Efficient Iris Recognition by Characterizing Key Local Variations by Li Ma, Tieniu Tan, Fellow, IEEE, Yunhong Wang, Member, IEEE, and Dexin Zhang

Presented By 1.BHARAT SATIJA 2.ROHIT KAINTH 3.ASHU MEHROTRA

ABSTRACT

- 1) a set of **one-dimensional intensity signals** is constructed to effectively characterize the most important information of the **original two-dimensional image**
- using a particular class of wavelets, a position sequence of local sharp variation points in such signals is recorded as features.
- 3) **matching scheme** based on euclidean distance to compute the similarity between a pair of position sequences.

Diagram of approach

Preprocessing - Localization

- Project the image in vertical and horizontal directions
 - Pupil generally darker than surroundings
 - Minima of the two projection profiles gives centre of pupil (X_p Y_p).
- For more accuracy
 - \bigcirc Binarize a 120X120 region around (X_p Y_p)
 - Centroid of resulting region is new centre
 - Repeat for more accurate result
- Exact parameters of the two circles found using edge detection and Hough transform.

Circle Detection

Preprocessing-Normalization

- Irises may be captured in different sizes.
- Size may also change due to illumination variations.
- Annular Iris is un-wrapped counter clockwise to a rectangular texture block with a fixed size
- Helps in reducing distortion of iris caused by pupil movement
- Also simplifies subsequent processing.

Preprocessing - Enhancement

- Normalized image has low contrast and may have non-uniform brightness.
- An estimate of intensity variations is found using bicubic interpolation using 16X16 blocks.
- This estimate is then subtracted from the normalized image.
- More enhancement is done using Histogram Equalization in each 32X32 region.

Pre-processing

Normalized image

Local average intensity

Enhanced

Feature Extraction

 The 2-d normalized image is decomposed into 1-D signals S_{i.}

$$S_{i} = \frac{1}{M} \sum_{j=1}^{M} I_{(i-1)^{*}M+j} \quad i = 1, 2, \dots N$$
$$I = \begin{pmatrix} I_{1} \\ \vdots \\ I_{x} \\ \vdots \\ I_{K} \end{pmatrix} = (I_{1}^{T}, \cdots I_{x}^{T}, \cdots I_{K}^{T})^{T}$$

I is normalized image (K X L)

 $\mathbf{I}_{\mathbf{x}}$ denotes gray values of xth row

M is total no. of rows used to form S_i

N is total no. of 1-D signals

Feature Extraction

- A set of such signals contains most of the local features.
- Such representation reduces computational costs.
- Iris regions close to sclera contain few texture characteristics
- So features are extracted from the top 78% of the image
- K x 78% = N x M
- Recognition rate regulated by changing M.

Feature Vector

- There is an underlying relationship between information at consecutive scales
- The signals at finer scales are easily contaminated by noise.
- Hence only scales are used
- For each intensity signal S_i, the position sequences at two scales are concatenated to form the corresponding features.

Feature Vector

 $f_i = \{d_1, d_2, \cdots d_i, \cdots d_m; d_{m+1}, d_{m+2}, \cdots d_{m+n}; p_1, p_2\}$

• Here,

 d_i = position of sharp local variation point in S_i

m = no. of components from first scale

n = no. of components from the second scale $p_i = property$ of first local sharp variation point at two scales :

minima (+1) and maxima (-1).

• Features from different 1-D intensity signals are concatenated to constitute an ordered feature vector

$$f = \{f_1, f_2, \cdots f_i, \cdots f_N\}$$

Matching

- The similarity between a pair of expanded feature vectors is calculated using the euclidean distance
- Distances below a threshold of 50 were found to be of the same person.

Result

Distance = 31.4072 Implying 'acceptance'

Result

Distance = 123.7437 Implying 'rejection'

Translation, Scale and Rotation

- Translation invariance is inherent because the original image is localized before feature extraction.
- To achieve approximate scale invariance, normalize irises of different size to the same size.
- Rotation in the original image corresponds to translation in the normalized image.
- The binary sequence at each scale can be regarded as a periodic signal, hence we obtain translation invariant matching by circular shift
- After several circular shifts, the minimum matching score is taken as the final matching score.