
Efficient IR-Style Keyword Search
over Relational Databases∗

Vagelis Hristidis
UC, San Diego

vagelis@cs.ucsd.edu

Luis Gravano
Columbia University

gravano@cs.columbia.edu

Yannis Papakonstantinou
UC, San Diego

yannis@cs.ucsd.edu

Abstract

Applications in which plain text coexists with
structured data are pervasive. Commercial rela-
tional database management systems (RDBMSs)
generally provide querying capabilities for text
attributes that incorporate state-of-the-art infor-
mation retrieval (IR) relevance ranking strategies,
but this search functionality requires that queries
specify the exact column or columns against
which a given list of keywords is to be matched.
This requirement can be cumbersome and inflex-
ible from a user perspective: good answers to
a keyword query might need to be “assembled”
–in perhaps unforeseen ways– by joining tuples
from multiple relations. This observation has
motivated recent research on free-form keyword
search over RDBMSs. In this paper, we adapt
IR-style document-relevance ranking strategies to
the problem of processing free-form keyword
queries over RDBMSs. Our query model can
handle queries with both AND and OR seman-
tics, and exploits the sophisticated single-column
text-search functionality often available in com-
mercial RDBMSs. We develop query-processing
strategies that build on a crucial characteristic of
IR-style keyword search: only the few most rel-
evant matches –according to some definition of
“relevance”– are generally of interest. Conse-
quently, rather than computing all matches for a
keyword query, which leads to inefficient execu-
tions, our techniques focus on the top-k matches
for the query, for moderate values of k. A thor-
ough experimental evaluation over real data shows
the performance advantages of our approach.

∗Work supported by NSF Grant No. 9734548.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

1 Introduction
Applications in which plain text coexists with structured
data are pervasive. Furthermore, text and structured data
are often stored side by side within standard relational
database management systems (RDBMSs), as the follow-
ing example illustrates.
Example 1 Consider a customer-service database from
a large vendor of computer equipment. One table in
the database, Complaints(prodId, custId, date, comments),
logs each complaint received as a tuple with an internal
identifier of the customer who made the complaint (custId),
an identifier of the main product involved in the complaint
(prodId), when the complaint was made (date), and a free-
text description of the problem reported by the customer
(comments). An example instance of this relation is:

prodId custId date comments
p121 c3232 6-30-2002 “disk crashed after just one

week of moderate use on an
IBM Netvista X41”

p131 c3131 7-3-2002 “lower-end IBM Netvista
caught fire, starting apparently
with disk”

The first tuple in this instance corresponds to a complaint
by customer c3232 about product p121, which, as we will
see, corresponds to a hard drive, on June 30, 2002.

Commercial RDBMSs generally provide querying ca-
pabilities for text attributes that incorporate state-of-the-
art information retrieval (IR) relevance ranking strategies.
This search functionality requires that queries specify the
exact column or columns against which a given list of key-
words is to be matched. For example, a query:
SELECT * FROM Complaints C

WHERE CONTAINS (C.comments, ’disk crash’, 1) > 0

ORDER BY score(1) DESC

on Oracle 9.1 1 returns the rows of the Complaints table
above that match the keyword query [disk crash], sorted by
their score as determined by an IR relevance-ranking algo-
rithm. Intuitively, the score of a tuple measures how well
its comments field matches the query [disk crash].

The requirement that queries specify the exact columns
to match can be cumbersome and inflexible from a user
perspective: good answers to a keyword query might need
to be “assembled” –in perhaps unforeseen ways– by joining
tuples from multiple relations:

1http://www.oracle.com.

Example 1 (cont.) An additional relation in our example
database, Products(prodId, manufacturer, model), records
the manufacturer and model associated with each product.
The prodId attribute of the Complaints relation is a foreign-
key into Products. Consider the instance of relation Com-
plaints above, plus the following instance of the Products
relation:

prodId manufacturer model
p121 “Maxtor” “D540X”
p131 “IBM” “Netvista”

Then the best answer for a keyword query [maxtor on ibm
netvista] is the tuple that results from joining the first tuple
in both relations on the prodId attribute. This join correctly
identifies that the complaint by customer c3232 is about a
Maxtor disk drive (from the manufacturer attribute of the
Products relation) on an IBM Netvista computer (from the
comments attribute of the Complaints relation).

Free-form keyword search over RDBMSs has attracted re-
cent research interest. Given a keyword query, systems
such as DBXplorer [1] and DISCOVER [11] join tuples
from multiple relations in the database to identify tuple
trees with all the query keywords (“AND” semantics). All
such tuple trees are the answer to the query. Also, both
DBXplorer and DISCOVER rank the tuple trees solely by
the number of joins needed in their creation. The ratio-
nale behind this simple relevance-ranking scheme is that
the more joins are needed to create a tuple tree with all
query keywords, the less clear it becomes whether the re-
sult might be meaningful or helpful. Unfortunately, these
techniques do not consider IR-style ranking heuristics that
have proved effective over text.

A key contribution of this paper is the incorporation of
IR-style relevance ranking of tuple trees into our query pro-
cessing framework. In particular, our scheme fully exploits
single-attribute relevance-ranking results if the RDBMS of
choice has text-indexing capabilities (e.g., as is the case for
Oracle 9.1, as discussed above). By leveraging state-of-the-
art IR relevance-ranking functionality already present in
modern RDBMSs, we are able to produce high quality re-
sults for free-form keyword queries. For example, a query
[disk crash on a netvista] would still match the comments
attribute of the first Complaints tuple above with a high rel-
evance score, after word stemming (so that “crash” matches
“crashed”) and stop-word elimination (so that the absence
of “a” is not weighed too highly). Our scheme relies on the
IR engines of RDBMSs to perform such relevance-ranking
at the attribute level, and handles both AND and OR se-
mantics.

Unfortunately, existing query-processing strategies for
keyword search over RDBMSs are inherently inefficient,
since they attempt to capture all tuple trees with all query
keywords. Thus these strategies do not exploit a crucial
characteristic of IR-style keyword search, namely that only
the top 10 or 20 most relevant matches for a keyword query
–according to some definition of “relevance”– are generally
of interest. The second contribution of this paper is the pre-
sentation of efficient query processing techniques for our

IR-style queries over RDBMSs that heavily exploit this ob-
servation. As we will see, our techniques produce the top-k
matches for a query –for moderate values of k– in a frac-
tion of the time taken by state-of-the-art strategies to com-
pute all query matches. Furthermore, our techniques are
pipelined, in the sense that execution can efficiently resume
to compute the “next-k” matches if the user so desires.

The rest of the paper is structured as follows: Section 2
discusses related work. Then, Sections 3 and 4 define
the problem of processing keyword-search top-k queries
over RDBMSs, provide necessary notation, and describe
the general architecture of the system. Section 5 introduces
the key query processing algorithms, which we evaluate ex-
perimentally in Section 6. Finally, Section 7 concludes the
paper.

2 Related Work
Recent research has addressed the problem of free-form
keyword search over structured and semi-structured data.
BANKS [2] views a database as a graph where the database
tuples (or objects) are the nodes and application-specific
“relationships” are the edges. For example, an edge may
denote a foreign-key relationship. BANKS answers key-
word queries by searching for Steiner trees [15] containing
all keywords, using heuristics during the search. Goldman
et al. [8] use a related graph-based view of databases. A
user query specifies two sets of objects, the “Find” and the
“Near” objects, which may be generated using two separate
keyword sets. The system then ranks the objects in Find
according to their distance from the objects in Near, using
an algorithm that efficiently calculates these distances by
building “hub indexes.” A drawback of these approaches is
that a graph of the database tuples must be materialized and
maintained. Furthermore, the important structural informa-
tion provided by the database schema is ignored, once the
data graph has been built.

DBXplorer [1] and DISCOVER [11] exploit the
RDBMS schema, which leads to relatively efficient algo-
rithms for answering keyword queries because the struc-
tural constraints expressed in the schema are helpful for
query processing. These two systems rely on a similar ar-
chitecture, on which we also build in this paper (Section 4).
Unlike DBXplorer and DISCOVER, our techniques are not
limited to Boolean-AND semantics for queries, and we can
handle queries with both AND and OR semantics. In con-
trast, DBXplorer and DISCOVER (as well as BANKS) re-
quire that all query keywords appear in the tree of nodes
or tuples that are returned as the answer to a query. Fur-
thermore, we employ ranking techniques developed by the
IR community, instead of ranking answers solely based on
the size of the result as in DBXplorer and DISCOVER.
Also, our techniques improve on previous work in terms
of efficiency by exploiting the fact that free-form keyword
queries can generally be answered with just the few most
relevant matches. Our work then produces the “top-k”
matches for a query fast, for moderate values of k.

The IR community has focused over the last few decades
on improving the quality of relevance-ranking functions for

text document collections [16]. We refer the reader to [17]
for a recent survey. Our proposed query-processing system
builds on the IR work by exploiting the IR-style relevance-
ranking functionality that modern RDBMSs routinely in-
clude, typically over individual text attributes. For exam-
ple, Oracle 9i Text2 and IBM DB2 Text Information Exten-
der3 use standard SQL to create full text indexes on text at-
tributes of relations. Microsoft SQL Server 20004 also pro-
vides tools to generate full text indexes, which are stored as
files outside the database. All these systems allow users to
create full-text indexes on single attributes to then perform
keyword queries. By treating these single-attribute index-
ing modules as “black boxes,” our query processing sys-
tem separates itself from the peculiarities of each attribute
domain or application. In effect, our approach does not
require any semantic knowledge about the database, and
cleanly separates the relevance-ranking problem for a spe-
cific database attribute –which is performed by appropri-
ate RDBMS modules– from the problem of combining the
individual attribute scores and identifying the top “joining
trees of tuples” (see Section 3) for a query, which becomes
the focus of our work.

Keyword search over XML databases has also attracted
interest recently [7, 12, 9]. Florescu et al. [7] extend XML
query languages to enable keyword search at the granular-
ity of XML elements, which helps novice users formulate
queries. This work does not consider keyword proximity.
Hristidis et al. [12] view an XML database as a graph of
“minimal” XML segments and find connections between
them that contain all the query keywords. They focus on
the presentation of the results and use view materialization
techniques to provide fast response times. Finally, XRANK
[9] proposes a ranking function for the XML “result trees”,
which combines the scores of the individual nodes of the
result tree. The tree nodes are assigned PageRank-style
scores [3] off-line. These scores are query independent and,
unlike our work, do not incorporate IR-style keyword rele-
vance.

The problem of processing “top-k” queries has attracted
recent attention in a number of different scenarios. The
design of the pipelined algorithms that we propose in this
paper faces challenges that are related to other top-k work
(e.g., [14, 6, 10, 4]). However, our problem is unique (Sec-
tion 5) in that we need to join (ranked) tuples coming from
multiple relations in unpredictable ways to produce the fi-
nal top-k results.

Finally, Natsev et al. [13] extend the work by Fagin et
al. [6] by allowing different objects to appear in the source
“lists,” as opposed to assuming that the lists have just at-
tribute values for a common set of objects. As a result, the
objects from the lists need to be joined, which is done via
user-defined aggregation functions. The Single Pipelined
algorithm of Section 5.3 can be regarded as an instance of
the more general J∗ algorithm by Natsev et al. [13]. How-

2http://technet.oracle.com/products/text/content.html.
3http://www.ibm.com/software/data/db2/extenders/textinformation/.
4http://msdn.microsoft.com/library/.

Complaints
prodId
custId
date
comments

Products
prodId
manufacturer
model

Customers
custId
name
occupation

Figure 1: Schema of the Complaints database.

Complaints
tupleId prodId custId date comments

c1 p121 c3232 6-30-2002 “disk crashed after
just one week of
moderate use on an
IBM Netvista X41”

c2 p131 c3131 7-3-2002 “lower-end IBM
Netvista caught fire,
starting apparently
with disk”

c3 p131 c3143 8-3-2002 “IBM Netvista un-
stable with Maxtor
HD”

Products
tupleId prodId manufacturer model

p1 p121 “Maxtor” “D540X”
p2 p131 “IBM” “Netvista”
p3 p141 “Tripplite” “Smart 700VA”

Customers
tupleId custId name occupation

u1 c3232 “John Smith” “Software Engineer”
u2 c3131 “Jack Lucas” “Architect”
u3 c3143 “John Mayer” “Student”

Figure 2: An instance of the Complaints database.

ever, J∗ does not consider predicates over “connecting” re-
lations (i.e., free tuple sets in the terminology of Section 4).
Also, during processing J∗ buffers all incomplete results,
which would be inefficient (or even infeasible) for our set-
ting, where all combinations of tuples from the non-free
tuple sets are candidate results (i.e., may join through the
free tuple sets).

3 Framework
In this section, we specify the query model (Section 3.1),
together with the family of scoring functions that we con-
sider to identify the top-k answers for a query (Section 3.2).

3.1 Query Model
Consider a database with n relations R1, . . . , Rn. Each
relation Ri has mi attributes ai

1, . . . , a
i
mi

, a primary key
and possibly foreign keys into other relations. The schema
graph G is a directed graph that captures the foreign key
relationships in the schema. G has a node for each rela-
tion Ri, and an edge Ri → Rj for each primary key to
foreign key relationship from Ri into Rj . Figure 1 shows
the schema graph of our Complaints database running ex-
ample, while Figure 2 shows a possible instance of this
database. We use schema graphs in the following defini-
tion, which forms the basis for the query-result specifica-
tion:
Definition 1 (Joining trees of tuples) Given a schema
graph G for a database, a joining tree of tuples T is a tree
of tuples where each edge (ti, tj) in T , where ti ∈ Ri and
tj ∈ Rj , satisfies two properties: (1) (Ri, Rj) ∈ G, and
(2) ti �� tj ∈ Ri �� Rj . The size(T) of a joining tree T is
the number of tuples in T .

A top-k keyword query is a list of keywords Q =
[w1, . . . , wm]. The result for such a top-k query is a list
of the k joining trees of tuples T whose Score(T, Q) score
for the query is highest, where Score(T, Q) is discussed
below. (Ties are broken arbitrarily.) The query result is
sorted in descending order of the scores. We require that
any joining tree T in a query result be minimal: if a tuple
t with zero score is removed from T , then the tuples re-
maining in T are “disconnected” and do not form a joining
tree. In other words, T cannot have a leaf tuple with zero
score. As an example, for a choice of ranking function
Score the results for a top-3 query [Netvista Maxtor] over
our Complaints database could be (1) c3; (2) p2 → c3; and
(3) p1 → c1. Finally, we do not allow any tuple to appear
more than once in a joining tree of tuples.

3.2 Ranking Functions
We now discuss how to rank joining trees of tuples for a
given query. Result ranking has been addressed by other
keyword-search systems for relational data. Given a query
Q, both DISCOVER [11] and DBXplorer [1] assign a score
to a joining tree of tuples T in the following way:

Score(T, Q) =

{
1

size(T)
if T contains all words in Q

0 otherwise

Alternatively, BANKS [2] uses the following scoring
scheme:5

Score(T, Q) =




fr(T) + fn(T) + fp(T) if T contains
all words in Q

0 otherwise

where fr(T) measures how “related” the relations of the
tuples of T are, fn(T) depends on the weight of the tuples
of T –as determined by a PageRank-inspired technique–,
and fp(T) is a function of the weight of the edges of T .

The approaches above capture the size and “structure”
of a query result in the score that it is assigned, but do not
leverage further the relevance-ranking strategies developed
by the IR community over the years. As discussed in the
introduction, these strategies –which were developed ex-
actly to improve document-ranking quality for free-form
keyword queries– can naturally help improve the quality of
keyword query results over RDBMSs. Furthermore, mod-
ern RDBMSs already include IR-style relevance ranking
functionality over individual text attributes, which we ex-
ploit to define our ranking scheme. Specifically, the score
that we assign to a joining tree of tuples T for a query Q
relies on:
• Single-attribute IR-style relevance scores

Score(ai, Q) for each textual attribute ai ∈ T
and query Q, as determined by an IR engine at the
RDBMS, and
• A function Combine , which combines the single-

attribute scores into a final score for T .
As an example, a state-of-the-art IR definition for a single-
attribute scoring function Score is as follows [17]:

Score(ai, Q) =
∑

w∈Q∩ai

1 + ln(1 + ln(tf))

(1− s) + s dl
avdl

· lnN + 1

df
(1)

5Reference [2] introduces several variations of this scheme (e.g., the
tuple and edge terms above could be multiplied rather than added).

where, for a word w, tf is the frequency of w in a i, df is
the number of tuples in ai’s relation with word w in this at-
tribute, dl is the size of ai in characters, avdl is the average
attribute-value size, N is the total number of tuples in a i’s
relation, and s is a constant (usually 0.2). (Note that this
single-attribute scoring function can be easily extended to
incorporate PageRank-style “link”-based scores [3, 9].)

We now turn to the problem of combining single-
attribute scores for a joining tree of tuples T into a fi-
nal score for the tree. Notice that the score for a single
tuple t is defined by viewing t as a joining tree of size
1. Let A = 〈a1, . . . , an〉 be a vector with all textual at-
tribute values for T . We define the score of T for Q as
Score(T, Q) = Combine(Score(A, Q), size(T)), where
Score(A, Q) = 〈Score(a1, Q), . . . ,Score(an, Q)〉. (No-
tice that instead of size(T) we could use other characteris-
tics of T , as suited to the specifics of the application.) A
simple definition for Combine is:

Combine(Score(A, Q), size(T)) =

∑
ai∈A Score(ai, Q)

size(T)
(2)

The definition for the Combine function above is a nat-
ural one, but of course other such functions are possible.
The query processing algorithms that we present later can
handle any combining function that satisfies the following
property:

Definition 2 (Tuple monotonicity) A combining function
Combine satisfies the tuple monotonicity property if, for
every query Q and joining trees of tuples T and T ′ de-
rived from the same CN such that (i) T consists of tu-
ples t1, . . . , tn while T ′ consists of tuples t′1, . . . , t

′
n and

(ii) Score(ti, Q) ≤ Score(t′i, Q) for all i, it follows that
Score(T, Q) ≤ Score(T ′, Q).
Notice that the ranking function Score(t, Q) for a single
tuple can be arbitrary, although in the above discussion we
assume that the same formula (Equation 2) calculates the
rank for both a single tuple and a joining tree of tuples.
All ranking functions for joining trees of tuples of which
we are aware [1, 11, 2], including the one in Equation 2,
satisfy the tuple-monotonicity property, and hence can be
used with the execution algorithms that we discuss later in
this paper.

In addition to the combining function, queries should
specify whether they have Boolean AND or OR semantics.
The AND semantics assigns a score of 0 to any tuple tree
that does not include all query keywords, while tuple trees
with all query keywords receive the score determined by
Combine . In contrast, the OR semantics always assigns a
tuple tree its score as determined by Combine , whether the
tuple tree includes all query keywords or not.

In summary, the single-attribute Score function, to-
gether with the Combine function of choice, assign rel-
evance scores to joining trees of tuples either with AND or
with OR semantics. The next section outlines the architec-
ture of our query processing system, which efficiently iden-
tifies the trees of tuples with the highest relevance scores
for a given query.

Figure 3: Architecture of our query processing system.

4 System Architecture
The architecture of our query processing system relies
whenever possible on existing, unmodified RDBMS com-
ponents. Specifically, our architecture (Figure 3) consists
of the following modules:

4.1 IR Engine
As discussed, modern RDBMSs include IR-style text in-
dexing functionality at the attribute level. The IR Engine
module of our architecture exploits this functionality to
identify all database tuples that have a non-zero score for a
given query. The IR Engine relies on the IR Index, which
is an inverted index that associates each keyword that ap-
pears in the database with a list of occurrences of the key-
word; each occurrence of a keyword is recorded as a tuple-
attribute pair. Our implementation uses Oracle Text, which
keeps a separate index for each relation attribute. We com-
bine these individual indexes to build the IR Index. 6

When a query Q arrives, the IR Engine uses the IR Index
to extract from each relation R the tuple set RQ = {t ∈ R |
Score(t, Q) > 0}, which consists of the tuples of R with
a non-zero score for Q. The tuples t in the tuple sets are
ranked in descending order of Score(t, Q), as required by
the top-k query processing algorithms described below.

4.2 Candidate Network Generator
The next module in the pipeline is the Candidate Network
(CN) Generator, which receives as input the non-empty

6In principle, we could exploit more efficient indexing schemes (e.g.,
text indexes at the tuple level) as RDBMSs start to support them.

Products{} Complaints{} Customers{}

ProductsQ ComplaintsQ

Figure 4: Tuple set graph for the Complaints database and
query [Maxtor Netvista].

tuple sets from the IR Engine, together with the database
schema and a parameter M that we explain below. The key
role of this module is to produce CNs, which are join ex-
pressions to be used to create joining trees of tuples that
will be considered as potential answers to the query.

Specifically, a CN is a join expression that involves tuple
sets plus perhaps additional “base” database relations. We
refer to a base relation R that appears in a CN as a free tuple
set and denote it as R{}. Intuitively, the free tuple sets in
a CN do not have occurrences of the query keywords, but
help “connect” (via foreign-key joins) the (non-free) tuple
sets that do have non-zero scores for the query. Each result
T of a CN is thus a potential result of the keyword query.
We say that a joining tree of tuples T belongs to a CN C
(T ∈ C) if there is a tree isomorphism mapping h from the
tuples of T to the tuple sets of C. For example, in Figure 2,
(c1 ← p1) ∈ (ComplaintsQ ← ProductsQ). The input
parameter M bounds the size (in number of tuple sets, free
or non-free) of the CNs that this module produces.

The notion of CN was introduced in DBXplorer [1] 7 and
DISCOVER [11]. As discussed, DISCOVER and DBX-
plorer require that each joining tree of tuples in the query
answer contain all query keywords. To produce all answers
for a query with this AND semantics, these systems create
multiple tuple sets for each database relation. Specifically,
a separate tuple set is created for each combination of key-
words in Q and each relation. This generally leads to a
number of CNs that is exponential in the query size, which
makes query execution prohibitively expensive for queries
of more than a very small number of keywords or for values
of M greater than 4 or so.

In contrast, we only create a single tuple set RQ for
each relation R, as specified above. For queries with AND
semantics, a postprocessing step checks that we only re-
turn tuple trees containing all query keywords. As we will
see, this characteristic of our system results in significantly
faster executions, which in turn allows us to handle larger
queries and also consider larger CNs.

The CN generation algorithm is based on that of the
DISCOVER system, and is not explained here in full de-
tail due to lack of space. Conceptually, we first create the
tuple set graph from the database schema graph and the tu-
ple sets returned by the IR Engine module. Figure 4 shows
the tuple set graph for the Complaints database and query
Q = [Maxtor Netvista]. Initially, the set S of candidate
CNs consists of the non-free tuple sets (ProductsQ and
ComplaintsQ in our example). We progressively expand
each CN s ∈ S by adding a tuple set adjacent to s in the
tuple set graph. We consider s to be a CN and hence part of

7DBXplorer refers to CNs as “join trees.”

CQ P Q CQ ← P Q CQ ← U{}
→ CQ

CQ ← P {}
→ CQ

c3: 1.33 p1: 1 c3 ← p2: 1.17 c3 ← p2

c1: 0.33 p2: 1 c1 ← p1: 0.67 → c2: 1.11
c2: 0.33 c2 ← p2: 0.67

Figure 5: CN results for the Complaints database and query
[Maxtor Netvista], where C stands for Complaints, P for
Products, and U for Customers.

the output of this module if it satisfies the following prop-
erties:

1. The number of non-free tuple sets in s does not ex-
ceed the number of query keywords m: This constraint
guarantees that we generate a minimum number of
CNs while not missing any result that contains all the
keywords, which is crucial for Boolean-AND seman-
tics. That is, for every result T that contains every
keyword exactly once, a CN C exists such that T ∈
C. For example, ProductsQ → ComplaintsQ ←
Customers{} → ComplaintsQ is not a CN of query
[Maxtor Netvista]. In particular, its results are a sub-
set of the results of ProductsQ → Complaints{} ←
Customers{} → ComplaintsQ.

2. No leaf tuple sets of s are free: This constraint en-
sures CN “minimality.” For example, ProductsQ →
Complaints{} is not a CN because it is subsumed by
the simpler CN ProductsQ.

3. s does not contain a construct of the form R → S ←
R: If such a construct existed, every resulting joining
tree of tuples would contain the same tuple more than
once. For example, ProductsQ → Complaints{} ←
ProductsQ is not a CN because all produced joining
networks of tuples would be of the form p → c ← p ′
with p ≡ p′.

The size of a CN is its number of tuple sets. All CNs of
size 3 or lower for the query [Maxtor Netvista] are shown
in Figure 3.

4.3 Execution Engine
The final module in the pipeline is the Execution Engine,
which receives as input a set of CNs together with the
non-free tuple sets. The Execution Engine contacts the
RDBMS’s query execution engine repeatedly to identify
the top-k query results. Figure 5 shows the joining trees
of tuples produced by each CN, together with their scores
for the query [Maxtor Netvista] over our Complaints exam-
ple. The Execution Engine module is the most challenging
to implement efficiently, and is the subject of the next sec-
tion.

5 Execution Algorithms
We now present algorithms for a core operation in our sys-
tem: given a set of CNs together with a set of non-free
tuple sets, the Execution Engine needs to efficiently iden-
tify the top-k joining trees of tuples that can be derived.
First, we describe the Naive algorithm, a simple adaptation
of query processing algorithms used in prior work [11, 1].

Second, we present the Sparse algorithm, which improves
on the Naive algorithm by dynamically pruning some CNs
during query evaluation. Third, we describe the Single
Pipelined algorithm, which calculates the top-k results for
a single CN in a pipelined way. Fourth, we present the
Global Pipelined algorithm, which generalizes the Single
Pipelined algorithm to multiple CNs and can then be used
to calculate the final result for top-k queries. Finally, we in-
troduce the Hybrid algorithm, which combines the virtues
of both the Global Pipelined and the Sparse algorithms,
and is shown to outperform all other approaches in Sec-
tion 6.

5.1 Naive Algorithm
The Naive algorithm issues a SQL query for each CN for
a top-k query. The results from each CN are combined
in a sort-merge manner to identify the final top-k results of
the query. This approach is an adaptation of the execution
algorithms of prior work [11, 1, 12] for keyword-search
queries. As a simple optimization in our experiments, we
only get the top-k results from each CN according to the
scoring function, and we enable the top-k “hint” function-
ality, available in the Oracle 9.1 RDBMS.8 In the case of
Boolean-AND semantics, the Naive algorithm (as well as
the Sparse algorithm presented below) involves an addi-
tional filtering step on the stream of results to check for the
presence of all keywords.

5.2 Sparse Algorithm
The Naive algorithm exhaustively processes every CN as-
sociated with a query. We can improve query-processing
performance by discarding at any point in time any (unpro-
cessed) CN that is guaranteed not to produce a top-k match
for the query. Specifically, the Sparse algorithm computes
a bound MPS i on the maximum possible score of a tuple
tree derived from a CN Ci. If MPS i does not exceed the
actual score of k already produced tuple trees, then CN C i

can be safely removed from further consideration. To cal-
culate MPS i, we apply the combining function to the top
tuples (due to the monotonicity property in Definition 2) of
the non-free tuple sets of Ci. That is, MPS i is the score
of a hypothetical joining tree of tuples T that contains the
top tuples from every non-free tuple set in C i. As a further
optimization, the CNs for a query are evaluated in ascend-
ing size order. This way, the smallest CNs, which are the
least expensive to process and are the most likely to pro-
duce high-score tuple trees using the combining function
above, are evaluated first. As we discuss in Section 6.3, the
Sparse algorithm is the method of choice for queries that
produce relatively few results.

5.3 Single Pipelined Algorithm
The Single Pipelined algorithm (Figure 7) receives as in-
put a candidate network C and the non-free tuple sets
TS 1, . . . ,TS v that participate in C. Recall that each of
these non-free tuple sets corresponds to one relation, and
contains the tuples in the relation with a non-zero match

8This hint to the optimizer has not significantly improved performance
in our experiments.

for the query. Furthermore, the tuples in TS i are sorted in
descending order of their Score for the query. (Note that
the attribute Score(ai, Q) and tuple Score(t, Q) scores as-
sociated with each tuple t ∈ TS i are initially computed
by the IR Engine, as we described, and do not need to be
re-calculated by the Execution Engine.) The output of the
Single Pipelined Algorithm consists of a stream of joining
trees of tuples T in descending Score(T, Q) order.

The intuition behind the Single Pipelined algorithm is as
follows. We keep track of the prefix S(TS i) that we have
retrieved from every tuple set TS i; in each iteration of the
algorithm, we retrieve a new tuple t from one TS M , after
which we add it to the associated retrieved prefix S(TS M).
(We discuss the choice of TS M below.) Then, we pro-
ceed to identify each potential joining tree of tuples T in
which t can participate. For this, we prepare in advance
a parameterized query that performs appropriate joins in-
volving the retrieved prefixes. (Figure 3 shows the pa-
rameterized query for the CN CQ ← PQ.) Specifically,
we invoke this parameterized query once for every tuple
(t1, . . . , tM−1, t, tM+1, . . . , tv), where ti ∈ S(TS i) for
i = 1, . . . , v and i 	= M . All joining trees of tuples that
include t are returned by these queries, and are added to a
queue R. We cannot output these trees until we can guaran-
tee that they are one of the top-k joining trees for the orig-
inal query. Notice that a naive execution of this algorithm
would prevent us from producing any results until all can-
didate trees are computed and rank-ordered. As we discuss
next, we bound the score that tuple trees not yet produced
can achieve, hence circumventing this limitation of naive
algorithms.

In effect, the Single Pipelined algorithm can start pro-
ducing results before examining the entire tuple sets. For
this, we maintain an effective estimate of the Maximum
Possible Future Score (MPFS)9 that any unseen result can
achieve, given the information already gathered by the al-
gorithm. Specifically, we analyze the status of each prefix
S(TS i) to bound the maximum score that an unretrieved
tuple from the corresponding non-free tuple set can reach.
(Recall once again that non-free tuple sets are ordered by
their tuple scores.) To compute MPFS , we first calculate
MPFS i for each non-free tuple set TS i as the maximum
possible future score of any tuple tree that contains a tuple
from TS i that has not yet been retrieved (i.e., that is not in
S(TS i)):
MPFS i = max{Score(T, Q) |

T ∈ TS 1 �� . . . �� (TS i − S(TS i)) �� . . . �� TS v}
Unfortunately, a precise calculation of MPFS i would

require multiple database queries, with cost similar to that
of computing all possible tuple trees for the queries. As
an alternative to this expensive computation, we attempt
to produce a (hopefully tight) overestimate MPFS i, com-
puted as the score of the hypothetical tree of tuples consist-
ing of the next unprocessed tuple ti from TS i and the top-
ranked tuple ttop

j of each tuple set TS j , for j 	= i. Notice

9Notice that MPS , as defined in Section 5.2, is equivalent to MPFS
before the evaluation of the CN begins (i.e., before any parameterized
query is executed).

tree of 3
free tuple

sets

TS1
tupleId score
a1 7
a2 5
a3 1

TS3
tupleId score
c1 8
c2 5
c3 2

TS2
tupleId score
b1 9
b2 6
b3 1

R: Queue of Results
T score
a1~b2~c1 3.5
a2~b2~c1 3.16

MPFS
1
 = (1+9+8)/6 = 3 MPFS

2
 = (1+7+8)/6 = 2.66

MPFS
3
 = (5+7+9)/6 = 3.5

MPFS = 3.5

S(TS1) S(TS2)

S(TS3)

next
next of next

iteration

next next

Figure 6: Snapshot of a Single Pipelined execution.

that MPFS i is an overestimate of MPFS i because there is
no guarantee that the tuples ti and ttop

j will indeed partic-

ipate in a joining tree of C. However, MPFS i is the best
estimate that we can produce efficiently without accessing
the database and, as we will see, results in significant sav-
ings over the naive executions. Following a similar ratio-
nale, we also define an overestimate MPFS for the entire
candidate network C, as MPFS = maxi=1,...,v MPFS i. A
tentative result from R (see Figure 7) is safely returned as
one of the top-k results if its associated score is no less than
MPFS .

Another key issue is the choice of the tuple set from
which to pick the next tuple t. One simple possibility is to
pick tuple sets randomly, or in a round-robin way. Instead,
the Single Pipelined algorithm picks the “most promising”
tuple set, which is defined as the tuple set that can produce
the highest ranked result. Using this heuristic, we pick the
next tuple from the tuple set TS M with the maximum value
of MPFS i (i.e., MPFS M = maxi MPFS i). The experi-
ments of Section 6 show that this choice of tuple set results
in better performance over random or round-robin choices.
Example 2 Figure 6 shows a snapshot of an execution of the Sin-
gle Pipelined algorithm on a hypothetical database. The candi-
date network C has three free and three non-free tuple sets. The
thick dotted lines denote the prefix of each tuple set retrieved so
far. The combining function of Equation 2 is used. The first result
of R is output because its score is equal to MPFS . In contrast,
the second result cannot yet be safely output because its score
is below MPFS . Suppose that we now retrieve a new tuple c2
from the tuple set with maximum MPFS i. Further, assume that
no results are produced by the associated parameterized queries
when instantiated with c2. Then, MPFS 3 = 2+7+9

6
= 3 and

MPFS = 3. Hence now the second result of R can be output.

The correctness of this algorithm relies on the com-
bining function satisfying the tuple monotonicity property
from Definition 2. Notice that the following extra step is
needed for queries with AND semantics: Before issuing
a parameterized query, we check if all query keywords are
contained in the tuples that are passed as parameters. As we
will see in Section 6, the Single Pipelined algorithm is not
an efficient choice when used separately for each CN, but
is the main building block of the efficient Global Pipelined
algorithm described below.

Single Pipelined Algorithm(C, Q, k, Score(.), TS1, . . . ,TSv){
01. h(TS i): top unprocessed tuple of TSi

(i.e., not yet added to S(TSi))
02. S(TS i): prefix of TSi retrieved so far; initially empty
03. R: queue for not-yet-output results, by descending Score(T, Q)
04. Execute parameterized query q(h(TS1), . . . , h(TSv))
05. Add results of q to R
06. Output all results T in R with Score(T, Q) ≥ maxv

i=1 MPFS i

07. For i = 1, . . . , v move h(TS i) to S(TS i)
08. While (fewer than k results have been output) do {
09. Get tuple t = h(TSM), where MPFSM = maxv

i=1 MPFS i

10. Move t to S(TSM)
11. For each combination (t1, . . . , tM−1, tM+1, . . . , tv) of tuples

where ti ∈ S(TS i) do {
12. Execute parameterized query q(t1, . . . , tM−1, t, tM+1, . . . , tv)
13. Add results of q to R}
14. Output all new results T in R with

Score(T, Q) ≥ maxv
i=1 MPFS i}}

Figure 7: The Single Pipelined algorithm.

Global Pipelined Algorithm(C1, . . . , Cn, k, Q, Score(.)){
01. Let vi be the number of non-free tuple sets of CN Ci

02. h(TS i,j): top unprocessed tuple of Ci’s j-th tuple set TSi,j

03. S(TS i,j): prefix of TSi,j retrieved so far; initially empty
04. R: queue for not-yet-output results, by descending Score(T, Q)
05. For i = 1 . . . n do {
06. Execute parameterized query qi(h(TS i,1), . . . , h(TS i,vi

))
07. /* qi is the parameterized query for CN Ci */
08. Add results of qi to R
09. For j = 1, . . . , vi move h(TS i,j) to S(TS i,j)}
10. Output all results T in R with Score(T, Q) ≥ GMPFS
11. While (fewer than k results have been output) do {
12. /* Get tuple from most promising tuple set of most promising CN */
13. Get tuple t = h(TSc,M), where MPFSM for CN Cc is highest
14. Move t to S(TSc,M)
15. For each combination (t1, . . . , tM−1, tM+1, . . . , tvc) of tuples

where tl ∈ S(TSc,l) do{
16. Execute parameterized query qc(t1, . . . , tM−1, t, tM+1, . . . , tvc)
17. Add results of qc to R}
18. Output all new results T in R with Score(T, Q) ≥ GMPFS}}

Figure 8: The Global Pipelined algorithm.

5.4 Global Pipelined Algorithm
The Global Pipelined algorithm (Figure 8) builds on the
Single Pipelined algorithm to efficiently answer a top-k
keyword query over multiple CNs. The algorithm receives
as input a set of candidate networks, together with their
associated non-free tuple sets, and produces as output a
stream of joining trees of tuples ranked by their overall
score for the query.

The key idea of the algorithm is the following. All CNs
of the keyword query are evaluated concurrently following
an adaptation of a priority preemptive, round robin proto-
col [5], where the execution of each CN corresponds to a
process. Each CN is evaluated using a modification of the
Single Pipelined algorithm, with the “priority” of a process
being the MPFS value of its associated CN.

Initially, a “minimal” portion of the most promising CN
Cc (i.e., Cc has the highest MPFS value) is evaluated.
Specifically, this minimal portion corresponds to process-

Hybrid Algorithm(C1, . . . , Cn, k, c, Q, Score(.)){
01. c is a tuning constant
02. Estimate = GetEstimate(C1, . . . , Cn)
03. If Estimate > c · k then execute Global Pipelined
04. else execute Sparse}

Figure 10: The Hybrid algorithm.

ing the next tuple from Cc (lines 12–17). After this, the
priority of Cc (i.e., MPFS c) is updated, and the CN with
the next highest MPFS value is picked. A tuple-tree result
is output (line 18) if its score is no lower than the current
value of the Global MPFS , GMPFS , defined as the max-
imum MPFS among all the CNs for the query. Note that
if the same tuple set TS is in two different CNs, it is pro-
cessed as two separate (but identical) tuple sets. In prac-
tice, this is implemented by maintaining two open cursors
for TS .
Example 3 Figure 9 shows a snapshot of the Global Pipelined
evaluation of a query with five CNs on a hypothetical database.
At each point, we process the CN with the maximum MPFS , and
maintain a global queue of potential results. After a minimal
portion of the current CN C is evaluated, its MPFS is updated,
which redefines the priority of C.

Example 4 Consider query [Maxtor Netvista] on our running
example. We consider all CNs of size up to 2, namely C1:
ComplaintsQ; C2: ProductsQ; and C3: ComplaintsQ ←
ProductsQ. These CNs do not include free tuple sets because of
the restriction that CN cannot include free “leaf” tuple sets. (The
minimum size of a CN with free tuple sets is three.) The following
tuple sets are associated with our three CNs:

C1: TS1,1 C2: TS2,1

tupleId Score(t,Q)
c3 1.33
c2 0.33
c1 0.33

tupleId Score(t, Q)
p1 1
p2 1

C3: TS3,1 C3: TS3,2

tupleId Score(t,Q)
c3 1.33
c2 0.33
c1 0.33

tupleId Score(t, Q)
p1 1
p2 1

Following Figure 8, we first get the top tuple from each CN’s
tuple set and query the database for results containing these
tuples (lines 5–9). Therefore, we extract (line 10) the result-
tuples c3 and p1 from C1 and C2 respectively. No results are
produced from C3 since c3 and p1 do not join. The MPFS s
of C1, C2, and C3 are 0.33, 1, and 1.17 (= (1.33 + 1)/2),
respectively. Hence GMPFS = 1.17. c3 is output since it
has score 1.33 ≥ GMPFS . On the other hand, p1 is not
output because its score is 1 < GMPFS . Next, we get a new
tuple for the most promising CN, which is now C3. The most
promising tuple set for C3 is TS3,2. Therefore, p2 is retrieved
and the results of the parameterized query q3(c3, p2) (which is
c3 ← p2) are added to R. Notice that q3 is the query SELECT
* FROM TS3,1, TS3,2, Complaints c, Products
p WHERE TS3,1.tupleId =? AND TS3,2.tupleId =? AND
TS3,1.tupleId = c.tupleId AND TS3,2.tupleId = p.tupleId
AND c.prodId = p.prodId . Now, the MPFS bounds of C1, C2,
and C3 are 0.33, 1, and 0.67 (= (0.33 + 1)/2), respectively.
Hence GMPFS = 1. c3 ← p2 is output because it has score

C4
C5
C1
C3
C2

C3
Queue of CN processes
ordered by ascending

MPFS

Processing Unit
R: Queue of Results
T score
a1~b2~c1 3.5
a2~b2~c1 3.16

Output

tree of 3
free tuple

sets

TS1
tupleId score
a1 7
a2 5
a3 1

TS3
tupleId score
c1 8
c2 5
c3 2

TS2
tupleId score
b1 9
b2 6
b3 1

MPFS
1
 = (1+9+8)/6 = 3 MPFS

2
 = (1+7+8)/6 = 2.66

MPFS
3
 = (5+7+9)/6 = 3.5

MPFS = 3.5

S(TS1) S(TS2)

S(TS3)

next
next of next

iteration

next next

Figure 9: Snapshot of a Global Pipelined execution.

1.165 ≥ GMPFS . Also, p1 is output because it has score
1 ≥ GMPFS .

Just as for Single Pipelined, the correctness of Global
Pipelined relies on the combining function satisfying the
tuple-monotonicity property of Definition 2. As we will
see in our experimental evaluation, Global Pipelined is the
most efficient algorithm for queries that produce many re-
sults.

5.5 Hybrid Algorithm
As mentioned briefly above (see Section 6.3 for more de-
tails), Sparse is the most efficient algorithm for queries
with relatively few results, while Global Pipelined per-
forms best for queries with a relatively large number of re-
sults. Hence, it is natural to propose a Hybrid algorithm
(Figure 10) that estimates the expected number of results
for a query and chooses the best algorithm to process the
query accordingly.

The Hybrid algorithm critically relies on the accuracy
of the result-size estimator. For queries with OR seman-
tics, we can simply rely on the RDBMS’s result-size esti-
mates, which we have found to be reliable. In contrast, this
estimation is more challenging for queries with AND se-
mantics: the RDBMS that we used for our implementation,
Oracle 9i, ignores the text index when producing estimates.
Therefore, we can obtain from the RDBMS an estimate S
of the number of tuples derived from a CN (i.e., the num-
ber of tuples that match the associated join conditions), but
we need to adjust this estimate so that we consider only tu-
ple trees that contain all query keywords. To illustrate this
simple adjustment, consider a two-keyword query [w1, w2]
with two non-free tuple sets TS1 and TS2. If we assume
that the two keywords appear independently of each other
in the tuples, we adjust the estimate S by multiplying by
|TS

w1
1 |·|TS

w2
2 |+|TS

w2
1 |·|TS

w1
2 |

|TS1|·|TS2| , where TSw
i is the subset of

TSi that contains keyword w. (An implicit simplifying as-
sumption in the computation of this adjustment factor is
that no two keywords appear in the same tuple.) We evalu-
ate the performance of this estimator in Section 6.10

10Of course, there are alternative ways to define a hybrid algorithm.
(For example, we could estimate the number of results for each CN C and

6 Experiments
In this section we experimentally compare the various al-
gorithms described above. For our evaluation, we use the
DBLP11 data set, which we decomposed into relations ac-
cording to the schema shown in Figure 11. Y is an in-
stance of a conference in a particular year. PP is a rela-
tion that describes each paper pid2 cited by a paper pid1,
while PA lists the authors aid of each paper pid. No-
tice that the two arrows from P to PP denote primary-to-
foreign-key connections from pid to pid1 and from pid to
pid2. The citations of many papers are not contained in the
DBLP database, so we randomly added a set of citations to
each such paper, such that the average number of citations
of each paper is 20. The size of the database is 56MB.
We ran our experiments using the Oracle 9i RDBMS on a
Xeon 2.2-GHz PC with 1 GB of RAM. We implemented
all query-processing algorithms in Java, and connect to the
RDBMS through JDBC. The IR index is implemented us-
ing the Oracle 9i Text extension. We created indexes on
all join attributes. The same CN generator is used for all
methods, so that the execution time differences reflect the
performance of the execution engines associated with the
various approaches. The CN generator time is included in
the measured times. However, the executions times do not
include the tuple set creation time, which is common to all
methods.

Global Pipelined needs to maintain a number of JDBC
cursors open at any given time. However, this number is
small compared to the hundreds of open cursors that mod-
ern RDBMSs can handle. Also notice that the number of
JDBC cursors required does not increase with the num-
ber of tables in the schema, since it only depends on the
number of relations that contain the query keywords. In
environments where cursors are a scarce resource, we can
avoid maintaining open cursors by reading the whole non-
free tuple sets (which are usually very small) into memory

decide whether to execute the Single Pipelined algorithm over C or submit
the SQL query of C to the DBMS.) We have experimentally found some
of these alternatives to have worse performance than that of the algorithm
in Figure 10.

11http://dblp.uni-trier.de/.

C(cid,name)

Y(yid,year,cid)

P(pid,title,yid)

A(aid,name)

PP(pid1,pid2)

PA(pid,aid)

Figure 11: The DBLP schema graph (C stands for “confer-
ence,” Y for “conference year,” P for “paper,” and A for
“author”).

during Global Pipelined execution. Furthermore, to reduce
the overhead of initiating and closing JDBC connections,
we maintain a “pool” of JDBC connections. The execution
times reported below include this JDBC-related overhead.

The parameters that we vary in the experiments are (a)
the maximum size M of the CNs, (b) the number of results
k requested in top-k queries, and (c) the number m of query
keywords. In all the experiments on the Hybrid algorithm,
we set the tuning constant of Figure 10 to c = 6, which
we have empirically found to work well. We compared the
following algorithms:
• The Naive algorithm, as described in Section 5.1.

• The Sparse algorithm, as described in Section 5.2.

• The Single Pipelined algorithm (SA), as described in
Section 5.3. We execute this algorithm individually
for each CN, and then combine the results as in the
Naive algorithm.
• The Global Pipelined algorithm (GA), as described in

Section 5.4.

• SASymmetric and GASymmetric are modifications of
SA and GA, respectively, where a new tuple is re-
trieved in a round robin fashion from each of the
non-free tuple sets of a CN, without considering how
“promising” each CN is during scheduling.
• The Hybrid algorithm, as described in Section 5.5.
The rest of this section is organized as follows. In

Section 6.1 we consider queries with Boolean-OR seman-
tics, where keywords are randomly chosen from the DBLP
database. Then, in Section 6.2 we repeat these experiments
for Boolean-AND queries, when keywords are randomly
selected from a focused subset of DBLP.

6.1 Boolean-OR Semantics

Effect of the maximum allowed CN size. Figure 12 shows
the average query execution time over 100 two-keyword
top-10 queries, where each keyword is selected randomly
from the set of keywords in the DBLP database. GA,
GASymmetric, and Hybrid are orders of magnitude faster
than the other approaches. Furthermore, GA and GASym-
metric perform very close to one another (drawn almost
as a single line in Figure 12) because of the limited num-
ber of non-free tuple sets involved in the executions, which
is bounded by the number of query keywords. This small
number of non-free tuple sets restricts the available choices
to select the next tuple to process. These algorithms behave
differently for queries with more than two keywords, as we
show below. Also notice that SA and SASymmetric behave

10

100

1000

10000

100000

1000000

2 3 4 5 6 7
max CN size

m
se

c

Naive Sparse SA SASymmetric GA GASymmetric Hybrid

Figure 12: OR semantics: Effect of the maximum allowed
CN size.

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

m
se

c

Naive Sparse SA SASymmetric GA GASymmetric Hybrid

Figure 13: OR semantics: Effect of the number of objects
requested, k.

worse than Naive and Sparse, because the former have to
evaluate the top results of every CN (even of the long ones),
where the cost of the parameterized queries becomes con-
siderable.

Effect of the number of objects requested. Next, we fix
the maximum CN size M = 6 and the number of keywords
m = 2, and vary k. The average execution times over
100 queries are shown in Figure 13. Notice that the perfor-
mance of Naive remains practically unchanged across dif-
ferent values of k, in contrast to the pipelined algorithms
whose execution time increases smoothly with k. The rea-
son is that k determines the size of the prefixes of the non-
free tuple sets that we need to retrieve and process. Naive
is not affected by changes in k since virtually all poten-
tial query results are calculated before the actual top-k re-
sults are identified and output. The Sparse algorithm is
also barely affected by k, because the values of k that we
use in this experiment require the evaluation of an almost
identical number of CNs. Also, notice that, again, GA and
GASymmetric perform almost identically.

Effect of the number of query keywords. In this experi-
ment (Figure 14), we measure the performance of the vari-
ous approaches as the number of query keywords increases,
when k = 10 and M = 6. SA and SASymmetric are not
included because they perform poorly for more than two
query keywords, due to the large number of parameterized

100

1000

10000

100000

2 3 4 5
#keywords

m
se

c

Naive Sparse GA GASymmetric Hybrid

Figure 14: OR semantics: Effect of the number of query
keywords.

1

10

100

1000

10000

100000

0 100 500 1000 2000 6000
total # results

m
se

c

GA Sparse

Figure 15: OR semantics: Effect of the query-result size.

queries that need to be issued. Notice that GASymmetric
performs poorly relative to GA, because of the larger num-
ber of alternative non-free tuple sets to choose the next tu-
ple from. Also notice that Hybrid and GA are again orders
of magnitude faster than Naive. In the rest of the graphs, we
then ignore Naive, SA, and SASymmetric because of their
clearly inferior performance.

Effect of the query-result size. This experiment discrim-
inates the performance of GA and Sparse by query-result
size. Figure 15 shows the results of the experiments aver-
aged over 100 two-keyword top-10 queries, when M = 6.
The performance of Sparse degrades rapidly as the num-
ber of results increases. In contrast, GA scales well with
the number of results, because it extracts the top results in
a more selective manner by considering tuple trees rather
than coarser CNs.

10

100

1000

10000

2 3 4 5 6 7max CN size

m
se

c

Sparse GA Hybrid

Figure 16: AND semantics: Effect of the maximum al-
lowed CN size.

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

m
se

c

Sparse GA Hybrid

Figure 17: AND semantics: Effect of the number of objects
requested, k.

100

1000

10000

100000

2 3 4 5#keywords

m
se

c

Sparse GA Hybrid

Figure 18: AND semantics: Effect of the number of query
keywords.

6.2 Boolean-AND Semantics

We now turn to the evaluation of the algorithms for queries
with Boolean-AND semantics. To have a realistic query
set where the query results are not always empty, for this
part of the experiments we extract the query keywords from
a restricted subset of DBLP. Specifically, our keywords
are names of authors affiliated with the Stanford Database
Group. We compare Sparse, GA and Hybrid.

Effect of M , k, and m. Figures 16 (m = 2, k = 10), 17
(m = 2, M = 6), and 18 (k = 10, M = 6) show that
Hybrid performs almost identically as Sparse: for AND
semantics, the number of potential query results containing
all the query keywords is relatively small, so Hybrid selects
Sparse for almost all queries. Notice in Figure 16 that the
execution time increases dramatically from M = 4 to M =
5 because of a schema-specific reason: when M = 5, two
author keywords can be connected through the P relation
(Figure 11), which is not possible for M = 4.

Effect of the query-result size. Figure 19 (m = 2, k = 10,
M = 6) shows that, unlike in Figure 15, the execution time
decreases as the total number of results increases: when
there are few results, the final filtering step that the algo-
rithms perform to check that all keywords are present tends
to reject many candidate results before producing the top-
10 results. Figure 19 also shows that the performance of
GA improves dramatically as the total number of results in-
creases. In contrast, the performance of Sparse improves at
a slower pace. The reason is that GA needs to process the
entire CNs when there are few results for a query, which is

1

10

100

1000

10000

100000

0 5 20 100 200 700

total # results

m
se

c

GA Sparse

Figure 19: AND semantics: Effect of the query-result size.

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1 >1
results error = |actual-estimate|/actual

Q
ue

ry
 F

re
qu

en
cy

OR semantics AND semantics

Figure 20: Quality of the result-size estimates (2-keyword
queries; maximum CN size M=6).

more expensive than executing Sparse in the same setting.

6.3 Discussion
The main conclusion of our experiments is that the Hybrid
algorithm always performs at least as well as any other
competing method, provided that the result-size estimate
on which the algorithm relies is accurate. (Figure 20 shows
the accuracy of the estimator that we use for a set of queries
created using randomly chosen keywords from DBLP.) Hy-
brid usually resorts to the GA algorithm for queries with
OR semantics, where there are many results matching the
query. The reason why GA is more efficient for queries with
a relatively large number of results is that GA evaluates
only a small “prefix” of the CNs to get the top-k results. On
the other hand, Hybrid usually resorts to the Sparse algo-
rithm for queries with AND semantics, which usually have
few results. Sparse is more efficient than GA12 because in
this case we have to necessarily evaluate virtually all the
CNs. Hence GA, which evaluates a prefix of each CN us-
ing nested-loops joins, has inferior performance because it
does not exploit the highly optimized execution plans that
the underlying RDBMS can produce when a single SQL
query is issued for each CN.

7 Conclusions
In this paper we presented a system for efficient IR-style
keyword search over relational databases. A query in our
model is simply a list of keywords, and does not need to
specify any relation or attribute names. The answer to such
a query consists of a rank of “tuple trees,” which potentially

12When a query produces no results, Sparse has the same performance
as Naive.

include tuples from multiple relations that are combined via
joins. To rank tuple trees, we introduced a ranking function
that leverages and extends the ability of modern relational
database systems to provide keyword search on individual
text attributes and rank tuples accordingly. In particular,
our ranking function appropriately combines the RDBMS-
provided scores of individual attributes and tuples. As an-
other contribution of the paper, we introduced several top-k
query-processing algorithms whose relative strengths de-
pend, for example, on whether queries have Boolean-AND
or OR semantics. We also presented a “hybrid” algorithm
that decides at run-time the best strategy to follow for a
given query, based on result-size estimates for the query.
This hybrid algorithm has the best overall performance for
both AND and OR query semantics, as supported by our
extensive experimental evaluation over real data.

References
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for

keyword-based search over relational databases. In ICDE, 2002.

[2] G. Bhalotia, A. Hulgeri, C. Nakhey, S. Chakrabarti, and S. Sudar-
shan. Keyword searching and browsing in databases using BANKS.
In ICDE, 2002.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. In WWW7, 1998.

[4] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over
web-accessible databases. In ICDE, 2002.

[5] A. Burns. Preemptive priority based scheduling: An appropriate
engineering approach. In Advances in Real Time Systems, pages
225–248. S. H. Son, Prentice Hall, 1994.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. In ACM PODS, 2001.

[7] D. Florescu, D. Kossmann, and I. Manolescu. Integrating keyword
search into XML query processing. In WWW9, 2000.

[8] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molina. Proximity search in databases. In VLDB, 1998.

[9] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK:
Ranked keyword search over XML documents. In ACM SIGMOD,
2003.

[10] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A sys-
tem for the efficient execution of multi-parametric ranked queries.
In ACM SIGMOD, 2001.

[11] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search
in relational databases. In VLDB, 2002.

[12] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proxim-
ity search on XML graphs. In ICDE, 2003.

[13] A. Natsev, Y. Chang, J. Smith, C. Li, and J. S. Vitter. Supporting
incremental join queries on ranked inputs. In VLDB, 2001.

[14] M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew, S. Mehrotra, and
T. Huang. Supporting ranked Boolean similarity queries in MARS.
TKDE, 10(6):905–925, 1998.

[15] J. Plesnik. A bound for the Steiner tree problem in graphs. Math.
Slovaca, 31:155–163, 1981.

[16] G. Salton. Automatic Text Processing: The Transformation, Anal-
ysis, and Retrieval of Information by Computer. Addison Wesley,
1989.

[17] A. Singhal. Modern information retrieval: a brief overview. IEEE
Data Engineering Bulletin, Special Issue on Text and Databases,
24(4), Dec. 2001.

