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Abstract

This thesis is primarily concerned with two problems of interconnecting components
in VLSI technologies. In the first case, the goal is to construct efficient interconnec-
tion networks for general-purpose parallel computers. The second problem is a more
specialized problem in the design of VLSI chips, namely multilayer channel routing. In
addition, a final part of this thesis provides lower bounds on the area required for VLSI
implementations of finite-state machines.

This thesis shows that networks based on Leiserson’s fat-tree architecture are nearly
as good as any network built in a comparable amount of physical space. It shows that
these “universal” networks can efficiently simulate competing networks by means of an
appropriate correspondence between network components and efficient algorithms for
routing messages on the universal network. In particular, a universal network of area
A can simulate competing networks with O(lg3A) slowdown (in bit-times), using a very
simple randomized routing algorithm and simple network components. Alternatively, a
packet routing scheme of Leighton, Maggs, and Rao can be used in conjunction with
more sophisticated switching components to achieve O(lg2A) slowdown.

Several other important aspects of universality are also discussed. It is shown that
universal networks can be constructed in area linear in the number of processors, so that
there is no need to restrict the density of processors in competing networks. Also results
are presented for comparisons between networks of different size or with processors of
different sizes (as determined by the amount of attached memory). Of particular interest
is the fact that a universal network built from sufficiently small processors can simulate
(with the slowdown already quoted) any competing network of comparable size regardless
of the size of processors in the competing network. In addition, many of the results
given do not require the usual assumption of unit wire delay. Finally, though most of
the discussion is in the two-dimensional world, the results are shown to apply in three
dimensions by way of a simple demonstration of general results on graph layout in three
dimensions.

The second main problem considered in this thesis is channel routing when many
layers of interconnect are available, a scenario that is becoming more and more mean-
ingful as chip fabrication technologies advance. This thesis describes a system MulCh
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for multilayer channel routing which extends the Chameleon system developed at U. C.
Berkeley. Like Chameleon, MulCh divides a multilayer problem into essentially indepen-
dent subproblems of at most three layers, but unlike Chameleon, MulCh considers the
possibility of using partitions comprised of a single layer instead of only partitions of
two or three layers. Experimental results show that MulCh often performs better than
Chameleon in terms of channel width, total net length, and number of vias. In addition
to a description of MulCh as implemented, this thesis provides improved algorithms for
subtasks performed by MulCh, thereby indicating potential improvements in the speed
and performance of multilayer channel routing. In particular, a linear time algorithm
is given for determining the minimum width required for a single-layer channel routing
problem, and an algorithm is given for maintaining the density of a collection of nets in
logarithmic time per net insertion.

The last part of this thesis shows that straightforward techniques for implementing
finite-state machines are optimal in the worst case. Specifically, for any s and k, there is
a deterministic finite-state machine with s states and k symbols such that any layout al-
gorithm requires Ω(ks lg s) area to lay out its realization. For nondeterministic machines,
there is an analogous lower bound of Ω(ks2) area.

Key words: interconnection networks, routing networks, parallel computation, supercom-
puters, universality, fat-trees, routing algorithms, randomized routing, multilayer channel
routing, single-layer routing, VLSI, layout algorithms, finite-state machines.

Thesis Supervisor: Charles E. Leiserson
Title: Associate Professor of Computer Science and Engineering
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Chapter 1

Introduction

Space and time have long been key issues in VLSI design and parallel computation, just

as they have been among the key issues throughout the history of computer science. Over

and over, we ask how much hardware and how much time are required to perform various

procedures. This thesis is concerned with space and time, with a particular emphasis on

the efficient use of space in three contexts: the construction of general-purpose parallel

computers, multilayer channel routing, and construction of finite-state machines.

Though the studies in this thesis share a strong concern for the efficient use of space,

the contexts are only partly similar, and the techniques are quite different.

In the case of general-purpose parallel computation, the key concern is generality.

Within the constraints of limited resources, it is desired to interconnect processors so

that any communication pattern can be realized fairly efficiently. That is, given a fixed

amount of space, we design a parallel computer which does not incur much penalty in

execution time to simulate any other machine occupying comparable space.

In the case of channel routing, the goal is to obtain compact VLSI realizations for fixed

interconnection patterns of pins in restricted locations. This problem may be relevant

in the lower design levels of any computer, even a general-purpose parallel machine.

There will always be fundamental operations which are best performed within a single

processor and on a single chip. Providing the capability to perform these operations

9



10 CHAPTER 1. INTRODUCTION

efficiently requires a specific set of interconnections, and certain design styles give rise

to the problem of channel routing. It is only at higher levels, where it is not feasible

to provide all the special-purpose connections which might be desired, that we seek a

general set of connections which is almost as good as each special-purpose connection

scheme.

The study of finite-state machines in the last part of this thesis deals with special-

purpose machinery as does channel routing, but the perspective is one of realizing a

functional specification rather than a physical interconnection pattern. Also, while the

first two parts of the thesis emphasize the search for compact hardware layouts, the last

part emphasizes lower bounds on space.

Despite the differences in the problems considered in this thesis, there is a continuous

concern with the realization of devices in VLSI technologies. Underlying these studies

is substantial commonality in the VLSI models and the broad goals as discussed in the

next section.

1.1 VLSI Models

Space has already been highlighted as a dominant concern throughout this thesis. Time

will also prove important, especially in the first part of this thesis. This section provides

background on the structure and operation of VLSI chips which is necessary to develop

appropriate models for the notions of space and time.

1.1.1 Space

By abstracting away some fabrication details, VLSI chips may be simply viewed as a

patchwork of wires stacked in several layers. For the most part, these layers are insulated

from one another so that the wires form independent conducting paths. But it is also

possible to place holes (referred to as contact cuts or vias) in the insulation to connect

wires in different layers. In addition, it is possible to fabricate a transistor at the in-
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tersection of wires in specific layers. From the fundamental components of transistors,

which serve as switches, and the wires which serve as communication paths, complicated

devices may be constructed. Though the number of layers varies from one technology

to another, it may be treated as a fixed constant according to whichever technology has

been selected. The key measure of chip size (and hardware cost) is then the area of the

chip.

The practical realities of fabrication and the electrical properties of VLSI chips impose

many limitations on chip design. A neat reduction of the requirements to a concise set of

rules by which one could safely design chips (in a particular technology) was popularized

by Mead and Conway [73]. Among the requirements are a minimum transistor size,

minimum widths for wires of the various types, and minimum separations between wires.

For mathematical analyses of VLSI layout, it is desirable to adopt an even higher level

of abstraction than a set of design rules in the style of Mead and Conway. One common

simplification is to restrict wires to be rectilinear. This restriction often arises in practice,

based on the language used to describe layouts or the fabrication techniques involved.

Another common simplification is to dispense with the classification of wires into different

types (according to their layer). That is, one value is assumed for minimum wire width

and for minimum wire separation regardless of the actual types of the wires. Also, the

dimensions of a via are taken to be equal to the minimum wire width. These simplifying

assumptions are certainly reasonable for asymptotic analysis of wiring patterns since they

change the required area by only a constant factor. Some of the assumptions may be

more problematical in the context of optimizing a particular interconnection instance in

a specific technology, as in channel routing. For simplicity, however, this thesis assumes

rectilinear and “uniform” technology throughout, as is consistent with many standard

design methodologies.

The assumption of rectilinear, uniform technology leads naturally to what may be

referred to as “grid-based” models. Formal models of this type were first provided by

Thompson [95, 96]. In his scheme, a VLSI chip is represented by a graph in which edges
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correspond to communication wires and nodes correspond to wire junctions, transistors,

or other processing devices. The area required for such a graph is determined by obtain-

ing an embedding in a two-dimensional grid which maps nodes to grid points and edges

to edge-disjoint paths in the grid. (Path crossings may be implemented by using two

different layers in the chip.) The correspondence between graphs and chips is maintained

by restricting attention to bounded-degree graphs or by reserving extra space for process-

ing elements corresponding to nodes of large degree [95]. In the context of asymptotic

analysis, the model is adequate for VLSI technologies involving any constant number of

layers by way of a correspondence scheme given by Thompson [96]. In the case of truly

three-dimensional technologies, we may consider the obvious analog of embeddings into

a three-dimensional grid. (In the latter work of Thompson [96], the notion of embed-

dings in a grid is replaced by tiling a plane with a finite set of tile types, but these two

approaches are fundamentally equivalent.)

The modeling approach just outlined is used extensively in this thesis, but the con-

cerns will shift slightly when we study multilayer channel routing. In the case of channel

routing, we will be concerned with detailed routing of connections in the layers of a VLSI

chip, and constants will not be brushed aside. Problem instances will consist of a set of

terminals at specified points on two parallel lines. Each of these terminals belongs to a

specific net, and we are required to route wires in such a way as to connect terminals

belonging to the same net. These routings will consist of wire segments in the layers of

a three-dimensional grid of height equal to the number of available routing layers along

with vias which connect wire segments on adjacent layers.

1.1.2 Time

A popular and convenient assumption about time in VLSI circuitry is that exactly one

bit can be transferred across a wire of any length in unit time. Some justification for this

modeling assumption is provided in several sources [13, 15, 19, 95], and the assumption

will generally be adopted in this thesis. There are, however, also good arguments for
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using a wire delay function which is more sensitive to wire length [25, 73, 88, 96]. For

this reason, wire length issues will receive some attention in Chapter 4 within the first

part of this thesis. Also, in the second part of this thesis, total wire length will be

a secondary measure (after chip area) of the quality of channel routing solutions. In

addition, timing considerations in a context where constant factors are important will

motivate the inclusion of another secondary measure of the quality of channel routing

solutions, namely total number of vias.

1.2 Thesis Overview

The first part of this thesis takes up the issue of connecting processors to form a general-

purpose parallel computer. Though this question has been widely studied, most re-

searchers have sought networks that can efficiently simulate other networks built from a

comparable number of components. This thesis concentrates more on the use of physical

space in accordance with the VLSI models outlined above. Chip area has long been

recognized as a measure of VLSI cost, and usage of physical space is meaningful in the

wider context of interconnecting the chips and boards comprising a parallel machine. As

the number of processors in parallel machines grows into the millions, the difficulty of

physically interconnecting them will hardly be an issue that can be ignored.

This thesis shows that several variants of Leiserson’s fat-tree architecture [62] serve

well as general-purpose parallel machines. These machines are “volume-universal”, by

which we mean that they can efficiently simulate any other machine of comparable vol-

ume. The notion of efficiency which we use is that the simulation should increase the

computation time by only a small polylogarithmic factor of the volume used. Though

volume-universality is of particular interest in our three-dimensional world, the mathe-

matics and drawing of pictures are generally simpler in two dimensions, and, of course,

basic chip fabrication technologies are two-dimensional. Thus, much of the discussion

throughout this thesis will be in the two-dimensional context, but it will be shown that

the results can be extended to three dimensions.
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Chapter 2 discusses the notion of area-universality and introduces the fat-tree archi-

tecture. Fat-trees are based upon the structure of a complete-binary tree with processors

at the leaves and switches at the internal nodes. But unlike the situation in a normal

tree, which is “skinny all over”, each channel between internal nodes of a fat-tree is a

bundle of wires of appropriately chosen capacity. As outlined in Chapter 2, the procedure

of showing fat-trees universal is twofold. First, the channel capacities must be chosen so

that the fat-tree has a layout of modest area but can still support substantial commu-

nication bandwidth. That is, the channel capacities must be reasonably matched to the

amount of communication induced by an appropriate mapping of competing networks to

fat-tree components. Second, an efficient means of routing messages on the fat-tree must

be demonstrated.

Chapter 3 considers the issue of efficiently routing messages on fat-trees. The context

is that of on-line routing, as opposed to the off-line situation where the communica-

tion pattern is known in advance. The chapter provides randomized routing algorithms

which yield good results even when the switches in the network are very simple. These

algorithms work by randomizing in the choice of messages to send at any given time.

All of these results are expressed in terms of a measure of congestion λ, referred to as

the load factor, which is a lower bound on the time to deliver the messages. The load

factor of a set of messages is the largest ratio over all channels in the fat-tree of the

number of messages which must pass through the channel divided by the capacity of the

channel. Chapter 3 presents first a general algorithm for routing on fat-trees and then

an algorithm for an important special case of channel capacities. The number of delivery

cycles (routing attempts) required on an n processor fat-tree is O(λ + lg n lg lg n) with

high probability in the first case, and O(λ) in the second case; each delivery cycle re-

quires O(lg2 n) time. Next an algorithm is presented for the variant fat-tree architecture

referred to as the butterfly fat-tree, in which each switch has only a constant number

of inputs and outputs. This algorithm uses O(λ lg2 n) delivery cycles of time O(lgn).

Note is also taken of faster algorithms requiring more complicated switches which have
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been suggested for the butterfly fat-tree by other researchers. In the remainder of the

thesis, the routing details are generally abstracted away, and the simulation results are

expressed in terms of the running time for the chosen message routing algorithm.

Chapter 4 completes the discussion of area-universal networks by detailing universality

results in several contexts. Initially, the emphasis is placed entirely on communication

issues by considering effective fat-tree channel capacities for comparisons against networks

connecting the same set of processors. Later, the comparison is generalized to networks

in which processors have different size as determined by the amount of attached memory.

One example of the results shown is that an appropriate universal fat-tree of area Θ(A)

built from processors of size lgA requires only O(lg2A) slowdown in bit-times to simulate

any network of area A, without any restriction on processor size or number of processors

in the competing network. Using the results of Chapter 3, it is possible to obtain O(lg3A)

slowdown with simpler switches and a simpler algorithm. The universal network can also

be designed so that any message traversing a path of length d in the competing network

need follow a path of only O(d + lgA) length in the universal network. The bound on

path length implies that in most cases, results based on the unit wire delay assumption

apply equally well to wire delay functions that increase with distance. Finally, upper

bounds are also given on the time required by a universal fat-tree to simulate parallel

machines occupying greater space than the fat-tree.

Chapter 5 provides the foundations for extending the area-universality results to

three-dimensions and volume-universality. This section provides a simpler demonstration

of general 3D graph layout results, developed by Leighton and Rosenberg [57] and does

a bit of generalization useful for the type of fat-tree structures considered in Chapter 4.

These results give upper bounds on the area and maximum edge length required in

laying out graphs, based on decomposition properties of the graph. The results are used

to determine the layout volume for fat-trees with particular choices of channel capacities.

The second part of this thesis considers the problem of multilayer channel routing.

Channel routing, which refers to the problem of realizing a fixed set of connections among
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pins that lie along two parallel lines, has been used to implement the layout of integrated

circuits in a variety of design styles. The traditional channel routing problem assumes

two layers of material are available for routing, but advances in manufacturing technology

are making larger numbers of layers feasible. Thus, it is meaningful to extend channel

routing to the multilayer case, and the ideas may also be applied to well-established

technologies such as printed circuit boards and hybrid circuits, where several layers are

used to implement interconnections.

Chapter 6 describes the system MulCh, which has been implemented to perform

multilayer channel routing. MulCh is based on the Chameleon system [17], which divides

a multilayer problem into essentially independent subproblems of two or three layers.

MulCh differs from Chameleon in allowing also single-layer subproblems. Experimental

results on realistic problems show that MulCh often performs better than Chameleon in

terms of channel width, total net length, and number of vias.

Chapter 7 provides improved algorithms for certain subtasks performed by MulCh,

yielding potential improvements in speed and performance. These opportunities for im-

provement are based on MulCh’s “greedy” method of assigning nets to partitions. That

is, nets are considered one at a time and assigned to that partition which appears to

be the one which will have the smallest resulting channel separation. MulCh as imple-

mented uses rough, easily computable estimates of required channel width, since this

computation must be performed so frequently. But in the single-layer case, it is possible

to determine exactly the minimum channel separation in time linear in the number of

nets. The algorithm for doing this, described in Chapter 7, generalizes similar studies for

the “river routing” problem, in which single-sided connections are disallowed. Due to the

incremental nature of the procedure for building partitions, it would also be desirable to

obtain algorithms which can compute estimates of channel separation more quickly by

making use of previous information and simply updating the estimate in accordance with

the addition of a single new net. One of the most useful estimates for channel width is

a measure referred to as the density. included in Chapter 7 is an incremental algorithm
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for computing density in logarithmic time per net insertion.

The final part of this thesis, in Chapter 8, obtains lower bounds on the layout area

of finite-state machines. It shows that straightforward layout techniques are optimal in

the worst case. Specifically, for any s and k, there is a deterministic finite-state machine

with s states and k symbols such that any layout algorithm requires Ω(ks lg s) area to

lay out its realization. Similarly, any layout algorithm requires Ω(ks2) area in the worst

case for nondeterministic finite-state machines with s states and k symbols.



18



Part I

General-Purpose Parallel

Computation

19



20



Chapter 2

Area-Universal Routing Networks

In addition to formulating VLSI models as discussed in Chapter 1, Thompson laid the

groundwork for a wide-ranging study of the area and time requirements of VLSI chips

performing various computations [95, 96]. In fact, the issues of area and time have often

been linked (as in Thompson’s work), and many thorough analyses of the tradeoff be-

tween chip area and computation time have been performed. Thompson, himself, studied

computation of the Discrete Fourier Transform and the sorting problem. Other examples

of this type of study include works on basic arithmetic [1, 19, 22], matrix multiplication

and related problems [87], and the class of transitive functions [108]. The above works,

however, are relevant only to a particular problem or limited class of problems.

Other research works have sought more general results in the sense that they have

provided computational structures employing limited resources which may be used to

solve a wide generality of problems even though they cannot perform as well as the best

special-purpose machine for every possible specialized problem. For example, Valiant

[105] has shown that there is a combinational Boolean circuit of O(s lg s) gates that can

be made to perform the same computation as any combinational Boolean circuit of s

gates. In a different framework, several schemes have been demonstrated for efficiently

routing permutations or random patterns of communications between processors linked

21
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together by “practical” networks [3, 4, 5, 6, 60, 77, 80, 84, 99, 100, 103, 104].1 (The

generally agreed upon notion of “efficient” is time polylogarithmic in the number n of

processors.) Galil and Paul [41] carried this further by demonstrating, under various

models of computation, a universal parallel machine which can efficiently simulate the

behavior of any other network of the same number of processors. Other works have even

shown that any parallel random-access machine (PRAM) can be efficiently simulated on

a bounded-degree network [7, 8, 50, 74, 82, 101, 102, 107]. The strongest of these results

[7, 50, 82] show that any PRAM computation completed in time t can be simulated in

time O(t lgn) with high probability or O(t lg2 n) deterministically.

The works just cited, however, have only a limited focus on the issue of space. They

demonstrate devices which can simulate other machines of the same number of processors,

using “practical” networks (usually equated with bounded-degree networks). But even

the choice of a bounded-degree network does not ensure a modest use of space. All the

networks in the references cited so far have a rather high degree of interconnection, so

while the processor hardware may be kept in check, wiring may be overwhelming and

space usage high in a system of very many processors. In VLSI technologies, particularly,

space and interconnection (pin-out) are important.

A few examples illustrate some of the difficulties in finding universal networks when

chip area is of concern. Consider first the use of a hypercube (or butterfly) as a uni-

versal network. An n-processor hypercube can simulate any bounded-degree network R

of n processors by routing (partial) permutations. That is, since each processor of R

can communicate with all of its neighbors in unit time, the hypercube can simulate R

by sending at most a constant number of messages from each processor. Simulation in

O(lgn) time (in the word model) follows from Valiant’s scheme for routing on hyper-

cubes [103]. But an n-processor hypercube requires Ω(n2) layout area by application of

Thompson’s bisection-width lower bound on area [95, 96]. Thus, an area-A hypercube

cannot simulate all area-A networks efficiently. For example, an area-A mesh cannot

1Some of these sources treat the subject indirectly by providing results about sorting networks.
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be simulated in polylogarithmic time by an area-A hypercube, since the mesh has Θ(A)

processors and the hypercube only Θ(
√
A) processors. Unfortunately, meshes are not

universal with respect to area either; they cannot simulate trees. An area-A tree has

Θ(A) processors using the H-tree layout and diameter2 O(lgA), but the mesh has diam-

eter
√
A. Thus, some pair of processors in the tree will be too far apart in the mesh to

permit a simulation in polylogarithmic time. Finally, we can consider trees simulating

meshes, to see that trees also fail to be universal with respect to area. Any bisection of

an area-A mesh must cut
√
A wires, and simultaneous communication across these wires

cannot be supported in polylogarithmic time by a tree with its O(1) bisection.

Leiserson [62] pioneered a combination of the interest in general-purpose computation

with the concern for physical space as a measure of hardware cost. He introduced a class

of routing networks referred to as fat-trees and showed that an appropriate n-processor

network from this class can simulate (off-line) any other routing network on the same

number of processors and occupying the same volume (or area) with only O(lg3 n) factor

degradation in the time required.

This chapter lays the groundwork for further development of the notion of area-

universality using variations on the fat-tree architecture. Section 2.1 introduces the

fat-tree network. Section 2.2 discusses underlying modeling assumptions used in the

study of universality and sketches the means by which fat-trees are proved universal in

preparation for the detailed studies which follow.

2.1 Fat-Trees

The basic fat-tree network as introduced by Leiserson [62] and based on Leighton’s tree-

of-meshes graph [56] is illustrated in Figure 2-1. A set of n processors are located at the

leaves of a complete binary tree. Each edge of the underlying tree corresponds to two

channels of the fat-tree: one from parent to child, the other from child to parent. Unlike

2The diameter is the maximum over all processor pairs of the length (in number of edges) of the
shortest path connecting the two processors.
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Figure 2-1: The organization of a fat-tree. Processors are located at the leaves, and
the internal nodes contain concentrator switches. The channels between internal nodes
consist of bundles of wires.

a normal tree which is “skinny all over,” in a fat-tree, each channel consists of a bundle of

wires. The number of wires in a channel c is called its capacity, denoted by cap(c). Each

internal node of the fat-tree contains circuitry that switches messages from incoming to

outgoing channels.

The channel capacities of a fat-tree determine the amount of hardware required to

build it. The greater the capacities of the channels, the greater the communication

potential, and also, the greater the hardware cost of an implementation of the network.

The idea of fat-trees is to take advantage of a principle of locality in much the same way

as does the telephone network: by using only slightly more hardware than that required

to support fast nonlocal communication among a set of processors, much additional local

communication among a larger set of processors can be supported.

Fat-trees can also be built using switches with a constant number of inputs and

outputs [44] as in Figure 2-2. Since these switches are reminiscent of butterfly switches,

we refer to such a fat-tree as a butterfly fat-tree. There is still an underlying channel

structure corresponding to the channels shown in Figure 2-1. By using two types of

constant-size switches, it is possible to build butterfly fat-trees with essentially arbitrary

channel capacities as illustrated in Figure 2-3 borrowed from Leiserson [64].

The mechanics of routing on fat-trees will be further elaborated in Chapter 3; the

remainder of this chapter sketches the means by which fat-trees are shown universal in
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Figure 2-2: Another fat-tree design. The switches in this structure have constant size.

Figure 2-3: A scalable fat-tree. Essentially arbitrary channel capacities can be obtained
by using two types of constant-size switches.
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order to motivate the later analyses of routing time and hardware cost.

2.2 Universality

This section begins by discussing basic modeling assumptions about VLSI technologies

and the operation of parallel computers. It also outlines the proof of universality for

fat-trees which will be developed in detail in the succeeding chapters.

A few important but reasonable assumptions about time and space, stemming from

the discussion of VLSI models in Section 1.1, merit reemphasis. First of all, the technol-

ogy being used determines a minimum feature size, which is our unit of space. (Sometimes

processor size will be taken as the measure of unit space for simplicity, but ultimately

we will seek to explicitly account for processor size in terms of the more fundamental

unit of space.) Second there is a fundamental lower bound on the time to switch a wire

of unit length, which will be used as our basic unit of time. In VLSI technologies, such

a bound is determined by the capacitance and resistance of a minimum-size transistor

and the necessity of increasing capacitance if resistance is to be reduced. In fact, we will

initially assume that this is the only source of delay and that transmission along any

wire can be accomplished in unit time, but later we will relax this assumption. In any

case, we assume that the number of bits which can leave an area of a chip in unit time

is proportional to the perimeter of the area. (In three dimensions, the number of bits

which can leave a region of space in unit time is proportional to the surface area of the

region.)

The basic mode of operation assumed for parallel computers will be as in the dis-

tributed random-access machine (DRAM) model of Leiserson and Maggs [65]. All mem-

ory is local to the processors, with each processor holding a small number of O(lgn)-bit

registers. A processor can read, write, and perform arithmetic and logical functions on

values stored in its local memory. It can also read and write memory in other processors

by routing messages through an underlying network. (Other models are easily accommo-

dated; for example, a “dance-hall” model which places processors and memory modules



2.2. UNIVERSALITY 27

in different locations on a network can be viewed as a special case of the model considered

here.)

It is also convenient to assume that operation of any competing network is divided into

separate phases of intraprocessor computation and interprocessor communication. Thus,

to bound asymptotic simulation time, it will suffice to take the maximum of the over-

heads for simulation of the computation and simulation of the communication. In fact,

this approach is valid even if the competing network interleaves computation and com-

munication in a more complicated fashion. The ability to simulate such “asynchronous”

competition is more formally described and proved in Section 4.5.

All of the universality proofs to be presented have the following basic outline. Given a

competing network, we begin by recursively bisecting it until each piece of the competing

network contains at most one processor. Then we can bound the number of messages

which can flow into or out of pieces of the network in unit time. We assume that the

competing network is a square of area A; for most of the results it makes little difference

if the competing network is not square.

Given a competing network of area A, the recursive decomposition is as in Figure 2-4,

with cuts alternating between the two dimensions as we go from one level to the next

in the decomposition. The perimeter of any piece at level l in the decomposition is

O(
√
A/2l/2). The recursive bisection gives rise to a decomposition tree as represented in

Figure 2-5, where the leaves represent the pieces at the bottom level of the decomposition,

and those which are numbered represent pieces containing a processor.

Chapter 4 shows that for comparison between a fat-tree and networks of essentially

equal area, it is possible to construct a fat-tree with enough processors to directly map the

leaves of the decomposition tree to fat-tree processors. In other cases, it may be necessary

to obtain a balanced decomposition tree, that is, one in which each cut of the competing

network splits the processors evenly between the two halves. Fortunately general results

by Bhatt and Leighton [13], and by Leiserson [62] in a cleaner form for our purposes,

show that any decomposition tree may be converted to a balanced decomposition tree
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Figure 2-6: Mapping the decomposition tree of a competing network to a fat-tree.

with cuts of size differing by only a constant factor.

Once a suitable decomposition tree is obtained, competing processors may be mapped

onto fat-tree processors in the natural fashion as shown in Figure 2-6. The channel

capacities in the fat-tree are chosen to be sufficiently slowly growing as to keep the area of

the fat-tree modest but sufficiently quickly growing as to roughly match the bound on the

amount of message traffic crossing the perimeter of subpieces of the competing network.

Chapter 4 discusses this in more detail and shows that a fat-tree can be constructed so

that the messages delivered in unit time by a competing network of comparable area will

place a load of at most O(lgn cap(c)) messages that need to pass through any channel c

in the fat-tree.

The type of bound just given for the communications burden imposed on a fat-tree

by a message set is referred to as the load factor of the message set, since the number

of messages passing through any channel is bounded by some factor times the capacity.

As long as we can show that a message set can be delivered in time which is moderate

relative to the load factor, the proof of universality will be complete. It is this routing

task which is covered in Chapter 3.



Chapter 3

Routing on Fat-Trees

This chapter describes algorithms for routing messages on fat-trees. The running times

of these algorithms are expressed as a function of the load factor of a set of messages to be

routed, the load factor being a lower bound on the routing time. The main contribution

of this chapter is an algorithm (for routing on an n-processor fat-tree) that routes any

set of messages with load factor λ in O(λ+lgn lg lg n) delivery cycles (routing attempts)

with probability 1 − O(1/n). This chapter is drawn from a joint paper with Charles

Leiserson of MIT [44].

An issue that any routing algorithm for a fat-tree must face is that some communi-

cation patterns among the processors are harder than others. For example, suppose the

channel capacity between the two halves of a fat-tree is Θ(n1/2), where n is the number of

processors, and suppose each processor sends a message to a processor in the other half.

Since the number of messages that must pass through the root is n and the capacity is

Θ(n1/2), the time required by the network to deliver all the messages is Ω(n1/2) because

of congestion. In contrast, there are many communication patterns among n processors

with less global communication that can be implemented in subpolynomial time. For

example, each processor might simply send a message to the processor with the same

parent in the tree. This pattern produces no congestion, and the entire communication

pattern can be accomplished in the time required to send a single one of the messages.

30
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The routing algorithms for fat-trees presented in this chapter are randomized algo-

rithms which are analyzed in terms of a measure of congestion called the load factor.

The load factor of a set of messages is the largest ratio over all channels in the fat-tree

of the number of messages that must pass through the channel divided by the capacity

of the channel. The load factor of a set of messages is thus a lower bound on the time to

deliver the messages.

The algorithm discussed most extensively in this chapter can deliver a set of messages

with load factor λ in O(λ + lg n lg lg n) delivery cycles (routing attempts) with high

probability. This improves on Leiserson’s bound of O(λ lgn) for the off-line situation

where the set of messages is known in advance and the problem is to schedule their

delivery [62]. Since delivery cycles will be shown to run in O(lg2 n) time, the total

running time of the algorithm is O(λ lg2 n+ lg3 n lg lg n).

Other routing algorithms, which address other issues, are also presented. In the

important special case that all channel capacities in the fat-tree are of size Ω(lg n), the

messages can be delivered in O(λ) delivery cycles, for a total running time of O(λ lg2 n).

In the case of the butterfly fat-tree, an algorithm is presented which uses O(λ lg2 n)

delivery cycles, but each delivery cycle requires only O(lgn) time so that the total routing

time is O(λ lg3 n).

The analysis of these randomized routing algorithms makes no assumptions about

the statistical distribution of messages, except insofar as it affects the load factor. More-

over, the algorithms are not restricted to permutation routing or situations where each

processor can only send or receive a constant number of messages, as is common in the

literature. We consider the general situation where each processor can send and receive

polynomially many messages.

These routing algorithms also differs from others in the literature in the way ran-

domization is used. Unlike the algorithms of Valiant [103], Valiant and Brebner [104],

Aleliunas [5], Upfal [99] and Pippenger [80], for example, they involve little or no random-

ization with respect to paths taken by messages. For example, Valiant’s classic scheme for
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routing on a hypercube sends each message to a randomly chosen intermediate destina-

tion and, from there, to its true destination. On a fat-tree, such a technique would likely

convert communication patterns with good locality into ones with much global commu-

nication. Instead of being based primarily on the choice of random paths for messages to

traverse, the algorithms presented here repeatedly attempt to deliver a randomly chosen

subset of the messages. A by-product of this strategy is that the algorithms require no

intermediate buffering of messages.

All of these algorithms are based on the type of communications scheme for fat-trees

originally used by Leiserson [62], which, as explained below, requires only switches of a

very simple nature. We consider communication through the fat-tree network to be syn-

chronous, bit serial, and batched. By synchronous, we mean that the system is globally

clocked. By bit serial, we mean that the messages can be thought of as bit streams. Each

message snakes its way through the wires and switches of the fat-tree, with leading bits

of the message setting switches and establishing a path for the remainder to follow. By

batched, we mean the messages are grouped into delivery cycles. During a delivery cycle,

the processors send messages through the network. Each message attempts to establish

a path from its source to its destination. Since some messages may be unable to establish

connections during a delivery cycle, each successfully delivered message is acknowledged

through its communication path at the end of the cycle. Rather than buffering undeliv-

ered messages, we simply allow them to try again in a subsequent delivery cycle. The

routing algorithm is responsible for grouping the messages into delivery cycles so that all

the messages are delivered in as few cycles as possible.

The mechanics of routing messages in a fat-tree are similar to routing in an ordinary

tree. For each message, there is a unique path from its source processor to its destination

processor in the underlying complete binary tree, which can be specified by a relative

address consisting of at most 2 lgn bits telling whether the message turns left or right

at each internal node. Within each node of the fat-tree, the messages destined for a

given output channel are concentrated onto the available wires of that channel. This
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concentration may result in “lost” messages if the number of messages destined for the

output channel exceeds the capacity of the channel. We assume, however, that the

concentrators within the node are ideal in the sense that no messages are lost if the

number of messages destined for a channel is less than or equal to the capacity of the

channel. (No stronger properties, for example any sort of randomization, are required of

the switches.) Such a concentrator can be built, for example, with a logarithmic-depth

sorting network [3, 4]. A somewhat more practical logarithmic-depth circuit can be built

by combining a parallel prefix circuit [53] with a butterfly (i.e., FFT, Omega) network.

Detailed designs of concentrator switches using a different approach have been provided

by Cormen and Leiserson [30]. With switches of logarithmic depth, the time to run each

delivery cycle is O(lg2 n) bit times, making the natural assumption that messages are

O(lgn) bits long.1 (In the butterfly fat-tree, the switches are of constant depth, and the

time to run a delivery cycle is O(lgn) bit times.)

The performance of any routing algorithm for a fat-tree depends on the locality of

communication inherent in a set of messages. The locality of communication for a message

set M can be summarized by a measure λ(M) called the load factor , which we define in

a more general network setting.

Definition: Let R be a routing network. A set S of wires in R is a (directed)

cut if it partitions the network into two sets of processors A and B such that

every path from a processor in A to a processor in B contains a wire in S.

The capacity cap(S) is the number of wires in the cut. For a set of messages

M , define the load load(M,S) of M on a cut S to be the number of messages

in M from a processor in A to a processor in B. The load factor of M on S

is

λ(M,S) =
load(M,S)

cap(S)
,

1In this thesis, times are generally measured in terms of bit operations, rather than word operations,
to better reflect actual costs.
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and the load factor of M on the entire network R is

λ(M) = max
S

λ(M,S) .

The load factor of a set of messages on a given network provides a lower bound on the

time required to deliver all messages in the set.

For fat-trees, only cuts corresponding to channels need be considered to determine

the load factor, as is shown by the following lemma.

Lemma 1 The load factor of a set M of messages on a fat-tree is

λ(M) = max
c

λ(M, c) ,

where c ranges over all channels of the fat-tree.

Proof. Any cut S must entirely contain at least one channel. Let us partition the wires

in S into S = c1 ∪ · · · ∪ cl ∪ w, where c1, . . . , cl are the complete channels in S and w is

the set of remaining wires in S. For convenience, let xi = load(M, ci) and yi = cap(ci).

Assume without loss of generality that λ(M, c1) ≥ λ(M, ci) for i = 1, . . . , l, which implies

x1yi − xiy1 ≥ 0 for all i. The load factor of M on S is therefore

λ(M,S) =
x1 + · · ·+ xl

y1 + · · ·+ yl + |w|

=
x1

y1
− (x1y2 − x2y1) + · · ·+ (x1yl − xly1) + (x1 |w|)

y1(y1 + · · ·+ yl + |w|)
(3.1)

≤ x1

y1
= λ(M, c1)

since each term in the numerator of the second term of (3.1) is nonnegative.

The remainder of this chapter presents and analyzes routing algorithms for the fat-tree

and butterfly fat-tree. The general routing algorithm for fat-trees is given in Section 3.1

and its analysis in Section 3.2. Section 3.3 gives an existential lower bound for a class of
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naive greedy routing algorithms which shows that the greedy strategy is inferior to the

randomized algorithm of Section 3.1 for worst-case inputs. Section 3.4 gives a routing

algorithm for the special case in which all channels are of capacity Ω(lg n) and proves

its validity using preliminary parts of the analysis in Section 3.2. Finally, Section 3.5

provides an algorithm for routing on the butterfly fat-tree. It also discusses briefly two

algorithms by other researchers [61, 76] for routing on butterfly fat-trees; these algorithms

obtain better running times while using more complicated switches.

3.1 The General Routing Algorithm

This section gives the general randomized algorithm for routing a set M of messages on

a fat-tree. The algorithm RANDOM, which is based on routing random subsets of the

messages in M , is shown in Figure 3-1. It uses the subroutine TRY-GUESS shown in

Figure 3-2. Section 3.2 provides a proof that on an n-processor fat-tree, the probability is

at least 1−O(1/n) thatRANDOM delivers all messages inM within O(λ(M)+lgn lg lg n)

delivery cycles, if the two constants k1 and k2 appearing in the algorithm are properly

chosen.

The basic idea of RANDOM is to pick a random subset of messages to send in each

delivery cycle by independently choosing each message with some probability p. This

type of message set merits a formal definition.

Definition: A p-subset of M is a subset of M formed by independently

choosing each message of M with probability p.

We will show in Section 3.2 that if p is sufficiently small, many of the messages in a p-

subset are delivered because they encounter no congestion during routing. On the other

hand, if p is too small, few messages are sent. RANDOM varies the probability p from

cycle to cycle, seeking random subsets of M that contain a substantial portion of the

messages in M , but that do not cause congestion.

The algorithm RANDOM varies the probability p because the load factor λ(M) is
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Algorithm RANDOM
1 send M
2 U ← M − {messages delivered}
3 λguess ← 2
4 while k1λguess < k2 lg n and U 6= ∅ do
5 TRY-GUESS(λguess)
6 λguess ← λ2

guess

7 endwhile

8 λguess ← (k2/k1) lgn lg lg n
9 while U 6= ∅ do
10 TRY-GUESS(λguess)
11 λguess ← 2λguess

12 endwhile

Figure 3-1: The randomized algorithm RANDOM for delivering a message set M on a
fat-tree with n processors. This algorithm achieves the running times in Figure 3-3 with
high probability if the constants k1 and k2 are appropriately chosen. Since the load factor
λ(M) is not known in advance, RANDOM makes guesses, each one being tried out by
the subroutine TRY-GUESS.

procedure TRY-GUESS(λguess)
1 λ← λguess

2 while λ > 1 do

3 for i← 1 to max {k1λ, k2 lg n} do
4 independently send each message of U with probability 1/rλ
5 U ← U − {messages delivered}
6 endfor

7 λ← λ/2
8 endwhile

9 send U
10 U ← U − {messages delivered}

Figure 3-2: The subroutine TRY-GUESS used by the algorithm RANDOM which tries
to deliver the set U of currently undelivered messages. When λguess ≥ λ(U), this attempt
will be successful with high probability, if the constants k1 and k2 are appropriately
chosen. (The value r is the congestion parameter of the fat-tree defined in Section 3.2,
which is typically a small constant.) In that case, λ is always an upper bound on λ(U),
which is at least halved in each iteration of the while loop. When the loop is finished,
λ(U) ≤ 1, so all the remaining messages can be sent.
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not known. The overall structure of RANDOM is to guess the load factor and call

the subroutine TRY-GUESS for each one. The subroutine TRY-GUESS determines the

probability p based on RANDOM ’s guess λguess and a parameter r, called the congestion

parameter of the fat-tree, which is independent of the message set and which will be

defined in Section 3.2. If λguess is an upper bound on the true load factor λ(M), then

with high probability, each iteration of the while loop in TRY-GUESS halves the upper

bound on the load factor λ(U) of the set U of undelivered messages, as will be shown

in Section 3.2. When the loop is finished, we have λ(U) ≤ 1, and all the remaining

messages can be delivered in one cycle. The number of delivery cycles performed by

TRY-GUESS is O(lg λguess lgn) if 2 ≤ λguess ≤ Θ(lgn), and the number of cycles is

O(λguess + lg n lg lg n) if λguess = Ω(lg n).

RANDOM must make judicious guesses for the load factor because TRY-GUESS

may not be effective if the guess is smaller than the true load factor. Conversely, if the

guess is too large, too many delivery cycles will be performed. Since the amount of work

done by TRY-GUESS grows as lg λguess when λguess is small, and as λguess when λguess

is large, there are two main phases to RANDOM ’s guessing. (These phases follow the

handling of very small load factors, i. e., λ(M) ≤ 2.)

In the first phase, the guesses are squared from one trial to the next. Once λguess

is sufficiently large, we move into the second phase, and the guesses are doubled from

one trial to the next. In each phase, the number of delivery cycles run by TRY-GUESS

from one call to the next forms a geometric series. Thus, the work done in any call to

TRY-GUESS is only a constant factor times all the work done prior to the call. With

this guessing strategy, we can deliver a message set using only a constant factor more

delivery cycles than would be required if we knew the load factor in advance.

3.2 Analysis of the Routing Algorithm

This section contains the analysis of RANDOM, the routing algorithm for fat-trees pre-

sented in Section 3.1. We shall show that the probability is 1− O(1/n) that RANDOM
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load factor delivery cycles
0 ≤ λ(M) ≤ 1 1
1 ≤ λ(M) ≤ 2 O(lgn)
2 ≤ λ(M) ≤ lgn lg lg n O(lgn lg(λ(M)))

lg n lg lg n ≤ λ(M) ≤ nO(1) O(λ(M))

Figure 3-3: The number of delivery cycles required to deliver a message set M on a
fat-tree with n processors. All bounds are achieved with probability 1 − O(1/n). The
bounds on the number of delivery cycles can be summarized as O(λ(M) + lg n lg lgn).

delivers a set M of messages on an n-processor fat-tree in O(λ(M) + lg n lg lg n) delivery

cycles (subject to mild conditions on the channel capacities). Figure 3-3 gives the tighter

bounds that we actually prove.

We begin by stating two technical lemmas concerning basic probability. One is a

combinatorial bound on the tail of the binomial distribution of the kind attributed to

Chernoff [27], and the other is a general, but weak, bound on the probability that a

random variable takes on values smaller than the expectation.

The first lemma is the Chernoff bound. Consider t independent Bernoulli trials, each

with probability p of success. It is well known [37] that the probability that there are at

least s successes out of the t trials is

B(s, t, p) =
t
∑

k=s

(

t

k

)

pk(1− p)t−k .

The lemma bounds the probability that the number of successes is larger than the ex-

pectation pt.

Lemma 2

B(s, t, p) ≤
(

ept

s

)s

.

Proof. The lemma follows from [103, p. 354].

The second technical lemma bounds the probability that a bounded random variable

takes on values smaller than the expectation.
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Lemma 3 Let X ≤ b be a random variable with expectation µ. Then for any

w < µ, we have

Pr {X ≤ w} ≤ 1− µ− w

b− w
.

Proof. The definition of expectation gives us

µ ≤ wPr {X ≤ w}+ b(1− Pr {X ≤ w}) ,

from which the lemma follows.

We now analyze the routing of a p-subset M ′ of a set M of messages. If the number

load(M ′, c) of messages in M ′ that must pass through c is no more than the capacity

cap(c), then no messages are lost by concentrating the messages into c. We shall say that

c is congested by M ′ if load(M ′, c) > cap(c). The next lemma shows that the likelihood

of channel congestion decreases exponentially with channel capacity if the probability of

choosing a given message in M is sufficiently small.

Lemma 4 Let M be a set of messages on a fat-tree, let λ(M) be the load

factor on the fat-tree due to M , let M ′ be a p-subset of messages from M ,

and let c be a channel through which a given message m ∈ M ′ must pass.

Then the probability is at most (epλ(M))cap(c) that channel c is congested by

M ′.

Proof. Channel c is congested by M ′ if load(M ′, c) > cap(c). There is already one

message from the set M ′ going through channel c, so we must determine a bound on

the probability that at least cap(c) other messages go through c. Using Lemma 2 with

s = cap(c) and t = load(M, c), the probability that the number of messages sent through

channel c is greater than the capacity cap(c) is less than

B(cap(c), load(M, c), p) ≤
(

ep load(M, c)

cap(c)

)cap(c)

≤ (epλ(M))cap(c) .
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The next lemma will analyze the probability that a given message of a p-subset of M

gets delivered. In order to do the analysis, however, we must select p small enough so

that it is likely that the message passes exclusively through uncongested channels. The

choice of p depends on the capacities of channels in the fat-tree. For convenience, we

define a parameter of the capacities that will enable us to choose a suitable upper bound

for p.

Definition: The congestion parameter of a fat-tree is the smallest positive

value r such that for each simple path c1, c2, . . . , cl of channels in the fat-tree,

we have
l
∑

k=1

(

e

r

)cap(ck)

≤ 1

2
.

The congestion parameter is generally quite small. For any fat-tree based on a com-

plete binary tree, the longest simple path is at most 2 lgn, where n is the number of

processors, and thus we have r ≤ 4e lgn. For universal fat-trees (discussed in Chap-

ter 4), the congestion parameter is a constant because the capacities of channels grow

exponentially as we go up the tree. (All we really need is arithmetic growth in the chan-

nel capacities.) The congestion parameter is also constant for any fat-tree based on a

complete binary tree if all the channels have capacity Ω(lg lg n). Our analysis of RAN-

DOM treats the congestion parameter r as a constant, but the analysis does not change

substantially for other cases.

We now present the lemma that analyzes the probability that a given message gets

delivered.

Lemma 5 Let M be a set of messages on a fat-tree that has congestion pa-

rameter r, let λ(M) be the load factor on the fat-tree due to M , and let

m be an arbitrary message in M . Suppose M ′ is a p-subset of M , where

p ≤ 1/rλ(M). Then if M ′ is sent, the probability that m gets delivered is at

least 1
2
p.
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Proof. The probability that m ∈M is delivered is at least the probability that m ∈ M ′

times the probability that m passes exclusively through uncongested channels. The prob-

ability that m ∈M ′ is p, and thus we need only show that, given m ∈M ′, the probability

is at least 1
2
that every channel through which m must pass is uncongested. Let c1, c2,

. . . , cl be the channels in the fat-tree through which m must pass. The probability that

channel ck is congested is less than (e/r)cap(ck) by Lemma 4. The probability that at least

one of the channels is congested is, therefore, less than

l
∑

k=1

(

e

r

)cap(ck)

≤ 1

2
,

by definition of the congestion parameter. Thus, the probability that none of the channels

are congested is at least 1
2
.

We now focus our attention on RANDOM itself. The next lemma analyzes the

innermost loop (lines 3–6) of RANDOM ’s subroutine TRY-GUESS. At this point in the

algorithm, there is a set U of undelivered messages and a value for λ. The lemma shows

that if λ is indeed an upper bound on the load factor λ(U) of the undelivered messages

when the loop begins, then λ/2 is an upper bound after the loop terminates. This lemma

is the crucial step in showing that RANDOM works.

Lemma 6 Let U be a set of messages on an n-processor fat-tree with conges-

tion parameter r, and assume λ(U) ≤ λ. Then after lines 3–6 of RANDOM’s

subroutine TRY-GUESS, the probability is at most O(1/n2) that λ(U) > 1
2
λ.

Proof. The idea is to show that the load factor of an arbitrary channel c remains larger

than 1
2
λ with probability O(1/n3). Since the channel c is chosen arbitrarily out of the

4n−2 channels in the fat-tree, the probability is at most O(1/n2) that any of the channels

is left with a load factor larger than 1
2
λ.

For convenience, let C be the subset of messages that must pass through channel c

and are undelivered at the beginning of the innermost loop in RANDOM. Let C0 = C,

and for i ≥ 1, let Ci ⊆ Ci−1 denote the set of undelivered messages at the end of the
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ith iteration of the loop. Notice that we have λ(Ci, c) = |Ci| / cap(c), since we have

|Ci| = load(Ci, c) by definition.

We now show there exist values for the constants k1 and k2 in line 3 of TRY-GUESS

such that for z = max {k1λ, k2 lgn}, the probability is O(1/n3) that λ(Cz, c) > 1
2
λ, or

equivalently, that

|Cz| >
1

2
λ cap(c) . (3.2)

It suffices to prove that the probability is O(1/n3) that fewer than 1
2
|C| messages from

C are delivered during the z cycles under the assumption that |Ci| > 1
2
λ cap(c) for i =

0, 1, . . . , z − 1. The intuition behind the assumption |Ci| > 1
2
λ cap(c) is that otherwise,

the load factor on channel c is already at most 1
2
λ at this step of the iteration. The

reason we need only bound the probability that fewer than 1
2
|C| messages are delivered

during the z cycles is that inequality (3.2) implies that the number of messages delivered

is fewer than |C| − 1
2
λ cap(c) ≤ |C| − 1

2
λ(C, c) cap(c) ≤ 1

2
|C|.

We shall establish the O(1/n3) bound on the probability that at most 1
2
|C| messages

are delivered in two steps. For convenience, we shall call a cycle good if at least cap(c)/8r

messages are delivered, and bad otherwise. In the first step, we bound the probability

that a given cycle is bad. The expected number of messages delivered in any given cycle

is the product of the number of messages that remain to be delivered and the probability

that any of these messages is successfully delivered. Using Lemma 5 with p = 1/rλ ≤
1/rλ(U) ≤ 1/rλ(Ci) in conjunction with the assumption that |Ci| > 1

2
λ cap(c), we can

conclude that the expected number of messages delivered in any given cycle is greater

than 1
2rλ

1
2
λ cap(c) = cap(c)/4r. Then by Lemma 3, the probability that a given cycle is

bad is at most 1− 1/(8r − 1) < 1− 1/8r.2

The second step bounds the probability that a substantial fraction of the z delivery

cycles are bad. Specifically, we show that the probability is 1 − O(1/n3) that at least

2We use the weak bound of Lemma 3 because we cannot assume that the probability that a message
is delivered in a given cycle is independent of the probabilities for other messages. In practice, one would
anticipate that the dependencies between messages are weak, and that the algorithm would be effective
with much smaller values for the constants k1 and k2 than we prove here.
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some small constant fraction q of the z cycles are good. By picking k1 = 4r/q, which

implies z ≥ 4rλ/q, at least qz cap(c)/8r ≥ 1
2
|C| messages are delivered.

We bound the probability that at least (1 − q)z of the z cycles are bad by using a

counting argument. There are
(

z
(1−q)z

)

ways of picking the bad cycles, and the probability

that a cycle is bad is at most 1−1/8r. Thus, the probability that at most 1
2
|C| messages

are delivered is

Pr
{

≤ 1
2
|C| messages delivered

}

≤
(

z

(1− q)z

)

(

1− 1

8r

)(1−q)z

≤
(

qq(1− q)1−q
)−z

(

1− 1

8r

)(1−q)z

(3.3)

≤ 2−z/12r , (3.4)

where (3.3) follows from Stirling’s approximation (for sufficiently large z), and (3.4)

follows from choosing q = 1/100r ln r and performing algebraic manipulations. Since

z = max {k1λ, k2 lg n}, if we choose k2 = 36r, the probability that fewer than 1
2
|C|

messages are delivered is at most 1/n3.

Now we can analyze RANDOM as a whole.

Theorem 7 For any message set M on an n-processor fat-tree, the proba-

bility is at least 1 − O(1/n) that RANDOM delivers all the messages of M

within the number of delivery cycles specified by Figure 3-3.

Proof. First, we will show that if λguess ≥ λ(M), the probability is at most O(1/n)

that the loop in lines 2 through 8 of TRY-GUESS fails to yield λ(U) ≤ 1. Initially,

λ ≥ λ(U), and we know from Lemma 6 that the probability is at most O(1/n2) that any

given iteration of the loop fails to restore this condition as λ is halved. Since there are

lg λguess iterations of the loop, we need only make the reasonable assumption that λguess

is polynomial in n to obtain a probability of at most O(1/n) that λ(U) remains greater

than 1 after all the iterations of the loop. That this assumption holds can be verified for

each of the cases below by noting that λ(M) is at most polynomial in n and that λguess

is never much larger than λ(M).
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Now we just need to count the number of delivery cycles that have been completed

by the time we call TRY-GUESS with a λguess such that λ(M) ≤ λguess . Let us denote

by λ∗
guess

the first λguess that satisfies this condition, and then break the analysis down

into cases according to the value of λ(M).

For λ(M) ≤ 1, we do not actually even call TRY-GUESS. We need only count the

one delivery cycle executed in line 1 of RANDOM.

For 1 < λ(M) ≤ 2, we need add only the k2 lgn cycles executed when we call

TRY-GUESS(2).

For 2 < λ(M) < (k2/k1) lgn, the number of delivery cycles involved in each execution

of TRY-GUESS is O(lg λguessk2 lg n), since we perform O(lg λguess) iterations of the loop

in lines 2–8 of TRY-GUESS, each containing k2 lg n iterations of the loop in lines 3–6. The

value of λ∗
guess

is at most (λ(M))2, so the number of delivery cycles is O(lgn lg(λ(M))2)

for the last guess, O(lgn lg λ(M)) for the second-to-last guess, O(lgn lg
√

λ(M)) for the

third-to-last guess, and so on. The total number of delivery cycles is, therefore,

∑

0≤i≤1+lg lg λ(M)

O(lgn lg(λ(M))2
1−i

) =
∑

0≤i≤1+lg lg λ(M)

O(21−i lg n lg(λ(M)))

= O(lgn lg λ(M)),

since the series is geometric.

For λ(M) > (k2/k1) lgn, the number of delivery cycles executed by the time we reach

line 8 of RANDOM is O(lgn lg lg n) according to the preceding analysis, and then we

must continue in the quest to reach λ∗
guess

. If λ(M) ≤ (k2/k1) lgn lg lg n, then we need

only add the O(lgn lg lg n) = O(lgn lg λ(M)) delivery cycles involved in the single call

TRY-GUESS((k2/k1) lgn lg lg n).

If λ(M) > (k2/k1) lg n lg lg n, the number of delivery cycles executed before reaching

line 8 is O(lgn lg lg n) as before, which is O(λ(M)). We must then add O(λguess) cycles

for each call of TRY-GUESS in line 10. Since λ∗
guess

is at most 2λ(M), the total additional
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number of delivery cycles is

∑

0≤i≤t

O(21−iλ(M)) = O(λ(M)),

where t = 1 + lg(k1λ(M)/k2 lg n lg lg n). The total number of delivery cycles is thus

O(λ(M)).

The 1 − O(1/n) bound on the probability that RANDOM delivers all the messages

can be improved to 1 − O(1/nk) for any constant k by choosing k2 = 12(k + 2)r, or by

simply running the algorithm through more choices of λguess .

We can also use RANDOM to obtain a routing algorithm that guarantees to deliver

all the messages in finite time, and whose expected number of delivery cycles is as given in

Figure 3-3. We simply interleave RANDOM with any routing strategy that guarantees to

deliver at least one message in each delivery cycle. If the number of messages is bounded

by some polynomial nk, then we choose k2 such that RANDOM works with probability

1− O(1/nk).

3.3 Theoretical Deficiency of Greedy Strategies

It is natural to wonder whether a simple greedy strategy of sending all undelivered mes-

sages on each delivery cycle, and letting them battle their ways through the switches,

might be as effective as RANDOM, which we have shown to work well on every message

set. As a practical matter, a greedy strategy may be a good choice, but it seems difficult

to obtain tight bounds on the running time of greedy strategies. In fact, we show in this

section that no naive greedy strategy works as well as RANDOM in terms of asymptotic

running times. For simplicity, we restrict our proof to deterministic strategies and com-

ment later on the extension to probabilistic ones. Specifically, we show that for a wide

class of deterministic greedy strategies, there exist n-processor fat-trees and message sets

with load factor λ such that Ω(λ lgn) delivery cycles are required. Thus, if λ is asymptot-

ically larger than lg lg n, the greedy strategy is worse than RANDOM, which essentially
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1 while M 6= ∅ do
2 send M
3 M ←M − {messages delivered}
4 endwhile

Figure 3-4: The algorithm GREEDY for delivering a message set M . This algorithm
repeatedly sends all undelivered messages. The performance is highly dependent on the
behavior of the switches.

guarantees O(λ + lg n lg lg n) delivery cycles for any set of messages. The lower-bound

proof for greedy routing is based on an idea due to F. M. Maley [70].

Figure 3-4 shows the greedy algorithm. The code for GREEDY does not completely

specify the behavior of message routing on a fat-tree because the switches have a choice as

to which messages to drop when there is congestion. (The processors also have this choice,

but we shall think of them as being switches as well.) In the analysis of RANDOM, we

presumed that all messages in a channel are lost if the channel is congested. To completely

specify the behavior of GREEDY, we must define the behavior of switches when channels

are congested.

The lower bound for GREEDY covers a wide range of switch behaviors. Specifically,

we assume the switches have two properties:

1. Each switch is greedy in that it only drops messages if a channel is congested, and

then only the minimum number necessary.

2. Each switch is oblivious in that decisions on which messages to drop are not based

on any knowledge of the message set other than the presence or absence of messages

on the switch’s input lines.

We define the switches of a fat-tree to be admissible if they have these two proper-

ties. The conditions are satisfied, for example, by switches that drop excess messages

at random, or by switches that favor one input channel over another. An admissible

switch can even base its decisions on previous decisions, but it cannot predict the future

or make decisions based on knowing what (or how many) messages it or other switches

have dropped. (The definition of oblivious in property 2 can be weakened to include an
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even wider range of switch behaviors without substantially affecting our results.)

At this point, we restrict attention to deterministic greedy strategies and present

the lower-bound theorem for GREEDY operating on an area-universal fat-tree. The

theorem can be extended to a variety of other fat-trees. A discussion of the extension to

probabilistic greedy strategies follows the proof of the theorem.

Theorem 8 Consider an n-processor area-universal fat-tree with determin-

istic admissible switches whose channel capacities are 1 nearest the processors

and double at every other level going up the tree. Then there exist message

sets with load factor λ for which GREEDY requires Ω(λ lg n) delivery cycles.

Proof. For any λ ≥ 12, we will construct a “bad” message set Mn on the n processors

of the fat-tree by induction on the subtrees. The message set Mn will consist entirely of

messages to be routed out of the root and will satisfy the following three properties:

1. The message set Mn has load factor at most λ.

2. The root channel of the fat-tree is full for the first 1
3
λ delivery cycles.

3. A total of at least 1
6
λ + 1

12
λ lgn delivery cycles3 are required to deliver all the

messages in Mn.

For the base case we consider a subtree with 1 processor, that is, a leaf connected

to a channel of capacity 1. The bad message set M1 consists of λ messages to be sent

from the single processor. The properties are satisfied since the root channel is congested

throughout the first 1
3
λ delivery cycles, and at least 1

6
λ delivery cycles are needed to

deliver all the messages.

We next show that we can construct the bad message set Mn assuming that we can

construct a bad message set for a subtree of n/4 processors. The construction uses an

adversary argument. First, we specify the pattern of inputs seen by the root switch of the

3Without loss of generality, we assume henceforth that 1

12
λ is integral, since we could otherwise use

⌊

1

12
λ
⌋

with only a constant factor change.
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Figure 3-5: Construction of Mn for the proof of Theorem 8. The subtree from which
the fewest number of messages have been delivered by a certain time is loaded with the
largest number of messages.

fat-tree during certain delivery cycles, without giving any indication of how that input

pattern can be achieved. Then since we have given enough information to determine the

behavior of the root switch during these cycles, the root switch must announce which

messages it passes through to its output. Finally, we give a construction for a message

set that achieves the input pattern we called for in the first step. We take advantage of

the announced behavior of the root switch in order to ensure that the message set also

satisfies properties 1, 2, and 3.

We begin by calling for the input channels of the root switch of the fat-tree to be

full for t delivery cycles, where t is 1
3
λ. If this is achieved, the total number of messages

removed from the fat-tree during the first t delivery cycles is m = 1
3
λ
√
n, since the root

capacity is
√
n and the root switch is greedy. Also, as mentioned before, the specified

input pattern determines the behavior of the root switch because the switch is oblivious.

The behavior of the root switch determines how many of themmessages removed from

the fat-tree by delivery cycle t come from each of the four subtrees shown in Figure 3-5.

At least one of these subtrees provides no more than m/4 of the messages. We choose

one such subtree and refer to it as the unfavored subtree. The other subtrees are referred

to as the favored subtrees.
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Having determined the unfavored subtree given the conditions specified so far, we

can complete the construction of Mn. The unfavored subtree contains a copy of the

bad message set Mn/4 for that subtree. Each of the other three subtrees contains 1
6
λ
√
n

messages evenly divided among the processors in the subtree. Now we must prove that

Mn meets all of our requirements.

First, we show that Mn is consistent with the input pattern specified for the root

switch. To show that the input channels of the root switch of the fat-tree are full through

the first t delivery cycles, it suffices to prove that the root channels of the four subtrees are

full through this time. The root channel of the unfavored subtree is full by the induction

hypothesis (property 2). The root channel of each favored subtree is also full for the first

t delivery cycles, since its messages are evenly distributed, its switches are greedy, and t

times its root capacity does not exceed the number of messages emanating from it.

We now prove that properties 1, 2, and 3 hold for Mn. The load factor in the favored

subtrees is less than λ by construction. The load factor is at most λ in the unfavored

subtree by the induction hypothesis (property 1), so the number of messages in the

unfavored subtree is at most 1
2
λ
√
n, and the total number of messages in Mn is at most

1

2
λ
√
n+ 3 · 1

6
λ
√
n = λ

√
n.

Thus, the load factor of Mn on the fat-tree is at most λ, and property 1 holds. Property 2

is satisfied for Mn because the root switch is greedy. We have already shown that the

input channels of the root switch are full through delivery cycle t, so the root channel

is certainly full for the required amount of time. Finally, property 3 holds because

after running t = 1
3
λ delivery cycles, only m/4 = 1

12
λ
√
n messages have been removed

from the unfavored subtree. If priority had been given to the unfavored subtree, only 1
6
λ

delivery cycles would have been required to remove them/4 messages, So by the induction

hypothesis (property 3), an additional 1
6
λ+ 1

12
λ lg(n/4)− 1

6
λ cycles are required to empty

the unfavored subtree. If we include the original t cycles, the total number of cycles

required to deliver all the messages in Mn is at least 1
6
λ+ 1

12
λ lgn.
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When probabilistic admissible switches are permitted, the proof of Theorem 8 can

be extended to show that the expected number of delivery cycles is Ω(λ lg n). The idea

is that at least one of the subtrees in Figure 3-5 must be unfavored with probability

at least 1/4. We call one such subtree the often-unfavored subtree. The construction

of Mn proceeds as before, with the often-unfavored subtrees playing the previous role

of the unfavored subtrees. In any particular run of GREEDY, we expect 1/4 of the

often-unfavored subtrees to be unfavored, so there is a Θ(1) probability that 1/8 of the

often-unfavored subtrees are unfavored (Lemma 3). Thus, the probability is Θ(1) that

Ω(λ lg n) delivery cycles are required, which means that the expected number of delivery

cycles is Ω(λ lgn).

Although we have shown an unfavorable comparison of GREEDY to RANDOM, it

should be noted that GREEDY does achieve the lower bound we proved for routing

messages out the root. That is, routing of messages out the root or, more generally, up

the tree only, can be accomplished by GREEDY in O(λ lgn) delivery cycles. This can be

seen by observing that the highest congested channel (closest to the root) must drop at

least one level every λ delivery cycles. If one could establish an upper bound of λ times

a polylogarithmic factor for the overall problem of greedy routing, it would show that

GREEDY still has merit despite its inferior performance in comparison to RANDOM.

3.4 Routing with Larger Channel Capacities

In this section, we improve the results for on-line routing if each channel c in the fat-tree

is sufficiently large, that is if cap(c) = Ω(lg n) Specifically, we can deliver a message set

M in O(λ(M)) delivery cycles with high probability, i. e., we can meet the lower bound

to within a constant factor. The better bound is achieved by the algorithm RANDOM ′

shown in Figure 3-6.

Theorem 9 For any message set M on an n-processor fat-tree with channels

of capacity Ω(lg n), the probability is at least 1 − O(1/n) that RANDOM ′
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1 z ← 1
2 while M 6= ∅ do
3 for each message m ∈M , choose a random number im ∈ {1, 2, . . . , z}
4 for i← 1 to z do

5 send all messages m such that im = i
6 endfor

7 z ← 2z
8 endwhile

Figure 3-6: The algorithm RANDOM ′ for routing in a fat-tree with channels of capacity
Ω(lg n). This algorithm repeatedly doubles a guessed number of delivery cycles, z. For
each guess, each message is randomly sent in one of the delivery cycles.

will deliver all the messages of M in O(λ(M)) delivery cycles, if λ(M) is

polynomially bounded.

Proof. Let the lower bound on channel size be a lgn, and let nk be the polynomial bound

on the load factor λ(M). We consider only the pass of the algorithm when z first exceeds

e2(k+2)/aλ(M). We ignore previous cycles for the analysis of message routing, except to

note that the number of delivery cycles they require is O(λ(M)).

We first consider a single channel c within a single cycle i from among the z delivery

cycles in the pass. Since each message has probability 1/z of being sent in cycle i, we can

apply Lemma 4 with p = 1/z to conclude that the probability that channel c is congested

in cycle i is at most

(

eλ(M)

z

)cap(c)

≤ 2−
k+2
a

cap(c)

≤ 2−(k+2) lgn

=
1

nk+2
.

Since there are O(n) channels, the probability that there exists a congested channel in

cycle i is O(1/nk+1). Finally, since there are z ≤ 2e2(k+2)/aλ(M) = O(λ(M)) = O(nk)

cycles, the probability is O(1/n) that there exists a congested channel in any delivery

cycle of the pass.
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3.5 Routing on Butterfly Fat-Trees

This Section describes and analyzes an algorithm for routing on the butterfly fat-tree

(Figure 2-2), which runs in time O(λ(M) lg3 n). It also discusses faster algorithms by

Park [76] and Leighton, Maggs, and Rao [61], which depend on stronger switches.

The mechanics of routing on the butterfly fat-tree are somewhat different than on

the original. The underlying channel structure for the two fat-trees is the same, but the

butterfly fat-tree does not rely on concentrators to make efficient use of the available

output wires. Instead, each message sent through the fat-tree randomly chooses which

parent to go to next (based on random bits embedded in its address field) until it reaches

the apex of its path, and then it takes the unique path downward to its destination. This

strategy guarantees that for any given channel through which a message must pass, the

message has an equal likelihood of picking any wire in the channel.

As noted earlier, delivery cycles in the butterfly fat-tree require less time than in the

ordinary fat-tree, but the algorithm presented here requires more delivery cycles than the

algorithms presented in previous sections. In the butterfly fat-tree, the time to perform a

delivery cycle is O(lgn) since the switches have constant depth. The algorithm described

and analyzed here requires O(λ(M) lg2 n) delivery cycles.

The routing algorithm is a modification of the algorithm RANDOM ′. We simply

surround lines 3–6 with a loop that executes these lines (k + 1) lgn times, where |M | =
O(nk).

The proof that the algorithm works applies the analysis from Section 3.2 to individual

wires, treating them as channels of capacity 1. Consider a wire w traversed by a message

in a p-subset M ′ of M , and consider the channel c that contains the wire. For any

other message in M , the probability is p/cap(c) that the message is directed to wire w

when the message set M ′ is sent. Thus, the probability that w is congested is at most

B(1, load(M, c), p/ cap(c)) ≤ epλ(M), and an analog to Lemma 4 holds because the

capacity of w is 1. Lemma 5, which says that the probability is 1
2
p that a given message

of M is delivered when a p-subset of M is sent, also holds if the congestion parameter r
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is chosen to be Θ(lg n).

We can now prove a bound of O(λ(M) lg2 n) on the number of delivery cycles required

by the algorithm to deliver all the messages in M . It suffices to show that with high

probability, all the messages in M get routed when the variable z in the algorithm

reaches Θ(λ(M) lg n). When z ≥ rλ(M) = Θ(λ(M) lg n), any given message m is sent

once during a single pass through lines 3–6, and the probability that the message is not

delivered on that pass is at most 1
2
. Thus, the probability that m is not delivered on

any of the (k + 1) lgn passes through lines 3–6 is at most 1/nk+1. Since the number of

messages in M is O(nk), the probability is O(1/n) that a message exists which is not

routed by the time z reaches rλ(M).

Park [76] and Leighton, Maggs, and Rao [61] have obtained more efficient routing

algorithms under different communications models. That is, they consider the effects

of stronger switches and, in the latter case, packet routing instead of circuit switch-

ing. Park’s algorithm has the advantage of being deterministic, and it still runs in time

proportional to λ lg2 n plus a term not exceeding lg3 n. It does require switches ca-

pable of performing arithmetic operations on lg n-bit numbers. Though this increases

the component count for fat-trees, it does not increase the area required for fat-trees

with appropriately chosen channel capacities as described in Chapter 4. The scheme of

Leighton, Maggs, and Rao leads to a similar situation in terms of component count and

area requirements, but the running time is further improved by using a packet routing

approach. The approach is based on ideas of Ranade [82] and involves assigning each

message a random “key” which is used to establish priorities of messages during routing.

The result is an algorithm which works in time O(λ lgn+ lg2 n) in the bit model.



Chapter 4

Tailoring Fat-Trees to Serve as

Universal Networks

This chapter shows how to tailor the basic fat-tree architecture to serve as an area-

universal network. To achieve universality, we specify the channel capacities in such

a way as to keep the area modest while providing enough interprocessor bandwidth to

efficiently simulate the communications patterns of competing networks. Based on the

discussion in Chapters 2 and 3, we need a choice of channel capacities which yields small

area and a good bound on the load factor induced by message sets of competing networks.

This chapter provides appropriate channel capacities and gives the universality results

which follow.

In detailing the universality of fat-trees, this chapter will delve into certain issues more

deeply than earlier works ([44, 61, 62]). It explicitly considers size (amount of attached

memory) of processors comprising the networks being compared. One reason processor

size is important is that processors in a fat-tree of area A must be of size Ω(lgA) in order

to address all the other processors.1 Also, by using a denser packing of fat-tree proces-

sors than in [44, 62], artificial restrictions on the number of processors in a competing

1The requirement is Ω(lgn), where n is the number of processors, implying Ω(lgA) unless the number
of processors in the fat-tree is too small to achieve any reasonable simulation.
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network are removed. In addition, this chapter shows that by superposing hierarchical

mesh connections on a fat-tree, creating a fat-pyramid network, it is generally possible

to discard assumptions of unit wire delay. Also, comparisons between fat-trees and net-

works of different total area are considered. Finally, it is shown that all the simulation

results remain valid even without the assumption that computation and communication

of competing networks proceed in separate phases to be simulated separately.

The focus in this chapter is on the choice of universal network and the mapping of

other networks to it. We obtain results about how good a network can be at facilitat-

ing this mapping and generally leave open the possibility of applying various routing

approaches, but the results are occasionally specified concretely for specific routing algo-

rithms.

Most of the universality results in this chapter are expressed in terms of the running

time of the message routing algorithm which is selected. Thus, it is possible to see

the effect which would result from improved routing algorithms as well as the current

best known results. As seen in Chapter 3, the load factor λ is a lower bound on the

time required to deliver a set of messages, and the routing algorithms which have been

demonstrated for fat-trees obtain (high probability) upper bounds on the delivery time

δ in the form

δ(λ, n) = f(n)λ+ g(n) ,

where f and g are small polylogarithmic functions2 of the number of processors, n. (Note

that this formulation ensures that δ(O(λ), n) = O(δ(λ, n)); this fact will be used several

times in the following sections.) Of particular interest is the case where n does not exceed

2λ, implying that the delivery time is just a small polynomial function of λ. We will use

δ with one argument to represent this case, i.e.,

δ(λ) = δ(λ, 2λ) .

2That is, these functions are upper bounded by a polynomial in the logarithm of the argument. Thus,
functions such as lg2 n or lg3 n lg lg n qualify.
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In the case of the routing algorithms discussed in detail in Chapter 3 for the basic

fat-trees with very simple switches, δ(lg n) is lg3 n lg lg n in the general case and lg3 n in

the case that the channel capacities are all Ω(lg n). Chapter 3 also gave an algorithm for

the butterfly fat-tree with δ(lg n) = lg4 n, and the algorithms of Park [76] and Leighton,

Maggs, and Rao [61], for butterfly fat-trees with more complicated switches, yield δ(lg n)

equal to lg3 n and lg2 n, respectively.

Leighton, Maggs, and Rao [61] use their routing algorithm to show that an appropriate

universal network of area Θ(A) requires only O(lg2A) slowdown (in bit-times) to simulate

any network of area A and the same type of processors, without any restriction on the

number of processors. (Note that this result has been translated from O(lgA) slowdown

in the word model, since this thesis generally expresses times in bit-times.)

For the simplest situation of comparing networks built out of the same (small) pro-

cessors, the bounds demonstrated here match those of Leighton, Maggs, and Rao [61],

though the network used here remains entirely within the fat-tree framework, which al-

lows a more uniform routing strategy. Also, here we go further by taking explicit note

of the fact that fat-tree processors must be of size Ω(lgA) in order to address all the

other processors and that we may wish to consider networks with even larger processors.

We make explicit the outcome of comparison between networks of larger and/or different

processors and consider the question of best processor size for a universal network.

This chapter shows that an appropriate universal network of area Θ(A) built from

processors of size lgA requires only O(lg2A) slowdown in bit-times (or O(lg3A) with

simple switches) to simulate any network of area A, without any restriction on processor

size or number of processors in the competing network. Furthermore, the universal net-

work can be designed so that any message traversing a path of length d in the competing

network need follow a path of only O(d + lgA) length in the universal network. Thus,

the results are almost entirely insensitive to removal of the unit wire delay assumption

used in previous work.

For convenience, we will use the following terminology henceforth:
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Definition: We say that network B can ∆-simulate network A if, for any

t, the operations performed by network A in time t can be performed by

network B in time t∆.

The rest of this chapter is organized as follows. Section 4.1 shows that an appropriate

choice of channel capacities yields a universal fat-tree with processors packed as densely as

possible (linear area for unit-size processors). Section 4.2 shows how stronger universality

results may be obtained by generalizing to comparison of networks which may differ in

processor size. Section 4.3 shows that the same results can usually be obtained even

without the assumption of unit wire delay. Section 4.4 analyzes the ability of a universal

network to simulate other networks which use more total area but the same processor

area. Section 4.5 shows that the assumption of global synchronization of competing

networks can be removed, and Section 4.6 contains concluding remarks.

4.1 A Linear-Size Fat-Tree

This section considers comparisons between networks built out of the same processors.

It begins by constructing a fat-tree on unit-size processors which occupies area linear

in the number of processors. With processors packed so densely, a very simple one-to-

one mapping of a competing network’s processors to those of the fat-tree ensures that

message sets delivered in unit time by a competing network of area A have O(lgA) load

factor in the fat-tree. Fat-tree routing mechanisms require processors of size at least

logarithmic in the number of processors (in order to address all other processors), but

by simply scaling the measure of area everywhere, the load factor result for unit-size

processors leads to a valid simulation result for networks built out of the same processors

of size Ω(lgA). Nonetheless, we will explicitly introduce processor area since it yields an

improved bound for very large processors and prepares the way for comparisons between

networks built from different processors.

Specifying the universal fat-tree requires making an appropriate choice of the channel
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capacity function c(p), which denotes the capacity of a fat-tree channel on top of a subtree

of p processors. This section will show that the best construction may not be modular,

i.e., the channel capacity on top of a subtree of the network may depend on the total

size to which the network is to be built rather than depending just on the size of the

subtree. It will be shown that modularity can be obtained using processors of size lg2A

to build a fat-tree of area A, but we will see in Section 4.2 that this may increase the cost

of simulating networks with processors of a different size if fat-tree routing strategies are

developed which come closer to the lower bound on routing time.

Observe first that if we let c(p) =
⌈√

p/ lgA
⌉

, we can build a fat tree of A unit-size

processors in area Θ(A). The area can be derived by solving a recurrence relation for

the side length S(n) of a fat-tree on n processors in the H-tree layout style of Figure 2-1.

We have

S(n) = 2S(n/4) + c(n) ,

with solution

S(n) =
√
nS(1) +

log4 n−1
∑

i=0

2ic(n/4i) . (4.1)

Substituting for S(1) = 1 and c(n/4i) ≤ 1 +
√

n/4i/ lgA, we obtain

S(n) ≤ 2
√
n+
√
n(log4 n)/ lgA ,

and S(A) = Θ(
√
A).

Now we are prepared to present a result which strengthens the main universality

result in [44] (translated to two dimensions) in that the restriction on the number of

processors in the competing network is removed, but the proof here is actually more

direct. Rather than using the ideas for balancing decomposition trees developed by

Bhatt and Leighton [13] and Leiserson [62], we can consider a straightforward geometric
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mapping of competing networks to fat-trees. (This idea was actually introduced in [44]

but only in the case of a fat-tree simulating networks of slightly smaller area.)

Lemma 10 Consider networks with unit-sized processors, and let R be the

set of all networks of area A. Then, there exists a fat-tree F of area Θ(A)

such that any message set delivered in unit time by a network in R induces a

load factor of O(lgA) on F.

Proof. We use the channel capacities c(p) =
⌈√

p/ lgA
⌉

to build a fat-tree of n = A

processors, which we have shown requires area Θ(A). Then we can just recursively bisect

any R ∈ R in the straightforward geometric fashion, cutting nonsquare pieces in the

shorter direction, until we have A pieces. There can be at most one processor in each of

the pieces of the recursive bisection, and these processors can be mapped to F so that the

recursive bisection of R matches the obvious recursive bisection of F. Then the perimeter

of a piece of R corresponding to a subtree of n/2l processors in F is O(
√
A/2l/2). Thus,

for a channel at level l of the decomposition, the load factor of messages generated in

unit time is

λ = O((
√
A/2l/2)/c(n/2l)) (4.2)

= O((
√
A/2l/2)/(

√

A/2l/ lgA))

= O(lgA) .

It is actually quite easy to generalize the above results to processors of size α. For

simplicity, we assume that processors are square, i.e.,
√
α by

√
α. By building a fat-

tree on n = A/α processors with channel capacity function c(p) =
⌈√

pα/ lg(A/α)
⌉

, we

obtain area A and load factor O(lg(A/α)). This can be seen by simply making the correct

substitutions into Equations 4.1 and 4.2.

We can also make the channel capacities slightly larger at the lower levels of the

tree than was just indicated. (Such a change is required by some of the routing al-



60 CHAPTER 4. FAT-TREES AS UNIVERSAL NETWORKS

gorithms discussed in Chapter 3.) Specifically, if we increase channel capacities to
⌈√

α +
√
pα/ lg(A/α)

⌉

, the asymptotic area of the fat-tree does not increase, as can be

seen by substituting into Equation 4.1. The load factor bound remains valid, of course,

when the channel capacities are increased.

Using our bound on the load factor, we can now state a simulation result in terms of

the running time δ(·) of the message delivery algorithm.

Theorem 11 Consider networks with processors of size α = Ω(lgA), and let

R be the set of all networks of area A. Then, there exists a fat-tree F of area

Θ(A) which can O(δ(lg(A/α)))-simulate any network in R.

Proof. We have seen that processors can be mapped one-to-one, and the load factor for

each message set of a competing network in R is O(lg(A/α)). Thus, the delivery time

for each message set is O(δ(lg(A/α))).

Using the routing scheme of Leighton, Maggs, and Rao [61], where δ(lg n) = lg2 n,

yields the following corollary:

Corollary 12 Consider networks with processors of size α = Ω(lgA), and

let R be the set of all networks of area A. Then, there exists a fat-tree F of

area Θ(A) which can O(lg2(A/α))-simulate any network in R.

This result is similar to a result given in [61] using a fat-tree with the lower levels

replaced by meshes. By using the construction here, it is possible to instead retain

a uniform routing strategy throughout all levels of the tree. The idea of adding mesh

connections to a fat-tree is, however, a useful one when wire delay concerns are addressed,

as we shall see in Section 4.3.

One final note is in order. When α = Θ(lg2A), we can achieve a modular design; we

can use c(p) =
⌈√

p
⌉

, or rounding slightly differently, capacities which double at every

other level as in Figure 2-2. These channel capacities are not adequate to justify the

use of the routing algorithm presented in Section 3.4, where channels of capacity Ω(lg n)

were required, but other routing algorithms remain valid.
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4.2 Different Sized Processors

In this section, we consider the possibility of comparing a universal network with proces-

sors of one size to other networks with processors of different size. In doing so, we must

establish correspondences of single processors in one network with multiple processors in

another network. We consider both many-to-one and one-to-many mappings of a com-

peting networks’ processors to those of a universal network. The combined observations

show that a universal network designed to simulate networks of arbitrary processor size

is best built with processors of size α in the range lgA ≤ α ≤ δ(lgA).

In order to compare parallel machines within the framework of this chapter, we must

place some limitations on how we compare machines built from different processors.

Rather than get involved in such issues as RISC vs. CISC or other detailed questions of

best design for an individual processor, we assume that the processors of networks to be

compared have the same instruction set and are equally well-engineered to provide the

same operations at the same cost in time and space. The one difference in processors

which remains under consideration is the amount of memory attached. For simplicity,

we assume that the size of the memory does not affect the instruction execution time;

incorporating a small cost for increasing memory size would cause little change to the

results given here.

We consider in turn the two cases of the universal network having processors which

are larger or smaller than the processors of the simulated network. Then we consider

more general statements independent of the sizes of processors in the competing network.

In any case, let αX represent the area of a processor in routing network X .

First, let us consider a competing network with processors smaller than those from

which the universal network is to be built. In this case, we can map the competing

network R to the universal fat-tree F as before, except that the decomposition of R

stops before we get down to individual processors. Instead, we map αF/αR processors

of R to each processor of F . The computations performed by this block of processors in

time t, excluding any communication with processors outside the block, can be realized in
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time O(tαF/αR) on the processor of F . Meanwhile, the communication between blocks

can be accomplished with overhead O(δ(lg(A/αF ))), yielding the following generalization

of Theorem 11:

Theorem 13 For any αR, let R be the set of all networks of area A built

out of processors of area αR. Then, for any αF ≥ max {αR, lgA}, there

exists a fat-tree of area Θ(A) built out of processors of area αF which can

O(max {δ(lg(A/αF )), αF/αR})-simulate any network in R.

Now, let us consider a competing network with processors larger than those from

which the universal network is to be built. In this case, we decompose the competing

network R ∈ R down to individual processors as before, but we assign αR/αF processors

of the fat-tree F to simulate each processor of R. We divide the memory of a processor

of R among the corresponding αR/αF processors of F . Then as long as processors of F

are large enough to address the αR/αF regions of memory, we can treat the flow of data

to the different pieces of memory just as we would the communication among a set of

processors being simulated. Thus, we can view the operation of R as proceeding on the

larger number A/αF of subdivided processors, yielding an additional generalization to

Theorem 11:

Theorem 14 For any αF ≥ lgA and αR ≥ αF , there exists a fat-tree of area

Θ(A) built out of processors of area αF which can O(δ(lg(A/αF )))-simulate

any network of area A and processors of area αR.

It is straightforward to generalize Theorems 13 and 14 to situations in which a single

simulated network has processors of many different sizes. In that case, we can simply

let αR represent the minimum size of processors in R, and both theorems will still hold,

though the proofs change slightly. In fact, we can combine Theorems 13 and 14, since

the αF/αR term in Theorem 13 becomes irrelevant for αR ≥ αF :

Theorem 15 For any αR, let R be the set of all networks of area A with

each processor having area at least αR. Then, for any αF ≥ lgA, there
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exists a fat-tree of area Θ(A) built out of processors of area αF which can

O(max {δ(lg(A/αF )), αF/αR})-simulate any network in R.

Since the overhead in Theorem 15, will never exceed O(δ(lgA)) for αR ≥ αF , we see

that the overhead for a fat-tree simulating a network with larger processors is largely

insensitive to the relative size of processors. Thus, if we wish to build a universal fat-tree

to simulate networks of unknown processor size, it seems that we do best by making the

fat-tree processors small enough that δ(lgA) will always dominate αF/αR in comparisons

against networks with smaller processors. Recalling that fat-tree routing mechanisms

require that processors of F should be large enough to address Ω(A) processors, we are

led to choose the processor size to satisfy lgA ≤ αF ≤ δ(lgA). Then we have the

following corollaries to Theorem 15.

Corollary 16 There exists a fat-tree of area Θ(A) which can O(δ(lgA))-

simulate any network of area A and processors of arbitrary area.

Corollary 17 There exists a fat-tree of area Θ(A) that can O(lg2 A)-simulate

any network of area A and processors of arbitrary area.

4.3 Handling Non-Unit Wire Delay

In this section we consider the effect of dropping the unit wire delay assumption. The

general graph layout framework developed by Bhatt and Leighton [13] shows that there

is enough room in our fat-tree layouts to build sufficiently large drivers for each wire to

keep the wire delay constant in the capacitive model. This section shows that even if

this constant switching time is not the dominant determiner of wire delay, the bounds

on simulation time shown in earlier sections can almost always still be obtained. It

introduces a network referred to as a fat-pyramid, which is obtained by augmenting a

fat-tree with hierarchical mesh connections. A routing path of length d in a competing

network of area A corresponds to a path of length O(d+ lgA) in the fat-pyramid, which
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generally implies that asymptotic simulation overhead is no worse than in the unit wire

delay case. Some of the ideas in this section were suggested by Charles Leiserson and

Tom Cormen of MIT.

It should be noted that it is reasonable to assume wire delay to be no worse than

linear in wire length, since repeaters (extra switches) can always be used to reduce delay

to linear. Linear wire delay would be the correct model if technology could be improved

to the point where only speed of light limitations constrain the time to switch a length

of wire. Then, the measure of unit time would be much smaller, but linear wire delay

would be required of any competing network.

It is also helpful to assume a mild “regularity” condition on the wire delay function.

(Similar regularity conditions are used elsewhere in the literature (e. g., [11, 20, 63],[2,

p. 280]) in order to obtain results about large classes of functions.) Specifically, let w(d)

denote the time required to transmit a bit along a wire of length d; then we seek two

properties for the function w. First, w should be nondecreasing, and second it should

satisfy the following condition:

Definition: A function w is said to satisfy Condition C1 if there exists a

constant c such that
w(d+ x)

w(d)
≤ lg d+ x

lg d

for all x ≥ 0 and d ≥ c.

It should be noted that Condition C1 is satisfied by most functions likely to be of

interest in the context of wire delay. For example, it is satisfied by all functions of the

form cnq lgk n for constants c, q, and k such that either q < 1, or q = 1 and k ≤ 0. One

way to see that all of these functions satisfy Condition C1, is to observe that they satisfy

a simpler regularity condition C2, which implies C1.

Definition: A function w is said to satisfy Condition C2 if there exists a

constant c such that
w(d+ x)

w(d)
≤ d+ x

d
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for all x ≥ 0 and d ≥ c.

Condition C2 implies condition C1 because 1 + x/d ≤ 1 + x/ lg d for any x ≥ 0 and

d > 0.

(Without changing the asymptotic results given below, we can actually weaken con-

ditions C1 and C2 in order to admit an even larger class of functions than already

mentioned. Specifically we could define conditions C1 and C2 to be that the old condi-

tions are satisfied to within a constant factor. Then the conditions are satisfied by any

function w satisfying c1n
q lgk n ≤ w(n) ≤ c2n

q lgk n for sufficiently large n, with q and k

as before and positive constants c1 and c2.)

To construct the fat-pyramid network and obtain results independent of wire delay,

we must begin with a regular layout of a fat-tree, that is, one in which the components at

any given level of the tree are regularly spaced throughout the layout. We can produce

such a layout from a butterfly fat-tree by using the “fold and squash” technique of Bhatt

and Leighton [13, pp. 325–326] and Thompson [96, pp. 36–38]. Then with only a constant

expansion in area, we can superpose a mesh on each level of components in the fat-tree.

For ease of illustration, the superposition of these hierarchical mesh connections is shown

on a standard layout of the butterfly fat-tree in Figure 4-1. The result of the fold and

squash transformation is illustrated in Figure 4-2 with inter-level connections omitted

but switches labeled according to the number of levels from the top of the tree. (The

fold and squash technique appears again in Chapter 5, and the illustrations there can

be used to visualize the transformation of the inter-level connections.) In general, we

must stop folding when we reach a level at which the channel capacities stop decreasing

sufficiently (by a factor of 2 at every level in the underlying 4-ary tree), so we may be

left with H-trees near the leaves. In any case, we use a fat-tree with processors of area

at most lg2A in accordance with the results of Section 4.2, and the area of the H-tree

blocks is lg2A.

The choice of the name “fat-pyramid” for the network just introduced stems from the

observation that if all channel capacities were equal to one, the result would be a network
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Figure 4-1: A fat-pyramid. This network is obtained by superposing hierarchical mesh
connections on a butterfly fat-tree. The original fat-tree connections are represented by
thin lines and the mesh connections by thick lines.

which has been called the “pyramid” by Tanimoto (and earlier a “recognition cone” by

Uhr) [94, p. 3]. The addition of mesh connections to the fat-tree is also similar to the

introduction of “brother” connections in trees to obtain the X-Tree network [32, 89].

Messages in the the fat-pyramid are routed over the same paths as in the fat-tree,

except that we allow each message to take one shortcut via one or two of the new mesh

edges. More precisely the routing path is formed by going up tree edges until a switch is

reached that is adjacent horizontally, vertically, or diagonally in the mesh at that level

to a switch from which the destination can be reached by going down tree edges. As long

as the mesh edges are of sufficiently large constant capacity, all of the existing routing

algorithms work as well as before; the shortcuts do not cause any extra messages to go

through any of the tree edges, and the messages which go through any mesh edge are only

those which would have gone up the tree from a constant number of nearby switches.

A key property of the layout in Figure 4-2 is that the wires connected to a switch l
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Figure 4-2: A regular layout of the fat-pyramid, but with the original fat-tree connections
removed for ease of illustration. Each switch is numbered with its level from the top of
the tree so that this figure can be compared with Figure 4-1. The network shown here
allows good results to be obtained without the unit wire delay assumption.
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levels from the bottom of the tree 3 are of length O(2l lgA), where A is the area of the

fat-tree. To see this, observe that the H-tree blocks near the leaves have side length lgA,

and the upper levels can be embedded in a tree of meshes graph of O(lgA) levels in such

a way that each edge connected to a switch l levels up is mapped to at most O(2l) edges

in the tree of meshes. The fold and squash layout of the tree of meshes given in [13]

has maximum edge length O(lgA), and there is at most lgA extra length caused by the

H-tree blocks in our layout. Thus, the length of an edge connected to a switch l levels

up in the folded and squashed fat-pyramid is O(2l lgA).

Now we can show that the mapping of competing networks to a universal fat-pyramid

(having channel capacities as in a universal fat-tree) does not stretch any wires by very

much.

Theorem 18 Let R be a network occupying a square of area A. Then, R can

be mapped to a fat-pyramid F of area Θ(A) so that any message following a

path of length d in R travels only O(d+ lgA) distance in F.

Proof. Observe first that if we use the straightforward mapping of R to F, processors

separated by distance d in R are at most ⌈d/ lgA⌉ H-tree blocks apart when mapped to

F. Since four adjacent subtrees on (⌈d/ lgA⌉)2 H-tree blocks must suffice to cover such

a pair of processors, the routing path connecting these processors needs only to go up

lg(⌈d/ lgA⌉) levels and use two mesh edges. Since any wire connected to a switch l levels

up the tree is of length O(2l lgA), the length of the routing path connecting processors

at distance d in R is O(d+ lgA).

The above result can be used to almost always insure that asymptotic simulation time

does not degrade. Clearly, simulation time does not degrade if the competing network

operates in separate phases of communication and computation and frequently produces

messages which must travel over distance at least Ω(lgA). But we can obtain more

general results by using the regularity conditions assumed for the wire delay function w

3Though discussing the fat-pyramid, we will sometimes make reference to locations in the network
relative to the underlying tree structure prior to superposition of the mesh connections.



4.3. HANDLING NON-UNIT WIRE DELAY 69

and by imposing some new rules of operation on the universal network. We henceforth

exempt from consideration the packet routing scheme of Leighton, Maggs, and Rao [61],

but an analysis similar to the discussion below appears to be applicable to their scheme

as well [69].

First we show that when the unit wire delay assumption is dropped, the delivery

overhead is at most doubled for a single set M of messages which reach their destinations

during a period of unit time in the competing network. This result is shown by comparing

the change in time required to deliver the messages in the universal network to the change

in time required in the competing network. With regard to the universal network, we

need only consider the change in the time to perform each delivery cycle, since the

number of required delivery cycles is not changed by the change in wire delay. If we let

d be the length of the longest routing path in R for messages in M , then the change

in required routing time in R is at least w(d). That is previously, we assumed that all

the messages were delivered in unit time, but now we know that the routing time must

certainly be at least w(d). In the universal network, we know from Theorem 18, that the

time required for a delivery cycle is at most the product of w(d + lgA), the number of

fat-tree switches in the longest routing path (lg d), and the depth of the switches. In the

unit wire delay case, we assumed a time equal to the height lgA of the tree multiplied

by the depth of the switches, so the change in time in the universal network is a factor

of w(d+ lgA) lg d/ lgA. Thus the change in delivery overhead, which we denote by ∆δ,

is as follows:

∆δ ≤ w(d+ lgA) lg d

w(d) lgA

≤ (lg d+ lgA) lg d

lg d lgA

≤ 2 ,

where the second line follows from regularity condition C1.

The result we have just shown is not quite sufficient to establish an on-line simula-
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tion of other networks by fat-pyramids because it suggests the use of delivery cycles of

differing length according to the longest routing path for the message set being delivered.

Individual processors cannot know how long to wait for each delivery cycle to complete

when they have no global knowledge of the message set. Nonetheless, it is possible to

achieve an on-line simulation by eliminating the clear demarcation between delivery cy-

cles and letting processors send new messages when they are ready regardless of the

status of messages sent from other processors. This approach raises an issue of fairness;

that is, how do we prevent some message from being “locked out” for a long time while

other messages are continually injected into the network, congesting channels needed by

the unfortunate message? The answer is basically to time-stamp each message with its

time of generation and use these time-stamps to determine priority in the switches of the

fat-pyramid. Since the fat-tree routing algorithms which have been presented made no

assumptions about how messages were prioritized as they passed through the switches,

the routing algorithms and running times remain valid with the time-stamp priority

scheme. The only detail that remains is to clarify what happens when a message arrives

at a switch with a full output channel but has a higher priority than some message which

is in the process of being delivered through that switch. It is necessary in this case that

the input messages be buffered or else that the high priority message can actually abort

the delivery of a lower priority message.

4.4 Simulating Larger Networks

This section obtains upper bounds on the time required by a universal fat-tree to simulate

networks that occupy more area but have the same amount of area devoted to processors.

The reason for the latter restriction is that for any significant difference in memory,

there are computations which can be performed in the larger amount of memory space

but not in the smaller amount of memory space. Rather than placing restrictions on

the type of computation, it is probably more meaningful to look at restrictions on the

way that space is allocated. That is, if the larger network uses the same amount of
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processor area (including memory) and simply uses more interconnect area, then we can

make meaningful comparisons between the networks. As would be expected, simulation

difficulty increases as the area of the competing network does, but only up to a certain

threshold beyond which extra area does not help the competition.

As we open up the issue of restricting the processor area used by competing networks,

it may seem natural to ask about situations in which the competing network has less

processor area than is allowed for the universal network. Indeed, we could have considered

this question earlier when comparing networks of the same total area. But when the

processor area of competing networks is so restricted, the best results are obtained by

tailoring the universal network to the particular mix of processor and interconnect area,

with the most difficult case occurring when the competing network has no less processor

area than the universal network. Thus, the results given so far are worst-case results

for simulating networks of essentially the same total area. In this sense, these networks

are the best known to build in a given area. Rather than digress to networks tailored

to particular mixes of processors and interconnect, we now ask how well the networks

discussed so far can do when they are actually matched against networks of larger area

but with no greater processor area.

In what follows, we let AX represent the area of network X . Of necessity, however,

we consider only competing networks in which the processor area does not exceed that

of our universal fat-tree F . We are, of course, interested in the case where the competing

network R has at least as much area as F , i.e., AR ≥ AF . When AR ≤ AF , our

earlier results apply. For simplicity, we assume unit-size processors; the other variations

discussed in the previous subsection are easily incorporated.

We use the same basic strategy as before for demonstrating universality results; that

is, we recursively bisect the competing network and map appropriate pieces to the fat-tree

processors. But when the competing network may have greater area than processor area,

extra care is required to ensure that the decomposition is balanced; that is, when we

bisect the area of the competing network, we must also bisect the competing processors
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(or pieces of processor area as in Section 4.2). Fortunately, we can invoke the general

theory developed by Bhatt and Leighton [13] and, in a fashion that is cleaner for our

purposes, by Leiserson [62]. (It is not desirable to use this approach when unnecessary

due to a “loss of locality” in the mapping, which destroys the results on nonunit wire delay

in Section 4.3.) These results tell us that since the competing network of area AR has

a decomposition using cuts of size
√
AR/2

l/2 at level l, it has a balanced decomposition

using cuts of the same size (up to a constant factor). Keeping this fact in mind, we can

prove the following theorem:

Theorem 19 Let R be the set of networks of total area AR and processor area

AF . Then a universal fat-tree of area O(AF ) can O(δ(
√

AR/AF lgAF , AF ))-

simulate any network in R.

Proof. Using a balanced decomposition for R ∈ R as described above, we find that the

load factor of a set of messages delivered by R in unit time is

O





√
AR/2

l/2

√

AF/2l/ lgAF





at level l from the root of the fat-tree. The result follows.

When the area of the competing network is much larger than the area of the universal

fat-tree, we can actually do better than is suggested by Theorem 19. When AR is Ω(A2
F ),

the competing network is limited more by the restriction on processor area than by its

total area. This is true because communication out of a piece of network R is limited

not only by the perimeter of that piece but also by the perimeter of the processors in the

piece. Thus, at level l in the balanced decomposition of R, only O(AF/2
l) messages can

leave a corresponding piece of R in unit time. Dividing by fat-tree channel capacity to

determine the load factor, we obtain the following result:

Theorem 20 A universal fat-tree of area O(AF ) can O(δ(
√
AF lgAF , AF ))-

simulate any network having processor area O(AF ).
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4.5 Asynchronous Networks

We show here that if the competing network does not have processors synchronized into

global computation and communication phases, it still suffices to separately bound the

time required to simulate computation and the time required to simulate communica-

tion. The basic model is that each processor in the competing network executes an ar-

bitrary sequence of intraprocessor instructions and interprocessor communications, with

no global coordination among the processors, so that computation and communication

may be occurring concurrently throughout the network. (It is necessary that if the com-

peting network performs intraprocessor computation and interprocessor communication

in parallel, then the simulating network also has this capability.) The naive approach to

handling asynchrony is to repeatedly simulate the delivery of messages received during a

period of unit time in the competing network followed by simulation of the intraprocessor

instructions performed during that period of time. But this approach ignores the fact

that one processor may be simulating many others which perform indivisible instructions

of differing duration. A variation of the naive approach yields the desired result, however,

as detailed in the lemma below.

In what follows, we will take the perspective of a transformation on instruction

streams. That is, we simply show that the operations performed by the competing

network could be performed in a reasonable amount of time on the simulating network.

If operations have predictable execution times, and programs for the competing network

express the dependencies between intraprocessor instructions and interprocessor commu-

nications, then it is possible to establish a transformation on programs for an on-line

simulation.

In the statement of the lemma, note the distinction between messages reaching their

destinations in unit time, where we say nothing about the total delivery time, and in-

traprocessor computation fully performed in a period of time, where we expect the com-

plete execution of the relevant instructions to have occurred during that period of time.

Lemma 21 Suppose that the set of messages reaching their destinations in
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network A during any period of unit time can be delivered by network B in

time f . Suppose also that for any time t, the intraprocessor computation fully

performed by network A in time t can be performed by network B in time tg.

Then the complete operation of network A over time t can be simulated by

network B in time tmax {f, g}.

Proof. The proof is by induction on the time t, and we actually prove a stronger result by

requiring that network B respect the order of completion of intraprocessor instructions

in A. That is, the instructions executed by each processor in B are executed in order of

their completion times in A. This restriction is to be met regardless of any tie breaking

rule which is adopted for ordering the instructions by completion time in A. Let us refer

to any total ordering of all the instructions which is consistent with (is a superset of) the

partial order of completion times in A as a consistent ordering.

For the base case, consider the operation of network A in the time interval [0, 1].

Within such a short time period, none of the messages delivered could depend on any

other computation, nor could the intraprocessor computations depend on any of the

messages. Thus it suffices to spend time f delivering the messages delivered by A in [0, 1]

and, concurrently, time g to simulate the intraprocessor computations of A completed in

[0, 1]. Furthermore none of the instructions executed by the processors of B depend on

one another, so the result holds for any ordering of the instructions.

Now, we assume that tmax {f, g} time suffices to simulate the operation of network

A over the time interval [0, t] while respecting any consistent instruction order, and we

prove that the corresponding result holds for t + 1. Consider the operations performed

by network A in the time interval [0, t+1], and let I be the set of instructions completed

by A in (t, t + 1]. Also, let O be any consistent instruction order. We replace I with a

modified set of instructions before invoking the induction hypothesis and then show how

to transform the resulting simulation into a simulation for the original problem which

respects the order O.
Consider replacing each instruction i ∈ I with an instruction beg(i), which starts
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executing in A when i does but ends at time t. Then the induction hypothesis can be

invoked on the operation of A during [0, t] with each i ∈ I replaced by beg(i) but O
unchanged. The result is a simulation by B in time tmax {f, g} with the truncated

instructions from I being the last performed by any given processor in B.

Now we can transform the simulation by B into a simulation of the original operation

of A by doing little more than replacing each execution in B of beg(i) with the execution

of i. Since no other instructions or messages can depend on instructions in I, there is

no harm in delaying the execution of instructions in I in order to substitute i for beg(i).

The extra time required is just the g time which would be required to perform the left

over parts of the instructions in I if they were independent instructions. Finally, all that

remains is to concurrently deliver the messages which are delivered by A in (t, t+1]. Since

this can be accomplished in time f , the total simulation time is tmax {f, g}+max {g, f}.

4.6 Remarks

This chapter has shown that a fat-tree network can efficiently simulate any other network

built in the same amount of area, without significant additional restrictions. It has further

shown that under modest assumptions about differing processors, a parallel machine

based on the fat-tree network can efficiently simulate any other parallel machine built in

the same area, regardless of the relative processor sizes.

This chapter has also given other important results. First, dropping the unit wire

delay assumption does not generally affect the simulation time required by universal

networks. This result was shown by introducing a new network, the fat-pyramid, which is

obtained by adding hierarchical mesh connections to a fat-tree. Second, given a universal

fat-tree, we can obtain bounds on the time to simulate larger networks of the same total

processor area. Unfortunately the latter result is not readily extended to the case of

nonunit wire delay, due to the use of decomposition trees that are balanced. It is an

open question whether or not this extension can be achieved. Perhaps it could be shown
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that there is a balanced decomposition tree which will not force nearby processors to be

mapped too far from each other in the universal fat-pyramid.

The results given in this chapter suggest that when building a universal network of

area A, the best processor size to use is Θ(lgA), or Θ(lg2A) if modularity is more impor-

tant than the ability to simulate networks of very small processors. The apparent lesson

for the design of general-purpose parallel machines is that as total memory demands in-

crease, most of the effort should go into expanding the number of processors rather than

individual processor size.

A key open question is whether or not the routing algorithms for universal networks

can be improved. It is possible that a better fat-tree routing algorithm could yield

only O(lgA) slowdown in bit-times. Furthermore, it might be possible to take greater

advantage of the hierarchical mesh connections in the fat-pyramid. If the notion of load

factor is generalized to arbitrary networks by considering arbitrary cuts of the network as

opposed to fat-tree channels, then network mappings onto the fat-pyramid yield constant

load factor. It is possible that a routing scheme more clever than one relying almost

exclusively on the tree connections could yield better message delivery times.



Chapter 5

Three-Dimensional Layouts

This chapter provides a simple demonstration that the n × n × n tree of meshes graph

truncated to l levels can be embedded in a three-dimensional (3D) grid using volume

O(n3l3/2). The maximum wire length in the embedding of the graph is O(l1/2). This

embedding simplifies the method developed by Leighton and Rosenberg [57] for the 3D

embeddings of general graphs and allows the framework of Bhatt and Leighton [13] for

2D graph layout to be extended to 3D. It also leads to good 3D layouts for the 3D meshes

of trees graph [58] and 3D versions of the fat-tree networks discussed in this thesis and

in earlier works [44, 62]. Most of this chapter is derived from a joint paper with Charles

Leiserson of MIT [43].

The problem in VLSI graph layout is to embed a bounded-degree graph in a two-

dimensional (2D) grid by mapping vertices of the graph to gridpoints and edges of the

graph to edge-disjoint paths in the grid. Divide-and-conquer algorithms for VLSI graph

layout were given by Leiserson [63] and Valiant [106]. The 2D tree of meshes graph (see

Figure 5-1), introduced by Leighton [56, 59], was used by Bhatt and Leighton [13] to

develop a more comprehensive framework for graph layout. Bhatt and Leighton’s upper

bounds on area and wire length for embedding graphs into a grid are derived in two

steps. The first step is to show that any bounded-degree graph can be embedded in an

appropriate subgraph of a tree of meshes. The second step is to obtain an efficient layout

77
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Figure 5-1: The 4× 4 tree of meshes T2,4 in the H-tree layout style. Each node is labeled
with its level in the underlying tree. The “mesh” connections are shown with thick lines,
and the “tree” connections are shown with thin lines.

for the tree of meshes.

Upper bounds for three-dimensional (3D) graph layout were derived by Leighton and

Rosenberg [57]. Their bounds were derived using somewhat complicated constructions.

In this chapter, we obtain their bounds in a simpler fashion by extending Bhatt and

Leighton’s 2D approach to 3D. The key is a compact layout for the 3D tree of meshes.

A 4× 4 tree of meshes is illustrated in Figure 5-1 in the H-tree layout style. The 3D

tree of meshes graph is analogous. It is formed by replacing each node of a complete

binary tree by a 3D mesh and each edge by several edges which connect a face of a mesh

at one level of the tree to a face of a mesh at the next level. In the n × n × n tree of

meshes, the root of the tree is replaced by an n× n× n mesh, and nodes at succeeding

levels are replaced by meshes of size n× n× n
2
, then n× n

2
× n

2
, then n

2
× n

2
× n

2
, and so

forth until the leaves are replaced by 1× 1× 1 meshes. We use the notation T2,n for the

n× n 2D tree of meshes and T3,n for the corresponding 3D graph.

For some of the graph layout upper bounds based on the tree of meshes, it is necessary

to consider only the upper levels of the tree of meshes. We will refer to the subgraph of

the n× n× n tree of meshes consisting of levels 0, 1, . . . , l, where l ≤ 3
2
lgn, as the (3D)

truncated tree of meshes T
(l)
3,n. The corresponding graph in 2D (with l ≤ 2 lgn) will be
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denoted by T
(l)
2,n.

The area of the 2D tree of meshes can be found by writing a straightforward recurrence

for the side length of the H-tree layout. If we let S(n) be the side length of the n × n

tree of meshes, we have S(1) = 1, and

S(n) ≤ 2S(n/2) +O(n) ,

which gives S(n) = O(n lgn) and an area of O(n2 lg2 n). (The matching lower bound is

obtained by Leighton [56, 59]; this chapter concentrates on the upper bounds.) Similarly,

if we restrict attention to the truncated tree of meshes, T
(l)
2,n, we obtain area O(n2l2)

For the 3D tree of meshes, the straightforward recurrence does not suffice to obtain

the best bound. If we let S(n) be the side length for the 3D H-tree style layout of the

n × n × n tree of meshes, we obtain the same O(n lgn) result for the side length S(n)

as in the 2D case above. Cubing the side length yields a volume of O(n3 lg3 n), which is

not the best possible bound. Using the method of Leighton and Rosenberg [57], we can

obtain the asymptotically optimal volume O(n3 lg3/2 n) for the n× n× n tree of meshes.

Their scheme involves solving three simultaneous recurrence relations on the dimensions

of the layout.

Our layout for the n× n× n tree of meshes presented in Section 5.1 also obtains the

asymptotically optimal volume O(n3 lg3/2 n), but without solving recurrences. Moreover,

unlike the scheme of Leighton and Rosenberg, our layout strategy treats the three di-

mensions symmetrically. Our method is a “fold and squash” layout technique based on

ideas of Bhatt and Leighton [13] and Thompson [96] for 2D layout. We show, in partic-

ular, that the truncated tree of meshes T
(l)
3,n can be laid out with volume O(n3l3/2) and

maximum wire length O(l1/2). In Section 5.2 we discuss the implications of this result

for general 3D graph layout based on decomposition trees. Finally, Section 5.3 discusses

variations on the usual decomposition tree framework which are useful for extending the

results of Chapter 4 to three dimensions.
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5.1 Layout of the 3D Tree of Meshes

In this section we provide a construction showing that the truncated 3D tree of meshes

T
(l)
3,n can be laid out with volume O(n3l3/2) and maximum wire length O(l1/2). This

construction is a “fold and squash” technique similar to that used by Bhatt and Leighton

[13, pp. 325–6] to produce a layout for the 2D truncated tree of meshes T
(l)
2,n. We begin

with a description of such a layout for T
(l)
2,n in order to lay the ground work for the

analogous 3D construction.

The first step in the layout of T
(l)
2,n is to create a “folded” 3D layout. Starting at the

top of the underlying tree and working our way down, we bend each of the tree edges,

so that the meshes at any given level are folded naturally into a layer directly above

the meshes of the previous level. Another way to view this operation, which will be

helpful later, is to think of a reflecting line perpendicular to each set of tree edges in

Figure 5-1. At each level, the meshes are reflected across this line and displaced in the

third dimension. We will refer to this third dimension as “level,” while the other two

dimensions, which appear in the final layout, will be referred to as row and column. We

will also refer to the row and column grid as the “underlying grid”. For every position

in the underlying grid, the folded layout gives l points stacked in levels on top of one

another.

The second step in the layout of T
(l)
2,n is to project (“squash”) the folded layout onto

the plane in the manner of Thompson [96, pp. 36-37], so that the meshes appear as in

Figure 5-2. Under this projection, each position of the underlying grid, is expanded into

an l × l square, which we will refer to as a cubie, since this term will also be used in

three dimensions. The l points stacked on a given position of the underlying grid are

mapped into a cubie in such a way that no two points lie in the same row or column.

This mapping ensures that the mesh connections from the various levels of the tree do

not conflict. By analogy to chess, we may view the mapping of the l points into the cubie

as the procurement of a set of l points which are rookwise independent. That is, no two

rooks (which move in a straight line in one dimension) can take each other when they
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Figure 5-2: The 4× 4 tree of meshes T2,4 laid out by the fold-and-squash method. Each
node is labeled with its level in the underlying tree. The “cubies” are outlined with
dashed lines. Mesh edges are shown with thick lines and are routed between cubies. Tree
edges are shown with thin lines and are routed within cubies.

are placed in the positions of the cubie used to hold mesh points. In two dimensions,

it is straightforward to obtain l rookwise independent positions in an l × l square, as is

shown in Figure 5-2. Since we started with an n× n underlying grid and have expanded

each dimension by a factor of l, the area used so far is nl × nl.

All that remains is to show that the tree connections which run between levels can

be routed without increasing the area by much. Leighton and Rosenberg show by case

analysis that these connections can be added in the general context of squashing the

complete 3D grid into two dimensions [57]. Most of the cases in the general proof actually

are not needed when dealing with the particular graph T
(l)
2,n, and, even in general, the

expansion need not be as much as Leighton and Rosenberg use. By essentially doubling

the number of rows and columns, the tree edges can be routed as shown in Figure 5-2
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Figure 5-3: Sixteen rookwise independent points in a 4 × 4 × 4 grid, shown in cross
sections.

by a method which easily generalizes to three dimensions. Auxiliary rows and columns

are added between each pair of existing rows or columns and at the periphery of the

grid. Each tree edge attaches to its two endpoints from the direction of the reflecting

line which had crossed the edge; the remaining portion of the edge is embedded in the

auxiliary row or column which is the first one lying in that direction from both points.

Thus, the final layout for T
(l)
2,n is O(nl)×O(nl).

The key to extending the 2D layout result to 3D is to obtain an appropriate result on

rookwise independence in three dimensions. We first make a precise definition of rookwise

independence which maintains the notion of a rook move being a straight rectilinear line.

Definition: A set of points in a grid (of arbitrary dimension) is rookwise

independent if every two distinct points differ in at least two coordinates.

Figure 5-3 illustrates a rookwise independent set of 16 points in a 4 × 4 × 4 grid by

showing four cross sections of the grid.

Now we are ready to present a simple, but important lemma on rookwise indepen-

dence.

Lemma 22 For any square integer l, there exists a set of l rookwise inde-

pendent points in a
√
l ×
√
l ×
√
l grid.

Proof. Let S be the set of l points with the following coordinates:

S =
{

(i mod
√
l, i+ j mod

√
l, j mod

√
l) | 0 ≤ i, j ≤

√
l
}

.
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Suppose that two points in S,

(i1 mod
√
l, i1 + j1 mod

√
l, j1 mod

√
l) and (i2 mod

√
l, i2 + j2 mod

√
l, j2 mod

√
l) ,

differ in only one coordinate. Whichever two coordinates are equal, the implication is

that i1 ≡ i2 mod
√
l and j1 ≡ j2 mod

√
l, i.e., the two points are identical.

With Lemma 22 in hand, we can proceed to the main result on the layout of the 3D

truncated tree of meshes.

Theorem 23 The 3D truncated tree of meshes T
(l)
3,n can be laid out in volume

O(n3l3/2) with maximum wire length O(l1/2).

Proof. We use essentially the same technique as for for T
(l)
2,n but in a higher dimension. As

before, we begin by folding up the levels of the tree. This folding into the fourth dimension

is hard to visualize, but we can think of it in terms of reflecting planes analogous to the

reflecting lines in the 2D construction. The meshes at each level are reflected across

a plane perpendicular to the appropriate tree edges and then displaced in the fourth

dimension. We will again refer to this last dimension as level, while the other dimensions,

referred to as row, column, and elevation, constitute the underlying grid. As before, we

have folded l points onto each point of the underlying grid.

The second step in the analogy is to squash the mesh points of the various levels

into actual positions in three-space such that the meshes do not conflict. According to

Lemma 22, it suffices to expand each position of the underlying grid into a
√
l×
√
l×
√
l

cubie. By mapping the l points stacked onto a given position of the underlying grid to

rookwise independent positions in the cubie, we guarantee that the various meshes will

not conflict.

For the final step, we need to show that little increase in volume is required to perform

the routing of tree edges within cubies. We use an approach analogous to that illustrated

in Figure 5-2; we add auxiliary planes between the existing planes in each of the three

dimensions and at the periphery of the grid. Each tree edge includes terminal segments
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which connect to its endpoints from the direction of the reflecting plane which had

crossed the edge. The remaining portion of the edge is routed as a single-bend path

in the auxiliary plane which is the nearest one in the relevant direction from the two

endpoints. The terminal segments cannot conflict with one another due to the rookwise

independent placement of points in the cubie, nor can they conflict with the single-bend

paths since they do not lie in an auxiliary plane. Finally, we can prove by contradiction

that there does not exist a conflicting pair of single-bend paths in an auxiliary plane.

If there did, each of the corresponding edges would have an endpoint lying in the same

plane adjacent and parallel to the auxiliary plane, and these points would have to have the

same coordinate in one of the dimensions of the auxiliary plane. This would contradict

the rookwise independence of the points in a cubie.

Since we started with an n×n×n underlying grid and have expanded each dimension

by O(
√
l), the volume of the layout is O(n3l3/2). Also each mesh edge has length O(l1/2),

while the tree edges within cubies have length at most a constant times the edge length

of a cubie, which is again O(l1/2). Thus the maximum edge length is O(l1/2).

5.2 Graph Layout Based on Decomposition Trees

The O(n3l3/2) volume layout of the 3D truncated tree of meshes T
(l)
3,n can be used to obtain

simpler proofs of the upper bounds obtained by Leighton and Rosenberg [57, p. 807] for

3D layout of bounded-degree graphs. Moreover, this proof technique brings 3D layout

into the general framework proposed by Bhatt and Leighton [13].

We present the 3D layout results in terms of the “decomposition tree” formalism from

[62], instead of the similar “bifurcator” formalism used by Leighton and Rosenberg.

Definition: A [w0, w1, . . . , wr] decomposition tree T for a graph G = (V,E)

is a binary tree of height r together with an injective mapping from V to the

leaves of T such that if T ′ is a subtree of T at depth i with vertices V ′, then

the cardinality of the set { (u, v) | u ∈ V ′, v ∈ V − V ′ } is at most wi.
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Intuitively, a decomposition tree describes a recursive bisection of a graph. Each param-

eter wi gives a bound on the number of edges that connect a subgraph at depth i in the

decomposition tree to the rest of the graph. For convenience, we say that G has a (w, α)

decomposition tree, where 1 < α ≤ 2, if G has a [w,w/α, w/α2, . . . , O(1)] decomposition

tree.

The following theorem indicates how well a graph can be embedded in a 3D truncated

tree of meshes. The theorem is the 3D analog to Bhatt and Leighton’s 2D result [13,

Thm. 8].

Theorem 24 There are constants c and k such that every N-node graph

with a (w, 22/3) decomposition tree can be embedded in the 3D truncated tree of

meshes T
(3 lg(N/w))

3,c
√
w with no edge being routed through more than k intermediate

meshes.

Combining Theorem 24 with Theorem 23, we immediately obtain the following version

of Leighton and Rosenberg’s result [57, Thm. 3.5].

Theorem 25 Any N-node graph which has a (w, 22/3) decomposition tree

can be laid out using volume O((w lg(N/w))3/2) with maximum wire length

O((w lg(N/w))1/2).

There are two specific applications of Theorem 25 that deserve mention. The n×n×n
mesh of trees graph [58] has an (n2, 22/3) decomposition tree, and consequently has an

O(n3 lg3/2 n) volume layout. The fat-tree routing network from [62] with n processors

and root capacity w, where n2/3 ≤ w ≤ n, has a (w, 22/3) decomposition tree, and conse-

quently can be embedded in volume O((w lg(n/w))3/2). Other fat-tree routing networks,

such as the 3D analog of the butterfly fat-tree of [44, Sec. 7], can be similarly embedded.

5.3 Variations of the Usual Decomposition Tree

We have just established bounds on the 3D volume of fat-trees in the style of [62] and

[44], but the fat-tree (and fat-pyramid) networks of Chapter 4 use somewhat different
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channel capacities. In order to obtain appropriate 3D layout bounds for these networks,

it is necessary to consider a variation on the basic type of decomposition tree discussed

in Section 5.2.

As shown by Leiserson [62], we can restrict attention to balanced decomposition

trees, where each cut evenly splits the nodes of the relevant subgraph, but the previ-

ous requirement that the decomposition down to isolated nodes is exactly in the form

[w,w/α, w/α2, . . . , w/αlgN ] places unnecessary restrictions on the size of w relative to the

number of nodes, N , in the graph. Since a complete decomposition requires lgN levels,

the framework discussed so far requires that w must be at least N2/3 when α = 22/3. But

it is natural to consider w of arbitrary size, with lgN levels in any decomposition tree

and cut sizes decreasing by a factor of α only when the cut size will be at least 1.

To extend the results of Chapter 4 to three dimensions, we must handle decom-

position trees with w ≤ N2/3 of the form [w,w/α, w/α2, . . . , 1, . . . , 1] with lgN levels.

For example, the appropriate 3D analog of the channel capacity function used to prove

Lemma 10 is
⌈

p2/3/ lg V
⌉

on a fat-tree of V processors. This channel capacity function

leads to a decomposition tree with cuts of size one before the bottom level of the decom-

position. Fortunately, a graph with a [w,w/α, w/α2, . . . , 1, . . . , 1] decomposition of lgN

levels can be embedded in the three-dimensional tree of meshes T3,
√
w with leaves which

are N1/3
√
w
× N1/3

√
w
× N1/3

√
w
, allowing room for a dense embedding of the lower levels from the

graph decomposition. This embedding approach leads to the following theorem.

Theorem 26 Any N-node graph with a [w,w/α, w/α2, . . . , 1, . . . , 1] balanced

decomposition tree with α = 22/3 can be laid out in volume O(max
{

N, (w lgw)3/2
}

)

with maximum wire length O(max
{

N1/3, (w lgw)1/2
}

).

Proof. Consider level k = 3
2
lgw in the decomposition, where w/αk = 1. The subgraphs

below this level in the decomposition are of N/2k = N/w3/2 nodes and can be packed into

a cube of side length N1/3
√
w
. Viewing these cubes as leaves of T3,

√
w and using the squash

and fold layout for the obvious embedding of the graph into the 3D tree of meshes, the

graph can be laid out in volume O([(
√
lgw + N1/3

√
w
)
√
w ]3), and the volume result follows
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according to whether
√
lgw or N1/3

√
w

is larger. The wire length result is also easy to verify.

Theorem 26 enables immediate generalization of all the results of Chapter 4 to three

dimensions. For example, a volume V fat-tree on V unit size processors can be con-

structed by using a channel capacity of
⌈

p2/3/ lg V
⌉

on top of a subtree of p processors.

When a competing network in a cube of volume V is decomposed in the obvious way,

the load factor at level l in the decomposition is

O((V 2/3/22l/3)/((V/2l)2/3/ lg V )) ,

which is O(lg V ).
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Multilayer Channel Routing
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Chapter 6

MulCh: A Multilayer Channel

Router

Multilayer routing is becoming an important problem in the physical design of integrated

circuits as technology evolves towards several layers of metallization. MulCh is a practical

channel router accepting specification of an arbitrary number of routing layers. Though

several other channel routers for three layers of interconnect have been proposed, the

only previously reported practical implementation for an arbitrary number of layers was

that of Chameleon [17]. Chameleon is based on a strategy of decomposing the multilayer

problem into two and three layer problems in which one of the layers is reserved primar-

ily for vertical wire runs and the other layer(s) for horizontal runs. In some situations,

however, it is advantageous to consider also layers that allow the routing of entire nets,

using both horizontal and vertical wires. MulCh extends the algorithms of Chameleon in

this direction. MulCh can route channels with any number of layers and automatically

chooses a good assignment of wiring strategies to the different layers. The algorithms

have been devised so that MulCh is expected to always perform at least as well as Cha-

meleon in terms of area occupied by the routing. In test cases, MulCh shows significant

improvement over Chameleon in terms of channel width, net length, and number of vias.

This chapter is organized as follows. The first section describes the basic channel

91
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routing problem in more detail. The second section reviews previous approaches to

multilayer channel routing and explains the division of MulCh into two major parts, the

partitioner and the detailed router. The next two sections describe the partitioner and

the detailed router, respectively, while the last section presents experimental results.

This chapter is mostly derived from a joint paper with Alex Ishii of MIT and Alberto

Sangiovanni-Vincentelli of U. C. Berkeley [42].

6.1 The Channel Routing Problem

Throughout this chapter, we discuss the standard grid-based, channel routing problem.

Terminals lie on grid points along two horizontal line segments which delimit the channel.

Each terminal is labeled with a net number, and the problem is to connect terminals

belonging to the same net, using horizontal and vertical wire segments in a grid of a

specified number of layers. (Additionally, some nets may be required to be routed out

the left and/or right side of the channel at an unspecified position.) Nets can connect

from one layer to another by way of a contact cut or via; nets cannot intersect one another

on the same layer. The primary goal in channel routing is to minimize the channel area.

If as is frequently assumed, we cannot extend the channel in the horizontal direction, the

objective is to minimize the channel width, the vertical separation between the two lines

of terminals. (Variations of the problem, allowing for horizontal shifting of terminals are

not considered here.) Secondary goals are to minimize net length and the number of

vias. Achieving these secondary goals reduces the time required for signal transmission

and increases the probability of fault-free fabrication.

Figure 6-1 shows a channel routing problem and a solution in two layers, where each

layer has been reserved for wires running in one direction (referred to as reserved layer

or Manhattan routing). We refer to each of the vertical grid lines as a column, while the

horizontal grid lines are referred to as rows or tracks. Though a different convention will

be convenient in the next chapter, we assume here that wires must stay unit distance

away from the channel boundaries except when connecting vertically to pins. Thus, the
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Figure 6-1: A representative channel routing problem in two layers. The horizontal
wires (solid) are in one layer and the vertical (dashed) in the other layer. The vias are
represented by squares and the terminals by circles.

routing shown in Figure 6-1 achieves the minimum possible channel width when the layers

are reserved to individual wiring directions. This optimality follows from the fact that

there exist columns which must be crossed by four nets. The convention in this chapter

is to refer to a routing such as the one in Figure 6-1 as being of width four, i. e., we

count the number of tracks strictly between the lines of terminals.

The lower bound on channel width mentioned in the previous paragraph is one of

a few important measures of channel routing difficulty. The bound already alluded to

is referred to as the density and is generally denoted d. It is the maximum over all

columns of the number of nets which must cross the column. A natural variation on

this bound will be used in the upcoming discussion of multilayer routing. Another lower

bound on channel width in the two-layer Manhattan model is the flux, denoted f , which

was introduced by Baker, Bhatt, and Leighton [9]. These authors show that any two-

layer channel routing problem can be solved in width 2d+O(f) (or d+O(f) if all nets

have two terminals), and they note that flux appears to be bounded by a small constant

for practical problems. This chapter will not make use of flux as a measure of channel

routing difficulty; instead it will use an easier to compute measure that has less theoretical

justification but is useful in practice. This latter measure is the length of the longest

path in the vertical constraint graph (VCG). The VCG is formed by using a node to

represent each net and including an edge from net A to net B if a pin for net A appears

above a pin for net B in some column of the channel. The length of the longest VCG
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path is a lower bound on channel width under the Manhattan model with the additional

restriction that each net includes only one horizontal wiring segment, i. e., “doglegs” are

not allowed. In fact, we will make no restrictions on the use of doglegs, but VCG path

length will still be useful as a rough indicator of routing difficulty.

The channel routing problem was first introduced by Hashimoto and Stevens [48]

in 1971 and has accumulated an extensive history in the literature. A recent survey

has been produced by LaPaugh and Pinter [54]. One of the most important lines of

classification for existing channel routing algorithms is the distinction between “provably

good” algorithms and “practically good” algorithms. That is, an algorithm that produces

excellent results in practice may have a terrible worst-case performance in theory due to

pathological instances of the problem unlikely to occur in the real world. On the other

hand, an algorithm which has a provably good worst-case performance may virtually

always perform worse than a good practical algorithm on “real” problems arising in

practice. The ideal combination of provably and practically excellent performance is

unlikely to be attained since most variations of the channel routing problem are generally

believed to be NP-complete, and, in fact, rigorous NP-completeness proofs have been

provided for various two-layer routing styles [55, 93]. This chapter concentrates on a

practical, heuristic approach to multilayer channel routing.

6.2 Multilayer Channel Routing

Limited results have been presented for multilayer channel routing. The additional layers

of interconnect provide more degrees of freedom, but using this freedom effectively is

difficult. Chen and Liu [26] proposed an extension to three layers of the algorithm of

Yoshimura and Kuh [109]. Bruell and Sun [23] provided a three layer router based on

the greedy algorithm of Rivest and Fiduccia [86]. A three layer algorithm of Heyns

[49] actually included a departure from the approach of reserving each layer to a single

routing direction; such a departure is an important feature of MulCh. Three and four

layer routing algorithms have also been provided by Cong, Wong, and Liu [29]. Enbody
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and Du [36] have proposed a multilayer algorithm which has been implemented and tested

in the three and five layer cases. Additional works on multilayer routing have considered

more restrictive models of allowable wiring than are considered here or have been geared

more towards the goal of theoretical efficacy rather than practical efficacy [12, 16, 45].1

Recently, a multilayer channel router, Chameleon [17], was developed to handle any

number of interconnection layers. On various sample problems, Chameleon obtains per-

formance generally superior to the preexisting routers. It can handle channel routing

problems with cyclic vertical constraints, with different design rules on different layers

and with constraints on the contact locations, i.e., stacked vias can be permitted or

disallowed.

The basic approach of Chameleon is to divide the original multilayer problem into

essentially independent subproblems which are assigned at most three layers each. Cha-

meleon requires that each layer be reserved primarily for either horizontal wire runs (an

H layer) or vertical wire runs (a V layer). The original problem is decomposed by assign-

ing the nets to subproblems, or groups, each of which is assigned either one H and one

V layer (an HV or VH group) or two H layers and one V layer (an HVH group). Only

in the late stages of detailed routing is it possible that wires will digress from this cast.

This strategy was inspired by the implicit assumption that the density of the channel

is in general much larger than the number of interconnection layers. However, there

are situations especially in printed-circuit boards and hybrid circuits where better area

utilization can be achieved if sets of nets are routed entirely on one layer.

MulCh is a multilayer channel router that optimizes area utilization by allowing a

third type of group, which is assigned a single layer on which wire runs in both the

horizontal and vertical directions are permitted (a B layer). This creates obvious com-

plications in that nets assigned to a B layer must not cross if the group is to be routed

independently. Use of B layers does, however, give more flexibility and thus may enable a

reduction in the area of the route. Possible reductions in total net length and the number

1There are also many other references I have omitted which deal with the “knock-knee” model of
routing, in which essentially no overlap of wires on different layers is allowed.
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of vias are additional benefits.

Like Chameleon, MulCh is composed of two major parts, the partitioner and the

detailed router. The partitioner determines the group types used (e.g. HV, HVH, and

B) and assigns nets to each of them. The detailed router actually places all the wires

in the channel as required to connect pins lying on the same nets. The remainder of

this chapter describes first the partitioner and then the detailed router. Finally, some

experimental results are presented.

6.3 Partitioning the Problem

The partitioner has two basic tasks. It must choose the group types (e.g., HVH, HV,

and B), and it must assign the nets to the groups. In Chameleon, these two tasks are

totally separated; the choice of group types depends only on the number of layers (and for

nonuniform technology, the mask information). In MulCh, complete separation of these

tasks is not possible since the use of B layers introduces uncontrovertible constraints on

net assignment. MulCh seeks a good partition by performing a small number of iterations

of the two-part process of first choosing group types and then assigning nets. Thus, the

choice of group types can be discussed without delving into the details of net assignment,

which will be covered afterwards.

For simplicity, attention is restricted to the case of uniform technology with stacked

vias allowed. Other technology specifications of the type considered by Chameleon can

be handled by MulCh with little additional complication.

6.3.1 Choosing the Group Types

Chameleon is able to choose group types independently from net assignment, because the

best results are generally obtained with the largest possible number of H layers. That

is, the partitioning strategy and the detailed router are good enough that the resulting

channel width is usually very close to the density divided by the number of H layers
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(the lower bound under strict adherence to the H-V wiring model). Thus the strategy of

Chameleon is to use as many HVH groups as possible and up to two HV groups.

MulCh follows the same approach once the number of B layers is set, but it is not as

easy to determine how many B layers to use. Using more B layers reduces the standard

lower bound on channel width (density divided by the number of layers which permit

horizontal routing), but an excessive number of B layers may prevent us from coming as

close to this lower bound because of the additional constraints on net assignment and

detailed routing.2

Taking these two competing considerations into account leads naturally to the fol-

lowing strategy. We start with no B layers, assign nets to the groups, and estimate the

area required to complete the routing. Then we add the minimum number of B layers

necessary to increase the total number of layers which permit horizontal routing, and

again assign nets and estimate the area. We repeat this process as long as the area esti-

mate shows improvement3 and then settle on the number of B layers which yielded the

best area estimate. For example, if the number of layers is seven, we start with group

types HVH, HV, HV. Then we try HVH, HVH, B, which increases the number of layers

permitting horizontal routing from four to five. If the area has improved, we then try

HVH, B, B, B, B, since any intermediate number of B layers will not increase the number

of layers permitting horizontal routing. Finally, if the area has again improved, we try

seven B layers.

Experience has shown that the strategy just described is almost always adequate

to minimize channel width. If one is willing to perform some extra work in search of

reduced net length or via count or a long-shot chance of reduced area, it is reasonable

2It is interesting to note that if every net has at least one terminal on each of the top and bottom
of the channel, then an algorithm of Dagan, Golumbic, and Pinter [31] can be used to determine the
number of layers required if only B layers are allowed. But if their does exist a net with does not go
across the channel, the problem becomes NP-complete [79, Section V.2.2]. Furthermore, the algorithm
of Dagan, Golumbic, and Pinter does not provide any obvious insight on what to do when the number
of layers available is not sufficient to use only B layers, nor does it indicate how to assign nets to layers
so as to minimize channel width if the number of available layers is more than required to use only B
layers.

3The actual requirement is that the new result be at least as good rather than strictly better.
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to try also one and two B layers more than the best number obtained under the scheme

above. It should be noted that by starting with zero B layers, we replicate the approach

of Chameleon, so we expect that our results will be no worse than those of Chameleon

as long as we are reasonably good at estimating area once we have assigned the nets

to groups. (The area estimate used for B groups is the actual width as determined

by performing the complete route. For HV and HVH groups we base the estimate on

density, which is fairly accurate once we have paid attention to other concerns during net

assignment.) Also, by starting with few B layers and increasing the number, the running

time increases only as we obtain more and more improvement upon Chameleon.

6.3.2 Net Assignment

Once a tentative set of group types has been chosen, net assignment is performed in

a manner similar to Chameleon. That is, nets are assigned to groups one at a time,

starting with those nets belonging to cycles in the vertical constraint graph (VCG), and

then proceeding through the others in order of first appearance when moving across the

channel from left to right. Each net is initially added to all the groups, and a cost function

for each group is computed. Then the net is removed from all groups except the best.

Two factors prove to be of key importance in estimating the channel width required

to route an HV or HVH group. First, the density of the nets in the group divided by the

number of H layers in the group is a lower bound on the channel width. Secondly, and

less critically, the length of the longest path in the VCG of the group is a lower bound

on channel width in the absence of detailed routing strategies which use doglegs or go

beyond strict adherence to the H-V wiring model.

For B layers, the considerations are different. First and foremost we must be sure

that a proposed assignment of a net to a B layer does not yield a nonplanar collection

of nets in that group. This check is easy, because we can efficiently determine at the

beginning of the partitioning process what all the pairs of crossing nets are. Then when

an assignment of net A is proposed, we can look at each of the nets crossed by net A and
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see if any of them have been assigned to the group under consideration.

The net crossings can be found by marching around the four boundaries of the channel

in a “circle” and utilizing a stack of nets (with some extra operations beyond the normal

stack abstraction). Actually we first march around one more time in a preprocessing step

to determine for each net where its first and last occurrence are in the marching order.

Then in the main pass around the channel, each time we arrive at a net whose current

occurrence is not its last, we push it on the stack. When we arrive at a net whose current

occurrence is not its first, we also scan down through the stack until we find the previous

occurrence of the current net and cut it out from the stack. Each of the nets we pass on

the way crosses the current net, and we can associate the crossing information we glean

with each of the relevant nets. This algorithm determines all of the net crossings in time

linear in the number of net crossings (multiple crossings of the same nets count) plus the

number of positions on the channel boundary.

The above discussion of net crossings has glossed over the ordering of the side ter-

minals, which is not fixed in the original input. There is, however, a readily determined

ordering (not necessarily unique) of the side terminals which leaves only those net cross-

ings which must exist regardless of the ordering of the side terminals. Such an ordering

is determined and fixed for the partitioner, but this will not be taken to impose any re-

strictions on the detailed router beyond the restrictions imposed by the essential nature

of the partition.

Once we know that a set of nets in a B group is planar, density is an important but

imperfect measure of channel width. It is still a lower bound on the width required to

route the group, but certain bad arrangements of nets may require much larger channel

width. For example, the arrangement shown in Figure 6-2 has density 2 but requires a

channel width of 4.

The length of the longest VCG path is of even less relevance to the width of a planar

group. The example in Figure 6-2 serves also as an illustration of large area with minimal

VCG path length. Conversely, it is possible to construct examples with arbitrarily long
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1 2 2 1
t ttt

tttt
3443

Figure 6-2: This example illustrates low density and VCG path length but high channel
width.

VCG path length which can be routed in width two. (Performing such a route does require

doglegs, but the routines described in Section 6.4 can compute doglegs for planar routing

in polynomial time, in contrast to the NP-complete situation for multilayer groups [93].)

Positively determining the width of a planar group is not straightforward except

by essentially performing the complete route. (Chapter 7 describes a more efficient

method which was not known when MulCh was implemented.) Though the routing can

be performed in polynomial time, experience shows that doing this to evaluate every

proposed net assignment causes a large increase in running time on large examples but

rarely leads to a reduction in area. In practice, density has proven to be a good estimate

of the channel width, but blindly holding to this assumption will cause us to obtain

worse results than Chameleon on some bad examples. Thus, density is used as the

measure of channel width for planar layers during net assignment, but after completing

net assignment for a given number of B layers, the B layers are fully routed in order to

estimate channel width. This prevents us from making a major gaffe but avoids doing

work which is not usually cost-effective.

Another consideration for B groups is that we would like to avoid including nets

which will likely stop us from making many future assignments to B groups. MulCh uses

a rather crude penalization on assignment of a net to a B group based on the excess over

average of the number of nets it crosses.

Chameleon’s cost function for evaluating the assignment of a net to a particular
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partition group involves variously weighted penalty terms based on the notions discussed

for two and three layer groups, but MulCh obtains good results using a substantially

simpler synthesis of the measures just described. Each HV and HVH group is assigned

a cost equal to the maximum of its density and its longest VCG path. Each B group is

assigned cost equal to the density plus a penalty of the excess number of nets crossed by

the net being assigned. Each net is left in the group which yields the best cost function;

ties are broken first on the basis of density, then longest VCG path length, then number

of nets in the group.

Several variations on the cost function have been tried. Most lead to improvement

on some example problems and poorer results on other problems. One variant approach

actually improves slightly more cases than it worsens but at the expense of some com-

plication in the cost function. In this approach, we include a severe penalty on density

exceeding the lower bound on channel width indicated by the number of H and B layers.

For HV and HVH groups, we add in the length of the longest VCG path, and this com-

pletes the cost function for comparisons among HV and HVH groups. Then in order to

make comparisons between these groups and the B groups, we add density into the cost

function for each group, and we add the penalty on excess net crossings into the cost for

the B groups. Though this variation yields results which are on balance slightly better

than those reported in Section 6.5, there are still several cases which have been routed in

less area by some other variation of the program. Thus, the variant results may largely

represent chance variations rather than intrinsically superior approaches.

6.4 Detailed Routing

The detailed router in MulCh is an enhanced version of the detailed router used in

Chameleon. The routing of nets in B groups is performed as a preprocessing step, which

routes nets using only their assigned layer. Once all nets in B groups have been routed,

the HVH and VH routing routines from Chameleon are used to route all remaining nets.

Area on a layer assigned to a B group that is not needed to route nets assigned to the
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group is available for routing other nets.

Routing of nets assigned to B groups is accomplished with a data-structure called a

plane. A plane is simply a two-dimensional array, with a number of columns equal to the

number of columns in the channel, and a number of rows equal to the number of nets in

the B group it is used to route. Each entry corresponds to a 2-D grid point on the layer

assigned to the group, and thus a row represents a track which may be needed to route

the nets in the group. The assumption that the number of tracks needed is less than the

number of nets is valid, since the need for more tracks would imply that the nets in the

group are not planar.

While not optimal with respect to worst-case running time, the routines for routing B

groups are easy to implement and return optimal width routes for the chosen Manhattan

wiring model. Worst case running time is not a major concern, since the routing of B

groups is fast in comparison to other groups.

The algorithm for planar routing proceeds in a column-by-column sweep starting from

the left edge of an “empty” plane. Nets are routed straight across rows of the plane until

a change of course is forced by nets which enter or leave the channel at a given column.

Nets entering from the top of the channel are routed down the column as far as room

permits, while nets entering from the bottom of the channel may need to push other nets

up out of the way. When nets are pushed up, the effect is rippled back through previous

columns in order to maintain a valid routing.

The algorithm for routing with the plane can be viewed as wave-like, where the

“wave” moves structures in the channel rather than passing around them. Specifically,

the routine begins at the left edge of an “empty” plane, and proceeds to update the

plane in a column by column sweep. If a net enters the plane at a particular column,

the algorithm assigns the appropriate grid point to the entering net and if necessary

rearranges the assignments of grid points in previous columns to maintain net continuity

and minimize route width. If a net completely exits the plane, remaining nets “fall” into

the empty space in order to guarantee that the final route will be of minimum width.
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One difficulty with the basic plane router is that it places all nets as far towards the

bottom of the channel as possible. This tends to generate nets with multiple-doglegs, as

well as unnecessary wire runs between the top and bottom of the channel. To alleviate

these problems, an optimizing routine is run on the plane after all nets in the B group

have been routed. This routine straightens unnecessary doglegs, and moves nets as close

as possible to their associated terminals. Figure 6-3 illustrates some of the operational

features of the single layer router.

Nets not assigned to B groups are routed by an amortized version of YACR2 [83]

that differs from that used in the original Chameleon only in that nets from other groups

cannot initially be placed on a layer assigned to a B group. This restriction is a pragmatic

one, based on a desire to avoid unnecessarily long computation times. In practice, the lack

of an associated vertical routing layer virtually guarantees that a net not in a particular

B group will be unroutable if placed on the group’s associated layer. In all other ways,

however, unused space on layers assigned to B groups is available for routing other nets.

While no experimental examples were in evidence, it is possible that the introduction

of B layers will increase the required channel width, while reducing the number of required

vias. A trade-off such as this is most likely to occur when the partitioner estimates that

a partition using B layers will have area identical to a partition without B layers. In

such cases, the inevitable reduction in available V layers makes the detailed routing more

difficult, and thus favors the partition without B layers for minimum area. If area is not

the critical parameter, however, the reliability advantages of fewer vias would speak in

favor of the use of B layers. In practice, the IC designer should run MulCh with and

without the use of B layers enabled, and choose the route that best matches the system

design goals.
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After processing column 1:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A B B A C C D D E
A
A
A
A
A
D
D F F E E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Before adding/removing nets from column 4:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A B B A C C D D E
A B B
A B B
A B B
A B B
A A A A
D D D D
D F F E E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

After adding/removing nets from column 4:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A B B A C C D D E
A B B A
A B B A
A B B A
A A A A
A A D D
D D D F
D F F E E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
All columns routed:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A B B A C C D D E
A B B A C C D D E
A B B A C C D D E
A B B A C C D D E
A A A A C C D D E
A A D D D D C C D D D E
D D D F F D D D D D E E E E
D F F E E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
After optimization:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A B B A C C D D E
A B B A C C D D E
A A A A D D E
D D D D D D D D D D D D E
D F F E E E E
D F F E E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6-3: Shown is a plane as it appears at various points during the routing of the
indicated channel. The routing of column 4 is shown both before and after the nets for
terminals at the column are added or removed. Note the displacement of nets D, A and
B that is caused by the entrance of net F. In addition, note how the exit of net F in
column 5 allows net D to “drop” into the bottom row of the plane. The final optimization
removes redundant rows, unnecessary doglegs (nets A and D) and excess wire runs (net
C).
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6.5 Experimental Results

This section describes experimental results obtained with MulCh as compared with

Chameleon.4 Performance comparisons were made using a set of fourteen benchmark

examples described below. The most dramatic improvements were seen in the four and

seven-layer tests, where the mean reductions in channel width, total net length, and to-

tal number of vias were about 8%, 4%, and 20%, respectively.5 MulCh routed several

of the sample channels in width not only less than that of Chameleon, but less than the

minimum theoretically possible without B layers.

Table 6.1 describes the example channels that were used to evaluate the performance

of MulCh. Example channels include 3a, 3b, and 3c from [109], the largest channel of the

CMOS implementation of the SOAR microprocessor designed at Berkeley (chris1) [72],

the contrived cyclic-VCG example (cycle.t) from [17], a revised version of the well-known

Deutsch’s difficult example [33] (ddr)6, and four random problems (r1, r2, r3, and r4)

generated by Rivest’s program [85]. The examples ex1 through ex4 are difficult channels

from an industrial standard cell chip provided by C. P. Hsu.

Table 6.2 lists the performance of MulCh and its improvements over Chameleon.

The numbers enclosed in parentheses next to the channel width indicate the number

of B layers used on each example. The columns labeled ∆R, ∆NL, and ∆V give the

differences between the number of rows, total net length, and total number of vias needed

by MulCh and Chameleon to route a particular example. For convenience, entries under

∆NL and ∆V are listed as percentage reductions in Chameleon’s results which were

achieved by MulCh. Though all fourteen of the examples were tested on two through

4As stated earlier, MulCh was implemented by enhancing the Chameleon channel routing package.
The version of Chameleon used here is actually a sightly revised version of the package described in [17].
Performance of the revised version is broadly equivalent to the earlier package, with isolated examples
differing by at most a single row (generally in favor of the revised version). Since one purpose of the
presented results is to demonstrate the inherent benefits of B layers, all comparisons are to the version
of Chameleon that MulCh is based on.

5These means are computed by first expressing the results of MulCh for each channel as a percentage
of the corresponding result for Chameleon. Then a geometric mean is computed and subtracted from
100%.

6This example is comprised of Deutsch’s difficult example plus some extra nets filling in empty spaces.
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Example Density Number of Columns Number of Nets
3a 15 45 30
3b 17 62 47
3c 18 103 54
chris1 49 432 158
cycle.t 16 134 65
ddr 19 169 72
ex1 16 417 235
ex2 15 421 282
ex3 11 421 291
ex4 19 421 270
r1 20 139 77
r2 20 117 77
r3 16 123 78
r4 15 150 74

Table 6.1: Benchmark channels

seven layers, no B layers were used by MulCh in the cases omitted from the table. In

these cases results obtained with MulCh are comparable, but not necessarily identical,

to the results obtained by Chameleon. The previously mentioned simplifications to the

partitioner cost function are responsible for the discrepancies.

The most interesting results are for four and seven layers, where the ability to easily

increase the number of layers available for horizontal routing encourages the use of B

layers. In the four-layer scenario, especially, MulCh often succeeded in simultaneously

reducing the number of rows and vias, as well as total net length. Reductions in total

net length and number of vias were also evident in cases where the number of rows was

not reduced. The four-layer table is particularly relevant, since it represents technology

which is currently becoming available. In the table for seven layers, fewer row number

reductions appear than in the four-layer table; savings came mostly as reductions in

total-net-length and the number of vias.

MulCh found only one opportunity for improvement when five and six layers were em-

ployed. For five and six layers, the number of layers available for horizontal routing does

not increase with the addition of only a single B layer, and consequently the partitioner
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Ex. Width Net Length Vias

4 Lyr. New ∆R New ∆NL New ∆V
3a 6(1) 2* 744 9.9% 53 24.3%
3b 7(1) 2* 1227 6.5% 85 17.5%
3c 8(1) 1* 1903 5.6% 126 15.4%
chris1 23(1) 2* 17128 1.3% 346 16.0%
cycle.t 8(1) 1 2676 1.1% 217 4.0%
ddr 10(1) 0 4047 0.9% 267 6.6%
ex1 8(1) 0 5342 3.1% 348 22.7%
ex2 7(1) 1* 5278 7.9% 349 31.7%
ex3 5(1) 1* 4363 7.5% 317 27.8%
ex4 9(1) 1* 5273 7.6% 316 29.0%
r1 10(1) 1 3285 4.0% 170 20.2%
r2 10(1) 0 2579 2.3% 124 23.5%
r3 8(1) 0 2248 2.6% 151 19.3%
r4 8(1) 0 2803 2.7% 199 18.4%

5 Lyr. New ∆R New ∆NL New ∆V
ex3 4(2) 0 4013 6.4% 192 56.3%

7 Lyr. New ∆R New ∆NL New ∆V
3a 4(1) 0 691 2.8% 57 16.2%
3b 4(1) 1* 1071 6.1% 83 19.4%
3c 5(1) 0 1670 1.8% 117 21.5%
chris1 12(1) 1* 15288 1.7% 345 16.3%
cycle.t 4(1)† 0 2203 3.8% 198 16.1%
ddr 5(1) 0 3324 3.1% 260 9.4%
ex1 4(1)† 0 4452 3.7% 321 28.3%
ex2 4(1) 0 4474 4.1% 337 32.2%
ex3 3(0)† 1 4030 5.0% 439 -0.5%
ex4 5(1) 0 4356 2.9% 338 24.7%
r1 5(1) 1 2858 3.3% 170 17.9%
r2 5(1) 0 2206 3.7% 128 21.0%
r3 4(1)† 1 1861 5.9% 150 20.2%
r4 4(1) 0 2431 3.8% 197 18.6%

Table 6.2: Results with MulCh
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requires many coplanar nets to be successful.

Table 6.2 contains several entries worth noting. Of particular interest are the ∆R

entries marked with an asterisk, which indicate improvements over the optimal solutions

obtainable without the use of B layers. Also of interest is example ex3 for five layers,

where a 56.3% reduction in vias was realized.

In only a few of the cases shown in the table (as indicated by a dagger next to the

width), did MulCh achieve channel widths meeting the naive lower bound of density

divided by the number of H and B layers. This is to be expected, since the planarity

requirement greatly restricts the set of nets that can be placed in a B group.

While MulCh’s heuristic-search nature makes a rigorous running time analysis im-

possible, it should be noted that all examples required less than eight minutes of µVAX

computer time. Additional code optimizations should result in further running time

reductions.



Chapter 7

Faster Algorithms for Channel

Routing Tasks

This chapter provides improved algorithms for certain tasks in channel routing, with

special attention to time-consuming tasks performed by the multilayer channel router,

MulCh described in Chapter 6. These improvements come along two main fronts. First,

it is shown that certain single-layer routing problems can be solved in time linear in the

number of nets. Of particular relevance to MulCh is the demonstration that the minimum

width for a single-layer channel routing problem can be determined in linear time. Second,

an incremental algorithm is given for computing channel density, so that each time a new

net is added to a channel routing subproblem, the effect can be determined more quickly

(logarithmic time) than by reprocessing the entire set of nets.

This chapter is divided into two sections. Section 7.1 discusses single-layer rout-

ing in channels and switchboxes, and Section 7.2 provides an incremental algorithm for

computing density.

109
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7.1 Single-Layer Channel and Switchbox Routing

This section provides a linear time algorithm for determining the minimum separation re-

quired to route a channel when the connections can be realized in one layer. It generalizes

similar results for river routing by allowing single-sided connections. The approach can

also be used to obtain a simplified routability test for single-layer switchboxes (routing

in a rectangle). This section describes joint work with Miller Maley of Princeton U.

In recent years, a good deal of attention has been given to the problem of planar or

single-layer wire routing for VLSI chips. Especially popular has been river routing in the

restricted sense of the term, i.e., the connection of two parallel rows of corresponding

points1 [35, 67, 75, 90, 91, 97]. Other works have considered routing within a rectangle

[24], placement and routing within a ring of pads [10], or routing between very general

arrangements of modules [28, 66, 71].

These works have considered various wiring models (e.g. rectilinear or general) and

several specific questions. Generally, there is some tradeoff between the generality of the

wiring patterns considered and the sophistication of the questions asked. Asking for the

best placement or routing of complicated arrangements of modules or wires would require

solution of an NP-complete problem [51, 52, 55, 68, 78], but relatively sophisticated ques-

tions can be efficiently answered in the case of river routing. (See [75] for a particularly

exhaustive list of specific problems in river routing.) In particular, the minimum sepa-

ration problem [35, 67, 75, 90, 91] involves determining the minimum separation for two

horizontal rows of terminals (in fixed horizontal positions) which will allow the routing to

be performed. This problem can be solved in linear time under the rectilinear and most

other wiring models [35, 67, 75, 90], less time than is required to perform the complete

routing.

This section concentrates on showing that the minimum separation problem (in the

rectilinear wiring model) can be solved in linear time for any single-layer channel routing

1This is the only usage of the term “river routing” in this thesis; more complicated variations of the
problem are referred to as “single-layer” or “planar” routing.
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problem, even with single-sided connections. In the process, it clearly provides a linear

time solution to the routability problem which simply asks whether a routing is possible

given a fixed vertical separation as well as fixed horizontal positions of the terminals.

Later, extension to switchboxes will be discussed.

Figure 7-1 illustrates a single-layer channel routing problem and some of the nota-

tion to be used. The terminals along the top and bottom are labeled t1, t2, . . . , tm and

b1, b2, . . . , bn, respectively. In river routing, the problem would be to connect ti to bi for

every i; in our more general channel routing problem we allow single-sided connections

as between b1 and b4 in Figure 7-1.2 For each each terminal T , we use the notation

mate(T ) to represent the terminal which is to be connected to T . We will also make the

notation for terminals do double duty; where a terminal appears in an arithmetic context

(comparison or subtraction), it will represent the x-coordinate or horizontal position of

the terminal. It should be noted that restriction to two-point nets represents no loss of

generality in the case of single-layer routing, since it is easy to transform problems with

multiterminal nets to problems with only two terminal nets (but a larger number of nets)

and to perform the reverse transformation on the routings obtained.

A few details remain in order to fully define the problem. Though wires are required to

stay unit distance apart, it is convenient to assume that wires may be routed immediately

alongside the channel boundaries. If practical considerations require that wires not run

along the channel boundaries (except perhaps when connecting terminals on adjacent

grid points along the top or bottom of the channel), the results in this section can be

applied by simply routing wires one unit into the channel from each terminal, determining

the minimum separation of the new rows of terminals, and adding two to obtain the

separation of the original channel boundaries. The only case where this will not yield

the optimal result is when all the nets are trivial in the sense that each net simply runs

straight across the channel or connects adjacent grid points on the channel boundary. It

2We use the term “single-sided” for these connections even though the term “sides” is sometimes
used to refer to the left and right of the channel as opposed to the top and bottom where the terminals
lie.
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Figure 7-1: A representative single-layer channel routing problem. Each terminal T
among the top terminals {ti} or the bottom terminals {bi} must connect to exactly one
terminal mate(T ).

is easy to check for this special case, so this section assumes that routing along channel

boundaries is permitted.

7.1.1 Finding Minimum Channel Separation

This section shows how to determine minimum separation for the channel routing problem

just described. The first step in the demonstration is the invocation of a general theory

of single-layer routing [28, 71] specialized to channel routing in order to obtain a set of

necessary and sufficient conditions for routability. Then it is shown that we can reduce

the number of conditions which must be checked, and, finally, that the minimum channel

width satisfying the conditions can be determined in linear time.

It is most convenient for us to use the single-layer routing theory of [71] in a slightly

altered form consistent with the approach of Cole and Siegel [28]. The basic idea of the

theory is that routability can be decided by checking whether a limited collection of cuts

are safe. Roughly, a cut is a line segment from top to bottom of the channel, and it is

safe if there is enough room for all the nets which must cross it to do so. The alterations

to Maley’s theory were foreshadowed when it was indicated that we will allow routing

along channel boundaries. It is convenient to have the terminals and the two channel
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boundaries play the role of features in the theory of [71]. Though this represents a change

in that wires were required to stay unit distance away from nonterminal features in [71],

it is only necessary to slightly alter a few definitions by considering cuts as closed rather

than open line segments. The key definitions which place the theory in the form we desire

are summarized below.

Definition: A critical cut is a line segment connecting a terminal on the top

of the channel to a terminal on the bottom or a line segment running from a

terminal straight across to the other channel boundary.

Definition: The flow of a cut c, denoted flow(c), is the number of wires

which must cross c, including the wires incident at an endpoint of c.

Definition: The capacity of a cut c from b to t, denoted cap(c), is ‖b− t‖+1,

where ‖·‖ represents the ℓ∞ norm, i.e., ‖(x, y)‖ = max {|x| , |y|}.

Definition: A cut c is safe iff flow(c) ≤ cap(c).

We can now state formally, the result which we need from the general theory of

single-layer routing.

Lemma 27 A channel is routable if and only if all of the critical cuts are

safe.

Proof. The lemma follows immediately from the corresponding result in [71, p. 40] using

slightly different definitions.

The restriction to checking critical cuts gives us O(N2) conditions which must be

checked, where N = m + n is the number of terminals. In the river routing problem, it

can be shown that it suffices to check a smaller set of O(N) cuts, but when single-sided

connections are allowed it is not evident how to reduce the number of cuts below Ω(N2).

Nonetheless, it is possible to eliminate some of the critical cuts in a manner dependent on

the flows and capacities of the cuts, leaving a set of cuts for which the flows and capacities
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are sufficiently nicely related that linear time suffices to determine the minimum channel

width that makes all the cuts safe.

The necessary limitation on the critical cuts to be checked is provided by the simple

distinction between dense and sparse cuts. A sparse cut is one which is safe regardless

of the channel separation, i.e., the horizontal distance between the cut endpoints is large

enough relative to the flow that the cut is guaranteed to be safe. Any cut which is not

sparse is referred to as a dense cut. For convenience, we also classify as dense any cut

running from a terminal straight across the channel. (Such a cut is both sparse and

dense if its flow is 1.) Thus, any channel routing problem has dense cuts, and, in fact,

any terminal is the endpoint of some dense cut. With the distinction between dense and

sparse cuts, we can provide a simple expression for the channel separation as given in the

following corollary to Lemma 27.

Corollary 28 Minimum channel separation is given by

−1 + max
c dense

flow(c) .

The next key observation is that the set of dense cuts emanating from any given

terminal form a “cone”. In Figure 7-2, for example, the dotted and dashed lines show

all the critical cuts emanating from terminal a on the bottom of the channel. Terminal

l is the leftmost terminal on the top for which the cut from a is dense, and terminal r

is the rightmost such terminal. The critical cuts to points between l and r inclusive are

all dense, while the cuts outside of this cone are all sparse. To see that this situation

prevails in general, just compare any sparse cut to a cut “immediately below” it. For

example, in Figure 7-2, the sparsity of cut [a, s] implies that cut [a, s′] must be sparse.

This is true because the horizontal extent of [a, s′] is greater than that of [a, s], but the

flow of [a, s′] can be at most one greater than that of [a, s]. (In this example the flows

are the same.)
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Figure 7-2: The dotted and dashed lines show the sparse and dense cuts, respectively,
emanating from terminal a. In general, the dense cuts emanating from any terminal form
a “cone”. This figure also shows the dummy terminals (hollow circles) which are added
for convenience in detailing the algorithm.

The basic idea of the algorithm for finding minimum channel separation is to sweep

a cone of dense cuts across the channel, moving the apex of the cone along the bottom

terminals. As we sweep across the channel, we compute the maximum of the flows of

the dense cuts. By marching the apex of the cone only along the bottom, we may

miss straight cuts emanating from top terminals, but this omission can be remedied by

adding dummy bottom terminals at x-positions which have a top terminal but no bottom

terminal. (For any dummy terminal T , mate(T ) will have a special null value.) In fact,

for simplicity of coding the algorithm, it is convenient to also add dummy top terminals

at x-positions which have a bottom terminal but no top terminal. The positions of the

dummy terminals are illustrated in Figure 7-2.

The cone sweeping approach is illustrated in Figure 7-3 which shows the cone of cuts

as we move the apex from one bottom vertex to the next. In the figure, l and r are the

leftmost and rightmost top terminals for which the cut from a is dense, and l′ and r′ play

the same roles for the next bottom terminal a′. The main loop of the algorithm involves

moving the apex of the cone through the bottom terminals from left to right. At each

stage, we update the leftmost and rightmost top terminals corresponding to dense cuts,

and, as will be explained further below, we maintain a collection of the flow values of

cuts within the cone. The maximum of these flow values is compared to the maximum
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Figure 7-3: The dense cuts are checked by sweeping across the channel from one bottom
to terminal to the next, maintaining a cone of dense cuts incident to the bottom terminal.
At each stage, the algorithm keeps track of the maximum of the flows of all dense cuts
seen so far.

seen so far so that the global maximum is known at the end of the sweep.

The first step in showing that the channel separation algorithm runs in linear time is

to argue that each of the top boundaries of the cone of dense cuts moves monotonically

across the channel. That is, with reference to Figure 7-3, l′ is at least as far right as l,

and r′ is at least as far right as r. This a consequence of the fact that the dense cuts

emanating from any terminal form a cone (as applied to a top terminal rather than a

bottom terminal). This assures us that there are only a linear number of steps involved

in moving the leftmost and rightmost top terminals of interest as the apex of the cone

moves along the bottom terminals.

Now we simply need to show that we can maintain the maximum of the flows of the

dense cuts without exceeding linear time as the cone sweeps across the channel.

First of all, note that each step of pushing the rightmost top terminal one terminal

to the right is a constant time operation. It merely requires computing the flow of a new

cut whose flow differs by −1, 0, or 1 from the flow of the “preceding” cut. Let us define

a function flowdiff to represent this difference:

flowdiff(p, q, r) = flow([p, q])− flow([p, r]) .

When q and r are adjacent terminals on one of the channel boundaries, the value of

flowdiff(p, q, r) can be computed by checking on which sides of the cuts [p, q] and [p, r]
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flow #cuts
...

5 0
4 0

max flow→ 3 2
2 2
1 1

flow offset 3

Figure 7-4: The table used to tally the flows in the current collection of dense cuts.

the mates of q and r lie. As the rightmost top terminal is moved right, each new flow is

associated to the relevant terminal and tallied in a table of flows in the current collection

of cuts as illustrated in Figure 7-4.

The second operation we must treat is that of moving the leftmost top terminal

one terminal to the right. This operation can be performed by looking up the already

computed flow associated with the terminal being dropped from the cone at the left.

Once we know this flow, we simply decrement the appropriate tally in the table of flows.

Finally, though it is less obvious, constant time also suffices to move the apex of the

cone one terminal to the right while retaining the correct values of the flows of the cuts

to the top terminals. This is true because when the apex of the cone moves one terminal

to the right, the flows of cuts to relevant top terminals all change by the same amount

(0, 1, or −1). That is, for all top terminals which are in the cone of dense cuts for both

the old and the new apex, the change in flow is the same. A straightforward case analysis

shows that if this were false, there would have been a cut of unit flow at the borderline

between the cuts which experience different flow changes. But this cut and those below

it would be sparse and therefore cannot be in the cone of dense cuts for both the old and

new apex. Thus, when the apex of the cone moves, it is only necessary to adjust a flow

offset which will be applied to all the flows in the table once the upper range of the cone

is updated.

The only trick that remains is to keep track of the maximum flow of cuts in the table.

Then after each movement of the apex and the appropriate adjustment of the leftmost
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and rightmost top terminals, this maximum flow plus the flow offset is compared to the

running maximum over the whole channel. It is easy to update the maximum of flows

in the table when a new flow is added; just compare the new flow to the old maximum.

Fortunately, it is also unnecessary to do any searching when a flow is removed. Since

adjacent cuts differ by flow at most one, the flow values which have nonzero tallies in

the table will always be a continuous range of integers. Thus, to update the maximum

flow in the table, it is only necessary to subtract 1 from the maximum if the flow being

removed equals the old maximum and is the last flow of that value in the collection.

The arguments provided above suffice to show that the procedure in Figure 7-5 com-

putes the minimum channel separation in linear time. Below is a more detailed guide to

the code in Figure 7-5.

The variables in Figure 7-5 are used as follows. The variable apex represents the

index among the bottom terminals of the apex of the cone of cuts. The variables left

and right are used to keep track of the indices among the top terminals of the leftmost

and rightmost endpoints of dense cuts emanating from the apex of the cone. The array

flow to, as modified by the variable flow offset associates to top terminals delimited by

left and right the flow of the cuts to these terminals from the apex of the cone. The array

num cuts corresponds to the table in Figure 7-4; for each possible value of flow to, it

keeps track of the number of top terminals delimited by left and right which correspond

to that value. The variable max flow is the maximum index of num cuts for which the

value of the array element is nonzero. That is, max flow represents the maximum value

of flow to corresponding to a terminal delimited by left and right. Finally, separation is

the running max (minus 1) of the flows of all dense cuts in the channel.

The initializations for procedure Channel-separation are found in lines 1–6. Line 1

is used to conveniently ensure that straight cuts will be checked and the cone of dense

cuts will never be empty. Initially, the apex of the cone is at the leftmost bottom terminal

and the single cut in the cone is [b1, t1]. (The cone will be expanded later if necessary.)

Lines 5–6 initialize the flow collection to contain just the information for the cut [b1, t1].



7.1. SINGLE-LAYER CHANNEL AND SWITCHBOX ROUTING 119

procedure Channel-separation

1 Add dummy terminals (with null mates) so that every x-position with a
terminal has both a top and bottom terminal, yielding top and bottom
terminal sets

{

t1, t2, . . . , tlast
}

and
{

b1, b2, . . . , blast
}

.
2 apex← 1
3 left← 1 ; right← 1
4 flow offset← 0 ; flow to(1)← flow([b1, t1])

〈flow offset+ flow to(right) = flow([bapex, tright]) always〉
5 max flow← flow to(1)
6 num cuts(i)← 0 for −n ≤ i ≤ 1

2(m+ n) ; num cuts(flow to(1))← 1
7 while apex ≤ last
8 while right < last
9 flow to(right+ 1)← flow to(right) + flowdiff(bapex, tright+1, tright)

10 if tright+1 − bapex ≥ 1 ≥ flow to(right+ 1) + flow offset− 1 then

11 break 〈sparse cut〉
12 endif

13 right← right+ 1
14 num cuts(flow to(right))← num cuts(flow to(right)) + 1
15 max flow← max {max flow,flow to(right)}
16 endwhile

17 while bapex − tleft ≥ 1 ≥ flow to(left) + flow offset− 1 〈sparse cut〉
18 num cuts(flow to(left))← num cuts(flow to(left))− 1
19 if max flow = flow to(left) and num cuts(flow to(left)) = 0 then

20 max flow← max flow − 1
21 endif

22 left← left+ 1
23 endwhile

24 separation ← max {separation,max flow + flow offset− 1}
25 apex← apex+ 1 and flow offset← flow offset+ flowdiff(tright, bapex, bapex−1)

26 endwhile

Figure 7-5: This algorithm computes the maximum of the flows of the dense cuts, thereby
determining the minimum channel separation for which all cuts are safe. Comments
appear inside angle brackets.
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Note that a range of −n to n+ 1
2
(m+n) for the indices of num cuts is certainly adequate

since the flow of any cut is in the range [1, 1
2
(m + n)], and the offset is in the range

[−n, n]. Furthermore, for the cuts we consider at a given position of the apex, flow

minus offset is upper bounded by 1
2
(m + n). Hence the range of indices used in line 6.

(Additional analysis may restrict the necessary range of indices further, but the range

used is certainly sufficient.)

The main loop of procedure Channel-separation, comprising the cone sweeping

operation, is found in lines 7–26. There are four main parts to this loop. Lines 8–16

move the rightmost top terminal under consideration towards the right until the next cut

from the apex would be sparse (and directed towards the right from the apex). Similarly,

Lines 17–23 move the leftmost top terminal under consideration towards the right until

the cut running from it to the apex is not sparse (or it is not to the left of the apex).

The dense cuts then correspond to the top terminals which are at least as far right as

left and at least as far left as right. Line 24 updates the running max of the flows of the

dense cuts. Finally, line 25 moves the apex of the cone one terminal to the right along

the bottom terminals and updates the offset to the table of flows being maintained.

Within the loop that updates right, the main steps are computation of the new flow and

updating of the flow collection and max flow illustrated in Figure 7-4. Within the loop

that updates left, the operations involved are to update the flow collection by looking up

the flow value for the cut being dropped from consideration and then to update flow max

by taking advantage of the contiguous nature of the nonzero values in the flow collection

as described above.

7.1.2 Extension to Switchboxes

This section considers extension of the above results from channels to switchboxes. That

is, terminals are allowed at the sides of the channel instead of just at the top and bot-

tom. With floating side-terminals, the problem is shown to easily reduce to the problem

without side-terminals. When side-terminals are fixed, it is shown how to obtain a linear
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time routability test which is somewhat simpler than that of Chang and JáJá [24].3

The first variant of switch box routing, in which side-terminals are allowed to float

to arbitrary y-positions may be thought of as merely an extended channel (figuratively

and literally). (Included in this notion of floatability is that there are no single-sided

side connections.) It suffices to extend the channel, place the side terminals along the

top or bottom of the channel, and solve the problem as before. As long as there are

no single-sided side connections, the wires attached to the former side terminals must

cross the former channel sides, so any routing for the new problem can be converted to

a routing for the old problem by merely truncating some wires.

When the side-terminals are fixed, a linear time routability test is obtained with little

more than two applications of the procedure Channel-separation. After applying that

procedure to the terminals at top and bottom of the switchbox and then applying it with

the appropriate shift in orientation to the terminals at left and right of the switchbox, it

is only necessary to check for safety of the cuts which connect perpendicular sides of the

switchbox. Fortunately, checking these corner cuts is as easy as for river routing without

side connections [28]; we need only check the diagonal cuts, which is a simple, linear time

procedure.

7.2 Incremental Channel Routing

This section provides an algorithm to maintain channel density in logarithmic time per

net insertion. Attention is restricted to the static case. That is, given a predetermined

set of at most N columns known to contain all the terminals of the nets to be considered,

it is shown that each time a net is added into the group under consideration, the density

can be determined in O(lgN) time. The dynamic situation, in which the columns of

interest are not known in advance, should be manageable by applying tree-balancing

techniques from the literature to the tree-based algorithm to be described.

3Pinter also considers this problem [78, 79], but his linear time routability test contains a bug.
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The algorithm for the incremental density computation works by maintaining data in

the nodes of a complete binary tree T with leaves representing the N columns (in linear

order). (For simplicity, N is assumed to be a power of 2.) Since the tree is complete, we

can actually perform all our operations on a dense array rather than using pointers, but

it is most convenient to visualize the algorithm in the tree setting. In order to describe

the data to be maintained at nodes of T it is necessary to define the notion of a net

covering nodes within the tree:

Definition: A net covers any leaf node of T which corresponds to a col-

umn between the leftmost and rightmost terminal (inclusive) of the net. An

internal node v of T is covered if all leaves in the subtree rooted at v are

covered.

With respect to this definition of covering, two data items are maintained in every

node of the tree T . The first is dbelow(v), which represents, roughly, the maximum density

within the subtree rooted at v. More precisely, it is the maximum over all columns in

the subtree of the density at that column, where attention is restricted to nets which do

not cover the parent of v. The second data item kept in each node is dat(v), which is the

density at v in contrast to (at or) below v. That is, it is the density of nets which cover

v but not the parent of v, which is to say simply the number of nets covering v but not

its parent.4

Maintaining dbelow and dat at the nodes of T suffices to maintain the overall density

d, because we have

d = dbelow(root) .

All that remains is to show that lgN time suffices to update dat and dbelow wherever

necessary, each time that a new net is added to those under consideration. Note first

4The maintenance of dat is just like the use of the segment tree data structure in several applications
in computational geometry [81]. Routine operation on segment trees is sufficient to query for the density
(in logarithmic time) at any point in a channel, but extra operations are needed to keep track of the
maximum density.
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Figure 7-6: This figure shows the tree on the columns of interest, the span of a particular
net, and the nodes at which data must be updated when the net is included. The circled
nodes are the nodes where dat and dbelow must be incremented, and the nodes marked
by solid disks are the additional nodes where dbelow must be updated. There are at most
2 lgN of each of these types of nodes.

that dat merely needs to be increased by 1 at no more than 2 lgN nodes. The relevant

nodes are the roots of the maximal complete subtrees covered by the new net. Since

there are at most two such subtrees of any given height (a consequence of the fact that

any net covers a contiguous set of leaves), the number of nodes to be updated does not

exceed 2 lgN . (It is straightforward to actually find and update the correct nodes.) It

is also necessary to update dbelow at no more than 4 lgN nodes. These nodes are simply

those where dat was updated along with those appearing on the path to the root from

the leftmost or rightmost node where dat was updated. The form of the update at node

v is just

dbelow(v)← max {dbelow(left(v)), dbelow(right(v))}+ dat(v) ,

where left(v) and right(v) represent the left and right sons of v. Figure 7-6 shows an

example of a span of columns covered by a net and the nodes where data must be updated.
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Part III

Area Lower Bounds
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Chapter 8

Lower Bounds on the Area of

Finite-State Machines

There are certain straightforward algorithms for laying out finite-state machines. This

chapter shows that these algorithms are optimal in the worst case for machines with fixed

alphabets. That is, for any s and k, there is a deterministic finite-state machine with s

states and k symbols such that any layout algorithm requires Ω(ks lg s) area to lay out

its realization. Similarly, any layout algorithm requires Ω(ks2) area in the worst case for

nondeterministic finite-state machines with s states and k symbols. In fact, we can say

that “almost all” machines of s states and k symbols require nearly the specified area.

This chapter is derived from a joint paper with Mike Foster of Columbia U. [40].

To manage the complexity of designing large VLSI chips, automated layout algo-

rithms, sometimes called silicon compilers, are required. These are computer programs

that accept a high-level behavioral description of a chip and produce its layout. There

are many layouts corresponding to any behavioral specification, some better than others

according to various measures. For example, some layouts may be very compact so that

the chip can be small, some layouts may be very fast, so that the chip can work quickly,

or some may be very low-power. We would like to be sure that our layout algorithms

produce good layouts according to the measure we select.
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Regular languages and finite automata have proven to be useful models for a wide

range of computations. Many chips and portions of chips are commonly modeled as finite

automata, and several systems have been built for automatic layout of these machines.

Given a state-table or algorithmic description of a finite-state machine, these systems

attempt to produce a small, fast layout on a VLSI chip. Techniques for layout have

included regular expression trees [38, 39], networks of PLA’s [98], and multilevel standard-

cell logic [34].

This chapter shows that straightforward techniques for layout of regular languages

are optimal in the worst case. Although some of the techniques that are used in practice

can produce small layouts for some examples, there are many finite-state machines for

which the straightforward implementation (such as direct coding of the state table) is

the best possible. In particular, we show that for any s and k, any algorithm for laying

out a finite-state machine must use area Ω(ks lg s) for some deterministic machine with s

states and k symbols. Asymptotically, this is the area of the direct state table implemen-

tation. Similarly, we show that Ω(ks2) area is required for some nondeterministic machine

with s states and k symbols, which corresponds to a straightforward implementation of

nondeterministic machines.

This chapter is organized to highlight the ideas behind the lower bounds. We prove a

simple theorem that displays the method and then extend it to cover more complicated

cases. In Section 8.1 we describe the model of computation in which these lower bounds

hold. Section 8.2 proves the lower bound on the area of a fixed-shape region for layout

of deterministic finite-state machines with 2 character alphabets, and Section 8.3 proves

a similar lower bound for nondeterministic machines. Section 8.4 extends the results to

machines with larger alphabets. In Section 8.5 we show that allowing different machines

to occupy regions of different shapes does not decrease the area required.

A few more bibliographic notes are in order. A key step in obtaining the lower bounds

in this chapter is to obtain a lower bound on the number of functionally distinct deter-

ministic and nondeterministic finite-state machines. A bound for deterministic machines,



8.1. AREA LOWER BOUNDS IN VLSI 129

similar to the bound derived here by elementary means, was independently obtained by

Harrison [47] as a corollary to the derivation of formulas that can be used to calculate

the exact numbers of “nonisomorphic” deterministic finite-state machines. Similar for-

mulas are developed by Harary and Palmer [46] using slightly differing definitions of

nonisomorphic finite-state machines.

8.1 Area Lower Bounds in VLSI

Why prove only a lower bound on area? Several types of lower bounds on the resources

needed by VLSI chips have been proven [18, 21, 92, 96]. Most of these have been bounds

on the product of chip area and some power of the running time; AT 2 is common. In this

chapter we prove a lower bound for area alone, without considering time. Finite-state

computations differ from the computations considered by previous authors (context-free

language recognition, sorting, DFT, etc.); the area required by a computation on a string

of length n is independent of n. Computations on which bounds have previously been

proven (including an area lower bound on string matching [92]) have required increasing

area as the length of the input increases. The memory required by a finite-state machine

is fixed, no matter how long the input may be. Moreover, the time taken by a finite-state

computation is simply the time to read the input. As the length of the input increases,

then, the computation time increases proportionally while the area stays constant, so

that the tightest AT k lower bound on a finite-state computation on an input of size

n is simply Ω(nk). Therefore, we can characterize the implementation of a finite-state

machine strictly in terms of its area.

To prove a lower bound on area, we need a model of computation that relates area

to the problem to be solved. We will use a model most similar to that of Thompson

[96] as discussed in Section 1.1. Any computational structure must be laid out on a

grid of unit squares, corresponding to the minimum feature size of the implementation

technology. Each of the unit squares may contain one or more types of conducting or

insulating material in several layers. There is a finite number of possible conducting or
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insulating layers, and a unit square may contain some combination of these layers. The

combination chosen for a particular unit square can be specified by a fixed number of

bits, so the set of combinations chosen for an area A can be specified by a number of bits

proportional to A. The set of layers chosen for each square of the chip determines its

structure completely, which determines the computation performed. We have therefore

proven the following fundamental lemma.

Lemma 29 The computation performed by an area of size A can be specified

with Θ(A) bits.

In a typical CMOS implementation, for example, the unit squares are typically about

one micron on a side, and each square may contain p or n-type diffusion, polysilicon, and

one or two layers of metal. There may also be insulators present to isolate these layers,

or the insulators may be removed to make a contact. There are about 60 combinations of

conducting layers and insulators that make electrical sense, so the configuration of each

unit square can be specified by 6 bits. Therefore, the computation performed within

an area of m square microns can be specified by at most 6m bits. Of course, many of

the possible combinations will not perform meaningful computations, since neighboring

squares might violate design rules, or the layout as a whole might not be a working

circuit. The constant of proportionality is therefore less than 6, but it is clear that the

computation performed by a CMOS chip of area m can be specified by Θ(m) bits.

To prove a lower bound of area Ω(n) using this model, we show that the computation

we want to perform requires n bits of specification. Suppose that we are given a chip of

area A, together with a family of 2n different computations, any one of which may be

specified as the circuit to be built on the chip. Since the computations are all different,

each one requires a different structure for area A. The structure of area A is thus specified

by n bits, so A must be Ω(n).

In using this proof technique, notice that the computations themselves must be dif-

ferent, not just the computational structures. If two different structures on the same

chip produced the same behavior, an implementor could always use just one of them in
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implementing a computation. By counting behaviors rather than structures, we can be

sure that we need a different chip for each different computation.

The results we obtain from this technique are worst-case bounds. They show that at

least one member of the family of 2n computations will require area n. The best case

could of course be considerably better. For example, we show below that the worst-case

area for laying out an s-state deterministic machine is Ω(s lg s). Many s-state machines

have considerably smaller area, requiring as little as O(lg s) area for the best layout. The

bounds in this chapter, while existentially tight, do not eliminate the search for clever

implementations.

8.2 Deterministic Automata

There is a well-known method for simulating a deterministic finite automaton (DFA)

with a program for a general-purpose computer. States of the machine are represented

by integers, which are used as indices into a transition table. Position i of the table

contains the next states for all input characters if the machine is in state i. If the

program is in state i, it selects its next state from position i in the table, and uses that

state to index into the table on the next character input.

This program structure can be implemented in hardware in a straightforward fashion

using a PLA. The PLA for a machine with s states and 2 symbols in the alphabet will

have lg s input and output columns to represent the states as well as an input line for

the alphabet symbol. The number of rows (product terms) in the PLA will be 2s, one

for each combination of state and input symbol. The output state bits are computed by

ORing the appropriate product terms into each state bit. The total area of this hardware

realization of the finite-state machine is O(s lg s).

Of course, for many machines the PLA implementation is extremely wasteful of space.

For example, an n-bit counter has 2n states so that its PLA representation would require

area n×2n. A simple ripple-carry implementation of the same counter, however, requires

only area n. A clever layout algorithm for finite-state machines might be able to recog-
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nize that a particular machine was a counter and use the smaller implementation. There

are other tricks of this kind for other types of machines, such as machines that recog-

nize patterns having short regular expressions [38, 39, 98]. Do all finite-state machines

succumb to these kinds of techniques, or are there machines for which the obvious PLA

layout is the best?

In the worst case, the PLA layout is the best that can be done. We can show this

by producing a set of ss different languages that can each be accepted by machines with

s states. It is not sufficient to simply note that there are s2s different state tables for

s-state machines, since some of these state tables represent equivalent machines. A clever

layout algorithm could implement equivalent machines in the same way. We must count

languages or behaviors, not machines. Keeping this in mind, we can prove the following

theorem, which provides a lower bound matching the upper bound for area of an s state

DFA.

Theorem 30 The amount of area required to implement an s state deter-

ministic finite automaton is Ω(s lg s) in the worst case.

Proof. Consider the following class, Fs, of s state machines with input alphabet {0, 1}.
Each machine has states numbered 0 to s−1, where state 0 can be distinguished from all

others by observing the output of the machine; it can be thought of as a final state if the

machine is used as a recognizer. The machines act identically in every state on input 0;

specifically, if a machine is in state i and gets an input of 0, it goes to state i+ 1 mod s.

On input 1, however, all possible behaviors are included among the machines in Fs. Since

the transition on input 1 from each of the s states can be to any one of s states, there

are ss machines in Fs.

The machines in Fs represent different languages, so they can be distinguished by

their behaviors. To see this, consider two different machines in Fs. There must be some

state i for which a 1 input takes the machines to different states, say j and k. We can

test for the presence of an edge from i to j by inputting zeros to put the machine into

its distinguished state, then inputting the string 0i10s−j. The machine will be in its
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distinguished state at the end of this input if and only if there is a transition from state

i to state j on input 1. Thus if two machines in Fs differ, there is a string accepted by

one but not by the other.

The machines in Fs all behave differently, so any layout algorithm must produce

different layouts for each one. Since there are ss machines in this set, s lg s bits are

required to specify one of the layouts. Therefore, an area A that can contain the layout

of any of the machines in Fs must be of size Ω(s lg s).

8.3 Nondeterministic Automata

Floyd and Ullman [38] presented a generic layout for a non-deterministic finite automata

(NFA) that is analogous to the layout given above for deterministic machines. The only

difference is that instead of encoding the state into lg s PLA inputs and outputs, one bit

is used for each of the s states. After each input symbol is received, the PLA output

corresponding to a given state is on if and only if the non-deterministic machine could

be in that state. The area of the Floyd-Ullman implementation of an s-state NFA over

a two-symbol alphabet is O(s2) since there are s input and output terms and at most 2s

product terms.

Is there a better way to implement non-deterministic machines? In a proof similar to

that for the deterministic case, we can show that Ω(s2) is a lower bound on the layout

area.

Theorem 31 The amount of area required to implement an s state nonde-

terministic finite automaton is Ω(s2) in the worst case.

Proof. Once again, consider a set Fs of machines over the two-symbol alphabet {0, 1}.
The states of each machine are numbered 0 to s− 1, with state 0 distinguishable by the

output of the machine. The set Fs consists of those machines such that the only 0-edge

out of state i goes to state i + 1 mod s. Every possible combination of 1-edges occurs
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in some machine in Fs. Since the transitions on input 1 from each state can be to any

subset of the s states, Fs contains (2
s)s, or 2s

2
machines.

The machines in Fs all recognize different languages, by the same argument used in

the deterministic case. If two machines differ, there must be a 1-edge present in one

machine that is not present in the other one. Thus we can distinguish different machines

by testing for the presence of a single 1-edge. As above, to determine whether the 1-edge

from state i to state j is present in a machine, we place the machine in state 0, then input

the string 0i10s−j. Since the machines in Fs are deterministic on 0 inputs, the machine

will be in state 0 after this input if and only if there is a 1-edge from i to j.

Since the machines in Fs represent different languages, they must all have different

layouts. The specification of a non-deterministic machine with s states is therefore a

specification of one of 2s
2
different layouts. By the arguments given in the preceding

sections, the smallest chip that can contain any of these layouts has area Ω(s2).

8.4 More Than Two Symbols

If a machine has more than two symbols in its alphabet, both the upper and lower bounds

for layout area increase. An s-state deterministic machine with k symbols in the alphabet

has a PLA implementation with area O(ks lg s). To see this when k is O(s), we use a

construction just like the earlier one, except that there are lg s+lg k PLA inputs in order

to account for both the states and input symbols, and there are ks product terms. If k

is not O(s), then we can use an alternative construction which yields an area bound of

O((k + lg s)s lg s), which is O(ks lg s) for k = Ω(lg s).

The alternative upper-bound construction is obtained by using a PLA in which the

input symbol has been decoded, i.e., it is represented by turning on exactly one of k input

lines. (It is actually desirable to input the complements of these signals to the PLA.)

Each product term corresponds to the pairing of a state and an output state bit which

is turned on by some transitions from that state. The product term includes the check

that the input symbol is not one which fails to generate such a transition. Since there are
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s lg s product terms and k + lg s input terms, the area of the PLA is O((k + lg s)s lg s).

To decode input symbols specified with lg k bits into the k-bit representation, we just

need to add the area of a decoder, which is k lg k. The decoder is certainly small enough

if lg k is O(s lg s). If lg k is greater than O(s lg s), then some of the input symbols are

extraneous. That is, there are only ss complete state-transition behaviors which can be

assigned to the input symbols, so if there is a larger number of input symbols, there must

be symbols with identical behaviors. Thus it suffices to translate the lg k input signals

into s lg s signals corresponding to the appropriate state-transition behavior in binary

(requiring area s lg s lg k), and then decode these s lg s signals into the appropriate ss

signals in unary (requiring area sss lg s, which is O(ks lg s) for lg k = Ω(s lg s)).

The lower bound on deterministic machines with s states and k symbols is also

Ω(ks lg s), as we now show.

Theorem 32 The amount of area required to implement an s state, k symbol

DFA is Ω(ks lg s) in the worst case.

Proof. Consider the family Fs, extended so that each state has k outgoing edges instead

of just two. For each of the s states, one of the outgoing edges (the 0-edge) is constrained,

but each of the other k−1 edges can go to any one of s next states. Each state therefore

has sk−1 possibilities, and since all states are independent the number of possible machines

is (sk−1)s. The machines are all different, since the presence of any edge can be tested

by experiments on the machine. The number of bits required to specify one of these

machines, and thus the layout area required, is therefore Ω(ks lg s).

The extension to k symbols is similar in the case of nondeterministic finite automata.

The area of an s state NFA with k symbols is O(ks2). The straightforward modification

of Floyd and Ullman’s construction gives a PLA with s+lg k input terms and ks product

terms for an area of O((s+lg k)ks), which is O(ks2) when s is Ω(lg k). If s is not Ω(lg k),

we can use an alternative construction which yields an area bound of O((k+s)s2), which

is O(ks2) when s is O(k).
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The alternative upper bound is obtained in the same fashion as described above for

deterministic machines. When decoded alphabet symbols are input to the PLA, the

number of inputs plus outputs is O(k + s), and the number of product terms is s2,

for an area of O((k + s)s2). Again we can handle input symbols which have not been

decoded with a decoder of area k lg k. The area of the decoder is O(ks2) if s is Ω(
√
lg k),

and otherwise we have redundant symbols. That is, there are only 2s
2
possible state-

transition behaviors for each symbol. Thus the lg k input bits for the alphabet symbols

can be translated into s2 bits representing the state-transition behavior and then decoded

into 2s
2
bits, all in area s2 lg k + s22s

2
, which is O(ks2) for s = O(

√
lg k).

As before, we obtain a lower bound which matches the upper bound on area.

Theorem 33 The amount of area required to implement an s state, k symbol

NFA is Ω(ks2) in the worst case.

Proof. We once again consider the family of machines Fs, in which 0-edges form a

cycle. There are (2s)s(k−1) machines in Fs since from each state, there are 2s possible

combinations of edges for each character. A similar proof to those above shows that these

machines all recognize different languages, and thus must have different layouts, so the

area lower bound for a non-deterministic machine with s states and a k-symbol alphabet

is Ω(s2k).

8.5 Shape Independence

The results which we have given so far hold in the case of laying out machines in a fixed

region such as a square. The results depend only on the mild assumption that there is a

minimum size grid, with each grid square having a finite number of possible compositions.

In fact, stronger assumptions are reasonable for VLSI technologies, and we can show

that all the previous results hold even if we allow each machine to be implemented in a

different area of arbitrary shape. In VLSI technologies, adjacent grid squares containing

conducting material on the same layer are electrically connected, and there is no other
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relevance to the shape in which the grid squares are arranged as long as the design rules

are obeyed. It is therefore possible to view a VLSI layout as a bounded-degree graph of

grid squares of various compositions.

We extend our earlier results by invoking the following lemma, which states that Θ(A)

bits suffice to specify all graphs of wire area A (i.e. A grid squares).

Lemma 34 There are 2O(A) VLSI layouts of wire area A.

Proof. We begin by invoking a result of Thompson that a graph of wire area A must

have a bisection width of O(
√
A) [96]. Then we can write a recurrence for G(A), the

number of graphs of wire area A as follows:

G(A) ≤ [G(A/2)]2[(A/2)2]O(
√
A) .

The right side of the recurrence is an upper bound on the number of ways of forming

two graphs of wire area at most A/2 and then forming connections across the bisection.

Letting H(A) = lgG(A), we can rewrite the recurrence as

H(A) ≤ 2H(A/2) +O(
√
A lgA) .

Then noting, that G(1) is a constant, we can solve the recurrence to obtainH(A) = O(A),

and G(A) = 2O(A).

8.6 Conclusion

This chapter has presented results on area lower bounds for finite-state automata. We

have shown that any algorithm for laying out finite automata must require as much

area for some machines as do the most straightforward algorithms. Our results can

be extended easily to volume lower bounds in 3D-VLSI circuits, as long as there is a

minimum feature size.
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Can our bounds be tightened? Our lower bounds are tight for only the worst case

machines with a given number of states. However, there are finite-state machines with s

states that can be laid out in considerably less than s lg s area. For example, an s-state

counter can be laid out in area lg s. What features of finite-state machines let them have

small layout area? It would be desirable to obtain a simple measure of complexity of

finite-state machines in terms of which we could obtain universally close upper and lower

bounds on area.

Even if tighter bounds are found for some types of finite-state machines, it is clear

that almost all machines will require the area that our bounds specify. For example,

consider the set of s-state deterministic machines that have layouts of area s. There are

at most 2s different machines that can be laid out in area s, so the fraction of s-state

machines that can have area s layouts is at most 2s/ss, which is asymptotically zero.

Thus, almost all deterministic machines with s states require more than area s. Similar

arguments show that, for any area lower bound L(s) in this chapter and for any function

f(s) such that

lim
s→∞

2f(s)

2L(s)
= 0

almost all machines with s states require more than f(s) area.

Tighter bounds than ours must depend upon machine features which are present in

a vanishingly small proportion of s-state machines. Nonetheless, machines of practical

interest may contain these features, so a search for tighter bounds is worthwhile.
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Conclusion

This thesis has made contributions in three areas: the design of general-purpose parallel

computers, multilayer channel routing for VLSI chips, and implementation of finite-

state machines. This section summarizes the key findings and suggests further areas of

investigation.

The discussion of general-purpose parallel computers can be summarized simply: it is

feasible to construct good general-purpose parallel machines. Specifically, an appropriate

universal machine of a given hardware cost (measured as area or volume) incurs only a

small polylogarithmic penalty in simulating any other machine of comparable cost.

One of the most important open questions about universal networks has already been

mentioned in Chapter 4: Can we do any better than slowdown bounded by the square of

the logarithm of network size? At present, no nontrivial lower bounds for the worst-case

simulation time are known.

Additional unresolved issues relate to the practical implementation and use of fat-tree

based machines. In practice, it is undesirable to always pay a polylogarithmic or even

constant overhead for the privilege of using a general-purpose machine. The simulation

results in this thesis provide confidence that the universal networks presented are ro-

bust and general-purpose, but we would like to be able to obtain greater efficiency by

programming the networks directly, and we would like to be able to execute architecture-

139
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independent programs in a way that will usually yield better results than the worst-case

simulation overhead. Progress in these directions has been made by Leiserson and Maggs

[65], but much work remains to be done. Also, the use of asymptotic analysis in this

thesis leaves open the choice of some constant factors which must be specified in any

actual machine implementation. Finally, packaging issues are deserving of investigation;

it would be desirable to build large universal networks using a modest number of different

chips as in Bhatt and Leiserson’s packaging scheme for ordinary trees [14].

The main claim of this thesis regarding multilayer channel routing is that existing

tools can benefit from the incorporation of layers which are not dedicated to a single

routing direction. Application of this approach to a leading tool has yielded significant

improvements on example problems in terms of channel width, total net length, and total

number of vias.

This thesis has also shown how to efficiently perform important subtasks in multilayer

channel routing, specifically determination of the minimum required channel width for

a single-layer problem and incremental computation of density as nets are brought into

consideration one by one. Still open, however, are incremental computation of minimum

channel width for single-layer problems and incremental computation of longest path

lengths in vertical constraint graphs.

An additional useful area of investigation would be to compare the channel router

presented in this paper to the routing algorithm of Berger, Brady, Brown, and Leighton

[12], which has a “provably good” worst-case performance. Their algorithm applied to

an L-layer problem of density d will produce a routing of width d
L−2

+ O(
√

d/L + 1),

which could be quite attractive depending on the exact size of the additive term and

the ability of the algorithm to do better than the worst case on practical problems. It

would be desirable to create a practically oriented implementation of this algorithm and

to ascertain its performance on example problems.

The last part of this thesis showed that straightforward and standard approaches to

implementing finite-state machines are optimal in the worst case. As mentioned earlier,
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however, special classes of finite-state machines may require much less area than the

worst-case bound. Many researchers have worked on the problem of reducing the area

required by finite-state machines, but we still have little insight as to what types of

finite-state machines may significantly benefit from these efforts.
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