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Abstract

Mass spectrometry is the major analytical tool for the identification and quantification of proteins

in biological samples. In so-called top-down proteomics, separation and mass spectrometric

analysis is performed at the level of intact proteins, without preparatory digestion steps. It

has been shown that the tandem mass tag (TMT) labeling technology, which is often used

for quantification based on digested proteins (bottom-up studies), can be applied in top-down

proteomics as well. This, however, leads to a complex interpretation problem, where we need to

annotate measured peaks with their respective generating protein, the number of charges, and

the a priori unknown number of TMT-groups attached to this protein. In this work, we give an

algorithm for the efficient enumeration of all valid annotations that fulfill available experimental

constraints. Applying the algorithm to real-world data, we show that the annotation problem can

indeed be efficiently solved. However, our experiments also demonstrate that reliable annotation

in complex mixtures requires at least partial sequence information and high mass accuracy and

resolution to go beyond the proof-of-concept stage.
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1 Introduction

The two major goals of proteomics are to identify and quantify proteins present in a given

sample. Today, the most important analytical technique for this purpose is mass spectrometry

(MS). Typical protein mixtures are highly complex: proteomes contain hundreds to several

hundreds of thousands of proteins and protein forms. Often, many components of the sample

will have similar masses, leading to overlapping signals in the spectrum that are hard to

disentangle. Hence, the proteins usually have to be separated prior to MS with respect to a

property that is not strongly correlated with the mass; a powerful technique for this purpose

is liquid chromatography (LC).

The separated samples are then injected into a mass spectrometer, leading to a series of

mass spectrometric runs, each applied on the sample content eluting from the chromatographic

column at a specific retention time (RT) interval. In the mass spectrometer, the molecules are

then ionized by the attachment of z protons (simultaneously delivering z positive charges),

and accelerated in an electric field. Since the reaction of the peptide to the field depends on
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the ratio m
z

of peptide mass over its acquired charge, this quantity can now be measured. In

realistic spectra, the informative parts of the mass spectrum (the ’signal’ content) have to

be identified and separated from parasitics, such as high-frequency noise or low-frequency

baseline terms [5]. The resulting parts of the signal that are believed to arise from a molecule

of interest are known as peaks. MS signals are usually formed by groups of peaks, representing

the sum of all isotopes contained in the molecule. Consequently, if the spectrometer records

a peak for a molecule with mass mi at mi

z
, we can typically expect to find a peak also at

mi+mp

z
, where mp is the mass of a single proton. If the spectral resolution allows to separate

and identify at least two successive isotopic peaks, the molecular charge can be inferred.

With this information, we can now try to identify the molecular content of the sample.

In proteome analysis, we are typically given a database with the amino acid sequences of

potentially occurring proteins. In the general case, this database might be comprised of all

proteins contained in, e.g., Uniprot [2] for the species of interest. The masses found in the

experiment are then used as a query against the database. But unfortunately, the molecular

mass alone is often not sufficiently characteristic for the molecule. Trivially, all sequence

permutations of a given protein lead to the same mass and, hence, cannot be distinguished

from this information alone. Even mutations of the sequence often lead to mass differences

that are too small to be recognizable.

In tandem mass spectrometry, or MS/MS, this problem is solved by fragmentation of

those parts of the sample that were identified to be potentially relevant. Since proteins

preferably break at well-defined positions along their backbone, a large enough sample of

the fragmentation space (induced, e.g., through molecular collisions) will lead to pairs of

corresponding masses from which at least partial sequence information can be derived. Since

this information characterizes the molecule much better MS/MS is typically required today

for reliable identification.

For molecules as large as proteins, many steps of this procedure become very challenging.

For instance, the MS/MS spectra of proteins are much harder to interpret than those of

smaller molecules, and their isotopic patters are much more complex. Thus, proteins are

often first digested into peptides with the help of specific proteases. The query database is

then virtually digested: for a given protein sequence, the resulting peptides can be easily

inferred from the protein’s primary sequence, since the restriction enzymes cut the sequence

at specific cleavage sites1. From the identification of the peptides found in the mass spectrum,

we try to infer the proteins that contained those peptides. To this end, different scoring

schemes [3, 10] based on different statistical models can be used to generate p-values for the

occurrence of the proteins in the database.

Such a setup, with its digestion of proteins into peptides, which are then identified

and used as evidence for their containing proteins, is known as shotgun- or bottom-up

proteomics. The major advantage of this technology is that peptides are much simpler to

separate by LC and can be measured with higher mass accuracy and sensitivity in mass

spectrometry. The MS/MS spectra of peptides are easier to interpret, even though in many

cases a large percentage of them cannot be annotated successfully. Thus, even though

bottom-up proteomics is a very sensitive method, many of the peptides are missed in practice.

Also, some of the digestion peptides for a given protein might not ionize sufficiently well to

allow their detection, or they might be too small or too large for the given experimental

setup. This often leads to non-optimal coverage of the protein sequence by peptides in the

1 Since the protease might miss potential cuts, it is customary to generate all peptide combinations up to
a fixed number of missed cleavage sites.
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digest: even though the protein has been identified through several of its digestion peptides,

large parts of its sequence might not be represented in the results. In summary, the increased

complexity of the samples – out of a single protein, multiple peptides are generated – imposes

challenges even though each individual component is more easily identified.

These drawbacks are avoided by so-called top-down proteomics studies, where no digestion

of the protein into peptides is performed. Instead, the sample is separated via LC at the level

of intact proteins, at which also the MS experiment is performed. Hence, the information

belonging to a single protein is not distributed over many peptides, which allows direct

distinction of protein isoforms or of post-translationally modified forms from their non-

modified counterparts. However, the separation of intact proteins is not as straightforward

as that of peptides, and the detection limits of proteins in MS are strongly elevated with

increasing protein size. The situation is complicated further, as from the MS/MS spectra

of intact proteins, only limited information about N- and C-terminal parts of the protein

sequence can be derived, hampering unambiguous identification. Nevertheless, the clear

advantages for downstream analysis due to an automatically full sequence coverage of the

proteins make top-down proteomics an increasingly popular alternative to bottom-up studies.

An even greater challenge than the identification of proteins is their accurate quantification.

Several strategies for relative as well as for absolute quantification have been proposed [1].

In addition to label-free approaches, methods for quantification in MS mode using stable

isotope labeling quantification have been developed, where the molecules of interest are

modified with chemical groups that allow for an accurate quantification. Another approach

is the use of isobaric labeling strategies, where the samples are labeled with reagents which

consist of three major groups: (i) a reactive group that allows covalent attachment of the

reagent to the peptide, in particular the N-termini and epsilon-amino groups of Lysine

residues; (ii) a reporter group and (iii) a balancer group. These reagents can now be formed

in four or eight (iTRAQ [4]) or six (TMT [13]) different flavors: for TMT, for instance, a

reporter group in the first flavor has a mass of 126 Da, the corresponding balancer of 103

Da, yielding a total mass of the label of 229 Da. The reporter of the second flavor has

a mass of 127 Da, the balancer of 102 Da, again yielding the same total mass of 229 Da.

As the different flavors share the same molecular properties and only differ in the isotope

composition, they also appear at the same retention times. Hence, after labeling of different

biological samples with these reagents (one flavor per sample), the labeled samples can

be combined, treated by LC, and analyzed by MS. In MS mode, equivalent peptides from

different biological samples will have the same m/z-values, as the reagents were isobaric.

But upon fragmentation of the peptides in MS/MS experiments, the reporter groups are

liberated, yielding signals of the corresponding reporter ions at 126, 127, . . . , 131 Da. The

intensities of these reporter ion signals deliver a direct readout of the relative quantities

of the peptides in the different biological samples. Isobaric labeling strategies have been

originally developed for quantification studies in bottom-up approaches, i.e., at the level

of peptides. But a recent pilot study [6] has shown that tandem mass tag labelling can be

applied in a top-down setting as well. At this stage, the method is still restricted to the

quantification and simultaneous MS/MS-based identification of relatively small proteins up

to ≈ 35 kDa. A severe bottleneck is the interpretation of MS- and MS/MS-spectra of such

isobarically labeled intact proteins, which will be the focus of this work.

Three different effects render this a challenging task: (i) The degree of labeling may differ

and is unknown for an a-priori unknown protein. This is caused by incomplete labeling or

unwanted non-specific labeling of residues in proteins. Consequently, a theoretical protein

with 15 Lysine residues can lead to a mixture containing protein species with 12 to about
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Figure 1 The experimental setup of top-down tandem mass tag proteomics [6]

18 isobaric labels attached. (ii) Each of the proteins features a complex isotopic pattern as

outlined above. (iii) In the ionization process (electrospray) used for the analyis of intact

proteins, species with different charge states are formed by attachment of different numbers

of protons. Thus, a single theoretical protein with a mass of 15 kDa may have 10, 11, . . . , 20

attached protons, leading to peak groups at 15

10
kDa, 15

11
kDa, . . . , 15

20
kDa. This number of

attached protons cannot be predicted, in particular not for unknown proteins in unknown

proteomes. But it can be deduced from the mass differences of the isotopes in the peak

group according to the relation given above.

These factors lead to a difficult interpretation problem, where we want to analyze for

each peak which proteins could have generated it, and compute the corresponding number

of charges2 and TMT marker groups. In this work, we will present an efficient algorithm

for this annotation task and will apply it to real-world experimental data. Using our

algorithm, we will further demonstrate that the information contained in the experiment is

insufficiently specific, resulting in false-positive annotations that match the given masses.

We will then discuss how to integrate further experimental insight into the algorithm at

moderate computational cost that can weed out many false positives.

2 Methods

2.1 Experimental setup

For generation of MS and MS/MS datasets, a mixture of six known model proteins was

labeled with the TMT-6-plex reagent. It has to be noted that several of the six model proteins

contained impurities, thus finally ten different proteins were present in the test mixture (see

Tab. 1). The proteins were separated via ion paring reversed phase chromatography using

monolithic columns and analysed in a Thermo Orbitrap Velos mass spectrometer equipped

with ETD. The mass spectrometer was operated in the data-dependent mode to switch

automatically between Full-MS (scan 1), HCD-MS2 (scan 2), and ETD-MS2 (scan 3). After

a Full-MS scan acquired in the ion trap MS, the most abundant protein ion (top 1) was

selected for an HCD-MS2 scan and an ETD-MS2 scan. Full details of the experimental

procedure were described in [6]. A schematic sketch of the approach is shown in Fig. 1.

2 Please note that, in principle, other ionization types than addition of protons can occur, and can
indeed be handled by our method. For reasons of simplicity, these will not be considered in the current
manuscript.
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Table 1 The ten protein mix and the results of the manual annotation [6]. Note that in the

manual annotation, all Lysine residues were assumed to carry a TMT group. The mix consists of six

known model proteins labeled with the TMT-6-plex reagent and four impurities.
∗ : C-terminal seq. of ovalbumin - ASVSEEFRADHPFLFCIKHIATNAVLFFGRCVSP
#: undefinable in manual annotation due to the poor MS quality derived from post-translational

modifications (e.g. phosphorylation, glycosylation etc)

Theo. No. Of Theo. MW Observed Charge Calc.

Protein Name MW Cys/Lys with TMT m/z State MW

(kDa) (kDa) (Da)

Cytochrome C 12.3 2C/19K 16.8 1045.7 16 16714.3

(Equine) 1115.2 15 16713.2

1194.8 14 16713.0

Myoglobin 16.9 0C/19K 21.5 1436.6 15 21533.9

(Equine) 1539.1 14 21533.3

1657.4 13 21533.1

Carbonic Anhydrase 29.1 0C/18K 33.2 949.7 35 33205.6

(Bovine) 977.7 34 33208.9

1007.2 33 33205.3

Carb. Anhydrase Impurity 1 8.5 0C/7K 10.2 1017.9 10 10168.9

Ubiquitin 1130.8 9 10168.1

partial seq. 1272.0 8 10168.2

Carb. Anhydrase Impurity 2 15.5 3C/10K 17.9 1278.4 14 17882.8

Superoxide Dismutase 1376.7 13 17883.7

1491.2 12 17882.2

Ovalbumin (Gallus) 42.8 6C/20K 47.7 UD#

Ovalbumin Impurity 1 20.1 18C/13K 24.3 UD#

Ovomucoid

Ovalbumin Impurity 2 3.8 2C/1K 4.3 877.5 5 4382.5

C-terminal ovalbumin∗ 1096.5 4 4381.9

1461.9 3 4382.7

BSA (Bovine) 66.6 34C/60K 82.3 UD#

Apo-transferrin (Bovine) 77.7 38C/64K 94.5 UD#

2.2 Formal problem formulation: The TMT annotation problem

In this section, we will introduce the formal definition of the annotation problem posed by

top-down TMT labelling. Informally, we want to query a database of known protein masses

(e.g., the whole proteome of the organisms contained in the sample) against the peaks detected

in the experiment. To this end, we want to decide for every protein in the database and for

every peak, whether this protein could have led to the peak’s observed mass-over-charge

ratio through a feasible combination of base protein mass, TMT attachments, and charges

(protons). To formally formulate the problem, we first need a few definitions.

Let mT denote the mass of the TMT marker group (mT ≈ 229.162932 Da), and mp

the mass of a single proton. By DB := {mi|i = 1, . . . nDB}, we denote the database

we want to query, where mi is the monoisotopic mass of the i-th protein in DB. We

assume that the spectrum has been pre-processed to yield a set of mass spectrometric peaks

S := {pj |j = 1, . . . nS}.
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Let us further assume that one of the populations in the sample was given by the i-th

protein, to which βi TMT-groups and αi excess protons have been attached, with βi, αi ∈ N
+.

This protein will have a charge of z = αi, measured in units of elementary charge, and a

total mass-over-charge ratio of

mz,i (αi, βi) :=
mi + αimp + βimT

αi

This relation between protein, ionization state, and TMT assignment is not unique: one

protein species may acquire different ionization states as well as different numbers of attached

TMT groups. However, in practice, not all values of αi and βi are possible: the amount of

charges and of TMT groups that a given protein can acquire falls within limited ranges, i.e.,

αi ∈ {αmin
i , . . . αmax

i } and βi ∈ {βmin
i , . . . βmax

i }

In the following we describe how to efficiently reduce the parameter search space. Since

the TMT markers attach to Lysine-residues, it is natural to choose βmin
i , βmax

i accordingly,

and hence limit the number of TMT-attachments to a 2x window, i.e.:

βi ∈ {max(0, #LYS − x), . . . #LYS + x} for x ∈ N
+

We now want to annotate all measured peaks pj ∈ S with all predicted peaks p̂i due

to feasible protein/TMT/proton combinations within a given accuracy threshold. As the

accuracy of mass spectra is typically dependent on the mass-over-charge ratio, it is customary

to use relative measures of error. Thus, for every measured peak pj we want to determine all

feasible predicted peaks p̂i with

|p̂i − pj |

pj

≤ ǫ

To solve this problem, we will compute for every protein mi in DB and for every peak pj

all feasible values of αi,j and βi,j , such that the assumption of protein i with αi,j attached

protons and βi,j attached TMT markers explains peak pj within the given relative accuracy

threshold ǫ, which gives the following combinatorial problem:

∀i ∈ {1, . . . , nDB} :

∀j ∈ {1, . . . , nS} :

find αi,j ∈ {αmin
i,j , . . . , αmax

i,j },

βi,j ∈ {max(0, #LYS − x), . . . #LYS + x} : |mz,i(αi,j , βi,j) − pj | ≤ ǫ · pj

Obviously, not all combinations of αi,j , βi,j will lead to a valid annotation. In the following

we will determine reasonable boundaries for αi,j , given βi,j :

|mz,i(αi,j , βi,j) − pj | ≤ ǫ · pj

⇔

∣

∣

∣

∣

mi + αi,jmp + βi,jmT

αi,j

− pj

∣

∣

∣

∣

≤ ǫ · pj

αi,j>0
⇐==⇒ |mi + αi,jmp + βi,jmT − αi,jpj | ≤ αi,j · ǫ · pj

In practice, the allowed window 2x for the parameter βi,j is quite small (in our experiments,

we used x = 3). We can thus easily test all allowed values for βi,j . For any such fixed but

GCB 2013
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arbitrary βi,j , we find

|mi + βi,jmT + αi,j(mp − pj)| ≤ αi,j · ǫ · pj

⇔ (mi + βi,jmT + αi,j(mp − pj)) ≤ αi,j · ǫ · pj ∧

(mi + βi,jmT + αi,j(mp − pj)) ≥ −αi,j · ǫ · pj

⇔ αi,j(mp − pj − ǫ · pj) ≤ −(mi + βi,jmT ) ∧

αi,j(mp − pj + ǫ · pj) ≥ −(mi + βi,jmT )

Remembering that mp denotes the mass of a single proton, and pj a mass-to-charge ratio

in a feasible range for proteins, we see that mp ≪ pj . In addition, the accuracy threshold ǫ

is small in practice – on the order of tens or hundreds of parts per million (ppm) – so that

we also find ǫ · pj ≪ pj . Indeed, we can safely assume that mp + ǫ · pj ≪ pj and, hence,

(mp − pj − ǫ · pj) < 0 ∧ (mp − pj + ǫ · pj) < 0

We thus find:

αi,j ≥ −
mi + βi,jmT

mp − pj − ǫ · pj

∧ αi,j < −
mi + βi,jmT

mp − pj + ǫ · pj

We can thus restrict αi,j as a function of the fixed but arbitrary βi,j . For simplicity of

notation, we introduce ai,j := mi + βi,jmT > 0 and bj := pj − mp > 0, which yields

αi,j ≥
−ai,j

−bj − ǫ · pj

=
ai,j

bj + ǫ · pj

> 0

∧ αi,j <
−ai,j

ǫ · pj − bj

=
ai,j

bj − ǫ · pj

> 0

so that we finally obtain

αmin
i,j :=

⌈

ai,j

bj + ǫ · pj

⌉

, αmax
i,j :=

⌊

ai,j

bj − ǫ · pj

⌋

Thus, we only have to consider αi,j ∈ {αmin
i,j , . . . , αmax

i,j }. Each of these values will lead to

a valid explanation of the peak, i.e., the triple < mi, αi,j , βi,j > yields an m/z-value that

deviates from pj by less than ǫ. We can thus trivially enumerate all valid annotations.

2.3 Results of the procedure

We implemented the scheme described above in OpenMS [9]. To test the correctness, efficiency,

and utility of our approach, we applied our implementation to the experimental data set used

in [6]. The parameters used in our study were chosen to conform with experience gathered by

our experimental partners. For the limits on the number of attachable TMT groups, we used

βmin
i,j := (#LY S + 1) − 2, βmax

i,j := (#LY S + 1) + 3

where the +1 accounts for attachment at the N-terminus. The accuracy threshold was varied

to study its influence on the number of generated solutions. Typical values are in the order of

tens to hundreds parts per million, i.e., ǫ ≈ 10−5 to 10−4. While the minimal and maximal

number of charges that can explain a given peak have been computed as a function of βi,j

above, we also enforce global limits on them. Obviously, we require αi,j > 0. In accordance

with experimental insight, we also introduce an upper boundary: αi,j < 40.
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Table 2 Results on the 10-protein mix from [6]. ǫ is given in ppm.

ǫ annotated peaks valid annotations identified proteins

10 510 546 8

20 992 1092 8

100 5090 7665 8

300 12614 30408 8

In [6], the proteins were first subjected to certain chemical modifications, as is commonly

the case in proteomics. To account for these modifications in our study, we performed a

virtual carboxyaminomethylation. This modification changes the mass of Cysteine-residues

by δcarb
m ≈ +57.0214 Da. We assume this modification to be fully effective (“fixed”), and

hence arrive at a mass difference of #CYS · δcarb
m for every protein in the reference database.

In addition, every initiator Methionine might be removed, with an acetylation of the new

N-terminus, yielding a mass difference of δacet
m ≈ −89.0299 Da. To account for this variable

modification, we add a modified and an unmodified variant for each protein to the reference

database.

With these preparations, we first attempted to recreate the results described in [6]. To

this end, the reference database was set to contain the 10 proteins known to be present in the

sample (for details, see [6]). The spectrum was processed using the OpenMS Wavelet-based

peak picker [8, 7, 12], leading to 16, 042 peaks. The runtime of our algorithm did not change

significantly with varying values of ǫ, and was ≈ 0.55 seconds in each case. Tab. 2 describes

the results: 8 out of 10 proteins were consistently found, but many more valid annotations

were found than previously expected.

The method as described above uses total mass as a descriptor for a protein, which

is known to be insufficiently specific in the general case. Still, the large number of valid

annotations came as a surprise for two reasons: first, since the query database is small, only

very few proteins were expected to fit a given peak (for larger data bases, partial sequence

information derived from MS/MS experiments can help in filtering false positive protein

identifications). Second, as a result of the time-consuming manual annotation process used

previously, it was suspected that only a small number of TMT/charge-combinations of a

given protein would explain any given peak, if it could be explained at all.

In practice, though, the mass accuracy achieved in the ion trap MS is insufficient to

rule out many of the possible explanations. For low mass accuracy, several of the peaks of

our spectrum could be reasonably explained by multiple variants. For the determination

of intact protein masses, the ion trap was used [6]; here the mass accuracies achievable for

intact proteins are at best greater than 10 ppm for very small proteins and can reach the Da

range for larger ones, yielding very large ppm values3. Accordingly, we also performed our

experiments with large mass deviations. However, for deviations as large as ǫ = 100 ppm,

we could often not even distinguish between acetylated and non-acetylated versions of the

protein. We thus decided to adapt the algorithm for improved specificity.

3 These large mass deviations also prevent to distinguish individual peaks in the isotopic pattern and,
hence, a simple determination of the charge. This also prevents application of most feature detection
procedures used in bottom-up proteomics.
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Figure 2 Potential charge ladders of annot-

ated neighbouring peaks (blue nodes). These

can be used for filtering significant hits.

Figure 3 Sweep line (red nodes) travers-

ing all charge variants (i, αk, β) of protein i

having β TMT-assignments.

2.4 Refined problem formulation

As by design every annotation computed by our algorithm is valid, i.e., falls within a

chemically reasonable range of TMT- and proton-number, ruling out explanations will require

either improved mass accuracy to allow for reducing the threshold ǫ, or the use of additional

information. One restriction that can be obtained without any further experimental effort

stems from what we call the charge-ladder assumption.

Assume that the sample contains a species of protein i with αi,j attached charges and

βi,j TMT markers. According to experimental experience, it is then very likely that the

sample contains the same protein with the same number of TMT markers, but with a

charge that is smaller or greater by one. We thus call two annotations < mi, αi,j , βi,j >

and < mi, αi,k, βi,k > neighbours, iff |αi,j − αi,k| = 1. Consequently, we should expect that

if we can explain a peak with a given annotation, we can also explain other peaks in the

spectrum by its neighbours. Indeed, a manual annotator would reject an explanation if it

would not be supported by a gap-less chain of neighbouring annotations. Detection of such

chains, however, is complicated by the fact that the corresponding peaks may not necessarily

co-elute and, hence, occur at different retention times. But since the physico-chemical change

of the neighbouring protein species is small, we expect the neighbouring peaks to be located

within a certain retention time interval.

To assign an annotation with a high probability of occurrence, we thus now demand the

existence of a charge ladder (c.f. Fig. 2) of a minimal length, i.e., a chain of neighbouring

explanations that all occur in an RT-window of finite, specified length ∆RT .

Considering the annotations individually as in the last section, we often find many valid

explanations for any given peak. However, only one of these annotations will typically be the

“true” solution, while the others occur by chance. The idea behind our refined procedure is

then that false positive explanations will have a significantly smaller probability of supporting

long charge ladders than the true positives.

The assignment of peak annotations into charge ladders can be achieved efficiently

using a sweep algorithm [11]: for every protein i in the database, we iterate over all TMT-

assignments βi,j that lead to a valid explanation. For each of those (i, βi,j)-pairs, we then

determine a set of potential charge ladders, i.e., maximal sets of neighbouring assignments

{(i, αi,j + k, βi,j)|k = 0, . . . , K}, disregarding the difference of their retention times (this can

be done efficiently by sorting the set with respect to αi,j). Please note that, usually, many of

the (i, αi,j + k, βi,j) values will occur at different retention times.
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Table 3 Results on the 10-protein mix from [6] when including the charge ladder filter with

varying accuracy threshold ǫ, RT window ∆RT , and ladder length L.

ǫ ∆RT L annotated peaks valid annotations found ladders found proteins

10 10 2/3/4 52/10/0 54/10/0 24/3/0 6/3/0

10 20 2/3/4 71/15/0 77/15/0 30/4/0 7/3/0

10 50 2/3/4 83/18/0 91/18/0 31/5/0 7/3/0

20 10 2/3/4 253/83/9 269/87/9 117/28/2 7/5/1

20 20 2/3/4 343/149/44 371/161/56 151/52/10 7/6/2

20 50 2/3/4 408/186/84 444/206/100 151/50/17 7/7/3

100 10 2/3/4 3788/2823/2095 5657/4207/3128 1715/1034/640 8/8/7

100 20 2/3/4 4278/3674/3121 6405/5511/4701 1396/1033/774 8/8/7

100 50 2/3/4 4426/3955/3459 6621/5914/5181 792/571/434 8/8/7

In the next step, we consider each potential ladder individually to extract valid ladders

within the given RT interval. For each αi,j-value in the current potential ladder, we store the

RT values of all peaks that were explained by this annotation in a sorted list. Our sweep line

starts at the annotation with lowest4 RT value, regardless of its charge, and will progress in

order of increasing RT value. In each step, we then try to extend valid ladders to the left

and right, starting from the annotation currently touched by the sweep line, which will form

the lower boundary of the RT interval ∆RT . The ladder can be iteratively extended if a

neighbouring annotation within this RT interval exists. Since annotations are sorted with

respect to RT, and since the sweep line always rests at the annotation with currently lowest

RT value, it suffices to check the lowest-RT remaining (i.e., above the sweep line) annotation

for each charge state. Thus, in each step, only one comparison per charge state is necessary.

If a consecutive list of a user-defined minimal length L has been detected, all annotations in

that list are marked as part of a charge ladder. Finally, the current annotation is removed

from the list and the sweep line progresses to the next annotation. A snapshot at one step of

the algorithm is depicted in Fig. 3.

For pre-sorted input, this algorithm obviously requires O(n · L) operations, where n is

the total number of annotations, since every annotation can be part of only one potential

ladder and is touched at most once by the sweep line, and since every check requires

up to L comparisons. Combined with the sorting steps, we arrive at a total runtime of

O(n · L + n log(n)).

3 Results of the refined procedure

We implemented the refined algorithm as a TOPP [9] tool, which is fully integrated into

the OpenMS framework. The results of the refined procedure on the ten-protein mix are

shown in Tab. 3. These demonstrate that charge-ladders indeed provide a strong filter: with

increasing ladder length, the amount of remaining annotations drops particularly strongly for

presumed low mass accuracy, and the amount of explanations per annotated peak becomes

significantly smaller.

4 In the degenerate case, where the minimum is not unique, annotations are visited from lowest to highest
charge state.
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In general, however, the problem setting is still highly ambiguous, despite the charge-

ladder constraint. To further demonstrate this fact, we again applied our procedure on the

data set of [6], but now with a much larger reference database to query: all proteins contained

in UniProtKB/Swiss-Prot [2] that fall into a similar mass range as the ones known to be

contained in the sample. The resulting data set consists of 3, 990, 159 proteins, including the

10 true positives. Treatment of variable modifications doubles the database size to 7, 980, 318

proteins. The computational efficiency of our method is demonstrated by the fact that the

query of 16, 042 peaks against this huge database terminated in 488 minutes on a single core

of a standard desktop PC (please note that the method can be trivially parallelized with

nearly linear speed-up by splitting query database). However, the specificity on this data

set is very low. Of the 7, 980, 318 proteins in the database, 6, 566, 123 have not only been

annotated successfully, but also as part of stable charge ladders of length at least 3 in an

RT-window of 20 seconds and with a maximal mass deviation of 20 ppm. If we choose more

restrictive parameter values, some of the false-positive identifications indeed vanish (with

ǫ = 10 ppm the number drops to 1, 112, 502), but so do the true positive ones.

4 Conclusion and Outlook

Top-down proteomics is a promising alternative to the popular shotgun approaches that are

commonly applied. Its deficiencies in sensitivity are often made up for by avoiding coverage

problems as they are common in bottom-up settings. Unfortunately, many of the established

solutions for identification and quantification in the bottom-up domain cannot be simply

transferred to the top-down case. This work was concerned with one such solution – the

use of TMT-labelling for quantification purposes. In [6], the analytical background to apply

TMT-markers to intact proteins was established, but resulted in a challenging annotation

problem. In the pilot study, annotation was performed in a time-consuming manual fashion

which can neither be performed on a high-throughput basis, nor generalized to the case of

large reference databases.

Here, we have shown how the same annotation problem can be solved efficiently on a

computer. Application of our method on the original data set has shown that the manual

annotation was valid, but was only one of a variety of equally probable explanations. Only

prior knowledge about the outcome allowed the annotator to select the “true” solution

intuitively, which he validated by using further experimental constraints. We then proceeded

to derive a refined algorithm for improved specificity without the need for further experimental

effort. Through the use of so-called charge-ladders, we can exclude at least some of the noise

present in the annotations, i.e., explanations that were only valid by chance without further

supporting information in the spectrum. The resulting annotation problem seems to become

significantly more complex, but can be solved efficiently using the sweep-paradigm.

Application to the data set has shown that the method is indeed efficient enough to be

applied to real-world data sets. But whether it is specific enough to be applied routinely

is still an open question. If at least partial sequence information is known from MS/MS

experiments, the use of charge-ladders suppresses most false positive TMT/charge-variants.

If ambiguity persists, all valid annotations will be returned to the user, who will then have

to decide whether one of them can be trusted. Without such constraints, the amount of

false-positives is clearly too large to be used routinely, even for moderate sample complexity.

To go beyond the proof-of-concept stage in the general case will thus require at least an

improved mass accuracy, but possibly also the use of other kinds of experimental constraints.

This will be the focus of our future work.
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