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Abstract— Receding horizon control requires the solution of
an optimization problem at every sampling instant. We present
efficient interior point methods tailored to convex multistage
problems, a problem class which most relevant MPC problems
with linear dynamics can be cast in, and specify important
algorithmic details required for a high speed implementation
with superior numerical stability. In particular, the presented
approach allows for quadratic constraints, which is not sup-
ported by existing fast MPC solvers. A categorization of
widely used MPC problem formulations into classes of different
complexity is given, and we show how the computational burden
of certain quadratic or linear constraints can be decreased by a
low rank matrix forward substitution scheme. Implementation
details are provided that are crucial to obtain high speed
solvers. We present extensive numerical studies for the proposed
methods and compare our solver to three well-known solver
packages, outperforming the fastest of these by a factor 2-5 in
speed and 3-70 in code size. Moreover, our solver is shown to
be very efficient for large problem sizes and for quadratically
constrained QPs, extending the set of systems amenable to
advanced MPC formulations on low-cost embedded hardware.

I. INTRODUCTION

Constrained finite time optimal control, also known as
model predictive control (MPC) or receding horizon control
(RHC), requires the solution of an optimization problem
at each sampling instance. Efficient solvers with good nu-
merical properties are therefore of paramount importance
to enable reliable MPC implementations for fast systems
on low-cost hardware. The computational burden of solving
convex MPC problems online can be significantly reduced by
exploiting the inherent problem structure [1]. Recent work
showed that computational speeds in the millisecond range
are possible [2]. The latest development is automatic code
generation, where the computation times are further reduced
by using a solver tailored to the specific optimization prob-
lem (CVXGEN, [3]). Although the results of CVXGEN are
impressive for small-scale systems, severe limitations exist
on the problem sizes that can be handled. The generated
code can become of prohibitive size for larger problems (see
Section V for example of what “large” means), limiting the
applicability of the solver on low-cost microprocessors.

Furthermore, existing fast implementations of MPC con-
trollers that are based on online optimization and run on
embedded platforms support quadratic programs (QPs) only.
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As a result, important MPC formulations with desirable
theoretical properties cannot be implemented in practice.
Among these are formulations providing stability guarantees
via ellipsoidal terminal sets [4], real-time stability guar-
antees [5] in face of early termination of the solver or
robustness against modeling errors and noise in a tube MPC
setting [6]. Moreover, some systems have inherent quadratic
system constraints for which polytopic sets provide only a
coarse approximation, such as power electronics [7].

This paper aims at closing the gap between MPC for-
mulations with theoretically sound properties and current
state of the art solver implementations, which are unable
to solve these problems quickly and in a numerically stable
manner on low-cost platforms. To that end, we discuss im-
plementation strategies for efficient primal-dual interior point
methods (IPMs), extending the set of MPC formulations
that can be solved very efficiently. We consider the more
general problem class of multistage optimization problems,
which most relevant MPC formulations can be cast in.
Among the variety of choices and subtleties in a particular
implementation, we specify important algorithmic details
that lead to a significant improvement in solver performance,
both in terms of speed and numerical stability. In this context,
we present a numerically stable and efficient rank one matrix
forward substitution scheme, which is important to handle,
for example, quadratic constraints efficiently. Although the
result is an extension of [8], it has not been exploited in an
MPC context to the authors’ knowledge. Our implementation
is shown to avoid the aforementioned limitations of existing
solvers while outperforming them even for standard MPC
problems such as QPs.

A variety of other methods and solvers have been proposed
for solving linear MPC problems. For certain problem formu-
lations and small dimensions, multi-parametric programming
can be used to calculate the optimal state-to-input map
offline, enabling model predictive control of extremely high-
speed systems [9], [10]. In contrast to this so-called explicit
MPC solution, online optimization can handle problems of
any practically relevant dimension. First order methods are
for certain problem classes the preferred choice, since tight
bounds on the computation time can be provided [11], which,
however, strongly depend on the conditioning of the problem.
Primal-dual interior point methods show, albeit large (but
polynomial) runtime bounds, generally a fast convergence
in practice, independent of the problem data. In contrast
to active set methods [12], which are essentially limited
to linear and quadratic programs (LPs & QPs), IPMs can
solve more general convex problems such as quadratically



constrained QPs (QCQPs) or second-order cone programs
(SOCPs).

We present extensive numerical benchmarks of the well
known interior point codes CPLEX [13] and CVXGEN [3] in
comparison to our solver called FORCES, which has been
written according to the guidelines presented in this paper.
Furthermore, we include timings of the sparse factorization
code MA57 [14] as called from OOQP [15] in order
to show the merits of problem specific vs. general sparse
factorization. While it is immediate that a customized solver,
such as CVXGEN, is faster than general-purpose solvers, we
show that FORCES is between 2-5 times faster than CVXGEN,
which in turn is one to two orders of magnitude faster than
CPLEX. As our results show, this speedup is achieved by
structure exploitation and the fact that the FORCES code is
of near-constant size even for large problem dimensions.

The paper is organized as follows: After introducing
primal-dual IPMs (Section II), we discuss algorithmic details
for the fast solution of multistage problems in Section III,
including a cost analysis and a low rank modification scheme
for matrix factorizations. Special cases relevant for common
MPC formulations are pointed out. In Section IV, we discuss
some important implementation aspects used in our code,
which is shown to outperform the other solvers in Section V.

II. PRELIMINARIES

A. Problem formulation

In this paper, we consider the following general multi-
stage optimization problem:

min
yi,i=0...N

N∑
i=0

li(yi)

s.t. gi(yi) ≤ 0 , i = 0, . . . , N ,

Li (yi, yi−1) = 0 , i = 1, . . . , N ,

(P)

with N + 1 stage variables yi ∈ Rpi , convex stage cost
functions li : Rpi → R and gi : Rpi → Rqi such that Yi :=
{yi | gi(yi) ≤ 0} is a convex set with nonempty interior. The
functions Li : Rpi×pi+1 → Rri are affine, each depending
on two consecutive stage variables:

Li (yi, yi−1) := Ci−1yi−1 +Diyi + ci ,

with Ci−1 ∈ Rri×pi−1 , Di ∈ Rri×pi such that [Ci−1 Di] has
full row rank and ci ∈ Rri . The optimization variable y :=[
yT0 , . . . , y

T
N

]T
is of dimension p =

∑N
i=0 pi. We have q =∑N

i=0 qi inequality constraints and r =
∑N−1

i=0 ri equality
constraints in total.

We would like to point out that most relevant MPC
problems can be cast into the form of (P), including problems
with 1- or∞-norm cost terms [16]. The necessary auxiliary
variables become part of the stage variable, yi. Problems
with equality constrained initial state are captured as well
as formulations where the initial state is an optimization
variable, such as in robust MPC problems [6]. Moreover,
(P) captures moving horizon estimation problems (MHE).
The optimization problem (P) is convex (and potentially
nonlinear) and can be solved by interior point methods.

B. Primal-dual interior point method

We solve (P) using a primal-dual interior point method em-
ploying Mehrotra’s predictor-corrector scheme [17], which
has proven to be very efficient in practice [18]. The particular
algorithm follows mainly the lines of [1], but we perform
the computation of the search direction by solving the KKT
system in normal equations form as in [2] in order to fully
exploit the specific problem structure. Details are given in
the following.

a) KKT system: The KKT optimality conditions for (P)
are given by

h(y) + CT ν + J(y)Tλ = 0 , (1a)
Cy + c = 0 , (1b)
g(y) + s = 0 , (1c)

ΛS = 0 , (1d)

where s ∈ Rq
≥0 are slack variables, ν ∈ Rr and λ ∈ Rq

≥0

Lagrange multipliers and

h(y) :=
[
(∇l0(y0))

T
, . . . , (∇lN (yN ))

T
]T
∈ Rp ,

C :=


C0 D1 0 . . . 0
0 C1 D2 . . . 0
...

...
. . . . . .

...
0 0 . . . CN−1 DN

 ∈ Rr×p ,

J(y) := blkdiag (∇g0(y0), . . . , ∇gN (yN )) ∈ Rq×p ,

c :=
[
cT0 , . . . , c

T
N−1

]T ∈ Rr ,

g(y) :=
[
gT0 (y0), . . . , gTN (yN )

]T ∈ Rq ,

S := diag (s) , Λ := diag (λ) .

b) Search direction: Linearizing the KKT conditions
gives rise to the Newton system
H (y, λ) CT JT (y)
C
J(y) I

S Λ




∆y
∆ν
∆λ
∆s

 = −


rC
rE
rI
rs

 . (2)

An IPM solves (2) for various right hand sides, which is the
main computational burden of the algorithm. Efficient solu-
tion of (2) is therefore the key to obtain a high-performance
solver. We show in Section III how to exploit the problem
structure of (P) to solve (2) quickly and in a stable manner.

The (1, 1) block of the coefficient matrix in (2) is defined
as

H(y, λ) := ∇h(y) +H(y, λ) , (3a)
H(y, λ) := blkdiag (G0(y, λ), . . . , GN (y, λ)) (3b)

Gi(y, λ) :=

qi∑
j=1

∇2gi,j(yi) ·λj+qi−1
∈ Rpi×pi , (3c)

i.e. Gi(y, λ) is the weighted sum of Hessians of the in-
equality constraints on stage variable i, weighted by the
corresponding Lagrange multiplier.



c) Alternative KKT systems: Block elimination can be
applied to (2) to obtain alternative formulations for the search
direction computation. As the elements of Λ are strictly
positive before convergence of the interior point method, we
can eliminate ∆s from (2) using ∆s = Λ−1 (rs − S∆λ).
This results in a symmetric indefinite system, which can be
further reduced by eliminating the Lagrange multipliers:

∆λ = S−1Λ (rI + J(y)∆y) + S−1rs . (4)

We obtain the so-called augmented system[
Φ CT

C 0

] [
∆y
∆ν

]
= −

[
rd
rE

]
, (5)

where

Φ := H (y, λ) + JT (y)S−1ΛJ(y) , (6a)

rd := h(y) + CT ν + JT (y)S−1ΛrI . (6b)

Finally, forming the Schur complement of the coefficient
matrix in (5) gives the most compact form, often called
normal equations form [18],

Y∆ν = β , (7a)

with

Y := CΦ−1CT ∈ Sr+ , (7b)

β := rE − CΦ−1rd , (7c)

∆y = Φ−1
(
−rd − CT ∆ν

)
. (7d)

We solve for the search direction in this form (7a) due to
reasons outlined in Section III. For further details on the
primal-dual IPM the reader is referred to [18].

III. EFFICIENT SOLUTION OF LINEARIZED KKT SYSTEM

The most expensive step and performance bottleneck in
any interior point method is the computation of the search
direction (2). In this paper, we focus on solving the KKT
system in normal equations form (7a) because of the follow-
ing reasons. First, multi-stage problems of type (P) always
yield a block banded coefficient matrix Y in (7a) that can be
factored efficiently by block-wise Cholesky factorization [2].
This is due to the fact that the augmented Hessian Φ is
block diagonal, hence its inverse again is block diagonal
with blocks Φ−1

i . Given the block-banded structure of C,
Y therefore exhibits a symmetric block tri-diagonal struc-
ture. Second, Cholesky factorization is numerically stable
without any pivoting, while a stable implementation of
LDLT factorization, which is needed to solve the augmented
form (5), requires additional permutation strategies. Pivoting
can produce significant overhead, since it is usually data-
dependent and must therefore be carried out on-the-fly; fixed
permutations as e.g. in CVXGEN are less favorable from
a numerical point of view [19]. In our simulation studies,
we did not experience any numerical problems due to ill
conditioning when calculating (7b) or solving (7a), which
might occur due to terms in S−1Λ that are close to zero at
later iterations of the interior point method.

In the following, we outline the block Cholesky procedure
from [2] to solve (7a) adapted to our more general problem
(P) and give a cheaper method to compute Y .

A. Efficient calculation of Y
As stated above, Y has a block-banded structure:

Y :=


Y11 Y12 0 . . . 0
Y T
12 Y22 Y23 . . . 0
...

. . . . . . . . .
...

0 0 Y T
N−2,N−1 YN−1,N−1 YN−1,N

0 0 0 Y T
N−1,N YN,N

 ,

with

Yi,i := Ci−1Φ−1
i−1C

T
i−1 +DiΦ

−1
i DT

i ∈ Rri×ri , (8a)

Yi,i+1 := DiΦ
−1
i CT

i ∈ Rri×ri+1 . (8b)

The authors of [2] suggest to calculate (8) as follows. First,
obtain the Cholesky factors Li such that Φi = LiL

T
i . Then,

a matrix forward- and backward-substitution is carried out
to form C̃i−1 := Ci−1Φ−1

i−1 and D̃i := DiΦ
−1
i , respectively.

To obtain (8a), C̃i−1 and D̃i are multiplied from the right by
CT

i−1 and DT
i , respectively; to obtain (8b), D̃i is multiplied

by CT
i .

However, we can do better than that as follows. After
obtaining the Cholesky factor Li as above, we solve

ViL
T
i = Ci , (9a)

WiL
T
i = Di , (9b)

for Vi ∈ Rri×pi and Wi ∈ Rri×pi by matrix forward
substitution. We now have a rectangular factorization of the
quantities needed for (8), i.e.

Ci−1Φ−1
i−1C

T
i−1 = Vi−1V

T
i−1 , (10a)

DiΦ
−1
i DT

i = WiW
T
i , (10b)

DiΦ
−1
i CT

i = WiV
T
i . (10c)

Based on elementary matrix operations in Table I, we
compare the total cost of the two methods in Table II. The
proposed method saves two matrix back-substitutions and
ensures that Yi,i is symmetric even in case of rounding
errors, which is not the case for [2] due to the asymmetric
matrix products. Overall, our method saves

(
p2i−1 + p2i

)
ri

floating point operations (flops1) and is numerically superior.
Furthermore, it enables significant computational savings for
special instances of (P) as described in Section III-C. These
simplifications are possible only to a limited extent when
using [2].

B. Block-wise Cholesky factorization of Y
After obtaining Y , we compute its Cholesky factor LY ,

LY =


L11 0 0 . . . 0
L21 L22 0 . . . 0
0 L32 L33 . . . 0
...

...
. . . . . . 0

0 0 . . . LN,N−1 LN

 ,

1addition, multiplication or division of two double precision numbers



TABLE I
COST OF ELEMENTARY MATRIX OPERATIONS WITH MATRICES

A,B : m×n, C : n× p, D,L : n×n, L LOWER TRIANGULAR.

Operation Cost (flops)

Matrix matrix multiplication A ·C 2mnp
Symmetric matrix matrix multiplication A ·AT m2n
LLT decomposition s.t. D = LLT 2/3n3

Matrix forward substitution s.t. ALT = B mn2

Matrix backward substitution s.t. AL = B mn2

TABLE II
COST FOR COMPUTING (8) WITH DIFFERENT METHODS (IN FLOPS).

Step Operation [2] Operation Proposed

1 Factor Φi (= LiL
T
i ) 2/3p3i (same) 2/3p3i

2 C̃i−1 := Ci−1Φ−1
i−1 2p2i−1ri Solve (9a) p2i−1ri

3 D̃i := DiΦ
−1
i 2p2i ri Solve (9b) p2i ri

4 C̃i−1C
T
i−1 pi−1r

2
i (10a) pi−1r

2
i

5 D̃iD
T
i pir

2
i (10b) pir

2
i

6 D̃iC
T
i 2pir

2
i (10c) 2pir

2
i

by solving

Y11 = L11L
T
11 , (11a)

Yi,i+1 = Li,iL
T
i+1,i , 1 ≤ i < N , (11b)

Yi,i − Li,i−1L
T
i,i−1 = Li,iL

T
i,i , 2 ≤ i ≤ N , (11c)

where Li,i ∈ Rri×ri are lower triangular and Li+1,i ∈
Rri+1×ri are generally dense matrices. Equation (11b) is
solved by matrix forward substitution, while (11a) and (11c)
are solved by Cholesky factorizations of the corresponding
matrices on the left hand side. This is a standard procedure
and follows immediately from the structure of Y [2]. The
total cost of this step is given in Table III.

We observe that the block-wise Cholesky factorization of
Y amounts roughly to one third of the total costs, while
the actual computation of the matrix to be factored, Y, is
twice as expensive. Moreover, the problem data of (P) does
not have a major influence on the cost of (11). This is not
the case for (8), the cost of which is significantly dependent
on the specific problem formulation. It is therefore worth
investigating under which circumstances the computational
burden can be lowered.

One special case is obviously that of Φi being diagonal, in
which the cost of the first three steps in Table II is negligible.
This holds also for the less obvious case when Φi is dense,
but the sum of a diagonal and a rank one matrix, which will
be shown in the following.

TABLE III
COSTS FOR THE BLOCK-WISE CHOLESKY FACTORIZATION OF Y .

Operation Cost (flops)

(11a) 2/3r31
(11b) r2i ri+1 1 ≤ i < N
(11c) r2i−1ri + 2/3r3i 2 ≤ i ≤ N

C. Computational savings using rank one modifications

In this subsection, we describe how to efficiently compute
(9) in certain cases. For generality, let us define a matrix

S := D + αwwT ∈ Rn×n , (12)

with D := diag(d1, . . . , dn), di, α ∈ R>0, and w ∈ Rn. Let
further L ∈ Rn×n be the Cholesky factor of S, i.e. S = LLT .
The goal is to obtain A ∈ Rm×n for some B ∈ Rm×n such
that

ALT = B . (13)

In this case, L can be computed at a cost of order n2 by rank
one modification methods [8]. While this cost is cheaper than
a direct factorization of S, obtaining A still requires a matrix
forward substitution at the cost mn2.

It is easy to show that with the formula by Sherman and
Morrison [20], calculating A directly (without calculating L
first) is possible at an overall cost of order mn. However, it
is well known that [20] is an unstable method [21], which
we also observed in our experiments. We provide an efficient
and stable method in the following that is based on [8] and
makes use of the special structure of L:

Li,i =
√
di + αiw2

i , 1 ≤ i ≤ n (14a)

Li,j = βjwi , j < i ≤ n , (14b)

where

βj := αjwj/Lj,j , 1 ≤ j ≤ n , (14c)

αj+1 := djαj/L
2
j,j , 1 ≤ j < n , (14d)

and α1 = α. In words, the sub-diagonal elements of column
j of L are a multiple of the corresponding elements of w, see
(14b). We can exploit this property to perform an efficient
matrix forward substitution while computing L at the same
time. The standard matrix forward substitution formula for
the elements of A is given by

ai,j =
bi,j −

∑j−1
k=1 ai,kLj,k

Lj,j
. (15)

Substituting (14), we obtain

ai,j =
bi,j − wj

∑j−1
k=1 ai,kβk√

dj + αjw2
j

, (16)

where wj can been moved in front of the sum by property
(14b). Introducing the variable

γi,j :=

j−1∑
k=1

ai,kβk , (17)

a recurrence relation can be established between γi,j and
γi,j+1:

γi,j+1 = γi,j + ai,jβj (18)

with γi,1 = 0. This allows to avoid the innermost loop of
the matrix forward substitution, i.e. the summation in (15),



if A is calculated row-wise with increasing column index j.
Hence we can obtain A at a total cost of order mn (instead
of n2 +mn2) in a numerically stable fashion.

Concerning the computational complexity of (8) in Ta-
ble II, the above implies that whenever either Φi−1 or Φi

have the structure of (12), the costs for obtaining (9a) and
(9b) are negligible. Moreover, also the cost of the first
step, i.e. for obtaining the Cholesky factor Li, can then be
neglected. These are generally significant savings which can
be obtained without numerical degradation.

D. Problem dependent complexity categories

As we have seen in Section III-A and Section III-B,
the overall cost of the interior point method depends on
the cost of computing Φi, Yi, and Yi,i+1, which depend
on the problem formulation, and on factoring Y , which is
independent of latter. Starting from (6a), we note that there
are the following five basic complexity levels (the analysis
is carried out block-wise, denoted by subscripts i):
(A) Hi(yi, λi) diagonal and JT

i (yi)S
−1
i ΛiJi(yi) diagonal

∀yi results in Φi diagonal. Operations related to factor-
ing Φi as well as matrix forward and back substitutions
to obtain products by Φ−1

i become negligible (Steps 1-
3 in Table II).

(B) Hi(yi, λi) diagonal and JT
i (yi)S

−1
i ΛiJi(yi) low rank

∀yi results in dense Φi, but inexpensive low rank
modifications as shown in Section III-C can be used
such that Steps 1-3 in Table II can be neglected. (This
case is however more expensive than case A due to
squared cost terms).

(C) Hi(yi, λi) dense but such that Hi(yi, λi) = Hi +∑qi
j=1 λiHi, and JT

i (yi)S
−1
i ΛiJi(yi) low rank. Ma-

trix Hi can be pre-factored offline, Hi = LHi
LT
Hi

,
and stored. The Cholesky factor of Φi can then be
computed by a low rank modification of LHi

(λi) :=

LHi

(
I +

∑qi
j=1 λiI

)−1/2

at a cost of order p2i . This
procedure removes Step 1 in Table II.

(D) Hi(yi, λi) dense and JT
i (yi)S

−1
i ΛiJi(yi) low rank.

All steps of Table II are necessary, but computing Φi

is of order p2i .
(E) All other cases: All steps of Table II are necessary, and

computing Φi additionally adds a cost of p2i ri due to
the term JT

i (yi)S
−1
i ΛiJi(yi).

E. Application to Linear MPC: Special Cases

In this section, we make the connection from Section III-
D to MPC and show where the previously discussed cases
are relevant when solving an MPC problem. Table IV cate-
gorizes widely used MPC problems into the problem classes
introduced in Section III-D. Interestingly, the most expensive
case is the one with dense linear constraints, as often used in
MPC formulations with polytopic sets. The least expensive
problem occurs for box constraints and diagonal costs, while
problems with quadratic constraints are in between these two
extremes. We would like to point out that the common case
of a quadratic terminal cost, lN (xN ) := xTNPxN , along with

TABLE IV
CATEGORIZATION OF MPC PROBLEMS INTO COMPLEXITY CLASSES.

gi(yi) \ li(yi) cT yi yTi Qyi, Q diag. yTi Qyi, Q dense

y
ij
≤ yij ≤ ȳij A B E

Fiyi ≤ fi, F dense E E E
yTi Mijyi ≤ rij B B D (C if Q = Mi,j )

a level set of latter as terminal set constraint, xTNPxN ≤ α,
falls into category C. This is an important result, since
computation of polytopic terminal sets (category E) are
prohibitively complex for high dimensions and quadratic
terminal sets therefore represent a computationally beneficial
alternative that can be applied to all problem dimensions.

Note that the structure of the equality constraints in an
MPC problem allows for a further complexity reduction. The
associated matrices can be defined for standard dynamics
xk+1 = Axk +Buk as

C0 := [I 0nx×nu
] , D1 := 0nx×(nx+nu) ,

Ci := [A B] , Di+1 := [−Inx
0nx×nu

] , i = 2...N.

If the states and inputs are separable, Φi has block structure
with block sizes nx and nu, respectively. In this case
each operation in Table II decomposes into two cheaper
operations, one with pi = nx, ri = nx and one of size
pi = nu, ri = nx. Furthermore, in the case of diagonal
costs and box constraints, all matrices involved in (10b) and
(10c) are diagonal, hence the cost of Step 5 and 6 of Table II
can be neglected.

To summarize, we have extended the tailored Newton step
computation introduced in [2] to the more generic problem
class (P) and provided a detailed cost analysis of the search
direction computation. Based on this analysis, special cases
of (P) which allow for significant computational savings were
identified. Among these are problems with box constraints,
diagonal costs and, most importantly, quadratic constraints
which are preferable in MPC formulations with stability
guarantees. These can be in fact cheaper than formulations
with general polytopic constraints, which, despite their wide
usage, belong to the most expensive category.

IV. IMPLEMENTATION DETAILS: FAST AND SMALL CODE

The results presented in the next section have been ob-
tained with a code written in strict ANSI-C in order to
support a wide range of embedded platforms. For high
performance, the operations for computing Φ, Y , LY and
the forward substitutions needed for ∆ν are carried out
block-wise; for instance, instead of computing Y as a whole
matrix, we directly factor Yii as soon as it is available
and perform the forward substitution. This interleaving, or
“zipping” of basic linear algebra operations greatly enhances
both temporal and spatial locality of the code, reducing cache
misses to a minimum. Note that the matrices involved in the
computation of (8) and (11) are of small dimension (in case
of linear MPC with quadratic costs: nx and nu) and thus
typically fit into the first level cache. Therefore, slow data
transfers to or from main memory are significantly reduced
and the CPU or DSP can be kept as busy as possible.



Our solver builds on top of a small linear algebra library
for operations on symmetric matrices, which we store in
lower triangular format. We use static memory allocation,
and store the working set of the code in simple C arrays.
Computations were cached in memory if the result is needed
at different places of the solver (e.g. the term S−1Λ).

Despite the aforementioned measures for high perfor-
mance, we would like to point out that we use standard, naive
code with nested for-loops for our linear algebra system.
Since the matrix dimensions are fixed a-priori, it is easy
for the compiler to perform loop unrolling optimizations.
As a result, our code is very small and library free2. A
direct comparison to MA57BD, a widely used LDLT sparse
factorization code, is given in the next section.

V. COMPUTATIONAL RESULTS

A. The oscillating masses benchmark problem

Benchmark problem 1 (BP1). In order to evaluate the
performance of the solver for various problem sizes, the
following MPC problem is formulated for a chain of masses
interconnected with spring-dampers [2]:

min
u

VN (x,u) :=

N−1∑
n=0

xTnQxn + uTnRun + Vf (xN )

s.t. x0 = x(0) ,

xn+1 = Anxn +Bnun n < N ,

− 4 ·1nx
≤ xn ≤ 4 ·1nx

n ≤ N ,

− 0.5 ·1nu
≤ un ≤ 0.5 ·1nu

n < N ,

(19)

with R = I and Q = 3I and Vf (xN ) := xTNQxN . Note
that this formulation does not provide stability guarantees
since no terminal constraint is included. The problem size
can be chosen by means of the number of masses M , with the
relation nx = 2M and nu = M − 1. The dynamic matrices
are dense due to discretization (time step 0.5s). The problem
was solved for various numbers of masses M and prediction
horizons N on 3 different platforms for a test set of 100
randomly chosen feasible points. We formulate the problem
as a sparse QP, leaving the states as optimization variables.
This benchmark problem belongs to class A (see Section III-
D) and has a total cost of (N + 1)(8/3n3x + n2xnu) +Nn3x
flops per interior point iteration.

Benchmark problem 2 (BP2). To show the code per-
formance for a more complex problem, we add a quadratic
terminal cost Vf (xN ) := xTNPxN and a quadratic termi-
nal constraint xTNPxN ≤ α to (19), where P solves the
discrete-time Riccati equation related to LQR control and
α determines the maximum level set of Vf such that no
constraints are violated. In addition, we add a real-time
constraint VN (x) ≤ τ to ensure that the system is stable
even in case of early termination of the solver, see [5] for
details. The parameter τ is the cost of the previous solution
minus a small multiple of the stage cost xT0Qx0. To exploit

2A square root function is needed, which is available on all platforms

TABLE V
CODE SIZE OF COMPILED CODE ON DESKTOP PC.

MPC Problem Code Size [kB]

M nx nu N MA57 library CVXGEN FORCES

2 4 1 10 1102 318 104
4 8 3 10 1102 848 134
6 12 5 10 1102 1885 156

11 22 10 10 1102 7654 127
15 30 14 10 1102 # 131
30 60 29 30 1102 # 191

the block structure in (P), we express VN (x) ≤ τ by

xTnQxn ≤ γn , uTnRun ≤ δn , n < N , (20a)
Jn+1 = Jn − γn − δn , n < N , (20b)

J0 = τ , xTNPxN − JN ≤ 0 . (20c)

Note that this results in a QCQP with block sizes nx +1 and
nu+1. The rank-1 modification scheme of Section III-C can
be used for the quadratic constraints. The problem belongs
to complexity class B for the first N blocks, the last block
is class C.

B. Solvers and compilers

In the following, we compare the solve times of the
FORCES code against those of CPLEX and CVXGEN. To
assess the performance of the block-wise Cholesky factoriza-
tion with respect to standard sparse LDLT factorization, we
measure the time needed for latter using the MA57 library,
which is currently one of the best sparse factorization codes.

On the desktop PC and the Atom platform, we have
used the Intel C Compiler 12.0.3 with options -O3 and,
depending on the CPU architecture -m64 for 64 bit or
-m32 for 32 bit, to compile all solvers except CPLEX 12.2,
which comes in binary format. Sourcery G++ Lite 4.5.2 was
used for cross compilation for the ARM platform with flag
-O3. We compiled MA57 (version 3.7.0) using the Intel
Fortran Compiler 12.1.0 and the Intel Math Kernel Library
that is shipped with Intel Composer XE 2011 SP1 7.256.
OOQP 0.99.22 was used to call MA57.

Remark V.1 Note that some software packages, such as
OOQP, can be supplied with a custom linear algebra system.
In these cases, the methods proposed in this paper could be
implemented in order to speed up computations.

C. Code performance

The results of our numerical case study are summarized
in Table VI for BP1. The last column gives the computation
times for BP2 when solved by our solver FORCES (denoted
by RT for real-time formulation). BP2 cannot be solved by
OOQP and CVXGEN due to the quadratic constraints; the
timings for BP2 solved by CPLEX have been omitted.

For small problem sizes, the tailored solvers CVXGEN and
FORCES outperform CPLEX by two orders, and MA57 by
one order of magnitude in speed, although we compare the
factorization time vs. full interior point iterations. As the
problem size increases, CPLEX scales very well, while code



TABLE VI
RUN TIMES FOR 10 INTERIOR POINT ITERATIONS (FOR MA57: 10 FACTORIZATIONS), AVERAGED OVER 100 RANDOM INITIAL STATES.

MPC Problem Optimization Problem Runtimes [ms]

Platform M nx nu N p r q CPLEX MA57 CVXGEN FORCES FORCES RT

2 4 1 10 54 44 108 10.73 1.60 0.18 0.09 0.25
Desktop PC 4 8 3 10 118 88 236 10.80 5.11 0.71 0.27 0.67
Intel Core i7 6 12 5 30 522 372 1044 16.20 31.45 5.90 1.95 4.15
3.2 GHz, 12 GB RAM 11 22 10 10 342 242 684 16.60 29.19 17.28 2.98 5.53
Ubuntu Linux 10.04 15 30 14 10 470 330 940 23.20 59.87 # 6.37 11.63

30 60 29 30 2730 1860 5460 177.70 686.12 # 126.43 218.94

2 4 1 10 54 44 108 ∗ ∗ 1.62 0.77 2.06
Embedded 1 4 8 3 10 118 88 236 ∗ ∗ 5.77 2.33 5.77
Intel Atom Z530 6 12 5 30 522 372 1044 ∗ ∗ 48.07 15.71 35.46
1.6 GHz, 2GB RAM 11 22 10 10 342 242 684 ∗ ∗ † 22.83 43.03
Ubuntu Linux 11.04 15 30 14 10 470 330 940 ∗ ∗ # 48.97 90.71

30 60 29 30 2730 1860 5460 ∗ ∗ # 984.96 1676.82

2 4 1 10 54 44 108 ∗ ∗ 62.09 24.61 59.73
Embedded 2 4 8 3 10 118 88 236 ∗ ∗ 245.65 93.58 174.68
ARM Cortex A8 (TI OMAP 3530) 6 12 5 30 522 372 1044 ∗ ∗ † 662.23 1157.98
500 MHz, 256 MB RAM 11 22 10 10 342 242 684 ∗ ∗ † 933.38 1461.68
Ångström Linux 2.6.32 15 30 14 10 470 330 940 ∗ ∗ # 2072.76 3208.53

30 60 29 30 2730 1860 5460 ∗ ∗ # 39505.55 61348.73
∗ No running implementation † Unable to compile # Unable to generate code

generation with CVXGEN fails for the last three problems.
It can be seen that FORCES is the fastest solver out of
the 4 candidates, solving the problem at least twice as
quickly as CVXGEN. This gap grows with the size of the
problem, as CVXGEN generates more and more code which
has to be loaded into the instruction decoding unit of the
CPU. A comparison of code sizes of the binary code is
given in Table V, showing that FORCES is the smallest
code. Consequently, for the 11-masses problem, the proposed
solver is more than 5 times faster than CVXGEN, and it
scales extremely well with the problem size. Furthermore,
the problem formulation with superior theoretical properties
(BP2) is solved more quickly by FORCES than BP1, which
does not provide stability guarantees, by CVXGEN.
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