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1. Introduction

Let Y, Yj , j = 1, 2 . . . , be i.i.d. R-valued random variables on a probability space (Ω,B,Q),
and E the expectation operator under Q. For x ∈ R, Xn = x+ Y1 + · · ·+ Yn, n = 0, 1, 2, . . . , is
a random walk on R starting at x. In applications to finance, typically, Y is an increment of
a Lévy process, and the random walk appears implicitly when either a continuous time Lévy
model is approximated or options with discrete monitoring are priced. In the present paper, we
derive a general formula and efficient numerical procedure for evaluation of expectations of a
random walk and its extremum. The formula and procedure can be applied to lookback, single
barrier options and single barrier options with lookback features. The method of the paper
can be used as the main basic block to price double-barrier options with lookback features and
discrete monitoring, and American options with barrier/lookback features.

Let X̄n = max0≤m≤nXm and Xn = min0≤m≤tXm be the supremum and infimum pro-
cesses (defined path-wise, a.s.); X0 = X̄0 = X0 = 0. For a measurable function f , consider
V (f ;n;x1, x2) = E[f(x1 + Xn,max{x2, x1 + X̄n})]. At the first step, as in [28], where barrier
options with discrete monitoring in the Brownian motion model are priced, we make the dis-

crete Laplace transform (Z-transform) of the series ~V := {Vn}∞n=0 := {V (f ;n;x1, x2)}∞n=0. For
our purposes, it is convenient to use the equivalent transformation

(1.1) Ṽ (z) =

+∞∑
n=0

znVn.

If f is uniformly bounded, the series ~V is uniformly bounded as well, hence, Ṽ (z) is analytic

in the open unit disc, and ~V can be recovered using the residue theorem: for any R < 1,

(1.2) Vn =
1

2πi

∫
|z|=R

z−n−1Ṽ (z)dz.

The standard and popular approximation to the integral on the RHS is the trapezoid rule.
However, if n is very large, then the trapezoid rule becomes very inefficient as we discuss in
Sect. 2 and illustrate with numerical examples in Sect. 5. The first contribution of the paper
is a new efficient method for a numerical evaluation the integral on the RHS of (1.2). The idea
is to deform the contour of integration {z = Reiϕ | − π < ϕ < π} into a contour of the form
LL;σ`,b`,ω` = χL;σ`,b`,ω`(R), where the conformal map χL;σ`,b`,ω` is defined by

(1.3) χL;σ`,b`,ω`(y) = σ` + ib` sinh(iω` + y),

b` > 0, σ` ∈ R and ω` ∈ (−π/2, π/2). The deformation is possible under natural conditions on

the domain of analyticity of Ṽ ; these conditions are satisfied in applications that we consider.
After the deformation and corresponding change of variables, the simplified trapezoid rule is
applied. The resulting procedure is faster and more accurate than the trapezoid rule. We hope
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that a new efficient numerical method for the evaluation of the inverse Z-transform (1.2) is of
a general interest.

The second contribution of the paper is a general formula for Ṽ (f ; z;x1, x2) in terms of
the expected present value operators (EPV-operators) E±q under the supremum and infimum
processes introduced in [11, 14, 15]. The formula and its proof are essentially identical to the
ones in [21] for Lévy processes, only the definitions of the operators E±q change. In the case

of random walks, the action of E±q is defined as follows. For q ∈ (0, 1), let Tq be a random
variable with the distribution E[Tq = n] = (1−q)qn, independent of X, and let u be a bounded
measurable function. Then E+

q u(x) = E[u(x + X̄Tq)] and E−q u(x) = E[u(x + XTq)]. The
formula is in Sect. 3.2. In applications, the payoff function f may increase exponentially at
infinity. Hence, in order that the expectation be finite, one or even two tails of the probability
distribution of Y must decay exponentially at infinity. We formulate and prove a general
theorem for the case of exponentially increasing payoff functions.

In Section 3.3, we use the Fourier transform and the equalities E±q eixξ = φ±q (ξ)eixξ, where

φ±q (ξ) are the Wiener-Hopf factors, to realize the formula derived in Section 3.2 as a sum of
1D-3D integrals; formulas for the Wiener-Hopf factors are in Sect. 3.1. As applications of the
general theorems, in Section 3.4, we derive explicit formulas for the cumulative distribution

function (cpdf) of random walk and its maximum, and for the option to exchange eX̄T for a
power eβXT .

If one of the tails of the pdf of Y exponentially decays at infinity, the characteristic function
Φ(ξ) = E[eiξY ] of Y and the Wiener-Hopf factors admit analytic continuation to a strip around
or adjacent to the real axis. This property allows one to use the useful property of the infinite
trapezoid rule, namely, the exponential decay of the discretization error as a function of 1/ζ,
where ζ is the step of the infinite trapezoid rule. However, in many cases of interest such as
pricing options with daily monitoring and/or Lévy processes close to the Variance Gamma
process, the integrand decays too slowly at infinity, therefore, the number of terms in the
simplified trapezoid rule necessary to satisfy even a moderate error tolerance can be huge.
Fortunately, in all popular models, Φ(ξ) admits analytic continuation to a cone around the
real axis and exponentially decays as ξ → ∞ in the cone (the only exception is the Variance
Gamma model; the rate of decay is a polynomial one). See [22] for the explicit calculation of
the coni of analyticity in popular models. Therefore, the sinh-acceleration technique used in
[18] to price European options and applied in [20, 19, 23] to price barrier options and evaluate
special functions and the coefficients in BPROJ method respectively can be applied to greatly
decrease the sizes of grids and the CPU time needed to satisfy the desired error tolerance. The
changes of variables must be in a certain agreement as in [16, 42, 21]. Note that the deformation
(1.3) and the corresponding change of variables constitute an example of the application of the
sinh-acceleration technique. We show that, in some cases, one of the integrals (either outer
or inner one) has to be calculated using a less efficient family of sub-polynomial deformations
introduced and used in [19]. Numerical examples are in Section 5. We demonstrate that the
method based on the sinh-acceleration for the inverse Z-transform can achieve the accuracy of
the order of E-14 and better using Matlab and Mac with moderate characteristics, in a second
or fraction of a second, and the precision of the order of E-10 in 20-30 msec., for options of
maturity in the range T = 0.25 − 15Y . In all cases, the arrays are of a moderate size. In
particular, the number of points used for the Z-transform inversion is several dozens in all
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cases. If the trapezoid rule is used, the size of arrays and CPU time increase with the maturity,
and, for maturity T = 15, approximately 3,000 points are needed, and the CPU time is several
times larger. We also compare the results in the case of the continuous monitoring using the
methods developed in [21] and demonstrate that in the case of daily monitoring, the relative
differences are rather small even for T = 15Y .

There is a huge body of the literature devoted to pricing options with barrier and/or look-
back features, and a number of different methods have been applied. The methods that are
conceptually close to the method of the paper are the ones that use the fast inverse Fourier
transform, fast convolution or fast Hilbert transform. In Section 6, we review several popular
methods and explain why these methods are computationally more expensive than the method
of the present paper and cannot achieve the precision demonstrated in Section 5. We also
summarize the results of the paper and outline several extensions of the method of the paper.
We relegate to Appendix A several technicalities. Figures and tables are in Appendix B.

2. Efficient inverse Z-transform

2.1. Trapezoid rule. Let a sequence ~V = (V )∞n=0 and A > 0 satisfy1

(2.1) H(~V ,A) :=
∞∑
n=0

|Vn|An < +∞.

Then, for any z ∈ D(0, A) := {z ∈ C | |z| ≤ A}, the series (1.1) converges and defines the
function analytic in D(0, A) (meaning: analytic in the open domain {|z| < 1/A} and continuous
up to the boundary)2. Hence, Vn can be recovered using the Cauchy residue theorem. Explicitly,
for any R < A, (1.2) holds. Changing the variable z 7→ zR, and introducing h(z)(= h(R, z)) =

(zR)−nṼ (zR), we obtain

(2.2) Vn =
1

2πi

∫
|z|=1

h(z)
dz

z
, n = 0, 1, 2, . . .

Usually, one evaluates the RHS of (2.2), denote it I(h), using the trapezoid rule:

(2.3) TM (h) = (1/M)

M−1∑
k=0

h(ζkM ),

where M > 1 is an integer, and ζM = exp(2πi/M) is the standard primitive M -th root of unity.
For 0 < a < b, denote D(a,b) := {z | a < |z| < b}. Since R < A, h(z) is analytic in the annulus
D(1/ρ,ρ). The Hardy norm of h is

‖h‖D(1/ρ,ρ)
=

1

2πi

∫
|z|=1/ρ

|h(z)|dz
z

+
1

2πi

∫
|z|=ρ

|h(z)|dz
z
.

The error bound is well-known; for completeness, we give the proof in Sect. A.1.

1In applications to pricing options in an exponential Lévy model with the characteristic exponent ψ, A =

e∆̄ψ(−iβ), where ∆̄ is the time step, and β ∈ R depends on the option’s payoff.
2Recall that the function Ṽ (1/z) is called the Z-transform of the series ~V .
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Theorem 2.1. Let h be analytic in D(1/ρ,ρ), where ρ > 1. The error of the trapezoid approxi-
mation admits the bound

(2.4) |TM (h)− I(h)| ≤ ρ−M

1− ρ−M
‖h‖D(1/ρ,ρ)

.

If Vn are real, then h(z) = h(z̄), hence, we can choose an odd M = 2M0 + 1 and obtain

(2.5) TM (h) = (2/M) Re
M−1∑
k=0

h(ζkM )(1− δk0/2).

2.2. Sinh-acceleration. Let there exist γ ∈ (0, π) such that Ṽ admits analytic continuation
to a domain of the form U(R, ρ, γ) = (D(R/ρ,Rρ) − (Cγ ∪ {0})) \ D(0, R/ρ), where Cγ =
{z | arg z ∈ (−γ, γ)}, and let there exist CṼ > 0 and aṼ < n such that

(2.6) |Ṽ (z)| ≤ CṼ |z|
aṼ , z ∈ U(R, ρ, γ).

Then we can deform the contour of integration {z = Reiϕ | − π < ϕ < π} in (1.2) into a
contour of the form LL;σ`,b`,ω` = χL;σ`,b`,ω`(R), where the conformal map χL;σ`,b`,ω` is defined
by (1.3). After the transformation, we make the corresponding change of variables and reduce
to the integral over R:

(2.7) Vn =

∫
R

b`
2π
χL;σ`,b`,ω`(y)−n−1 cosh(iω` + y)Ṽ (χL;σ`,b`,ω`(y))dy,

denote by fn(y) be the integrand on the RHS of (2.7), and apply the infinite trapezoid rule

(2.8) Vn ≈ ζ`
∑
j∈Z

fn(jζ`).

An error bound is easy to derive because the function fn is analytic in a strip S(−d,d) :=

{ξ | Im ξ ∈ (−d, d)}, where d > 0 depends on the domain of analyticity of Ṽ and the choice
of the parameters σ`, ω`, b`, and (2.6) holds. With an appropriate choice of the parameters

ω`, σ`, b` and d, limR→±∞
∫ d
−d |fn(is+R)|ds = 0, and

(2.9) H(fn, d) := ‖fn‖H1(S(−d,d))
:= lim

s↓−d

∫
R
|g(is+ t)|dt+ lim

s↑d

∫
R
|g(is+ t)|dt <∞.

We write fn ∈ H1(S(−d,d)). The following key lemma is proved in [47] using the heavy machin-
ery of sinc-functions. A simple proof (analogous to the proof of Theorem 2.1) can be found in
[41].

Lemma 2.2 ([47], Thm.3.2.1). For fn ∈ H1(S(−d,d)), the error of the infinite trapezoid rule
admits an upper bound

(2.10) Errdisc ≤ H(fn, d)
exp[−2πd/ζ]

1− exp[−2πd/ζ]
.

Once an approximate bound Happr.(fn, d) for H(fn, d) is derived, it becomes possible to
satisfy the desired error tolerance with a good accuracy letting

(2.11) ζ` = 2πd ln(Happr.(fn, d)/ε).
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Since fn(y) decays as ((b/2)e|y|)−n−1 as y → ±∞, it is straightforward to choose the truncation
of the infinite sum on the RHS of (2.8):

(2.12) Vn ≈ ζ`
∑
|j|≤M0

fn(jζ`)

to satisfy the given error tolerance. A good approximation to Λ := M0ζ is

(2.13) Λ =
1

n− aṼ
ln
CṼ
ε
− ln

b

2
,

where CṼ and aṼ are from (2.6). If Vn are real, then h(z) = h(z̄), and, therefore, we can
replace (2.12) with

(2.14) Vn ≈ 2ζ` Re

M0∑
j=0

fn(jζ`)(1− δj0/2).

The complexity of the numerical scheme is of the order of (n+1−aṼ )−1 ln(H(fn, d)/ε) ln(1/ε).
If double precision arithmetic is used, then the deformation must be chosen so that the f(jζ)
are not very large. Furthermore, the image of the strip S(−d,d) under the map χL;σ`,b`,ω` has
non-empty intersection with the unit disc, hence, if the parameters of the deformation are
fixed, and n increases, then H(fn, d) increases as Bn+1, where B > 1 depends on the chosen
deformation. Therefore, the problem of an accurate bound for the Hardy norm and choice
of ζ` becomes non-trivial. This difficulty can be alleviated if γ > π/4, better, γ > π/2 (we
will see that in applications to pricing options with discrete monitoring, γ > π/2) choosing
n-dependent parameters of the deformation.

Case I. γ ∈ (π/4, π/2] or γ > π/2 but γ − π/2 is very small. We set ω` = 3π/8 − γ/2, and
take d` ∈ (0, (γ − π/4)/2), e.g., d` = 0.95 · (γ − π/4)/2. Next,

(i) if A > 1 and A−1 is not very small, we find b` and σ` solving the system 1 = σ`−b` sin(ω`+
d`), A = σ` − b` sin(ω` − d`). A fairly safe upper bound for H(fn, d) is Happr.(fn, d) =
CṼ max{1, B}, where B is the supremum of y s.t. χL;σ`,b`,ω`(i(ω` + d`) + y) ∈ D(0, 1);

(ii) if A is close to 1 (this is the case when the time interval between the monitoring dates is
small), we setR = 1−5/n, and find b` and σ` solving the systemR = σ`−b` sin(ω`+d`), 1 =
σ`− b` sin(ω`− d`). A fairly safe upper bound for H(fn, d) is Happr.(fn, d) = CṼR

−n−1B,
where B is the supremum of y s.t. χL;σ`,b`,ω`(i(ω` + d`) + y) ∈ D(0, 1). If γ is close to
π/4, it is necessary to replace R−n−1 with sup0≤y≤B |χL;σ`,b`,ω`(i(ω` + d`) + y)|−n−1.

Case II. γ ∈ (π/2, π), and γ − π/2 is not very small. We choose ω` = (π/2 − γ)/2, and
d` ∈ (0, |ω`|), e.g., d` = 0.95|ω`|. Next,

(i) if A > 1 and A−1 is not very small, we find b` and σ` solving the system 1 = σ`−b` sin(ω`−
d`), A = σ` − b` sin(ω` + d`). A fairly safe upper bound for H(fn, d) is Happr.(fn, d) =
CṼ max{1, B}, where B is the supremum of y s.t. χL;σ`,b`,ω`(i(ω` − d`) + y) ∈ D(0, 1);

(ii) if A is close to 1, we set R = 1 − 5/n, and find b` and σ` solving the system R =
σ` − b` sin(ω` − d`), 1 = σ` − b` sin(ω` + d`). A fairly safe upper bound for H(fn, d) is
Happr.(fn, d) = CṼR

−n−1B, where B is the supremum of y s.t. χL;σ`,b`,ω`(i(ω`−d`)+y) ∈
D(0, 1).
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Case III. If A < 1 and 1−A is not small, we suggest to make the change of variables z = Az′,
follow Steps I and II, and choose the step ζ` and the number of terms M0 using the error
tolerance εA−n−1+aṼ .

See Fig. 1 for illustrations of Cases I(i) and II(ii).

3. Expectations of functions of random walk and its extremum

3.1. The Wiener-Hopf factorization. Let Eq be the EPV-operator under X defined by
u(x) = E[u(XTq)]; the EPV operators E±q are defined in the introduction. We realize the EPV

operators Eq and E±q as pseudo-differential operators (PDO)3 with the symbols (1 − q)/(1 −
qΦ(ξ)) and φ±q (ξ), where φ+

q (ξ) = E[eiξX̄Tq ] and φ−q (ξ) = E[e
iξXTq ] are the Wiener-Hopf factors.

We use the following key result valid for random walks on R and Lévy processes X on R [31, 30];
in the latter case, Tq is an exponentially distributed random variable on mean q, independent
of X. See [3, 45, 46] for the references to the literature on the Wiener-Hopf factorization and
various fluctuation identities.

Lemma 3.1. Let X and Tq be as above. Then

(a) the random variables X̄Tq and XTq − X̄Tq are independent; and

(b) the random variables XTq and XTq − X̄Tq are identical in law.

(By symmetry, the statements (a), (b) are valid with X̄ and X interchanged). The two basic
forms of the Wiener-Hopf factorization (both immediate from Lemma 3.1) are

(3.1) Eq = E+
q E−q = E−q E+

q ,

and

(3.2)
1− q

1− qΦ(ξ)
= φ+

q (ξ)φ−q (ξ).

Explicit analytic formulas for the Wiener-Hopf factors are easy to derive if at least one tail
of the pdf of Y decays exponentially, equivalently, Φ admits analytic continuation to a strip
S[µ−,µ+], where µ− ≤ 0 ≤ µ+, and µ− < µ+. The formulas for and the properties of the
Wiener-Hopf factors are well-known, see, e.g., [3, 11, 15]; we include a short proof in Sect. A.2.

Proposition 3.2. Let Φ admit analytic continuation to a strip S[λ−,λ+], where λ− ≤ 0 ≤ λ+,
and λ− < λ+. Then, for any q ∈ (0, 1),

(a) there exist µ− ≥ λ− and µ+ ≤ λ+ s.t. µ− < µ+, and c > 0 such that

(3.3) Re(1− qΦ(ξ)) ≥ c, ξ ∈ S[µ−,µ+].

(b) Furthermore, for any ξ in the half-plane {Im ξ > µ−} and any ω− ∈ [µ−, Im ξ),

φ+
q (ξ) = exp

[
− 1

2πi

∫
Im ξ=ω−

ξ ln((1− q)/(1− qΦ(η)))

η(ξ − η)
dη

]
,(3.4)

and for any ξ in the half-plane {Im ξ < µ+} and any ω+ ∈ (Im ξ, µ+],

φ−q (ξ) = exp

[
1

2πi

∫
Im ξ=ω+

ξ ln((1− q)/(1− qΦ(η)))

η(ξ − η)
dη

]
;(3.5)

3Recall that a PDO A = a(D) with symbol a acts on a sufficiently regular functions as follows: Au(x) =
F−1
ξ→xa(ξ)Fx→ξu(x), where F and F−1 are the Fourier transform and its inverse.
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(c) Let let there exist δ > 0 such that Φ(ξ) = O(|ξ|−δ) as (S[µ−,µ+] 3)ξ → ∞. Then φ±q (ξ) =

c±q + φ±,±q (ξ), where φ±,±q (ξ) = O(|ξ|−δ+ε) as (S[µ−+ε,µ+−ε] 3)ξ → ∞, for any ε > 0, and

c±q are given by

(3.6) c±q = exp

[
± 1

2πi

∫
Im η=ω∓

ln(1− qΦ(η))

η

]
,

where ω− ∈ (µ−, 0) and ω+ ∈ (0, µ+). If µ− = 0, then c+
q = (1 − q)/c−q , and if µ+ = 0,

then c−q = (1− q)/c+
q .

Example 3.3. Let Φ(ξ) = e−∆̄ψ(ξ), where ∆̄ > 0 is the time interval between the monitoring
dates, and ψ the characteristic exponent of a Lévy process. Then, in the Variance Gamma

model, Φ(ξ) = O(|ξ|−∆̄δ), where δ > 0 depends on the parameters of the process, and in all

other popular models, Φ(ξ) = O(e−∆̄c∞|ξ|ν ), where c∞ > 0 and ν ∈ (0, 2] (see [22]).

The integrands on the RHS’ of the formulas for the Wiener-Hopf factors above decay slowly
at infinity, hence, very long grids are necessary to calculate the Wiener-Hopf factors. If Φ
admits analytic continuation to the union of a strip and cone containing or adjacent to the
real line, then the Wiener-Hopf factors can be calculated with almost machine precision using
appropriate conformal deformations of the lines of integration on the RHS’ of (3.4)-(3.5). See
Sect. 4.2.

3.2. Main theorems. Let X, q and Tq be as in the introduction. Let f be measurable
and uniformly bounded on U+ := {(x1, x2) | x2 ≥ 0, x1 ≤ x2}. Consider V (f ;n;x1, x2) =
E[f(x1 +Xn,max{x2, x1 + X̄n})]. We write the (modified) Z-transform (1.1) in the form

(3.7) (1− q)Ṽ (q) = E[f(x1 +XTq ,max{x2, x1 + X̄Tq})].

Notationally, the Wiener-Hopf factorization technique for random walks is identical to the
Wiener-Hopf factorization technique for Lévy processes. See, e.g., [11, 15]. The following
theorem is a counterpart of [21, Thm. 3.1] for Lévy processes; I denotes the identity operator,
f+ is the extension of f to R2 by zero, and ∆ is the diagonal map: ∆(x) = (x, x).

Theorem 3.4. Let X be a Lévy process on R, q > 0, and let f : U+ → R be a measurable and
uniformly bounded function s.t. ((E−q ⊗ I)f) ◦∆ : R→ R is measurable. Then

(i) for any x1 ≤ x2,

(1− q)Ṽ (f ; q;x1, x2) = ((Eq ⊗ I)f+)(x1, x2) + (E+
q w(f ; q, ·, x2))(x1),(3.8)

where

(3.9) w(f ; q, y, x2) = 1[x2,+∞)(y)(((E−q ⊗ I)f+)(y, y)− ((E−q ⊗ I)f+)(y, x2));

(ii) as a function of q, Ṽ (f, q;x1, x2) admits analytic continuation to the open unit disc.

Proof. We use Lemma 3.1. By definition, part (a) amounts to the statement that the probability
distribution of the R2-valued random variable (X̄Tq , XTq − X̄Tq) is equal to the product (in the

sense of “product measure”) of the distribution of X̄Tq and the distribution of XTq − X̄Tq .
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Hence, we can apply Fubini’s theorem. For x1 ≤ x2, we have

E[f+(x1 +XTq ,max{x2, x1 + X̄Tq})]
= E[f+(x1 +XTq − X̄Tq + X̄Tq ,max{x2, x1 + X̄Tq})]
= E[((E−q ⊗ I)f+)(x1 + X̄Tq ,max{x2, x1 + X̄Tq})]
= E[((E−q ⊗ I)f+)(x1 + X̄Tq , x2)]

+E[1x1+X̄Tq≥x2
(((E−q ⊗ I)f+)(x1 + X̄Tq , x1 + X̄Tq)− ((E−q ⊗ I)f+)(x1 + X̄Tq , x2))].

Using (3.1), we write the first term on the rightmost side as ((Eq ⊗ I)f+)(x1, x2), and finish
the proof of (i). As operators acting in the space of bounded measurable functions, E±q admit
analytic continuation w.r.t. q to the open unit disc, which proves (ii).

�

Remark 3.1. The inverse Z-transform of (1−q)−1(Eq⊗I)f+(x1, x2) equals E[f(x1 +XT , x2)],
and, therefore, can be easily calculated using the Fourier transform technique. Essentially, we
have the price of the European option of maturity T , the riskless rate being 0, depending on
x2 as a parameter. Thus, the new element is the calculation of the second term on the RHS
of (3.8). We calculate both terms in the same manner in order to facilitate the explanation of
various blocks of our method.

In exponential Lévy models which are typically used in quantitative finance, payoff func-
tions may increase exponentially, and options with discrete monitoring are typical situations
where random walks appear implicitly. Hence, we consider the action of the EPV-operators in
L∞(R;w), L∞- spaces with the weights w(x) = eγx, γ ∈ [µ−, µ+], and w(x) = min{eµ−x, eµ+x},
where µ− ≤ 0 ≤ µ+, µ− < µ+; the norm is defined by ‖u‖L∞(R;w) = ‖wu‖L∞(R). The following
theorem is the straightforward reformulation of Theorem 3.2 in [21], the condition q+ψ(iγ) > 0
for the Lévy process being replaced with 1− qΦ(iγ) > 0. The proof is the same.

Theorem 3.5. Let a Lévy process X on R, function f : U+ → R and q ∈ (0, 1) satisfy the
following conditions

(a) there exist µ− ≤ 0 ≤ µ+ such that ∀ γ ∈ [µ−, µ+], E[e−γY ] <∞ and 1− qΦ(iγ) > 0;
(b) f is a measurable function admitting the bound

(3.10) |f(x1, x2)| ≤ C(x2)e−µ+x1 ,

where C(x2) is independent of x1 ≤ x2;
(c) the function ((E−q ⊗ I)f) ◦∆ is measurable and admits the bound

(3.11) |((E−q ⊗ I)f)(x1, x1)| ≤ Ce−µ−x1 ,

where C is independent of x1 ≥ 0.

Then the statements (i)-(iii) of Theorem 3.4 hold.

Remark 3.2. Evaluating the RHS of (3.8), we will apply the Fourier transform and its in-
verse. If f+(x1, x2) is a piece-wise smooth function of the first argument so that the Fourier
transform (w.r.t. the first argument) decays not slower than |ξ|−1 at infinity, but f+(·, x2) has
points of discontinuity, then the composition of the Fourier transform and its inverse cannot
recover f+(·, x2) at the points of discontinuity. For instance, in the example of the joint cpdf,
f+(x1, x2) = 1(−∞,a1](x1)1(−∞,a2](x2), where a1 ≤ a2, is dicontinuous at x1 = a1 and x2 = a2.
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Hence, we represent Eq in the form Eq = (1− q)I + (1− q)qΦ(D)(1− qΦ(D))−1, and calculate
the first term on the RHS of (3.8) as follows:
(3.12)

((Eq ⊗ I)f+)(x1, x2) = (1− q)f+(x1, x2) +
1

2π

∫
Im ξ1=ω

eix1ξ1(1− q)qΦ(ξ1)

1− qΦ(ξ1)
ˆ(f+)1(ξ1, x2)dξ1,

where (̂f+)1(ξ1, x2) = Fx1→ξ1f+(x1, x2) is the Fourier transform of f+ w.r.t. the first argument,
and admissible ω ∈ (µ−, µ+) depend on the rate of increase of f(x1, x2) as x1 → −∞. In

particular, if f is uniformly bounded, then any ω ∈ (0, µ+) is admissible. If (̂f+)1(ξ1, x2) =

O(|ξ1|−1) and Φ(ξ1) = O(|ξ1|−δ) as ξ →∞ along the line of integration, where δ > 0, then the
integrand on the RHS of (3.12) is of class L1, and the integral defines a function continuous in
x1.

Let V (G;h;n;x) be the price of the barrier option with the payoff G(Xn) at maturity and no
rebate if the barrier h is crossed before or at time n; the rsikless rate is 0. Applying Theorem
3.5 and Remark 3.2, we obtain

Theorem 3.6. Let a random walk X on R and q ∈ (0, 1) satisfy condition (a) of Theorem 3.5,
and let G be a measurable function admitting the bound |G(x)| ≤ C(e−µ+x + e−µ−x), where C
is independent of x ∈ R. Then, for x < h,

(3.13) Ṽ (G;h; q, x) = G(x) + (qΦ(D)(1− qΦ(D))−1G)(x)− (1− q)−1(E+
q 1[h,+∞)E−q G)(x).

Remark 3.3. The advantage of the representation (3.13) as compared to the equivalent for-
mula

(3.14) Ṽ (G;h; q, x) = (1− q)−1(E+
q 1(−∞,h)E−q )G(x)

(see [15] for the references) is that if Ĝ(ξ) = O(|ξ|)−1 and Φ(ξ) = O(|ξ|−δ) as ξ →∞ in a strip
around or adjacent to the real axis, where δ > 0, then all the terms on the RHS of (3.13) bar
the first one are Hölder continuous on (−∞, h), and numerical results are more accurate.

3.3. Fourier transform realization, the case q ∈ (0, 1). In this Subsection, q ∈ (0, 1) is
fixed. The RHS’ of the formulas for the Wiener-Hopf factors and formulas that we derive below
admit analytic continuation w.r.t. q so that the inverse Z-transform can be applied. We use
E±q = c±q I + E±,±q , where E±,±q = φ±,±q (D), and the equality

w(f ; q, x1, x2) = 1[x2,+∞)(x1)(((E−q ⊗ I)f+)(x1, x1)− ((E−q ⊗ I)f+)(x1, x2)) = 0, x1 ≤ x2.

to write the second term on the RHS of (3.8) as

(3.15) (E+
q w(f ; q, ·, x2))(x1) = (E++

q w(f ; q, ·, x2))(x1),

and (3.9) as

(3.16) w(f ; q, y, x2) = c−q w0(y, x2) + w−(f ; q, y, x2),

where w0(y, x2) = 1[x2,+∞)(y)(f+(y, y)− f+(y, x2)), and

(3.17) w−(f ; q, y, x2) = 1[x2,+∞)(y)(((E−−q ⊗ I)f+)(y, y)− ((E−−q ⊗ I)f+)(y, x2)).

Substituting (3.16) into (3.15), we obtain

(3.18) (E+
q w(f ; q, ·, x2))(x1) = c−q ((E++

q ⊗ I)w0)(x1, x2) + ((E++
q ⊗ I)w−)(f ; q, x1, x2).
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In order to derive explicit integral representations for the terms on the RHS of (3.18), we
impose the following conditions, which can be relaxed:

(a) condition (a) of Theorem 3.5 is satisfied;
(b) there exist µ′−, µ

′
+ ∈ (µ−, µ+), µ′− < µ′+ such that f admits bounds

|f(x1, x2)| ≤ C(x2)e−µ
′
+x1 , x1 ≤ x2,(3.19)

|((E−q ⊗ I)f+)(x1, x1)| ≤ Ce−µ
′
−x1 , x1 ∈ R,(3.20)

where C(x2) and C are independent of x1 ≤ x2, and x1 ∈ R, respectively;
(c) for any x2, there exists C(x2) > 0 such that

|(̂f+)1(ξ1, x2)| ≤ C(x2)(1 + |ξ1|)−1, ξ1 ∈ S[µ′+,µ+],(3.21)

|(̂w0)1(η, x2)| ≤ C(x2)(1 + |η|)−1, η ∈ S[µ−,µ′−];(3.22)

(d) there exists C > 0 such that for ξ1 ∈ S[µ′+,µ+] and ξ2 ∈ S[µ−,µ′−],

(3.23) |(̂f+)(ξ1, ξ2)| ≤ C(1 + |ξ1|)−1(1 + |ξ2|)−1;

(e) there exists δ > 0 such that Φ(ξ) = O(|ξ|−δ) as (S[µ−,µ+] 3)ξ →∞.

Theorem 3.7. Let conditions (a)-(e) hold. Then, for any ω, ω1, ω2 and ω− satisfying

(3.24) ω, ω1 ∈ (µ′+, µ+), ω2 ∈ (µ−, µ
′
−), ω− ∈ (µ−, ω1 + ω2),

and x1 ≤ x2,

Ṽ (f ; q;x1, x2) = f(x1, x2) +
1

2π

∫
Im ξ1=ω

eix1ξ1qΦ(ξ1)

1− qΦ(ξ1)
ˆ(f+)1(ξ1, x2)(3.25)

+
c−q

2π(1− q)

∫
Im η=ω−

eix1ηφ++
q (η)(̂w0)1(η, x2)dη

+
1

2π(1− q)

∫
Im η=ω−

ei(x1−x2)ηφ++
q (η)ŵ−0 (f ; q, η, x2)dη,

where ŵ−0 (f ; q, η, x2) is given by

ŵ−0 (f ; q, η, x2)(3.26)

=
1

2π

∫
Im ξ1=ω1

dξ1
eix2ξ1

i(ξ1 − η)
φ−−q (ξ1)(f̂+)1(ξ1, x2)

+
1

(2π)2

∫
Im ξ1=ω1

∫
Im ξ2=ω2

dξ1 dξ2
eix2(ξ1+ξ2)

i(η − ξ1 − ξ2)
φ−−q (ξ1)(f̂+)(ξ1, ξ2).

Proof. Essentially, we repeat the proof of Theorem 4.1 in [21], with small necessary changes.
We calculate the terms on the RHS of (3.8). The first two terms on the RHS of (3.25) follow
from (3.12). Consider the third term. Since (3.22) holds and φ++

q (η) = O(|η|−δ1) as η →∞ in
the strip S[µ−,µ+], where δ1 > 0, the integral

(3.27) (E++
q w0(·, x2))(x1) =

1

2π

∫
Im η=ω−

eix1ηφ++
q (η)(̂w0)1(η, x2)dη
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is absolutely convergent. It remains to consider (E++
q w−(f ; q, ·, x2))(x1). If Im η = ω−,

ŵ−(f ; q, η, x2) = −
∫ +∞

x2

dy e−iyη
1

2π

∫
Im ξ1=ω1

dξ1 e
iξ1yφ−−q (ξ1)(f̂+)1(ξ1, x2)

+

∫ +∞

x2

dy e−iyη
1

(2π)2

∫
Im ξ1=ω

∫
Im ξ2=ω2

dξ1 dξ2 e
i(ξ1+ξ2)yφ−−q (ξ1)(f̂+)(ξ1, ξ2).

We apply Fubini’s theorem to the first integral. The integral
∫ +∞
x2

dy ei(−η+ξ1)y = eix2(ξ1−η)

i(η−ξ1)

converges absolutely since −ω− + ω1 > 0, and the repeated integral converges absolutely
because φ−−q (ξ) is uniformly bounded on the line of integration and (3.21) holds. Similarly,

since −ω− + ω1 + ω2 > 0, the integral
∫ +∞
x2

dy ei(−η+ξ1+ξ2)y = eix2(ξ1+ξ2−η)/(i(η − ξ1 − ξ2))

converges absolutely. Since (3.23) holds, φ−−q (ξ) = O(|ξ1|−δ1) as ξ1 → ∞ along the line of
integration, where δ1 > 0, and

(3.28)

∫
R

∫
R
dξ1 dξ2 (1 + |ξ1 + ξ2|)−1(1 + |ξ1|)−1−δ1(1 + |ξ2|)−1 <∞,

the Fubini’s theorem is applicable to the second integral as well. Thus,

(3.29) ŵ−(f ; q, η, x2) = e−iηx2ŵ−0 (f ; q, η, x2),

where ŵ−0 (f ; q, η, x2) is given by (3.26), and we obtain the triple integral

(3.30) (E++
q w−(·, x2)(x1) =

1

2π

∫
Im η=ω−

ei(x1−x2)ηφ++
q (η)ŵ−0 (f ; q, η, x2)dη.

The integrand admits a bound via Cg(η, ξ1, ξ2), where

g(η, ξ1, ξ2) = (1 + |η|)−δ1(1 + |η − ξ1 − ξ2|)−1(1 + |ξ1|)−1−δ1(1 + |ξ2|)−1

is of class L1(R3) (see [21, Eq.(3.24)]). Substituting (3.12), (3.18), (3.27) and (3.30) into (3.8),
we obtain (3.25).

�

Remark 3.4. In standard situations such as in the two examples that we consider below, the
function y 7→ h(y) = (E−−q ⊗ I)f+(y, y) − (E−−q ⊗ I)f+(y, x2) is a linear combination of expo-

nential functions (with the coefficients depending on x2). Then ŵ−(q; η, x2) can be calculated
directly, the double integral on the RHS of (3.26) can be reduced to 1D integrals, and the
condition (3.23) replaced with the condition on h similar to (3.22). Analogous simplifications
are possible in more involved cases when h is a piece-wise exponential polynomial in y.

3.4. Two examples.

3.4.1. Example I. The joint cpdf of Xn and X̄n. For a1 ≤ a2, and x1 ≤ x2, set f(x1, x2) =
1(−∞,min{a1,x2}](x1)1(−∞,a2](x2) and consider

V (f ;n, x1, x2) = Q[x1 +Xn ≤ a1, x2 + X̄n ≤ a2].

If x2 > a2, then V (f ;n, x1, x2) = 0. Hence, we assume that x2 ≤ a2.

Theorem 3.8. Let q ∈ (0, 1), a1 ≤ a2, x1 ≤ x2 ≤ a2, and let the following conditions hold:

(i) there exist µ− < 0 < µ+ such that ∀ γ ∈ [µ−, µ+], E[e−γY ] <∞, and 1− qΦ(iγ) > 0;
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(ii) there exists δ > 0 such that Φ(ξ) = O(|ξ|−δ) as (S[µ−,µ+] 3)ξ →∞.

Then, for any µ− < ω− < 0 < ω1 < µ+, and ω ∈ (0, µ+),

Ṽ (f ; q, x1, x2)(3.31)

= 1(−∞,a1](x1) +
1

2π

∫
Im ξ1=ω

ei(x1−a1)ξ1qΦ(ξ1)

−iξ1(1− qΦ(ξ1))
dξ1

+
1

(2π)2(1− q)

∫
Im η=ω−

dη ei(x1−a2)ηφ++
q (η)

∫
Im ξ1=ω1

dξ1

eiξ1(a2−a1)φ−−q (ξ1)

ξ1(ξ1 − η)
.

Proof. We repeat the proof of Theorem 3.8 in [21] with small necessary modifications. We have
f+(x1, x2) = 1(−∞,a1](x1)1(−∞,a2](x2), therefore, for x2 ≤ a2,

w0(y, x2) = 1[x2,+∞)(y)1(−∞,a1](y)(1(−∞,a2](y)− 1(−∞,a2](x2))

= −1[x2,+∞)(y)1(−∞,a1](y)1(a2,+∞)(y) = 0,

hence, the third term on the RHS of (3.25) is 0. Next,

(̂f+)1(ξ1, x2) = 1(−∞,a2](x2)

∫ a1

−∞
e−ix1ξ1dξ1 = 1(−∞,a2](x2)

e−ia1ξ1

−iξ1
dξ1

is well-defined in the upper half-plane, and satisfies the bound (3.21) in any strip S[µ′+,µ+],

where µ′+ ∈ (0, µ+). Thus, the first two terms on the RHS of (3.25) are the first terms on the
RHS of (3.31). It remains to evaluate the double integral on the RHS of (3.25). As mentioned

in Remark 3.4, in the present case, it is simpler to evaluate w−, and then ŵ−, directly: for any
x2 ≤ a2, ω1 ∈ (0, µ+) and any η ∈ {Im η ∈ (µ−, ω1)},

w−(q, y, x2) = 1(x2,+∞)(y)(E−−q 1(−∞,a1])(y)(1(−∞,a2](y)− 1)

= −1[a2,+∞)(y)(E−−q 1(−∞,a1])(y)

= −1(a2,+∞)(y)
1

2π

∫
Im ξ1=ω1

dξ1 e
i(y−a1)ξ1 φ

−−(ξ1)

−iξ1
,

ŵ−(q, η, x2) = −
∫ +∞

a2

e−iyη
1

2π

∫
Im ξ1=ω1

dξ1 e
i(y−a1)ξ1 φ

−−(ξ1)

−iξ1
(3.32)

= −e
−ia2η

2π

∫
Im ξ1=ω1

dξ1 e
i(a2−a1)ξ1 φ−−(ξ1)

i(η − ξ1)(−iξ1)
.

It is easy to see that both integrals are absolutely convergent. Substituting (3.32) into the
double integral on the RHS of (3.25), we obtain (3.31). �

Remark 3.5. If x1 < a1, then it advantageous to move the line of integration in the first
integral on the RHS of (3.31) down, and, on crossing the simple pole, apply the residue theorem.
The first two terms on the RHS become 1/(1− q) plus the integral over the line Im ξ1 = ω−.

Remark 3.6. The first step of the proof of Theorem 3.8 implies that we can replace φ−−q in

the double integral on the RHS of (3.31) with φ−q . From the computational point of view, if we
make the conformal change of variables, both changes do not lead to a significant increase in
sizes of arrays necessary for accurate calculations, especially if a2 − a1 > 0. The advantage is
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that it becomes unnecessary to evaluate c−q . Recall that the same c−q appears for all ξ1 in the

formula φ−−q (ξ1) = φ−q (ξ1) − c−q , hence, it is necessary to evaluate c−q with a higher precision

that φ−q (ξ1). At the same time, the integrand in the formula for c−q decays slower at infinity

than the integrand in the formula for φ−q (ξ1).

Remark 3.7. Denote by I2(q;x1, x2) the double integral on the RHS of (3.31) multiplied
by 1 − q. It follows from (3.15) that we can replace φ++

q in the double integral with φ+
q .

If a1 < a2 and the conformal deformations are used, then this replacement causes no serious
computational problems. If a1 = a2, then the replacement leads to errors typical for the Fourier
inversion at points of discontinuity. However, in this case, the RHS of (3.31) can be simplified

as follows. We replace φ±,±q with φ±q , which is admissible, then push the line of integration in
the inner integral down, cross two simple poles at ξ1 = 0 and ξ1 = η, and apply the residue
theorem. The double integral becomes the following 1D integral:

I2(q;x1, x2) =
1

2π

∫
Im η=ω−

dη ei(x1−a2)η
φ+
q (η)(1− φ−q (η))

−iη
.

We push the line of integration to {Im η = ω1} and use the identity φ+
q (η)φ−q (η) = (1− q)/(1−

qΦ(η)) to obtain the formula for the perpetual no-touch option:

(1− q)Ṽ (f, q;x1, x2) =
1

2π

∫
Im ξ1=ω1

dξ1

ei(x1−a2)ξ1φ+
q (ξ1)

−iξ1
, x1 ≤ x2 ≤ a2.(3.33)

Of course, (3.33) can be obtained using the main theorem directly.

Remark 3.8. One can push the line of integration in the outer integral on the RHS of (3.31)
up and obtain

I2(q;x1, x2) =
1

4π

∫
Im ξ1=ω1

dξ1 e
i(x1−a1)ξ1

φ++
q (ξ1)φ−−q (ξ1)

−iξ1

+
1

(2π)2
v.p.

∫
Im η=ω1

dη ei(x1−a2)ηφ++
q (η)

∫
Im ξ1=ω1

dξ1

eiξ1(a2−a1)φ−−q (ξ1)

ξ1(ξ1 − η)
,

where v.p. denotes the Cauchy principal value. After that, one can apply the fast Hilbert
transform. However, the integrand decays very slowly at infinity, therefore, accurate calcula-
tions are possible only if very long grids are used, hence, the CPU cost is very large even for a
moderate error tolerance.

3.4.2. Example II. Option to exchange the supremum for a power of the underlying. Let β > 1.

Consider the option to exchange the supremum S̄n = eX̄n for the power Sβn = eβXn . The payoff
function f(x1, x2) = (eβx1 − ex2)+1(−∞,x2](x1) satisfies (3.19)-(3.20) with arbitrary µ′+ > 0,
µ′− < −β. The extension f+ is defined by the same analytical expression as f .

Proposition 3.9. Let β > 1 and let conditions of Theorem 3.7 hold with µ− < −β, µ+ > 0.
Then, for x1 ≤ x2, and any 0 < ω1 < µ+, µ− < ω− < −β,

(3.34) Ṽ (f ; q, x1, x2) = (1− q)−1(eβx1 − ex2)+ + I2(q, x1, x2) + (1− q)−1
∑
j=3,4

Ij(q, x1, x2),

where Ij(q, x1, x2), j = 2, 3, 4, are given by (3.35), (3.36) and (3.37) below.
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Proof. We apply Theorem 3.7 with µ′+ ∈ (0, µ+), µ′− ∈ (µ−,−β). For x2 > 0 and ξ ∈ C,

(f̂+)1(ξ1, x2) =

∫ x2

x2/β
e−ix1ξ1(eβx1 − ex2)dx1

=
ex2(β−iξ1) − ex2(β−iξ1)/β

β − iξ1
− ex2

e−ix2ξ1 − e−ix2ξ1/β

−iξ1

= e−ix2ξ1

(
ex2β

β − iξ1
+ β

ex2(1+iξ1(1−1/β))

(β − iξ1)(−iξ1)
− ex2

−iξ1

)
,

hence, the second term on the RHS of (3.25) equals
(3.35)

I2(q, x1, x2) =
1

2π

∫
Im ξ1=ω−

dξ1
ei(x1−x2)ξ1qΦ(ξ1)

1− qΦ(ξ1)

(
ex2β

β − iξ1
+ β

ex2(1+iξ1(1−1/β))

(β − iξ1)(−iξ1)
− ex2

−iξ1

)
.

Then we calculate

w0(y, x2) = 1[x2,+∞)(y)((eβy − ey)− (eβy − ex2)) = 1[x2,+∞)(y)(ex2 − ey),

ŵ0(η, x2) =

∫ +∞

x2

e−iyη(ex2 − ey)dy =
ex2−ix2η

iη(1− iη)
,

and the third term on the RHS of (3.25):

(3.36) I3(q, x1, x2) = c−q
ex2

2π

∫
Im η=ω−

dη ei(x1−x2)η
φ++
q (η)

iη(1− iη)
.

Next, we calculate ŵ−(q, η, x2):

ŵ−(q, η, x2) =

∫ +∞

x2

e−iyη
1

2π

∫
Im ξ1=ω1

dξ1 e
iyξ1φ−−q (ξ1)

[
e(β−iξ1)y − e(β−iξ1)x2

β − iξ1

+β
e(1−iξ1/β)y − e(1−iξ1/β)x2

(β − iξ1)(−iξ1)
− e(1−iξ1)y − e(1−iξ1)x2

−iξ1

]

=
e−ix2η

2π

∫
Im ξ1=ω1

φ−−q (ξ1)

[
e(β−iξ1)x2

β − iξ1

(
1

i(η − ξ1)− (β − iξ1)
− 1

i(η − ξ1)

)
+

βe(1−iξ1/β)x2

(β − iξ1)(−iξ1)

(
1

i(η − ξ1)− (1− iξ1/β)
− 1

i(η − ξ1)

)
−e

(1−iξ1)x2

−iξ1

(
1

i(η − ξ1)− (1− iξ1)
− 1

i(η − ξ1)

)]

=
e−ix2η

2π

∫
Im ξ1=ω1

dξ1

φ−−q (ξ1)

i(η − ξ1)

[
e(β−iξ1)x2

iη − β
+

βe(1−iξ1/β)x2(1− iξ1/β)

(β − iξ1)(−iξ1)(iη − 1− iξ1(1− 1/β))

−e
(1−iξ1)x2(1− iξ1)

(−iξ1)(iη − 1)

]
,
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and, finally, the double integral on the RHS of (3.25):

I4(q, x1, x2)(3.37)

=
1

(2π)2

∫
Im η=ω−

dη., ei(x1−x2)ηφ++
q (η)

∫
Im ξ1=ω1

dξ1 e
−ix2ξ1

φ−−q (ξ1)

i(η − ξ1)

·

[
eβx2

iη − β
+

βe(1+iξ1(1−1/β))x2(1− iξ1/β)

(β − iξ1)(−iξ1)(iη − 1− iξ1(1− 1/β))
− ex2(1− iξ1)

(−iξ1)(iη − 1)

]
.

�

4. Efficient Fourier transform realizations

4.1. Conformal deformations. The integrals on the RHS of (3.31), and, especially, in the
formulas for the Wiener-Hopf factors, decay very slowly at infinity, therefore, very long grids
are needed to satisfy even a moderate error tolerance. The sizes of the grids drastically decrease
if the conformal deformations of the lines of integration with the subsequent conformal changes
of variables and application of the simplified trapezoid rule are used, as in [16, 42, 20], where
options with continuous monitoring are considered. Below, we adjust the constructions from
[16, 42, 20] to random walks, with an additional twist: in the case of finite variation processes
with non-zero drift, in some situations, it may be necessary to use not the sinh-acceleration
but another family of apparently inferior deformations considered in [19].

For γ− ≤ 0 ≤ γ+, γ− < γ+, set Cγ−,γ+ = {ρeiϕ | ρ > 0, ϕ ∈ (π − γ+, π − γ−) ∪ (γ−, γ+)}.
As it is shown in [18, 22], in wide classes of Lévy models, the characteristic functions Φ∆̄ of
X∆̄, where ∆̄ > 0 is the time interval between monitoring dates, are sinh-regular. This means
that there exist C, c > 0, ν ∈ (0, 2], µ− ≤ 0 ≤ µ+ and γ− ≤ 0 ≤ γ+, µ− < µ+, γ− < γ+,
independent of ∆̄, such that Φ∆̄ admits analytic continuation to i(µ−, µ+) + (Cγ−,γ+ ∪ {0}),
and obeys the bound

(4.1) |Φ∆̄(ξ)| ≤ C exp(−c∆̄|ξ|ν), ξ ∈ i(µ−, µ+) + (Cγ−,γ+ ∪ {0}).

If X is the Variance Gamma processes, the characteristic function decays slower at infinity:

(4.2) |Φ∆̄(ξ)| ≤ C(1 + |ξ|)−c∆̄, ξ ∈ i(µ−, µ+) + (Cγ−,γ+ ∪ {0}).

Typically, c < 1 or even < 0.1, hence, for the options with daily (or even weekly) monitoring,
Φ∆̄ decays very slowly at infinity, for Variance Gamma processes and processes close to the
Variance Gamma (ν > 0 close to 0), especially slowly. This implies that even a moderate
precision is impossible to achieve even at a large CPU cost, for options of long maturity
especially. The conformal deformation technique allows one to greatly increase the rate of the
decay of the integrand at infinity.

If (4.1) or (4.2) hold, then it is possible to find appropriate conformal deformations of the
contours of integration in all formulas. In the case of Lévy processes of finite variation, with

non-zero drift µ, the characteristic function Φ∆̄ is of the form Φ∆̄ = eiµ∆̄ξΦ0
∆̄

, where Φ0
∆̄

obeys
the bound (4.1) or (4.2) in a cone Cγ−,γ+ , where γ− < 0 < γ+, with ν < 1.
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4.2. Evaluation of the Wiener-Hopf factors. For ω1 ∈ R, b > 0 and ω ∈ (−π/2, π/2),
introduce the map y 7→ χω1,b,ω(y) = iω1 + b sinh(iω + y). For all ξ above the angle iµ− +

(ei(π−γ−)R+ ∪ eiγ−R+), we can find ω−1 ∈ R, b− > 0 and ω− ∈ (γ−, π/2) such that the contour
Lω−1 ,b−,ω− := χω−1 ,b−,ω−

(R) is below ξ but above the angle. Hence, we can deform the line of

integration in (3.4) into Lω−1 ,b−,ω− , make the change of variables η = η−(y) := χω−1 ,b−,ω−
(y)

and obtain

(4.3) φ+
q (ξ) = exp

[
− b−

2πi

∫
R

ξ ln[(1− q)/(1− qΦ(η−(y))]

η−(y)(ξ − η−(y))
cosh(iω− + y)dy

]
.

Similarly, for any ξ below the angle iµ+ + (ei(π−γ+)R+ ∪ eiγ+R+), we can find ω+
1 ∈ R, b+ > 0

and ω+ ∈ (−π/2, γ+) such that the contour Lω+
1 ,b

+,ω+ := χω+
1 ,b

+,ω+(R) is above ξ but below the

angle. Hence, we can deform the line of integration in (3.5) into Lω+
1 ,b

+,ω+ , make the change

of variables η = η+(y) := χω+
1 ,b

+,ω+(y) and obtain

(4.4) φ−q (ξ) = exp

[
b+

2πi

∫
R

ξ ln[(1− q)/(1− qΦ(η+(y))]

η+(y)(ξ − η+(y))
cosh(iω+ + y)dy

]
.

In order that the deformation be justified, it is necessary that, in the process of the deformation,
the fractions under the log-sign in (4.3) and (4.4) do not equal 0 for all q and η of interest;
in order to avoid complications stemming from the analytic continuation to an appropriate
Riemann surface, it is advisable to make sure that the fraction does not assume values in
(−∞, 0] in the process of the deformation. See Fig. 2 for an illustration.

Choice of ω±. If γ− < 0 < γ+, then it is possible to choose ω− ∈ (γ−, 0) and ω+ ∈ (0, γ+).
If γ− = 0, then both ω± ∈ (0, γ+), and if γ+ = 0, then both ω± ∈ (γ−, 0). When the
double integral on the RHS of (3.31) is evaluated, we need to calculate the Wiener-Hopf factors
at the points on two contours L± := Lω±1 ,b±,ω± . In order to increase the width of of the

strip of analyticity of each of the integrands on the RHS’ of (4.3) and (4.4), one should take
ω− = γ− + (γ+ − γ−)/3, ω+ = γ+ − (γ+ − γ−)/3.

In the case of Lévy processes of finite variation, with non-zero drift µ, the characteristic

function Φ∆̄ is of the form Φ∆̄ = eiµ∆̄ξΦ0
∆̄

, where Φ0
∆̄

obeys the bound (4.1) or (4.2) in a cone
Cγ−,γ+ , where γ− < 0 < γ+, with ν < 1. If µ > 0, Φ∆̄ obeys the bound (4.1) or (4.2) in the cone
C0,γ+ , and if µ < 0, then in the cone Cγ−,0. If µ > 0, it is advantageous to calculate φ−q (ξ) using

(4.4) with ω+ > 0, and then, if φ+
q (ξ) is needed, use the Wiener-Hopf factorization identity.

If µ < 0, it is advantageous to calculate φ+
q (ξ) using (4.3) with ω− < 0, and then, if φ−q (ξ) is

needed, use (3.2).

4.3. Evaluation of the integrals on the RHS of (3.31). If x1−a1 ≥ 0, it is advantageous
to deform the line of integration upwards into a contour of the form Lω+

1 ,b
+,ω+ , where ω+ > 0,

and if x1 − a1 ≤ 0, then into a a contour of the form Lω−1 ,b−,ω− , where ω− < 0. If x1 − a1 = 0,

then any ω ∈ (γ−, γ+) is admissible, and ω = (γ−+γ+)/2 is (approximately) optimal. However,

if Φ∆̄ is of the form Φ∆̄ = eiµ∆̄ξΦ0
∆̄

, where Φ0
∆̄

obeys the bound (4.1) or (4.2) in a cone Cγ−,γ+ ,

where γ− < 0 < γ+, with ν < 1 and µ > 0, then the deformation with ω− < 0 is impossible

because, for |q| = R < 1, 1 − qei∆̄µξΦ0
∆̄

(ξ) equals 0 for some ξ in the process of deformation.
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In this case, as in [19], we use a less efficient family of conformal maps of the form

(4.5) χS;ω,m,a(y) = (y + iω) lnm(a2 + (y + iω)2),

where ω ∈ R, a > |ω|, and m ≥ 1 is an integer. As y → ±∞,

χS;ω,m,a(y) = (2 ln y)m(y + iω(1 +m/ ln |y|) +O(|y|−1),

therefore, if we take ω < 0 and change the variable ξ = χS;ω,a,a(y), then the exponent ei∆̄µξ(y)

increases as y →∞ in a strip around R slower than the factor Φ0
∆̄

(ξ(y)) decays at infinity, and
the product decays faster than prior to the change of variables. If x1 − a1 > 0, we use ω > 0.

Consider the repeated integral. Since x2 − a2 < 0, in the outer integral, we deform the line
of integration so that the wings of the deformed contour point downwards. If the bound (4.1)
(or (4.2)) holds in a cone Cγ−,γ+ where γ− < 0, we use the map χω−1 ,b−,ω−

with ω− < 0. As

in the case of 1D integral, it may be necessary to use the map χS;ω,m,a with ω < 0. Since
a2 − a1 ≥ 0, in the inner integral, we deform the line of integration so that the wings of the
deformed contour point upwards. If the bound (4.1) (or (4.2)) holds in a cone Cγ−,γ+ where
γ+ > 0, we use the map χω+

1 ,b
+,ω+ . As in the case of 1D integral, it may be necessary to use

the map χS;ω,m,a with ω > 0. Note that a less efficient family of deformations must be used at
most once in the 1D-integral, and at most once in the repeated integral, and, in all cases, the
Wiener-Hopf factors can be calculated using the sinh-acceleration.

If (4.1) or (4.2) hold, then it is possible to find appropriate conformal deformations of the
contours of integration in all formulas. In the case of Lévy processes of finite variation, with

non-zero drift µ, the characteristic function Φ∆̄ is of the form Φ∆̄ = eiµ∆̄ξΦ0
∆̄

, where Φ0
∆̄

obeys
the bound (4.1) or (4.2) in a cone Cγ−,γ+ , where γ− < 0 < γ+, with ν < 1, then the conformal
deformation of the contour of integration in the Z-inversion formula is impossible, and only
trapezoid rule can be applied.

5. Algorithm and numerical examples

We take x1 = x2 = 0 and calculate the joint cpdf F (T, a1, a2) = V (T, a1, a2; 0, 0) assuming
that the cone of analyticity contains the real line: γ− < 0 < γ+. This allows us to use two
contours in ξ1 and η planes for all purposes, one in the lower half-plane, the other in the upper
half-plane. If either γ− = 0 or γ+ = 0, then, firstly, in (3.31), one of the lines of integration can
be deformed using the sinh-map, but the other line can deformed using a less efficient family of
deformations only (see Sect. 4.3), and, secondly, for the calculation of the Wiener-Hopf factors,
an additional “sinh-deformed” contour is needed. Hence, the total number of the contours is
three, not two, as in the algorithm below.

Step I. Following the recommendation in Sect.2, choose either the parameters for the trape-
zoid rule M0 and M = 2∗M0 +1 and construct the grid ~q = R∗exp((i∗2∗π/M)∗(0 :
1 : M0)) or choose the sinh-deformation and grid for the simplified trapezoid rule:
~y = ζ` ∗ (0 : 1 : M0), ~q = σ` + i ∗ b` ∗ sinh(i ∗ ω` + ~y). Calculate the derivative
~der` = i ∗ b` ∗ cosh(i ∗ ω` + ~y). Note that if double precision arithmetic is used, the

choice of R, σ` and b` must depend on T but can be independent of x1, x2, a1, a2,
at some loss in the efficiency of the algorithm. For large n′s, this leads to a sig-
nificant increase of the number of terms in the trapezoid rule. In the case of the
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sinh-acceleration, the effect is less pronounced but leads to worse results for very
large n, as in the numerical examples for T = 15 below.

Step II. Choose the sinh-deformations and grids for the simplified trapezoid rule on L±:
~y± = ζ± ∗ (−N± : 1 : N±), ~ξ± = i ∗ ω±1 + b± ∗ sinh(i ∗ ω± + ~y±). Calculate

Φ± = Φ( ~ξ±) and ~der± = b± ∗ cosh(i ∗ ω± + ~y±).
Step III. Calculate the arrays D+ = [1/(ξ+

j − ξ−k )] and D− = [1/(ξ−k − ξ+
j )] (the sizes are

(2 ∗N+ + 1)× (2 ∗N− + 1) and (2 ∗N− + 1)× (2 ∗N+ + 1), respectively).
Step IV. The main block. For given x1, x2, a1, a2, in the cycle in q ∈ ~q, evaluate

(1) φ+
q at points of the grid L+ and φ−q at points of the grid L−:

~φ±q = exp
[
((∓ζ± ∗ i ∗ ζ∓/(2 ∗ π)) ∗ ~ξ±. ∗ (log((1− q)./(1− qΦ∓))./ ~ξ∓. ∗ ~der∓) ∗D±)

]
;

(2) calculate φ±q at points of the grid L∓: ~φ±q,∓ = (1− q)./(1− qΦ∓)./ ~φ∓q ;
(3) evaluate the 2D integral on the RHS of (3.31)

Int2(q) = ((ζ− ∗ ζ+/(2 ∗ π)2) ∗ (exp(−i ∗ a2 ∗ ~ξ−). ∗ ~φ+
q,−. ∗ ~der−) ∗D+)

∗conj((exp((i ∗ (a2 − a1)) ∗ ~ξ+). ∗ ~φ−q,+/
~ξ+. ∗ ~der+)′).

(4) if x1 − a1 > 0, use arrays ~ξ+, ~der+,Φ+ to evaluate Int1(q), the 1D integral on

the RHS of (3.31); if x1 ≤ a1, use arrays ~ξ−, ~der−,Φ− instead and add 1/(1− q);
(5) set Int(q) = Int1(q)./(1− ~q) + Int2(q).

Step V. Set Int(q1) = Int(q1)/2.
Step VI. If the sinh-acceleration is used for the inverse Z-transform, calculate

Vn = (ζ`/π) ∗ real(sum(~q.−n−1. ∗ Int(~q). ∗ ~der`));

if the trapezoid rule is used, calculate

Vn = (2/M) ∗ real(sum(~q.−n. ∗ Int(~q)).
Numerical results are produced using Matlab R2017b on MacBook Pro, 2.8 GHz Intel Core

i7, memory 16GB 2133 MHz. The CPU times reported below can be significantly improved
because we use the same grids for the calculation of the Wiener-Hopf factors φ±q and evaluation

of integrals on the RHS of (3.31). However, φ±q need to be evaluated only once and used for
all points (a1, a2). But if x1 − a2 and a2 − a1 are not very small in absolute value, then much
shorter grids can be used. See, e.g., examples in [17, 41, 18, 20]. Therefore, if the arrays
(x1 − a2, a2 − a1) are large, then the CPU time can be decreased using shorter arrays for
calculation of the integrals on the RHS of (3.31). Furthermore, the main blocks of the program
admit the trivial parallelization.

In the two examples that we consider, the characteristic function is Φ(ξ) = e−∆̄ψ(ξ), where
ψ is the characteristic exponent ψ(ξ) = cΓ(−ν)(λν+ − (λ+ + iξ)ν + (−λ−)ν − (−λ− − iξ)ν)

of a KoBoL process4, where λ+ = 1, λ− = −2 and (I) ν = 0.2, hence, the process is close
to Variance Gamma process; (II) ν = 1.2, hence, the process is close to the Normal Inverse
Gaussian process (NIG). In both cases, c > 0 is chosen so that the second instantaneous
moment m2 = ψ′′(0) = 0.1. The time step is ∆̄ = 1/252 (daily monitoring). For X0 = X̄0 = 0,

4the class of processes constructed in [8, 9]; a subclass which was used in the numerical examples in [8, 11]
was renamed CGMY model later.
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we calculate the joint cpdf F (T, a1, a2) := V (T, a1, a2; 0, 0) for T = 15 in Case (II) and for
T = 0.25, 1, 5, 15 in Case (I). In both cases, a1 is in the range [−0.075, 0.1] and a2 in the range
[0.025, 0.175]; the total number of points (a1, a2), a1 ≤ a2, is 44. We show the results for
T = 0.25, 5 and T = 15 because the errors, CPU times and sizes of arrays in the case T = 1
can be approximated well by interpolation of the results for T = 0.25 and T = 5.

The numerical examples demonstrate the clear advantage of the sinh-acceleration applied
to the inverse Z-transform vs the trapezoid rule; the advantage increases proportionally to
the number of steps because the sinh-acceleration requires approximately the same number
of terms of the simplified trapezoid rule whereas the number of terms in the trapezoid rule
increases. Note, however, that if high precision arithmetic is used then the trapezoid rule with
much smaller number of terms can be used.

We also show the errors of the approximation of the continuous time model with the model
with daily monitoring. The probabilities in the continuous time model are calculated using the
method in [21]. As expected, the approximation errors increase with the number of steps but
remain fairly good even at T = 15.

6. Conclusion

There exists a large body of literature devoted to calculation of expectations V (f ;T ;x1, x2)
of functions of spot value x1 of X and its running maximum or minimum x2 and related opti-
mal stopping problems, standard examples being barrier and American options, and lookback
options with barrier and/or American features. See, e.g., [32, 10, 11, 12, 13, 40, 1, 2, 37, 36,
28, 15, 6, 4, 7, 39, 38, 16, 26, 25, 5, 24, 33, 29, 34, 35, 44, 27, 43, 20, 23] and the bibilographies
therein. In many papers, in the infinite time horizon case, the Wiener-Hopf factorization tech-
nique in various forms is used, and the finite time horizon problems are reduced to the infinite
time horizon case using the Laplace transform or its discrete version. The present paper be-
longs to this strand of the literature. We consider random walks, equivalently, in the context
of option pricing, barrier and lookback options with discrete monitoring.

At the first step, as in [28], where barrier options with discrete monitoring in the Brown-
ian motion model are priced, we use the Z-transform, which is the discrete time counterpart
of the Laplace transform. The latter was used in the continuous time case in a number of
publications starting with [10, 11]. The first contribution of the present paper is the new nu-
merical method for the inverse Z-transform, which is more efficient than the trapezoid rule. In
both continuous time and discrete time cases, the application of the Laplace and Z-transforms
reduces the problem to pricing the corresponding options in the infinite time horizon. The
second contribution of the present paper is a general formula for the expectation of a function
of a random walk and its supremum process. The formula generalizes the formulas for the
barrier options in the random walk and Lévy models derived in [10, 11, 13, 15, 6], and it is a
counterpart of the general formula for the Lévy processes derived in [21]. Both formulas use the
expected present value operators (EPV-operators) technique, which is the operator form of the
Wiener-Hopf factorization. The last contribution of the paper is the set of efficient numerical
realizations of the general formulas, which we explain in detail in the case of the calculation of
the joint probability distribution of the random walk and its supremum. The numerical exam-
ples demonstrate that the method based on the sinh-acceleration for the inverse Z-transform
can achieve the accuracy of the order of E-14 and better using Matlab and Mac with moderate
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characteristics, in a second or fraction of a second, and the precision of the order of E-10 in
20-30 msec., for options of maturity in the range T = 0.25− 15Y . In all cases, the sizes of the
arrays are moderate. In particular, the number of points used for the Z-transform inversion is
of the order of 2-5 dozens or even fewer. If the trapezoid rule is used, the size of arrays and
CPU time increase with the maturity, and, for maturity T = 15, approximately 3,000 terms
are needed. When the trapezoid rule is applied, the CPU time is several times larger in all
cases. We also compare the results in the case of continuous monitoring using the methods
developed in [21] and demonstrate that in the case of daily monitoring, the relative differences
are less than 1% even for T = 15 for a process close to the Variance Gamma, and less than 5%
for a process close to NIG.

Other methods for pricing barrier and lookback options with discrete monitoring cannot
achieve the precision E-10 even at a much larger CPU cost. COS method [26, 25] introduces
an additional source of errors, and the errors accumulate very fast. As numerical examples in
[24] show, the errors of COS can be of the oder of 10% even for options of short maturity, and
blow up for maturity T = 1Y . BPROJ method [34, 35, 23] also introduces an error, which
accumulates but not as fast as the error of COS. Furthermore, the error of the approximation
of the transition density in BPROJ method is in the norm of the Sobolev space H2(R), hence,
very large for distributions close to the Variance Gamma - and, for small monitoring intervals,
in the case of the Variance Gamma model, the H2-norm is +∞ (see [23] for the detailed analysis
of COS, BROJ and filtering used in the literature to increase the speed of convergence - at the
cost of additional errors). The Hilbert transform approach (see, e.g., [27, 29]) requires long
grids, and the grids have to be extremely long for small time intervals and processes of finite
variation. In addition, it is very difficult to accurately estimate the accumulation of errors. The
method of [24], where the calculations are in the state space, allows one to derive sufficiently
accurate error bounds and recommendations for the choice of the parameters of the numerical
scheme. However, the grids must increase with time to maturity, and, in the result, for options
of maturity more than a year, even the precision of the order of E-05 requires much more CPU
time than the method of the present paper.
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[10] S. Boyarchenko and S. Levendorskĭi. Barrier options and touch-and-out options under regular Lévy processes
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Appendix A. Technicalities

A.1. Proof of Theorem 2.1. First, let h(z) = zm for some integer m. Then TM (h) = 0
if M does not divide m, and TM (h) = 1 if M divides m. This is a standard exercise about
sums of roots of unity. Under conditions of the theorem, h(z) has a Laurent series expansion
h(z) =

∑
j∈Z bjz

j which converges uniformly on the unit circle. Then I(h) = b0 and Tn(h) is

the sum of bj for all j that are divisible by M . Hence, |TM (h)− I(h)| is bounded by the sum
of |bj |, where j ranges over all nonzero integers that are divisible by M . We have

bj =
1

2πi

∫
|z|=1

z−j−1h(z)dz =
1

2πi

∫
|z|=ρ

z−j−1h(z)dz =
1

2πi

∫
|z|=1/ρ

z−j−1h(z)dz.

Hence,

∑
j>0

|bMj | ≤
∑
j>0

ρ−Mj−1

∫
|z|=ρ

|h(z)| dz
2πi

=
ρ−M

1− ρ−M
1

2πi

∫
|z|=ρ

|h(z)|dz
z
,
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and, similarly, ∑
j<0

|bMj | ≤
ρ−M+1

1− ρ−M
1

2πi

∫
|z|=1/ρ

|h(z)|dz
z
.

Adding the two inequalities finishes the proof.

A.2. Proof of Proposition 3.2. (a) follows from the following three facts: Φ(0) = 1; Φ is
continuous on i[λ−, λ+]; and |Φ(ξ)| ≤ Φ(− Im ξ). (b) Take ξ ∈ S(µ−,µ+) and note that the

integrands are analytic in S[µ−,µ+], with the only simple pole at η = ξ and decay as |η|−2 as
(S[µ−,µ+] 3)η →∞ (the apparent singularity at η = 0 is removable). By the residue theorem,

ln
1− q

1− qΦ(η)
= − 1

2πi

∫
Im ξ=ω−

ξ ln 1−q
1−qΦ(η)

η(ξ − η)
dη +

1

2πi

∫
Im ξ=ω+

ξ ln 1−q
1−qΦ(η)

η(ξ − η)
dη,

hence, (3.3) holds for φ±,
′

q (ξ) given by the RHS’ of (3.4)-(3.5) and all ξ ∈ S(µ−,µ+). Since

φ+,′
q and φ+

q are analytic and uniformly bounded in the upper half-plane, and φ−,
′

q and φ−q are
analytic and uniformly bounded in the lower half-plane, (3.4)-(3.5) follow from the uniqueness
of the Wiener-Hopf factorization.

(c) The integrals on the RHS’ of (3.4) and (3.5) do not change if we omit the factor 1 − q
under the log sign. Using ξ/(η(ξ − η)) = 1/η + 1/(ξ − η), we conclude that it suffices to prove
that, for any ε > 0 and A > 0, there exists CA,ε > 0 such that for any ξ ∈ S[−A,A],

(A.1)

∫
R

(1 + |η|)−δ

1 + |ξ − η|
dη ≤ CA,ε(1 + |ξ|)−δ+ε.

We consider the integrals over I1 = {η | |η| ≤ (1 + |ξ|)/2}, I2 = {η | |η| ≥ 2(1 + |ξ|)} and
I3 = {η | (1 + |ξ|)/2 ≤ |η| ≤ 2(1 + |ξ|)}:

I1 ≤ C(1 + |ξ|)−1

∫ (1+|ξ|)/2

0
(1 + |η|)−δdη = C1(1 + |ξ|)−δ,

I2 ≤ C(1 + |ξ|)−1

∫ +∞

2(1+|ξ|)
|η|−1−δdη = C1(1 + |ξ|)−δ,

I3 ≤ C(1 + |ξ|)−δ
∫ 2(1+|ξ|)

(1+|ξ|)/2
|η − ξ|−1dη ≤ C1(1 + |ξ|)−δ ln(1 + |ξ|),

where C,C1 are independent of ξ.

Appendix B. Figures and tables
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Figure 1. Cases I(i) (left panel) and II(ii) (right panel). Dots: the unit circle. Dots-
dashes, circles and solid lines: the curves χL;σ`,b`,ω`

(iω`+R), χL;σ`,b`,ω`
(i(ω`+d`)+R),

χL;σ`,b`,ω`
(i(ω` − d`) + R).
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Figure 2. Plots of curves η 7→ (1−q)/(1−qΦ(η)), for q in the SINH-Z- inversion and
η on the contours L± (upper and lower panels) in the numerical example with ν = 1.2,
and T = 15.
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Table 1. Joint cpdf F (T, a1, a2) := Q[XT ≤ a1, X̄T ≤ a2 | X0 = X̄0 = 0], and errors
(rounded) and CPU time (in msec) of two numerical schemes. Discrete monitoring,
the monitoring interval ∆̄ = 1/252, T = 0.25Y , the number of time steps 63. KoBoL
close to the Variance Gamma model, with an almost symmetric jump density, and no
“drift”: m2 = 0.1, ν = 0.2, λ− = −2, λ+ = 1. Errors are rounded, the CPU time is in
milliseconds (average over 1000 runs).

a2/a1 -0.075 -0.05 -0.025 0 0.025
0.025 0.052873910286366 0.0650091858382787 0.0879288341672031 0.506532201212114 0.923468308358369
0.05 0.0534088530783456 0.0656338924464693 0.0886847807216264 0.507515090989102 0.925299214939269
0.075 0.0536456853005228 0.0659043877286091 0.0890004474115774 0.507896616129521 0.925793930891586
0.1 0.0537794257554031 0.0660548821001662 0.0891723010284717 0.508097111907463 0.926036138000489

0.175 0.0539628421387795 0.0662578446892915 0.0893989471374944 0.508353292242695 0.926330710592022

A B
a2/a1 -0.075 -0.05 -0.025 0 0.025 -0.075 -0.05 -0.025 0 0.025
0.025 4.03E-12 3.63E-12 2.61E-13 5.46E-12 1.88E-11 4.41E-12 4.10E-12 3.4179E-13 -9.25E-13 1.38E-11
0.05 4.17E-12 3.81E-12 4.583E-13 5.80E-12 2.38E-12 4.57E-12 4.32E-12 6.20E-13 -5.57E-13 -2.93E-12
0.075 4.09E-12 3.70E-12 3.26E-13 5.65E-12 3.14E-12 4.46E-12 4.18E-12 4.82E-13 -7.13E-13 -3.14E-12
0.1 3.89E-12 3.48E-12 5.87E-14 4.88E-12 1.78E-12 4.21E-12 3.91E-12 1.61E-13 -1.08E-12 -3.56E-12

0.175 4.03E-12 3.63E-12 2.31E-13 5.19E-12 1.10E-12 4.30E-12 4.0E-12 2.62E-13 -9.66E-13 -3.44E-12

Errors of the benchmark values: better than E-14, at some points, E-15. CPU time per 1 point: 980, per 44 points: 6,672.
A: Trapezoid rule, M0 = 99, N± = 124. CPU time per 1 point: 30.9; per 44 points: 496.

B: SINH applied to the inverse Z-transform, with M0 = 16, N± = 124. CPU time per 1 point 10.2, per 44 points: 73.5.

Table 2. Joint cpdf F (T, a1, a2) := Q[XT ≤ a1, X̄T ≤ a2 | X0 = X̄0 = 0], in the
continuous time model, and errors (rounded) of approximation by the discrete time
model, with the time step ∆̄ = 1/252. T = 0.25Y . KoBoL close to the Variance
Gamma model, with an almost symmetric jump density, and no “drift”: m2 = 0.1,
ν = 0.2, λ− = −2, λ+ = 1. Errors are rounded.

a2/a1 -0.075 -0.05 -0.025 0 0.025
0.025 0.0528532412024314 0.0649856679446126 0.0879014169039586 0.506498701211731 0.923417160799492
0.05 0.0533971065051704 0.0656207900757623 0.0886699612390502 0.507497961893706 0.925278586629322
0.075 0.0536378889312988 0.0658957955144885 0.0889908892581356 0.507885843291178 0.925781540582068
0.1 0.0537738608706033 0.0660488001673687 0.0891656084917806 0.508089681056682 0.926027783268804

0.175 0.05396033997440315 0.0662551510091756 0.0893960371866518 0.508350135593746 0.926327268956837

A B
a2/a1 -0.075 -0.05 -0.025 0 0.025 -0.075 -0.05 -0.025 0 0.025

2.07E-05 2.35E-05 2.742E-05 3.35E-05 5.11E-05 0.00039 0.00036 0.00031 6.61E-05 5.54E-05
0.05 1.17E-05 1.31E-05 1.48E-05 1.71E-05 2.06E-05 0.00022 0.00020 0.00017 3.38E-05 2.23E-05
0.075 7.80E-06 8.59E-06 9.56E-06 1.08E-05 1.24E-05 0.00015 0.00013 0.00011 2.12E-05 1.34E-05
0.1 5.56E-06 6.08E-06 6.693E-06 7.43E-06 8.36E-06 0.00010 9.21E-05 7.51E-05 1.46E-05 9.02E-06

0.175 2.50E-06 2.69E-06 2.91E-06 3.16E-06 3.44E-06 4.64E-05 4.07E-05 3.263E-05 6.21E-06 3.72E-06

Errors of the benchmark values in the continuous time model: better than E-14, at a number of points, better than E-15.
A: Errors of approximation of the continuous time model by the discrete time model, ∆̄ = 1/252.

B: Relative rrors of approximation of the continuous time model by the discrete time model, ∆̄ = 1/252.
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Table 3. Joint cpdf F (T, a1, a2) := Q[XT ≤ a1, X̄T ≤ a2 | X0 = X̄0 = 0], and
errors (rounded) and CPU time (in msec) of two numerical schemes. T = 5Y . Discrete
monitoring, the monitoring interval ∆̄ = 1/252, the number of time steps 1260. KoBoL
close to the Variance Gamma model, with an almost symmetric jump density, and no
“drift”: m2 = 0.1, ν = 0.2, λ− = −2, λ+ = 1. Errors are rounded, the CPU time is in
milliseconds (average over 1000 runs).

a2/a1 -0.075 -0.05 -0.025 0 0.025
0.025 0.322715785176063 0.341705312612668 0.362654563514927 0.385503065295135 0.402853073943893
0.05 0.36823129960626 0.390755656346763 0.415922513339139 0.444104383367338 0.469731888892867
0.075 0.396209256972821 0.420842816392821 0.448475971976962 0.479643744322071 0.509135503443898
0.1 0.415752842072438 0.44180038793114 0.471059131572705 0.504139671693882 0.535967402412399

0.175 0.450253847495689 0.478623894580305 0.510496476100609 0.546559667768138 0.581857694138651

A B
a2/a1 -0.075 -0.05 -0.025 0 0.025 -0.075 -0.05 -0.025 0 0.025
0.025 5.26E-11 5.40E-11 5.56E-11 5.70E-11 6.97E-11 1.72E-11 1.86E-11 2.04E-11 2.58E-11 4.38E-11
0.05 5.19E-11 5.27E-11 5.35E-11 5.38E-11 5.45E-11 9.46E-12 1.02E-11 1.11E-11 1.54E-11 2.10E-11
0.075 5.44E-11 5.50E-11 5.55E-11 5.55E-11 5.56E-11 6.30E-12 6.77E-12 7.35E-12 1.12E-11 1.62E-11
0.1 5.74E-11 5.78E-11 5.83E-11 5.80E-11 5.80E-11 4.80E-12 5.14E-12 5.58E-12 9.25E-12 1.40E-11

0.175 6.63E-11 6.66E-11 6.69E-11 6.66E-11 6.63E-11 2.52E-12 2.68E-12 2.91E-12 6.35E-12 1.08E-11

Errors of the benchmark values: better than E-14, at a number of points, better than E-15. CPU time per 1 point: 239, per 44
points: 2,019.
A: Trapezoid rule, M0 = 2844, N± = 144. CPU time per 1 point: 812.4; per 44 points: 9,211.

B: SINH applied to the inverse Z-transform, with M0 = 19, N± = 137. CPU time per 1 point 15.7, per 44 points: 111.8.

Table 4. Joint cpdf F (T, a1, a2) := Q[XT ≤ a1, X̄T ≤ a2 | X0 = X̄0 = 0], in
the continuous time model, and errors (rounded) of approximation by the discrete
time model, with the time step ∆̄ = 1/252. T = 5Y . KoBoL close to the Variance
Gamma model, with an almost symmetric jump density, and no “drift”: m2 = 0.1,
ν = 0.2, λ− = −2, λ+ = 1. Errors are rounded.

a2/a1 -0.075 -0.05 -0.025 0 0.025
0.025 0.322520199783594 0.341498771047289 0.362435915393477 0.385270783252495 0.402604045074505
0.05 0.368086705216705 0.390602983343428 0.415760934326279 0.443932843905084 0.469548901563007
0.075 0.396095198340728 0.420722495404712 0.448348786726241 0.479508955507981 0.50899215240333
0.1 0.415660121524435 0.441702681710183 0.470955990412814 0.50403055838718 0.535851652064689

0.175 0.45019937409531 0.47856666561315 0.510436280251142 0.546496264054607 0.581790803932632

A B
a2/a1 -0.075 -0.05 -0.025 0 0.025 -0.075 -0.05 -0.025 0 0.025
0.025 0.00020 0.00021 0.00022 0.00023 0.00025 0.00061 0.00060 0.00060 0.00060 0.00062
0.05 0.00015 0.00015 0.00016 0.00017 0.00018 0.00039 0.00039 0.00039 0.00039 0.00039
0.075 0.00011 0.00012 0.00013 0.00013 0.00014 0.00029 0.00029 0.00028 0.00028 0.00028
0.1 9.27E-05 9.77E-05 0.00010 0.00011 0.00012 0.00022 0.00022 0.00022 0.00022 0.00022

0.175 5.45E-05 5.72E-05 6.02E-05 6.34E-05 6.69E-05 0.00012 0.00012 0.00012 0.00012 0.00011

Errors of the benchmark values in the continuous time model: better than E-15, with a couple of exceptions.
A: Errors of approximation of the continuous time model by the discrete time model, ∆̄ = 1/252.

B: Relative errors of approximation of the continuous time model by the discrete time model, ∆̄ = 1/252.
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Table 5. Joint cpdf F (T, a1, a2) := Q[XT ≤ a1, X̄T ≤ a2 | X0 = X̄0 = 0], and errors
(rounded) and CPU time (in msec) of two numerical schemes. T = 15Y . Discrete
monitoring, the monitoring interval ∆̄ = 1/252, the number of time steps 3780. KoBoL
close to the Variance Gamma model, with an almost symmetric jump density, and no
“drift”: m2 = 0.1, ν = 0.2, λ− = −2, λ+ = 1. Errors are rounded, the CPU time is in
milliseconds (average over 1000 runs).

a2/a1 -0.075 -0.05 -0.025 0 0.025
0.025 0.273003522656352 0.275060714621777 0.276863384237128 0.278361438403706 0.279413583881186
0.05 0.325601636899453 0.328403204232286 0.330932690547093 0.333148630324321 0.334989330744591
0.075 0.364467787376584 0.367935193185576 0.371127846709011 0.37400815325999 0.376529331567823
0.1 0.396164068347951 0.400244732717707 0.404054649236343 0.407558402431724 0.410715394955968

0.175 0.467032161225892 0.472690792930844 0.47810575026395 0.483245070441871 0.488075079451549

A B
a2/a1 -0.075 -0.05 -0.025 0 0.025 -0.075 -0.05 -0.025 0 0.025
0.025 1.40E-10 1.41E-10 1.41E-10 1.41E-10 1.45E-10 4.50E-11 4.59E-11 4.67E-11 -9.51E-12 2.71E-11
0.05 1.56E-10 1.56E-10 1.56E-10 1.56E-10 1.56E-10 4.10E-11 4.18E-11 4.26E-11 -1.37E-11 -1.368E-11
0.075 1.70E-10 1.71E-10 1.719E-10 1.71E-10 1.71E-10 4.05E-11 4.13E-11 4.219E-11 -1.42E-11 -1.41E-11
0.1 1.84E-10 1.84E-10 1.84E-10 1.84E-10 1.84E-10 4.08E-11 4.16E-11 4.24E-11 -1.39E-11 -1.38E-11

0.175 2.18E-10 2.19E-10 2.19E-10 2.19E-10 2.18E-10 4.26E-11 4.34E-11 4.43E-11 -1.120E-11 -1.19E-11

Errors of the benchmark values: better than E-13, with a couple of exceptions. CPU time per 1 point: 548, per 44 points: 4,162.
A: Trapezoid rule, M0 = 8538, N± = 172. CPU time per 1 point: 2,494; per 44 points: 25,613.
NB: the general recommendation for the choice of M0 (the error tolerance E-10) is decreased by 50%.

B: SINH applied to the inverse Z-transform, with M0 = 65, N± = 144. CPU time per 1 point 27.5, per 44 points: 319.9.

Table 6. Joint cpdf F (T, a1, a2) := Q[XT ≤ a1, X̄T ≤ a2 | X0 = X̄0 = 0], in the
continuous time model, and errors (rounded) of approximation by the discrete time
model, with the time step ∆̄ = 1/252. T = 15Y . KoBoL close to the Variance
Gamma model, with an almost symmetric jump density, and no “drift”: m2 = 0.1,
ν = 0.2, λ− = −2, λ+ = 1. Errors are rounded.

a2/a1 -0.075 -0.05 -0.025 0 0.025
0.025 0.272804820564476 0.274859824870105 0.276660421125814 0.278156527723931 0.279206809800465
0.05 0.325434820584041 0.328234181455624 0.33076152710125 0.332975399214234 0.33481410584792
0.075 0.364320938273655 0.36778614523566 0.370976636656939 0.373854823172472 0.376373926428562
0.1 0.39603236911559 0.400110870613695 0.403918641220246 0.407420269437458 0.410575160782172

0.175 0.466932999301196 0.472589684334096 0.47800268074549 0.483140027197031 0.487968050938338

A B
a2/a1 -0.075 -0.05 -0.025 0 0.025 -0.075 -0.05 -0.025 0 0.025
0.025 0.00020 0.00020 0.00020 0.00021 0.00021 0.00073 0.00073 0.00073 0.00074 0.00074
0.05 0.00017 0.00017 0.00017 0.00017 0.00017 0.00051 0.00052 0.00052 0.00052 0.00052
0.075 0.00015 0.00015 0.00015 0.00015 0.00016 0.00040 0.00040 0.00041 0.00041 0.00041
0.1 0.00013 0.00013 0.00014 0.00014 0.00014 0.00033 0.00033 0.00034 0.00034 0.00034

0.175 9.92E-05 0.00010 0.00010 0.00010 0.00011 0.00021 0.00021 0.00022 0.00022 0.00022

Errors of the benchmark values in the continuous time model: better than E-13, with a couple of exceptions.
A: Errors of approximation of the continuous time model by the discrete time model, ∆̄ = 1/252.

B: Relative errors of approximation of the continuous time model by the discrete time model, ∆̄ = 1/252.
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Table 7. Joint cpdf F (T, a1, a2) := Q[XT ≤ a1, X̄T ≤ a2 | X0 = X̄0 = 0], and errors
(rounded) and CPU time (in msec) of two numerical schemes. T = 15Y . Discrete
monitoring, the monitoring interval ∆̄ = 1/252, the number of time steps 3780. KoBoL
close to NIG, with an almost symmetric jump density, and no “drift”: m2 = 0.1,
ν = 1.2, λ− = −2, λ+ = 1. Errors are rounded, the CPU time is in milliseconds
(average over 1000 runs).

a2/a1 -0.075 -0.05 -0.025 0 0.025
0.025 0.08750889022257 0.0876433202115771 0.0877488959582886 0.0878234438630917 0.0878604203790796
0.05 0.133430426595114 0.133678790617469 0.133884632610215 0.134046292415956 0.13416044157208
0.075 0.172212077596399 0.172587459419214 0.172909022548126 0.173175531405955 0.173384836452991
0.1 0.206872444504732 0.207388307897551 0.207840301897249 0.208227492747064 0.208548393051015

0.175 0.295589651996839 0.296599359388506 0.297519605986825 0.298349844042413 0.299089406243993

A B
a2/a1 -0.075 -0.05 -0.025 0 0.025 -0.075 -0.05 -0.025 0 0.025
0.025 -3.95E-10 -4.66E-10 -5.44E-10 1.06E-09 4.637E-10 4.68E-11 4.69E-11 4.16E-11 -6.00E-11 -5.90E-11
0.05 -5.48E-10 -6.63E-10 -7.95E-10 7.44E-10 7.73E-10 5.70E-11 5.94E-11 5.57E-11 -4.62E-11 -8.14E-11
0.075 -6.54E-10 -8.08E-10 -9.90E-10 4.86E-10 4.33E-10 6.063E-11 6.49E-11 6.33E-11 -3.66E-11 -7.06E-11
0.1 1.84E-10 1.84E-10 1.84E-10 1.84E-10 1.84E-10 6.09E-11 6.62E-11 6.61E-11 -3.21E-11 -6.42E-11

0.175 -6.65E-10 -8.321E-10 -1.03E-09 4.21E-10 3.37E-10 5.80E-11 6.34E-11 6.38E-11 -3.32E-11 -6.34E-11

Errors of the benchmark values: better than 5 · 10−13. CPU time per 1 point: 1,848, per 44 points: 20,263.
A: Trapezoid rule, M0 = 8538, N± = 172. CPU time per 1 point: 3,046; per 44 points: 35,481.
NB: the general recommendation for the choice of M0 (the error tolerance E-10) is decreased by 47%.

B: SINH applied to the inverse Z-transform, with M0 = 28, N± = 183. CPU time per 1 point 27.5, per 44 points: 219.9.

Table 8. Joint cpdf F (T, a1, a2) := Q[XT ≤ a1, X̄T ≤ a2 | X0 = X̄0 = 0], in the
continuous time model, and errors (rounded) of approximation by the discrete time
model, with the time step ∆̄ = 1/252. T = 15Y . KoBoL close to NIG, with an almost
symmetric jump density, and no “drift”: m2 = 0.1, ν = 1.2, λ− = −2, λ+ = 1. Errors
are rounded.

a2/a1 -0.075 -0.05 -0.025 0 0.025
0.025 0.083599231183863 0.083725522194071 0.0838241629685378 0.0838929695457668 0.0839249287233805
0.05 0.130217710987261 0.130456839782095 0.130654399607263 0.130808705570046 0.13091634106018
0.075 0.169363038877019 0.169728032397852 0.170040043384744 0.170297815998657 0.170499151715123
0.1 0.204270598983103 0.204774983963964 0.205216260776888 0.205593481299844 0.205905127535884

0.175 0.293472724302235 0.294468206269081 0.295374834640356 0.296192060853885 0.296919211526691

A B
a2/a1 -0.075 -0.05 -0.025 0 0.025 -0.075 -0.05 -0.025 0 0.025
0.025 0.0039 0.0039 0.0039 0.0039 0.0039 0.047 0.047 0.047 0.047 0.047
0.05 0.0032 0.0032 0.0032 0.0032 0.0032 0.025 0.025 0.025 0.025 0.025
0.075 0.0028 0.0029 0.0029 0.0029 0.0029 0.017 0.017 0.017 0.017 0.017
0.1 0.013 0.013 0.013 0.013 0.013 0.00033 0.00033 0.00034 0.00034 0.00034

0.175 0.0021 0.0021 0.0021 0.0022 0.0022 0.0072 0.00721 0.0073 0.0073 0.0073

Errors of the benchmark values in the continuous time model: better than E-13, with a couple of exceptions.
A: Errors of approximation of the continuous time model by the discrete time model, ∆̄ = 1/252.

B: Relative errors of approximation of the continuous time model by the discrete time model, ∆̄ = 1/252.
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