then modeled as a Gaus-

sian Process and we use the mutual information criterion as submodular reward function, quantify-

ing the informativeness of observation locations. The learned Gaussian Process model and mutual

information objective are then provided as input to eMIP and the subset of locations as output by the

algorithm are subsequently observed, again using NIMS as the robotic platform. In order to quantify

the efficiency of our approach, we predict the phenomenon at unobserved locations and compute the

root mean square (RMS) error between the predicted phenomenon and the ground truth (calculated

by observing at all the uniformly spaced locations before and after the path planning experiment).

8.1.1 ROBOTIC PLATFORM:

The Aquatic Networked InfoMechanical Systems platform (NIMS-AQ) is the latest in the family of

NIMS systems (Jordan et al., 2007; Pon et al., 2005; Borgstrom et al., 2006), developed specifically

for aquatic applications and used during the lake deployment. The family of NIMS systems had

been successfully deployed for several terrestrial and aquatic sensing applications. In 2006 alone,

NIMS was used in several successful campaigns in forests (La Selva, Costa Rica and James Reserve,

California), rivers (San Joaquin, California and Medea Creek, California), lake (Lake Fulmor, Cali-

fornia), and mountain ecosystems (White Mountains, California),

Fig. 8a displays the schematic view of the system. The basic infrastructure of the system in-

cludes a rigid sensing tower supported by two Hobie FloatCat pontoons7 in a catamaran configu-

ration. An actuation module resides on top of the sensing tower that drives the horizontal cable

and vertical payload cable (horizontal and vertical motion respectively) across a cross-section of the

aquatic environment. Power for the system is provided by two deep cycle marine batteries housed

on top of the pontoons. The horizontal drive cable is kept center-aligned to the craft by using guide

7. Developed by Hobie Cat Company.

731

SINGH, KRAUSE, GUESTRIN & KAISER

(a) Observed distribution during a raster scan on Au-

gust 11

(b) Predicted distribution after observing at locations

as output by eMIP

Figure 9: Distribution of electrical conductivity (microSiemens per centimeter) as observed at the confluence of San

Joaquin river, California. Points represent observation locations during the corresponding experiment.

pulleys that can be repositioned based on the type of aquatic environment in which NIMS-AQ is

sampling (flowing or still water conditions). Fig. 8b shows NIMS-AQ performing path planning in

the lake environment.

8.1.2 SENSING IN A RIVER ENVIRONMENT

The first in-field application of our approach was executed at the confluence of two distinct rivers,

Merced river and San Joaquin river, in California from August 7-11, 2007 (hereafter referred to as

San Joaquin deployment). Fig. 1a displays an aerial view of the San Joaquin deployment site. The

scientific objective at the confluence zone is to characterize the transport and mixing phenomena

at the confluence of two distinct rivers – Merced river (relatively low salinity) and the agricultural

drainage-impacted San Joaquin River (relatively high salinity) by observing several parameters that

may indicate the mixing behavior of the two streams. Such river observations are useful for answer-

ing important questions pertaining to the spatio-temporal variability of velocity and water quality

dynamics resulting from pollutant inputs, hydrodynamic mixing regimes, and biogeochemical cy-

cling processes that are themselves distributed in time and space. Understanding such mixing pat-

terns are important for policy issues related to water distribution from river ecosystems (Brekke

et al., 2004).

The total width of the observed cross-section was 40 meters with the maximum depth of 1.4 me-

ters (closer to the middle of the cross-section). Several experiments had been executed in the past

to characterize the mixing phenomena at this confluence site (Singh et al., 2007a; Harmon et al.,

2007). Primary experimental design during these campaigns comprised of making observations at

uniformly spaced locations in a two dimensional cross-section (hereafter referred to as raster scan)

and repeating these experiments several times to understand the spatial and temporal dynamics in

the environment. Each of these experiments took several hours, thus restricting the experiments to

a very small number of cross-sections (one or two) within the limited deployment time. However,

a detailed understanding of the confluence environment would require observing multiple cross-

sections, within the limited time frame. This necessitates the use of an adaptive sampling approach

that can model the observed phenomenon, make observations at a small number of locations based

on that model and then effectively predict the phenomenon at the unobserved locations.

732

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

Mixing patterns were characterized at the confluence by observing electrical conductivity that

indicated the amount of salt concentration in the water. Fig. 9a displays typical distribution at a

cross-section in the confluence zone with x-axis representing the distance along the cross-section

and y-axis representing the depth. Low concentration of electrical conductivity towards the lower

x values is contributed by clear water from the Merced river with the other end displaying high

concentration of salts carried by the San Joaquin river. We first use the data from one such raster

scan performed on the first day of the deployment (displaying similar characteristics) to learn a

non-stationary Gaussian Process model, using a covariance function parameterization as described

by Krause and Guestrin (2007). The parameters are chosen by maximizing the marginal likeli-

hood (Rasmussen & Williams, 2006). This non-stationary process was learned by dividing the

complete region into smaller sub-regions and combining the locally-stationary GPs from each of

these sub regions.

A total of 114 locations were observed during the raster scan and used for learning the GP

model. A set of 16 locations was selected out of the total of 114 (14%) using the eMIP algorithm

with the starting and finishing location on either end of the cross-section as displayed in Fig. 9a.

This set of 16 observation locations was then observed over the next few days. With the required

dwelling time8 of 30 seconds for observing electrical conductivity, large reduction in number of ob-

servation locations resulted in a significant reduction in experimental time as well (14% compared

to the raster scan).

Since the environmental phenomena exhibit spatial and temporal dynamics, we performed raster

scans before and after our experiment to get a measure of ground truth for electrical conductivity.

The predicted electrical conductivity, as computed after making the observations at the subset of 16

locations selected using eMIP, is then compared with this ground truth. Fig. 9b displays the pre-

dicted distribution of specific conductivity with points representing the observed locations as output

by eMIP. Fig. 9a displays the distribution as observed using raster scan performed just before the

path planning experiment.

The RMS error between the predicted distribution and the raster scan performed before the path

planning experiment was 45.99 µS/cm. On the other hand, the RMS error between the predicted

distribution and the raster scan performed after the path planning experiment was 53.87 µS/cm.

The RMS error between the two raster scans performed before and after the path planning experi-

ment, indicating the temporal variation in the environment, was 57.55 µS/cm. Low RMS error for

our predicted distribution, when compared with the RMS error between the raster scans performed

before and after the path planning experiment clearly indicates the effectiveness of our approach

for modeling and path planning in such environments. Path planning experiments performed during

other days also demonstrated similar prediction accuracy, while maintaining the significant reduc-

tion in total experimental time.

8.1.3 SENSING IN A LAKE ENVIRONMENT

The second set of in-field experiments was executed at a lake on the campus of University of Cali-

fornia, Merced from August 10-11, 2007 (hereafter referred to as lake deployment). This site was

chosen based on its convenience for being accessibly located on the university campus and its sim-

ilarity to several other lakes that are of interest for diverse limnology applications, including the

study for growth patterns of “algal bloom”. Nuisance algal bloom can impair the beneficial use of

8. Time for which the sensor has to be kept static to get an accurate measurement.

733

SINGH, KRAUSE, GUESTRIN & KAISER

(a) Observed distribution during a raster scan on Au-

gust 11

(b) Predicted distribution after observing at locations

as output by eMIP

Figure 10: Distribution of temperature (oC) at the little on UC Merced campus. Points represent observation locations

during the corresponding experiment.

aquatic systems, by blocking sunlight to underwater vegetation, consuming oxygen in the water,

and producing surface scum and odors. The growth pattern of algal bloom in a lake is dependent

on the spatial and temporal dynamics of temperature, dissolved nutrients and light occurring in dif-

ferent layers of its environment. Thus, temperature is one of the critical parameter to observe in

the lake environment as it controls several physical processes occurring in such low flow aquatic

environments (in contrast to the San Joaquin river environment where there is considerable water

flow).

The total width of the observed cross-section was 70 meters, with a maximum depth of up to

1.81 meters. Similarly to the San Joaquin deployment, we first learned the non-stationary GP model

using the temperature data from one of the raster scans performed on August 10. Fig. 10a displays

a typical surface distribution of temperature as observed during the raster scan at the lake. A total of

89 locations were observed during the raster scan. A set of 15 locations was selected out of these 89

locations (17%) using the eMIP algorithm with the starting and ending location on either end of the

cross-section as displayed in Fig. 10a. This set of 15 observation locations was then observed the

next day using NIMS as the robotic platform. Similar to San Joaquin deployment, we performed

raster scans before and after our experiment to get a measure of ground truth for the temperature

distribution. The predicted temperature, as computed after making the observations at the subset of

locations selected using eMIP, is then compared with this ground truth. With a smaller dwelling time

of 10 seconds (required for measuring temperature) and having to cover the entire length of the lake

cross-section, the reduction in experimental time was 50% (when compared with the raster scan).

Fig. 10b displays the predicted distribution of temperature with points representing the observed

locations as output by eMIP. Fig. 10a displays the distribution as observed using raster scan per-

formed after the path planning experiment. The RMS error between the predicted distribution and

the raster scan performed after the path planning experiment was 0.73 oC. On the other hand, the

RMS error between the predicted distribution and the raster scan performed before the path planning

experiment was 0.82 oC. The RMS error between the two raster scans performed before and after

the path planning experiment, indicating the temporal variation in the environment, was 1.25 oC.

The low RMS error between the predicted distribution and the raster scans, in comparison with the

temporal variation exhibited by the lake environment, indicates the effectiveness of our approach in

the low-flow lake environment as well.

734

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

8.2 Experiments on Sensing Datasets

Several experiments were performed in simulation using real world sensing datasets to analyze the

scaling of our algorithm for different approaches such as varying the experimental cost, exponential

increase in budget split, varying the size of the cells of the spatial decomposition and comparison of

several heuristics, among others. Three different datasets, collected from real world sensing applica-

tions, were used for these experiments. The first dataset consists of measurements of the temperature

in Lake Fulmor, James Reserve (hereafter referred to as lake temperature dataset). Fig. 1b displays

the aerial view of Lake Fulmor. A robotic boat, part of Networked Aquatic Microbial Observing

System (NAMOS) (Dhariwal et al., 2006), was used to collect the surface temperature data around

the lake, of width around 50 meters and length around 250 meters. As discussed earlier, understand-

ing temperature distribution is of prime importance in limnology since it governs several physical

phenomena occurring in the lake environment, including the growth of algal bloom.

The average speed of the boat was approximately 0.4 m/s. Half of the total measurements (218

different sensing locations) were used to learn a nonstationary Gaussian Process model by maxi-

mizing the marginal likelihood (Rasmussen & Williams, 2006), and the remaining measurements

were used for experimentation. We divided the lake into 22 cells (except during the experiments for

studying the effect of changing the size of the cell in spatial decomposition), with distance between

adjacent cell approximately 21 meters. Based on the average speed, and motivated by a typical

measurement duration of roughly 25 seconds, we set the experiment cost to be 10.5 meters (except

during the experiment for understanding the effect of scaling the experimental cost).

As our second dataset, we used data from an existing deployment of 52 wireless sensor motes

to learn the amount of temperature variability at the Intel Research Laboratory, Berkeley (hereafter

referred to as Berkeley temperature dataset). These sensing locations lie within a bounding region of

length 45 meters and width 40 meters. We divided the complete region into a uniform grid contain-

ing 20 equal sized cells, and determined the experimental cost to be 9 meters (approximate distance

to travel between adjacent cells). We learned a GP model as discussed by Krause et al. (2006).

Finally, we explored the performance of our algorithm on a precipitation dataset collected from

167 regions of equal area, approximately 50 km apart, during the years 1949-1994. We followed the

preprocessing and model learning described in the work by Krause et al. (2008). The large physical

spread of the sensing regions makes this dataset unconventional for a mobile robot path planning

application. To avoid this unrealistic scenario, we normalized the coordinates of the regions to lie

within a bounding region of length 7 meters and width 9 meters, while keeping the actual sensing

data observed at each location. We then divided the complete region into a uniform grid of 20 cells

with experimental cost as 1.4 meters (approximate traveling distance between adjacent cells).

For each of the plots comparing the performance of our algorithm, x-axis represent the total

cost of the path including both the traveling cost between the selected locations and the sensing

cost at each selected location (translated into distance as discussed above). When comparing the

computation effort as a measure of performance, in seconds, y-axis is drawn in logarithmic scale.

The computation effort is for running the code implemented in Matlab on a 3.2 GHz dual processor

core with 4 GB RAM. When comparing the collected reward as a measure of performance, y-axis

represent the mutual information (submodular reward function) collected by making observations

at the selected locations.

735

SINGH, KRAUSE, GUESTRIN & KAISER

60 80 100 120 140 160
10

0

10
5

10
2

10
3

10
4

10
1

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Cost of output path (meters)

eMIP

Recursive
greedy

(a) Comparison of computation effort

60 80 100 120 140 160
4

6

8

10

C
ol

le
ct

ed
 R

ew
ar

d

Cost of output path (meters)

eMIP

Recursive
greedy

(b) Comparison of collected reward

Figure 11: Comparison of eMIP and recursive-greedy on a subset of Berkeley temperature dataset with 23 sensing

locations.

200 250 300 350 400 450
10

0

10
5

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Cost of output path(meters)

Best Possible 20
 subproblems

Sub−approx: 10%

Sub−approx: 20%

No sub−approximation

(a) Comparison of computation effort

200 250 300 350 400 450
0

5

10

15

C
ol

le
ct

ed
 R

ew
ar

d

Cost of output path(meters)

Best possible 20
subproblems

Sub−approx: 10%

Sub−approx: 20%

No sub−approximation

Uniform density

(b) Comparison of collected reward

Figure 12: Comparison of computation effort and collected reward for several sub-approximation heuristics used to

improve the running time of eMIP on lake temperature dataset. Significant improvement in execution time was observed,

particularly for longer paths, without significant reduction in collected reward.

8.2.1 COMPARISON WITH RECURSIVE-GREEDY ALGORITHM:

To compare the performance of our approach with the recursive-greedy algorithm, as proposed by

Chekuri et al., we selected a subset of 23 locations from the total of 52 locations from the Berkeley

temperature dataset. A small subset of locations was selected since the running time of recursive-

greedy is quasi-polynomial and was very large for the complete dataset. Fig. 11a and Fig. 11b

display the comparison in the computation effort and collected reward on this smaller dataset for

the two algorithms. As is evident from the plots, our approach provides significant improvement in

running time (of several orders of magnitude at higher budget values) with (almost) the same col-

lected reward. Since the recursive greedy algorithm is essentially a search procedure with greedily

restricted search space, this result also indicates that an exhaustive search over all paths is intractable

for even a small real world sensing problem. The sudden jump in execution time of eMIP in Fig. 11a

at budget = 100 meters is due to an additional iteration step (c.f., Line 7 in Algorithm 3) added due

to the increase in the input budget constraint. Thereafter, additional increase in budget only re-

sults in increase in experimental budget. Since the recursive-eSIP computes efficiently for such a

small problem, additional increase in experimental budget does not increase the computation effort

significantly.

736

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Distance (meters)

D
is

ta
nc

e
(m

et
er

s)

Lake Boundary

Cells

Possible observation
locations

eMIP Path

Starting
Location

Figure 13: Illustration of a path selected using eMIP on lake temperature dataset.

8.2.2 COMPARISON WITH UNIFORM SAMPLE SPACING:

We compared the performance of eMIP with a simple uniform sample spacing algorithm, referred

to as Uniform density. For the case of Uniform density, starting and finishing at given locations,

we greedily select two observation locations within each of the nearest cells and compute the cor-

responding path cost and path reward. Uniform density algorithm will output the best possible path

amongst all possible simple uniform sample spacing algorithms due to greedy observation selection

within each cell. Fig. 12b, compares the collected reward for Uniform density with eMIP for the

lake temperature dataset. Increased collected reward by eMIP, compared to Uniform density, em-

pirically justifies the complexity of eMIP. Additionally, eMIP also provides a strong approximation

guarantee which is not possible for any uniform sample spacing algorithm. Fig. 13 illustrates a

path selected by eMIP for the lake temperature dataset, demonstrating that eMIP does not tend to

cause uniform sample spacing. For a few of the traversed cells, there was no location selected for

observation, while for others as many as three observation locations were selected from within the

cell.

8.2.3 COMPARISON OF SUB-APPROXIMATION HEURISTICS:

Various sub-approximation heuristics discussed in Section 7 were compared empirically to analyze

their utility in improving the execution time and the corresponding reduction in collected reward,

if any. As is displayed in Fig. 12a that compares these heuristics for computation effort, each of

these sub-approximation heuristic provides improvement in the execution time over the scenario

when all branch and bound heuristics other than sub-approximation heuristics were used. The most

improvement at higher values of input budget was observed when the lower bound is increased by

a factor of α(= 1.2 or 20%). Fig. 12b displays the corresponding comparison of these heuristics

for collected reward. It was interesting to observe that none of the sub-approximation approaches

resulted in considerable reduction in collected reward.

737

SINGH, KRAUSE, GUESTRIN & KAISER

15 20 25 30
10

2

10
3

10
4

10
5

Cost of output path (meters)

E
xe

cu
tio

n
 T

im
e

 (
se

co
n

d
s)

Cost = 0.56

Cost = 0.84

Cost = 1.12

Cost = 1.4

(a) Computation effort with variation in sensing cost us-

ing precipitation dataset

15 20 25 30
3

4

5

6

7

8

Cost of output path (meters)

C
o

lle
ct

e
d

 R
e

w
a

rd

Cost = 0.56

Cost = 0.84

Cost = 1.12

Cost = 1.4

(b) Collected reward with variation in sensing cost using

precipitation dataset

200 250 300 350 400 450
10

2

10
3

10
4

10
5

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Cost of output path(meters)

Linear variation

Exponential variation
from both ends

Exponential variation from 0

(c) Computation effort with variation in experimental

budget split using lake temperature dataset

200 250 300 350 400 450
6

8

10

12

14

C
ol

le
ct

ed
 R

ew
ar

d

Cost of output path(meters)

Linear variation

Exponential increase from 0

Exponential variation
from both ends

(d) Collected reward with variation in experimental bud-

get split using lake temperature dataset

0 200 400 600 800
10

1

10
2

10
3

10
4

10
5

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Cost of output path(meters)

Grid: 33 cells

Grid: 22 cells

Grid: 20 cells

Grid: 14 cells

(e) Computation effort with variation in grid size for

spatial decomposition using lake temperature dataset

0 200 400 600 800
0

5

10

15

20

C
ol

le
ct

ed
 R

ew
ar

d

Cost of output path(meters)

Grid: 33 cells

Grid: 14 cells

Grid: 20 cells

Grid: 22 cells

(f) Collected reward with variation in grid size for spa-

tial decomposition using lake temperature dataset

Figure 14: Comparison of collected reward and computation effort with variation in several approaches used in eMIP.

738

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

8.2.4 VARIATION IN SENSING COST:

Fig. 14a and Fig. 14b compare the computation effort and collected reward as the sensing cost is

varied for the precipitation dataset. With the reduction in experimental cost, more locations were

observed for the same total input budget resulting in increased collected reward. However, for each

of the experiments, the computation effort was approximately the same. Due to the diversity in

environmental applications, the sensing cost will depend on the sensors (settling time) and the scale

of dynamics occurring in the observed phenomena. This experiment indicates that eMIP can be used

over a diverse range of sensing costs, as per the demands of diverse environmental applications.

8.2.5 VARIATION IN EXPERIMENTAL BUDGET SPLIT:

As discussed in Section 6, the strategy of exponentially increasing the experimental budget split

results in an increased additional path length required to guarantee the approximation factor for

the collected reward. We performed several experiments with the available datasets to analyze the

empirical performance of increasing the budget splits exponentially. Fig. 14c and Fig. 14d compares

the computation effort and collected reward for linear increase, one sided exponential variation

from 0 and two-sided exponential variation from both 0 and budget B for the lake temperature

dataset. Since a smaller number of budget splits are considered in recursive-eSIP in the case of an

exponential increase, the computation effort will be smaller as compared to the linear increase in

the budget splits. Interestingly, there was very small reduction in collected reward, for only a few

budget values, when the exponential increase was employed. Hence, even though the theoretical

approximation guarantee with exponential increase in experimental budget is weaker, empirically

the collected reward for both the linear and exponential increase in budget splits was found to be

comparable over a wide range of input budgets.

8.2.6 ANALYSIS OF SPATIAL DECOMPOSITION:

As discussed in Section 6, the conversion of an SD-MIPP solution (a cell path) into a solution for

MIPP (a path over observation locations) will result in additional path length exceeding the input

budget B. This additional path length will depend on the size of the cell (or size of the grid covering

the complete spatial domain) in SD-MIPP problem and will result in trade-off with the computation

effort. Variation in grid-size will result in corresponding variation in the traveling cost between the

neighboring cells. This will result in an opportunity to travel more cells for a denser grid with the

same input budget constraint. However, to keep the experimental cost constant across the varying

grid size (since the experiment cost only depends on observed phenomena and is independent of

the spatial decomposition), it was scaled accordingly, in proportion to the traveling cost between

the neighboring cells. Fig. 14f compares the collected reward for varying grid sizes on the lake

temperature dataset, changing the grid size from 14 to 33 cells. It is interesting to observe that such

a change in grid size had (almost) negligible effect on the collected reward. On the other hand,

such increase in grid density resulted in a larger number of cells over which path planning is to be

performed thus leading to increased computation effort for the same input budget. The comparison

of the computation effort for the varying grid size is displayed in Fig. 14e. Note the drastic increase

in computation time as the grid discretization is made finer.

739

SINGH, KRAUSE, GUESTRIN & KAISER

200 250 300 350 400 450
5

10

15

20

T
ot

al
 C

ol
le

ct
ed

 R
ew

ar
d

Average cost of output path per robot (meters)

1 Robot

2 Robots

3 Robots

(a) Collected reward for same starting location

200 250 300 350 400 450
8

10

12

14

16

T
ot

al
 R

M
S

 E
rr

or

Average cost of output path per robot (meters)

1 Robot

2 Robots

3 Robots

(b) RMS error for same starting location

200 250 300 350 400
5

10

15

20

25

T
ot

al
 C

ol
le

ct
ed

 R
ew

ar
d

Average cost of output path per robot (meters)

Single Robot

2 Robots

3 Robots

(c) Collected reward for different starting location

250 300 350 400 450
0

5

10

15

T
ot

al
 R

M
S

 E
rr

or

Average cost of output path per robot (meters)

1 Robot

2 Robots

3 Robots

(d) RMS error for different starting location

73

1
33

Robot-3

Robot-2

Robot-1

Start 2

Start 1

Start 3 Boundary Cells

(e) Paths selected using MIPP

Figure 15: Analysis of experiments performed for multiple robots with different (optimized) starting location using the

lake temperature dataset.

8.2.7 MULTI-ROBOT EXPERIMENTS

We evaluated the performance of our eMIP multi-robot algorithm in simulation using several sens-

ing datasets. Fig. 15 displays the empirical analysis of several experiments using the lake temper-

ature dataset. The first experiment was performed with each robot starting from the same starting

location. Fig. 15a and Fig. 15b display the collected reward and root mean square (RMS) error

when the number of robots were varied from one to three. Due to the sequential-allocation ap-

740

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

proach (wherein we remove the locations that are already selected before selecting the locations for

the next robot) and “information never hurts” principle, collected reward increases as the number

of robots were increased and hence the corresponding root mean square error for prediction at the

unobserved locations gets reduced. However, the incremental change in performance from one to

two robots was larger than the incremental change from two to three robots, which is expected from

the submodularity (diminishing returns) property of mutual information.

Fig. 15c and Fig. 15d display the collected reward and RMS error when a different starting lo-

cation is chosen for each robot. In this scenario, a set of four starting locations is pre-determined

with each location at one end of the lake (see for reference Fig. 15e where three of the four starting

locations are marked). The starting location for each of the three robots was selected greedily based

on the collected information. With a different starting location selected on the opposite end of the

lake for the second robot, the incremental change in collected reward (and corresponding decrease

in root mean square error) as the number of robots was increased from one to two is much higher

than the corresponding change when the same starting location was chosen for the second robot

as well. However, similar to the scenario with same starting location, the incremental change as

the number of robots was increased from one to two is higher as compared to when the number

of robots was increased from two to three (due to submodularity of mutual information). Fig. 15e

illustrates the selected paths for each of the three robots as selected using eMIP.

9. Related Work

There is a large body of related work both in the theory of path planning and its applications. Ap-

proximation algorithms have been proposed for several related problems. Variants of path planning

have been studied in the field of Operations Research as the Traveling Salesman Problem (TSP)

or the Vehicle Routing Problem (VRP). In robotics, several path planning approaches have been

studied for applications such as Simultaneous Localization and Mapping (SLAM) and search and

exploration. In sensor networks and geostatistics, a closely related work studies optimal placement

of static sensors modeling the phenomenon as Gaussian Processes. Several adaptive sampling ap-

proaches have been studied to decide on the subset of locations to observe in order to understand the

phenomenon dynamics effectively. In addition, similar approaches are explored for planning paths

for mobile robots acting as data mules, collecting data sampled by the network of static sensors.

9.1 Operations Research

An interesting special case of the MIPP problem is given in the case where each node has a fixed

reward, and the goal is to find a path that maximizes the sum of these rewards (Traveling Salesman

Problem with Profits, TSPP, Feillet et al., 2005). Such a sum of rewards is a modular (additive)

function, which is a special case of submodular functions. A subcategory of TSPP is an optimiza-

tion problem defined to maximize the collected reward while keeping the associated cost less than

some given budget B. This was studied as Orienteering Problem (OP) or selective TSP (Laporte &

Martello, 1990), or Maximum Collection Problem (Kataoka & Morito, 1988) in the literature. The

additivity assumption made in the orienteering problem is very unrealistic in our informative path

planning setting, as it assumes that the information provided by adjacent locations is independent,

whereas we would typically expect a strong amount of correlation. In fact, if the observations were

all independent, there would be no point in selecting observations for spatial prediction. In this

741

SINGH, KRAUSE, GUESTRIN & KAISER

paper, we hence study the more general orienteering problem with submodular reward functions,

proposed earlier as Submodular Orienteering Problem (Chekuri & Pal, 2005).

9.1.1 MULTIPLE-PATH EXTENSIONS:

The extension of TSPP to multiple paths was studied as Vehicle Routing Problem with Profits

(VRPP) in the literature. Like TSPP, several variants of VRPP have been previously considered.

The Prize Collecting VRP (PCVRP) (Tang & Wang, 2006) is a class of VRPP where the objec-

tive is to determine a subset of all customers to visit so as to minimize the total distance traveled,

minimize the vehicles used and maximize the collected reward. The multi-robot version of the OP

(in the case of additive reward functions) was studied as the Team Orienteering Problem by I-Ming

et al. (1996) and Multiple Tour Maximum Collection Problem by Butt and Ryan (1999).

9.1.2 KNOWN APPROXIMATIONS FOR THE ORIENTEERING PROBLEM:

The OP is known to be NP-hard (Golden et al., 1987). Several versions of the OP studied in the

literature can be classified into those for which the starting (and the finishing) location (root) is

pre-specified or not. For the case of the unrooted OP (when no starting location is specified), the ap-

proximation guarantees known for Prize Collecting TSP and k-TSP can be easily extended (Johnson

et al., 2000). There are several constant factor approximations known for the PC-TSP and k-TSP

problems with the best one being a 2 approximation (Garg, 2005). However the same extension does

not apply for the rooted version of the problem as the best path for the unrooted version may not

contain the root and may be far away from the root thus leading to violation of the budget constraint.

For the rooted OP, Arkin et al. (1998) gave a (2 + ǫ) approximation for the OP in geometric

settings. Blum et al. (2003) gave the first constant factor approximation for the rooted OP in general

undirected graphs. They also extended their algorithm for multi-path OP. The running time of their

algorithm, though polynomial, is very large (more specifically, O(πn5 log(1
ǫ)) where π is the total

reward in the path). Recently Chekuri et al. (2008) gave a polynomial time algorithm for the OP in

undirected graphs with an improved approximation guarantee of (2 + ǫ). Our problem formulation

with specified starting location (s) and finishing location (t) falls under the category of rooted OP

with submodular (non-additive) reward function.

Another classification of OP can be done based on the symmetry of the space of the possible

locations. All of the above approximation guarantees hold true on symmetric spaces (undirected

graphs). Obtaining good approximation algorithm for the directed (asymmetric) orienteering prob-

lem was stated as an open problem by Blum et al. (2003). Chekuri and Pal (2005) gave the first

approximation algorithm with O(log n) guarantee that runs in quasi-polynomial running time. The

running time was recently improved independently by two different works (Chekuri et al., 2008;

Nagarajan & Ravi, 2007), each proposing a poly-time approximation algorithm providing an ap-

proximation guarantee of O(log2 n), though using different approaches. The metric space conver-

sion procedure used during our spatial decomposition approach limits eMIP to symmetric spaces

only.

9.1.3 SEQUENTIAL ALLOCATION:

Blum et al. (2003) proposed a sequential allocation approach to extend algorithms for single-robot

orienteering to the multiple robot setting, but only for the special case of additive (modular) reward

functions. In this paper, we generalize their result to submodular reward functions. After the initial

742

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

version of this paper was published (Singh et al., 2007b), we realized that our sequential-allocation

procedure is an instance of maximizing a submodular function subject to a matroid constraint (Ca-

linescu et al., 2007). We can define a partition matroid on the disjoint unionM =M1 ∪ · · · ∪Mk

of k ground setsMi, one for each robot. Each setMi contains all feasible paths for robot i. The

collection I ⊆ 2M of all subsets P ∈ I such that |P ∩ Mi| ≤ 1 (i.e. each P corresponds to

a collection of paths, with the constraint that we can pick at most one from each set Mi) forms

independent sets of the partition matroid. Hence, the problem of finding a collection of maximally

informative paths is the problem of finding an independent set of a matroid maximizing a submod-

ular function. Current work in progress by Goundan and Schulz (2008) provides general results on

the performance of a sequential allocation procedure in such a setting, which can be used to prove

the same sequential allocation results originally presented by Singh et al. (2007b).

9.2 Robotic Applications

There is considerable work in path planning in the robotics community for several applications,

including simultaneous localization and mapping (SLAM) and search and exploration. Several

different approaches have been studied for each of these applications, including auction based algo-

rithms, data-adaptive approaches and information gain based algorithms.

9.2.1 SIMULTANEOUS LOCALIZATION AND MAPPING:

The goal of Simultaneous Localization And Mapping (SLAM) is to build maps of an environment

by performing an exploration of the environment with an objective to estimate the robot position

and world features simultaneously. Several approaches optimizing different objective functions had

been proposed to perform path planning for SLAM. Bourgault et al. (2002) proposed an exploration

framework using an occupancy grid (OG) environment model (performing spatial decomposition of

the observed environment) with an objective to maximize mutual information over the OG map.

Stachniss et al. (2005) developed a greedy algorithm for selecting the next location to visit to

maximize information gain about the map.

In contrast to such approaches, Sim and Roy (2005) attempted to optimize the entire trajec-

tory, not just the next step, but their algorithm introduces some approximations without theoreti-

cal bounds. Simmons et al. (2000) proposed a distributed approach for exploration and mapping

with multiple robots by minimizing the overlap in information gain amongst multiple robots. They

provided quantitative results from simulation but did not provide any theoretical bounds for their

approach. There is little work in SLAM setting with an upper bound on the total cost of the path. In

addition, we are not aware of any approaches to SLAM which carry approximation guarantees for

either the single or multi-robot cases. An interesting direction for future work would be to analyze

the applicability of our approach to the SLAM setting.

9.2.2 SEARCH AND EXPLORATION:

The search and exploration application involves path planning for a robot with the goal of searching

for a moving target(s) in a given environment, e.g. target surveillance in security applications and

patient tracking in health care domain. Performing path planning using stochastic inference provides

advantage of robustness to sensing and motion uncertainty though with an added complexity of com-

putational intractability. Roy and Earnest (2006) proposed an approach to effectively compute the

trajectories for target tracking based on maximizing mutual information (evaluated using the change

743

SINGH, KRAUSE, GUESTRIN & KAISER

in variance of the probability distribution). They used a particle filter approach, performing cluster-

ing over the particles followed by path planning over these clusters. Lau et al. (2006) formulated the

target tracking in indoor environments as a generalization of an NP-complete optimal searcher path

(OSP) problem (Trummel & Weisinger, 1986). They sought to optimize the probability of detection

within a given time horizon while accounting for the undetected target probability that is a function

of previously visited locations during the search. They used several branch and bound approaches

to speed up the search process. The objective of maximizing information gain subject to the budget

constraints on the path cost makes eMIP a suitable candidate for performing path planning for such

problems.

Ryan (2008) used an approach of partitioning the search space into subgraphs for multi-robot

path planning. We take a conceptually similar approach, also reducing the search space by decom-

posing the space into regions and then performing path planning over those regions. However, we

address more complex utility functions, such as quantifying the informativeness of visited locations

and are not limited to specific graph structures such as stacks, halls, cliques, rings as is the case in

the work of Ryan (2008). Recently, Thompson and Wettergreen (2008) used our eMIP algorithm

for near-term path planning while performing autonomous exploration of surficial units at Amboy

Crater in Mojave desert, California.

9.2.3 PLANNING SYSTEMS AND APPLICATIONS:

Certain applications in robotic path planning used plan graphs (Blum & Furst, 1997) to compute

an estimate of the resources and time required to achieve goals from states encountered in the

search process. In the case of over-subscription planning problem – wherein only a subset of goals

that can be accomplished within the limited time or resources available for the planning system,

the work by Smith (2004) used an orienteering heuristic to provide an ordered set of goals to be

considered by the planner. Briel et al. (2004) proposed several heuristics for efficiently solving

the over-subscription planning problem. However, in each of the earlier proposed heuristics, the

reward function considered is modular (additive). eMIP can be used to efficiently solve the over-

subscription planning problem in the submodular setting with strong approximation guarantees.

9.3 Sensor Networks

Phenomenon modeling to decide on the optimal placement of a set of static sensors is well studied

in the sensor networks and geostatistics communities. Gaussian Process models for spatial phe-

nomena had been studied extensively (Cressie, 1991). Guestrin et al. (2005) proved that, in the case

of phenomena governed by Gaussian Process models, selecting the placement of sensors greedily

based on mutual information is near-optimal. Krause et al. (2006) extended this work to include

communication cost between sensors while optimizing the sensor placement. In the communica-

tion constrained setting, similar to the path planning problem considered in this paper, the greedy

algorithm performs badly, and more involved algorithms have to be developed. Batalin et al. (2004)

showed that combining the static and mobile sensing devices, even in a simple scenario, can result

in significant improvement in sensing performance. In such a scenario, where a combination of

static and mobile sensing devices are available, several approaches for optimal placement of static

sensors can be combined with eMIP to observe a given phenomenon efficiently.

744

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

9.3.1 DATA COLLECTION FROM A SENSOR NETWORK:

A different scenario where a mobile robot can be combined with a network of static sensors is to

improve the lifetime of the sensor network by performing the tours for collecting the data sampled

by the static network. Somasundara et al. (2007) showed that the problem of collecting the data

when the environment shows both spatial and temporal dynamics is NP-complete and provided an

integer linear programming formulation for the same. They compared the performance of several

heuristics in simulation for both single and multi-robot scenario. Meliou et al. (2007) proposed a

nonmyopic approach for the application of data gathering tours using an algorithm for submodular

orienteering (SOP) as a black box. They provided strong approximation guarantees and extensive

empirical evaluation that indicates the applicability of their approach for such applications. In this

setting, eMIP can be used as an orienteering algorithm to provide a better approximation guarantee

in addition to improved running time.

9.3.2 ADAPTIVE SAMPLING FOR ENVIRONMENTAL APPLICATIONS:

Recent advances in robotics have opened up opportunities for high fidelity monitoring of dynamic

environmental sensing applications. Rahimi et al. (2004) explored several policies for adaptively

sampling the environment. Singh et al. (2006) proposed a multiscale adaptive sampling approach

with uniformly sampling the environment in the first stage followed by sampling at locations in order

to minimize the mean square error the most. They also extended their approach for multiple robots,

although without providing any theoretical bounds. Using several in-field experiments as well as

simulations using real world sensing datasets, we demonstrate here that several such environmental

phenomenon can be effectively sampled adaptively using eMIP.

10. Conclusions and Future Work

In this paper, we presented eSIP, an approximation algorithm for efficient planning of informative

paths. eSIP near-optimally solves the NP-hard problem of maximizing the collected information

with an upper bound on path-cost. Our eSIP algorithm builds on the recursive-greedy algorithm of

Chekuri and Pal (2005). eSIP preserves the approximation guarantees of recursive-greedy, while

overcoming its computational intractability through spatial-decomposition and several branch and

bound approaches. We also presented a general approach, sequential-allocation, which extends any

single-robot algorithm, such as eSIP, to the multiple-robot setting while providing a provably strong

approximation guarantee.

We also provide extensive empirical evaluation to demonstrate the effectiveness of our approach

for real world sensing applications. We performed several in-field experiments for two important

environmental sensing applications – lake monitoring (at a small lake at UC Merced campus) and

river monitoring (at San Joaquin river, California). The Networked Info Mechanical System (NIMS)

was used as the robotic system for performing path planning during each of these deployments to

demonstrate the practicality of our algorithm. We also performed extensive simulation experiments

using several real world sensor network data sets. With global climate change and corresponding

impetus on sustainable practices, we expect that such efficient path planning approaches can help

address the challenge of monitoring environment-related activities effectively.

In the future, we plan to explore the applicability of our algorithm in other application domains

such as SLAM and search and rescue. We plan to work towards understanding the limitations of

745

SINGH, KRAUSE, GUESTRIN & KAISER

learning a static GP model in real world scenarios, and extend our approach for online model adap-

tation.

Acknowledgments

We would like to thank Maxim Batalin for helpful discussions, Bin Zhang for providing the lake

data set and Michael Stealey, Henry Pai and Victor Chen for help during the river and lake deploy-

ment. This work was partially supported by NSF Grants No. CNS-0509383, CNS-0625518, CNS-

0331481, ANI-00331481, CCR-0120778, ECCS-0725441, ONR MURI W911NF0710287 and a

gift from Intel. Carlos Guestrin was partly supported by an Alfred P. Sloan Fellowship and an IBM

Faculty Fellowship. Andreas Krause was partially supported by a Microsoft Research Graduate

Fellowship.

APPENDIX

Theorem-1. Let η be the approximation guarantee for the single path instance of the informative

path planning problem. Then our sequential-allocation algorithm achieves an approximation guar-

antee of (1 + η) for the MIPP problem. In the special case, where all robots have the same starting

(si = sj ,∀i, j) and finishing locations (ti = tj ,∀i, j), the approximation guarantee improves to

1/(1− exp (−1/η)) ≤ 1 + η.

Proof of Theorem 1. For the case when all the robots start and finish at the same location, let Π
be the total reward collected by the optimal solution. Additionally, define Πi to be the difference

between the reward collected by the optimal solution, and by the approximation algorithm, at the

end of stage i. Hence, Π0 = Π.

Let Ai = P1 ∪ · · · ∪ Pi be the nodes selected by the approximation algorithm up to stage i
(A0 = ∅), and let P∗ = {P∗

1 , . . . ,P∗
k} denote the collection of paths chosen in the optimal solution.

Consider the residual reward fAi . We find fAi(P∗) = f(Ai∪P∗)−f(Ai) ≥ f(P∗)−f(Ai) = Πi

due to monotonicity of f . If there were no path P∗
j with fAi(P∗

j) ≥ 1
kΠi, then

∑
j fAi(P∗

j) <
Πi = fAi(P∗), contradicting the monotonic submodularity of fAi . Hence there is such a path P∗

j

with fAi(P∗
j) ≥ 1

kΠi, and thus the approximation algorithm is guaranteed to find a path Pi such

that fAi(Pi) ≥ 1
ηkΠi.

The difference in the reward collected by the optimal solution and the reward collected by

Algorithm 1 after stage i + 1 is at most:

Πi+1 ≤ (1− 1/ηk)Πi,

≤ (1− 1/ηk)i+1Π.

Thus after k stages, the difference in the reward is bounded by Πk ≤ (1−1/ηk)kΠ ≤ exp (−1/η)Π.

Hence, the reward collect by Algorithm 1 is at least (1 − exp (−1/η)) times the optimal reward,

resulting in approximation factor of 1/(1− exp (−1/η)).
For the case when each robot has different starting and finishing location, let P∗

i be the set

of nodes visited by the optimal path at stage i. Let Oi be the set of nodes visited by the optimal

path until stage i, i.e., Oi = ∪i
j=1P∗

j , with O0 = ∅ and O1 = P∗
1 . The reward collected by the

746

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

approximation algorithm at stage i can be bounded as:

fAi−1
(Pi) ≥ 1/η(fAi−1

(P∗
i)).

After k stages, the total collected reward can be given as:

k∑

i=1

fAi−1
(Pi) ≥ 1/η(

k∑

i=1

fAi−1
(P∗

i)). (4)

Since the left hand side is a telescopic sum, we get:

k∑

i=1

fAi−1
(Pi) = f(∪k

i=1Pi) = f(Ak). (5)

On the right hand side (RHS):

R.H.S. = 1/η(
k∑

i=1

fAi−1
(P∗

i)),

= 1/η(
k∑

i=1

(f(P∗
i ∪ Ai−1)− f(Ai−1))).

Adding Oi−1 to both the terms and using the submodularity property, we get

R.H.S. ≥ 1/η(

k∑

i=1

(f(Oi ∪ Ai−1)− f(Oi−1 ∪ Ai−1))),

= 1/η [f(O1)− 0 + f(O2 ∪ A1)− f(O1 ∪ A1) + · · ·+ f(Ok ∪ Ak−1)− f(Ok−1 ∪ Ak−1)] .

Rearranging the terms, we get:

R.H.S. ≥ 1/η

[
f(Ok ∪ Ak−1)−

k−1∑

i=1

(f(Oi ∪ Ai)− f(Oi ∪ Ai−1))

]
.

Using the monotonicity (f(Ok ∪Ak−1) ≥ f(Ok)) and submodularity of f (f(Oi ∪Ai)− f(Oi ∪
Ai−1) ≤ f(Ai)− f(Ai−1)), we get

R.H.S. ≥ 1/η

[
f(Ok)−

k−1∑

i=1

(f(Ai)− f(Ai−1))

]
,

= 1/η [f(Ok)− f(Ak−1)] .

Using the monotonicity (f(Ak) ≥ f(Ak−1)), we get

R.H.S. ≥ 1/η [f(Ok)− f(Ak)] . (6)

Substituting Equation (5) and (6) into Equation (4), we get:

f(Ak) ≥ 1/η [f(Ok)− f(Ak)] ,

747

SINGH, KRAUSE, GUESTRIN & KAISER

and thus:

f(Ak) ≥ 1/(η + 1)f(Ok).

resulting in an approximation guarantee of (1 + η).

The above theorem and proof is inspired by the proof of multi-path orienteering provided

by Blum et al. (2003).

Lemma 3. Let P∗ = (s = v0, v1, . . . , vl = t) be an optimal s-t-path solution to MIPP, con-

strained by budget B. Then there exists a corresponding SD-MIPP pathP∗
C = (Cs = Ci1 , . . . , Cin =

Ct), traversing through locations Ai1 ∪ · · · ∪ Ail , with budget B̃ of at most 2
√

2B + 4L collecting

the same information.

Proof of Lemma 3. Let P∗ be the optimal path for MIPP, constrained by budget B. We need to en-

sure that when MIPP is transformed into SD-MIPP, with P∗
C as the corresponding optimal solution,

we have enough budget such that P∗
C is feasible in the new problem domain. To recall, for the

new problem domain, SD-MIPP, traveling to a new cell costs L (distance between the centroids of

adjacent cells), irrespective of the sensing location within the cell.

1 2

34

5

6

L

Figure 16: Illustration for the increased budget requirement for SD-MIPP.

For the corresponding SD-MIPP, an optimal path may just make 4 experiments in 4 different

cells (Cells 1,2,3 and 4 in Fig. 16) sharing a common vertex, with each sensing location in different

cell close to the common vertex, while only requiring an infinitesimally small traveling cost. In-

creasing the budget by 4L accounts for this case. Furthermore, by paying only an additional cost

L for traveling between the two corners of an edge of a cell, P∗
C can make experiments at 2 new

cells (Cells 5,6 in Fig. 16. Thus, the total number of cells visited by the P∗
C is upper bounded by

2(B/L) + 4. Hence, a budget of 2B + 4L suffices to render P∗
C a feasible SD-MIPP solution. Now

to convert MIPP from the two-dimensional Euclidean distance into the corresponding L1 distance,

the budget needs to be increased to
√

2B to ensure that P∗ is feasible in the L1 metric. Accounting

for the conversion from Euclidean distance into L1, the total budget B̃ required for SD-MIPP, to

ensure the feasibility of the optimal solution in MIPP, is upper bounded by 2
√

2B + 4L.

Lemma 4. Let P∗
C = (Cs = C1, . . . , Ck = Ct) be an optimal solution for single robot instance

of SD-MIPP, constrained by budget B̃, where an optimal set of locations are selected within each

visited cell Cj . Let P̂ be the solution returned for eSIP. Then I(P̂) ≥ 1−1/e
1+log2 k I(P∗

C).

Proof of Lemma 4. We will prove this by induction on the length n of the optimal path. Let Fg(=
(1 − 1/e)) be the constant factor due to the greedy selection of sensing locations within each cell.

748

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

Also assume B̃ be the budget constraint for SD-MIPP problem. For the case n = 1, iter = 0
and Algorithm 4 will select the greedy subset of nodes from the set Cs = Ct. This will give an

approximation guarantee of Fg (Krause et al., 2008) compared to the optimal set of the same number

of observations selected in this cell (and hence of the information obtained by the optimal SD-MIPP

path visiting only this cell).

Now, assuming the induction hypothesis holds for n = k/2, we get:

IX(P) ≥ Fg

(1 + log(k/2))
IX(P∗),

≥ Fg

log k
IX(P∗).

This will hold true for traveling budget of B̃k/2 and experimental budget up to B̃ − B̃k/2. Let us

now analyze the case n = k. Let P ∗
1 be the optimal path from Cs to Ck/2 constrained by budget B′.

Since we increase the experimental budget split linearly, B′ will vary from 0 to B̃ − B̃k, where B̃k is

the traveling cost for visiting k cells. Since this cost will be less than B̃ − B̃k/2, using the induction

hypothesis,

IX(P1) ≥
Fg

log k
IX(P∗

1). (7)

Similarly, with X ′ = X ∪ P1 following approximation guarantee holds true for P2:

IX′(P2) ≥
Fg

log k
IX′(P∗

2). (8)

By definition of our submodular function:

IX′(P∗
2) = I(P∗

2 ∪ P1 ∪X)− I(P1 ∪X),

= IX(P1 ∪ P∗
2)− IX(P1).

Substituting in (8), we get

IX′(P2) ≥
Fg

log k
(IX(P1 ∪ P∗

2)− IX(P1)).

Using monotonicity of I,

IX′(P2) ≥
Fg

log k
(IX(P∗

2)− IX(P)).

Adding this to (7), we finally get:

IX(P) ≥ Fg

log k
(IX(P∗

1) + IX(P∗
2)− IX(P)),

(Fg + log k) IX(P) ≥ Fg(IX(P∗
1) + IX(P∗

2)),

(1 + log k) IX(P) ≥ Fg(IX(P∗
1) + IX(P∗

2)).

Since IX is a submodular function,

(1 + log k) IX(P) ≥ Fg(IX(P∗)),

IX(P) ≥ Fg

1 + log k
(IX(P∗)).

749

SINGH, KRAUSE, GUESTRIN & KAISER

The above proof is inspired by the analysis of the recursive greedy algorithm for submodular

orienteering proposed by Chekuri and Pal (2005).

In the case of exponential budget splits, the budget needs to be increased, albeit sub-linearly:

Lemma 7. Let P∗
C = (Cs = Ci1 , . . . , CiN = Ct) be an optimal SD-MIPP solution constrained

by budget B̃. Let P be the solution returned by eMIP with exponential splits of the experimental

budget, started with increased budget N log2
3
2 B̃. Then I(P) ≥ 1−1/e

1+log N I(P∗
C).

Proof of Lemma 7. The set of paths which eMIP considers under exponential splits – let us call

them exponential paths – is in general a strict subset of the linear paths considered under linear

splits. The proof of Lemma 4 indeed shows that the path returned by eMIP achieves at most a factor
1−1/e

1+log N less information than the optimal exponential path. We need to show that increasing the

budget by a factor of N log2
3
2 B̃ guarantees that the optimal linear path is a feasible exponential path.

Every exponential path can be represented by a complete binary tree, whereby every internal node at

a given level in the tree corresponds to a choice of middle node and experimental budget allocation

to the left and right sub-path at the corresponding recursion level. Further, every leaf in the tree

corresponds to a set of observations selected in a visited cell. Consider the tree T ∗ representing the

optimal linear path with budget B̃. At each inner node, the restriction to exponential splits can lead to

a situation, where either the left or right sub-path receives less experimental budget than allocated

by the optimal path. Our proof strategy is to turn T ∗ into a new tree T ′, which selects the same

observations and corresponds to a valid exponential path. In order to achieve this, we will annotate

each inner node v, which receives Bv experimental budget in the optimal linear allocation, by a

new feasible exponential budget B′
v ≥ Bv. It then suffices to show that for the root R it holds that

B′
R ≤ (n)log2 3/2BR = (3/2)log2 nBR. Label the edges of T ∗ with 0 and 1, such that the sub-path

corresponding to the edge labeled with 1 receives the smaller part of the linear budget split. Hence,

a leaf v on a path with k ones receives at most Bv ≤ (1/2)k of the total linear budget requirement B̃.

Let us derive the bounds B′
v bottom up. We prove by induction that B′

v ≤ (3/2)mBv where m is the

height of v (distance from the leaves). This will suffice the condition B′
r ≤ (3/2)log2 nBr, that we

want to prove. For the leaves v clearly B′
v = Bv is sufficient, since no further split is done and hence

the reward collected by both linear and exponential split will be same. Let v be an inner node with

children l and r, where w.l.o.g., the left child l is annotated by 0. By construction, Br ≤ Bv/2. By

induction hypothesis, B′
l ≤ (3/2)m−1Bl, and B′

r ≤ (3/2)m−1Br. If we choose B′
v = B′

l + 2B′
r,

then we can find a feasible exponential budget split allocating at least B′
l to l and B′

r to r. This

split will require increasing the budget exponentially till we suffice r and allocating the rest to l.
To ensure that we always have a budget split that suffice r with exponential budget irrespective

of whether it represents P1 or P2, we need to do exponential splits from both sides, trying both

exponential increase from 0 (Bexp) and Bv − Bexp for the cases when r represents P1 and P2

respectively. Now we have B′
v ≤ (3/2)m−1Bl + 2(3/2)m−1Br = (3/2)m−1Bv + (3/2)m−1Br ≤

(3/2)mBv.

Theorem 5. Let P∗ be the optimal solution for the single robot instance of the MIPP problem

with budget constraint B. Then, our eSIP algorithm will find a solution P̂ achieving an information

value of at least I(P̂) ≥ 1−1/e
1+log2 N I(P∗), whose cost is no more than 2(2

√
2B + 4L)(1 + L

√
2

Cexp
) in

the case of linear budget split for B̃e and no more than 2(2
√

2B + 4L)(1 + L
√

2
Cexp

)N log2
3
2 in the

case of exponential budget split for B̃e.

750

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

Proof of Theorem 5. Let B̃ be the budget requirement for SD-MIPP according to Lemma 4 (or

Lemma 7 in the case of exponential splits) and P be the corresponding solution returned by eMIP.

Let Cexp be the cost of making an observation at each sensing location. Maximum number of

sensing locations visited by P will be B̃
Cexp

. Since we do not account for traveling to the sensing

locations, an additional cost equivalent to traveling from the centroid of the visited cells to the

corresponding sensing location is to be paid when the solution from SD-MIPP is transformed back to

get the solution for MIPP. For each sensing location, a maximum additional cost of L
√

2 is incurred

for traveling to the sensing location and returning back to the centroid, where L is the length of the

cell. Thus the additional cost for the solution path for MIPP problem, transformed from SD-MIPP

problem is upper bounded by B̃L
√

2
Cexp

. Since eMIP only considers exponential budget splits into

traveling and experimental budget, an increase of the budget by another factor of 2 guarantees that

the split defined by the optimal MIPP solution is feasible. Combining this analysis with Lemma 3

and Lemma 4 completes the proof.

References

Arkin, E. M., Mitchell, J. S. B., & Narasimhan, G. (1998). Resource-constrained geometric network

optimization. In Symposium on Computational Geometry, pp. 307–316.

Bai, X., Kumar, S., Xua, D., Yun, Z., & Lai, T. H. (2006). Deploying wireless sensors to achieve

both coverage and connectivity. In Proceedings of the 7th ACM international symposium on

Mobile ad hoc networking and computing, pp. 131–142.

Batalin, M. A., Rahimi, M., Yu, Y., Liu, D., Kansal, A., Sukhatme, G. S., Kaiser, W. J., Hansen, M.,

Pottie, G. J., Srivastava, M., & Estrin, D. (2004). Call and response: experiments in sampling

the environment. In Proceedings of the 2nd international conference on Embedded networked

sensor systems, pp. 25–38.

Blum, A., Chawla, S., Karger, D. R., Lane, T., Meyerson, A., & Minkoff, M. (2003). Approximation

algorithms for orienteering and discounted-reward tsp. In Annual Symposium on Foundation

of Computer Science (FOCS), p. 46.

Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis. Artificial

Intelligence, 90, 1636–1642.

Borgstrom, P. H., Stealey, M. J., Batalin, M. A., & Kaiser, W. J. (2006). NIMS3D: A novel rapidly

deployable robot for 3-dimensional applications. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, Beijing, China.

Bourgault, F., Makarenko, A., Williams, S., Grocholsky, B., & Durrant-Whyte, H. (2002). Informa-

tion based adaptive robotic exploration. In IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 540–545.

Brekke, L. D., Miller, N. L., Bashford, K. E., Quinn, N. W., & Dracup, J. A. (2004). Climate change

impacts uncertainty for water resources in the san joaquin river basin, california. Journal of

the American water resource association, 40, 149–164.

Briel, M. V. D., Sanchez, R., Do, M. B., & Kambhampati, S. (2004). Effective approaches for partial

satisfaction (over-subscription) planning. In In AAAI, pp. 562–569. AAAI Press.

751

SINGH, KRAUSE, GUESTRIN & KAISER

Butt, S. E., & Ryan, D. M. (1999). An optimal solution procedure for the multiple tour maximum

collection problem using column generation. Computers and Operations Research, 26, 427–

441.

Calinescu, G., Chekuri, C., Pl, M., & Vondrk, J. (2007). Maximizing a submodular set function sub-

ject to a matroid constraint (extended abstract). In Integer Programming and Combinatorial

Optimization (IPCO), Vol. 4513 of Lecture Notes in Computer Science, pp. 182–196.

Caselton, W., & Zidek, J. (1984). Optimal monitoring network design. Statistics and Probability

Letters.

Chao, I.-M., Golden, B. L., & Wasil, E. A. (1996). A fast and effective heuristic for the orienteering

problem. European Journal of Operations Research, 88, 475–489.

Chekuri, C., Korula, N., & Pál, M. (2008). Improved algorithms for orienteering and related prob-

lems. In Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’08).

SIAM. To appear.

Chekuri, C., & Pal, M. (2005). A recursive greedy algorithm for walks in directed graphs. In Annual

Symposium on Foundation of Computer Science (FOCS), pp. 245–253.

Christofides, N. (1976). Worst-case analysis of a new heuristic for the traveling salesman problem.

Tech report,CMU.

Cressie, N. A. C. (1991). Statistics for Spatial Data. Wiley.

Dhariwal, A., Zhang, B., Stauffer, B., Oberg, C., Sukhatme, G. S., Caron, D. A., & Requicha, A. A.

(2006). Networked aquatic microbial observing system. In IEEE International Conference

on Robotics and Automation (ICRA).

Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problem with profits. Trans-

portation Science, 39(2), 188–205.

Garg, N. (2005). Saving an epsilon: a 2-approximation for the k-mst problem in graphs. In ACM

Symposium on Theory of Computing (STOC), pp. 396–402.

Golden, B., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval Research Logistics, 34,

307–318.

Goundan, P. R., & Schulz, A. S. (2008). Revisiting the greedy approach to submodular set function

maximization.. Working paper, MIT.

Guestrin, C., Krause, A., & Singh, A. P. (2005). Near-optimal sensor placements in gaussian pro-

cesses. In International Conference on Machine Learning (ICML).

Harmon, T. C., Ambrose, R. F., Gilbert, R. M., Fisher, J. C., Stealey, M., & Kaiser, W. J. (2007).

High-resolution river hydraulic and water quality characterization using rapidly deployable

networked infomechanical systems (NIMS RD). Environmental Engineering Science, 24(2),

151–159.

I-Ming, C., Golden, B., & Wasil, E. (1996). The team orienteering problem. European Journal of

Operation Research, 88, 464–474.

Ibaraki, T., Muro, S., Murakami, T., & Hasegawa, T. (1983). Using branch-and-bound algorithms to

obtain suboptimal solutions. Mathematical Methods of Operations Research, 27(1), 177–202.

752

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

Ishikawa, T., & Tanaka, M. (1993). Diurnal stratification and its effects on wind-induced currents

and water qualities in lake kasumigaura, japan. Journal of Hydraulic Research, 31(3), 307–

322.

Johnson, D. S., Minkoff, M., & Phillips, S. (2000). The prize collecting steiner tree problem: theory

and practice. In Symposium on Discrete Algorithms (SODA), pp. 760–769.

Jordan, B. L., Batalin, M. A., & Kaiser, W. J. (2007). NIMS RD: A rapidly deployable cable based

robot. In IEEE International Conference on Robotics and Automation (ICRA), Rome, Italy.

Kataoka, S., & Morito, S. (1988). An algorithm for the single constraint maximum collection

problem. Journal of the Operational Research Society of Japan, 31, 515–530.

Ko, C.-W., Lee, J., & Queyranne, M. (1995). An exact algorithm for maximum entropy sampling.

Operations Research, 43(4), 684–691.

Krause, A., & Guestrin, C. (2007). Near-optimal observation selection using submodular functions.

In AAAI Nectar track.

Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in Gaussian pro-

cesses: Theory, efficient algorithms and empirical studies. In Journal of Machine Learning

and Research (JMLR), Vol. 9, pp. 235–284.

Krause, A., & Guestrin, C. (2007). Nonmyopic active learning of gaussian processes: an

exploration-exploitation approach. In International Conference on Machine Learning

(ICML), pp. 449–456.

Krause, A., Guestrin, C., Gupta, A., & Kleinberg, J. (2006). Near-optimal sensor placements: Max-

imizing information while minimizing communication cost. In Proceedings of the fifth inter-

national conference on Information processing in sensor networks (IPSN), pp. 2–10.

Laporte, G., & Martello, S. (1990). The selective travelling salesman problem. Discrete Applied

Mathematics, 26, 193–207.

Lau, H., Huang, S., & Dissanayake, G. (2006). Probabilistic search for a moving target in an

indoor environment. In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 3393–3398.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell System Technical

Journal, 44, 2245–2269.

MacIntyre, S. (1993). Vertical mixing in a shallow, eutrophic lake: Possible consequences for the

light climate of phytoplankton. Limnology and Oceanography, 38(4), 798–817.

MacIntyre, S., Romero, J. R., & Kling, G. W. (2002). Spatial-temporal variability in surface layer

deepening and lateral advection in an embayment of lake victoria, east africa. Limnology and

Oceanography, 47(3), 656–671.

Meliou, A., Krause, A., Guestrin, C., & Hellerstein, J. M. (2007). Nonmyopic informative path

planning in spatio-temporal models. In Association for Advancement of Artificial Intelligence

(AAAI), pp. 602–607.

Nagarajan, V., & Ravi, R. (2007). Poly-logarithmic approximation algorithms for directed vehicle

routing problems. In Proc. 10th Internat. Workshop on Approximation Algorithms for Com-

binatorial Optimization Problems (APPROX’07), Vol. 4627 of LNCS, pp. 257–270. Springer.

753

SINGH, KRAUSE, GUESTRIN & KAISER

Nemhauser, G., Wolsey, L., & Fisher, M. (1978). An analysis of the approximations for maximizing

submodular set functions. Mathematical Programming, 14, 265–294.

Pon, R., Batalin, M., Gordon, J., Rahimi, M., Kaiser, W., Sukhatme, G., Srivastava, M., & Estrin,

D. (2005). Networked infomechanical systems: A mobile wireless sensor network platform.

In Proceedings of the fifth international conference on Information processing in sensor net-

works (IPSN), pp. 376–381.

Rahimi, M., Pon, R., Kaiser, W., Sukhatme, G., Estrin, D., & Srivastava, M. (2004). Adaptive

sampling for environmental robotics. In IEEE International Conference on Robotics and

Automation (ICRA).

Rasmussen, C. E., & Williams, C. K. (2006). Gaussian Process for Machine Learning. Adaptive

Computation and Machine Learning. MIT Press.

Reynolds-Fleming, J. V., Fleming, J. G., & Luettich, R. A. (2004). Portable autonomous vertical

profiler for estuarine applications. Estuaries, 25, 142–147.

Roy, N., & Earnest, C. (2006). Dynamic action spaces for information gain maximization in search

and exploration. In American Control Conference.

Ryan, M. R. K. (2008). Exploiting subgraph structure in multi-robot path planning. In Journal of

Artificial Intelligence and Research (JAIR), Vol. 31, pp. 497–542.

Sim, R., & Roy, N. (2005). Global a-optimal robot exploration in slam. In IEEE International

Conference on Robotics and Automation (ICRA).

Simmons, R. G., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., & Younes, H. (2000).

Coordination for multi-robot exploration and mapping. In Association for Advancement of

Artificial Intelligence (AAAI), pp. 852–858.

Singh, A., Nowak, R., & Ramanathan, P. (2006). Active learning for adaptive mobile sensing net-

works. In Proceedings of the fifth international conference on Information processing in

sensor networks (IPSN), pp. 60–68.

Singh, A., Batalin, M. A., Chen, V., Stealey, M. J., Jordan, B., Fisher, J., Harmon, T., Hansen, M., &

Kaiser, W. J. (2007a). Autonomous robotic sensing experiments at san joaquin river. In IEEE

International Conference on Robotics and Automation (ICRA), pp. 4987–4993, Rome, Italy.

Singh, A., Krause, A., Guestrin, C., Kaiser, W. J., & Batalin, M. A. (2007b). Efficient planning of

informative paths for multiple robots. In International Joint Conference on Artificial Intelli-

gence (IJCAI), pp. 2204–2211, Hyderabad, India.

Smith, D. E. (2004). Choosing objectives in over-subscription planning. In International Conference

on Automated Planning and Scheduling (ICAPS).

Somasundara, A. A., Ramamoorthy, A., & Srivastava, M. B. (2007). Mobile element scheduling

with dynamic deadlines. In IEEE Transactions on Mobile Computing, Vol. 6, pp. 395–410.

Stachniss, C., Grisetti, G., & Burgard, W. (2005). Information gain-based exploration using rao-

blackwellized particle filters. In Robotics Science and Systems (RSS).

Tang, L., & Wang, X. (2006). Iterated local search algorithm based on very large-scale neighbor-

hood for prize-collecting vehicle routing problem. The International Journal of Advanced

Manufacturing Technology, 1–13.

754

EFFICIENT INFORMATIVE SENSING USING MULTIPLE ROBOTS

Thompson, D. R., & Wettergreen, D. (2008). Intelligent maps for autonomous kilometer-scale sci-

ence survey. In International Symposium on Artificial Intelligence, Robotics and Automation

in Space (iSAIRAS).

Trummel, K. E., & Weisinger, J. R. (1986). The complexity of the optimal searcher path problem.

Operations Research, 34(2), 324–327.

Zhang, W., & Korf, R. E. (1995). Performance of linear-space search algorithms. Artificial Intelli-

gence, 79(2), 241–292.

755

