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ABSTRACT
Key grouping is a technique used by stream processing frame-
works to simplify the development of parallel stateful opera-
tors. Through key grouping a stream of tuples is partitioned
in several disjoint sub-streams depending on the values con-
tained in the tuples themselves. Each operator instance tar-
get of one sub-stream is guaranteed to receive all the tuples
containing a specific key value. A common solution to imple-
ment key grouping is through hash functions that, however,
are known to cause load imbalances on the target operator
instances when the input data stream is characterized by a
skewed value distribution. In this paper we present DKG, a
novel approach to key grouping that provides near-optimal
load distribution for input streams with skewed value distri-
bution. DKG starts from the simple observation that with
such inputs the load balance is strongly driven by the most
frequent values; it identifies such values and explicitly maps
them to sub-streams together with groups of less frequent
items to achieve a near-optimal load balance. We provide
theoretical approximation bounds for the quality of the map-
ping derived by DKG and show, through both simulations
and a running prototype, its impact on stream processing
applications.

∗This work has been partially founded by the French ANR
project SocioPlug (ANR-13-INFR-0003), by the DeSceNt
project granted by the Labex CominLabs excellence labo-
ratory (ANR-10-LABX-07-01) and by the TENACE PRIN
Project (n. 20103P34XC) funded by the Italian Ministry of
Education, University and Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DEBS ’15, June 29 - July 03, 2015, Oslo, Norway
Copyright 2015 ACM 978-1-4503-3286-6/15/06 ... $15.00.
DOI: http://dx.doi.org/10.1145/2675743.2771827.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems

Keywords
Stream Processing, Data Streaming, Key Grouping, Load
Balancing

1. INTRODUCTION
Stream processing systems are today gaining momentum

as a tool to perform analytics on continuous data streams.
Their ability to produce analysis results with sub-second la-
tencies, coupled with their scalability, makes them the pre-
ferred choice for many big data companies.

A stream processing application is commonly modeled as
a direct acyclic graph where data operators, represented by
nodes, are interconnected by streams of tuples containing
data to be analyzed, the directed edges. Scalability is usually
attained at the deployment phase where each data operator
can be parallelized using multiple instances, each of which
will handle a subset of the tuples conveyed by the operator’s
ingoing stream. Balancing the load among the instances of a
parallel operator is important as it yields to better resource
utilization and thus larger throughputs and reduced tuple
processing latencies.

How tuples pertaining to a single stream are partitioned
among the set of parallel instances of a target operator
strongly depends on the application logic implemented by
the operator itself. Two main approaches are commonly
adopted: either tuples are randomly assigned to target in-
stances (random or shuffle grouping) or the assignment is
based on the specific value of data contained in the tuple
itself (key or field grouping). Shuffle grouping is the pre-
ferred choice whenever the target operator is stateless as
this approach is easy to implement (e.g., with a round-robin
mapping) and provides a nice load balancing among the op-
erator’s parallel instances.

When the target operator is stateful things get more com-
plex as its state must be maintained continuously synchro-
nized among its instances, with possibly severe performance
degradation at runtime; a well-known workaround to this



problem consists in partitioning the operator state and let
each instance work on the subset of the input stream con-
taining all and only the tuples which will affect its state
partition. In this case key grouping is the preferred choice
as the stream partitioning can be performed to correctly as-
sign all and only the tuples containing specific data values
to a same operator instance greatly simplifying the work of
developing parallelizable stateful operators.

The downside of using key grouping is that it may induce
noticeable imbalances in the load experienced by the target
operator whenever the data value distribution is skewed, a
common case for many application scenarios. This is usually
the case with key grouping implementations based on hash
functions: part of the data contained in each tuple is hashed
and the result is mapped, for example using modulo, to a
target instance. Hash functions are convenient as they are
compact, fast and deterministic. However, they are usually
designed to uniformly spread values from their domain to
available instances in their codomain; if different values ap-
pear with skewed frequency distribution in the input stream,
instances receiving tuples containing the most frequent val-
ues will incur the largest load. A solution could lie in defin-
ing an explicit one-to-one mapping between input values and
available target instances that could take into account the
skewed frequency distribution and thus uniformly spread the
load; this solution is considered impractical as it requires to
have precise knowledge on the input value distribution (usu-
ally not known a priori) and imposes, at runtime, a memory
footprint that is proportional to the number of possible val-
ues in the input domain (commonly a huge number if you
consider, as an example, the domains of length-constrained
strings or floating-point numbers).

In this paper we propose a new key grouping technique
called Distribution-aware Key Grouping (DKG) targeted to-
ward applications working on input streams characterized
by a skewed value distribution. DKG is based on the ob-
servation that when the values used to perform the group-
ing have skewed frequencies, e.g., they can be approximated
with a Zipfian distribution, the few most frequent values
(the heavy hitters) drive the load distribution, while the re-
maining largest fraction of the values (the sparse items) ap-
pear so rarely in the stream that the relative impact of each
of them on the global load balance is negligible. However,
when considered in groups sparse items should be handled
with care. On the basis of these observations DKG moni-
tors the incoming stream to identify the heavy hitters and
estimate their frequency, and thus the load they will impose
on their target instance; sparse items are mapped, with a
standard hash function, to a fixed set of buckets. After this
initial training phase, whose length can be tuned, the fi-
nal mapping is obtained by running a greedy multiprocessor
scheduling algorithm that takes as input the heavy hitters
with their estimated frequencies and the buckets with their
sizes and outputs a one-to-one mapping of these elements to
the available target instances. The final result is a mapping
that is fine-grained for heavy hitters, that must be carefully
placed on the available target instances to avoid imbalance,
and coarse-grained for the sparse items whose impact on
load is significant only when they are considered in large
batches. DKG is a practical solution as it uses efficient data
streaming algorithms to estimate with a bounded error the
frequency of the heavy hitters, and has a small and constant
memory footprint that can be tuned by system administra-

tors, thus overcoming the two main limitations of standard
one-to-one mappings.

We show, through a theoretical analysis, that DKG pro-
vides on average near-optimal mappings using sub-linear
space in the number of tuples read from the input stream
in the learning phase and the support (value domain) of the
tuples. In particular this analysis presents new results re-
garding the expected error made on the estimation of the
frequency of heavy hitters.

We also extensively tested DKG both in a simulated en-
vironment with synthetic datasets and on a prototype im-
plementation based on Apache Storm [17] running with real
data. The experiments show that DKG outperforms stan-
dard hashing solutions when run over streams with slightly-
to strongly-skewed value distributions. In particular, DKG
is able to deliver very stable performance that do not vary
strongly with the input, and that are always close to an
approximate optimum that is obtainable only with full in-
formation on the input distribution. Our results also point
out that DKG needs a short training phase before delivering
the aforementioned performance and that it positively im-
pacts real applications by significantly increasing the global
throughput of the system.

After this introduction the next section states the sys-
tem model we consider. Afterwards, Section 3 details DKG
whose behavior is then theoretically analyzed in Section 4.
Section 5 reports on our experimental evaluation and Section
6 analyzes the related works. Finally Section 7 concludes
and hints on possible future work.

2. SYSTEM MODEL
We consider a distributed stream processing system (SPS)

deployed on a cluster where several computing nodes ex-
change data through messages sent over a network. The
SPS executes a stream processing application represented by
a topology : a direct acyclic graph interconnecting process-
ing elements (PE), represented by nodes, with data streams
(DS), represented by edges. Each topology contains at least
a source, i.e., a PE connected only through outbound DSs,
and a sink, i.e., a PE connected only through inbound DSs.
Each PE O can be parallelized by creating k independent in-
stances O0, · · · , Ok−1 of it and by partitioning its inbound
stream Oin in k sub-streams Oin0 , · · · , Oink−1.

Data injected by the source is encapsulated in units called
tuples. Each data stream is an unbounded sequence of tu-
ples. Without loss of generality, here we assume that each
tuple t is a finite set of key/value pairs that can be cus-
tomized to represent complex data structures; furthermore,
we assume for each possible key x that the corresponding
value t(x) is defined in a finite domain and that it is charac-
terized by an unknown, but fixed, probability distribution.

DS partitioning can be performed in several different ways,
but here we focus on the key grouping approach: given a
key x, i.e., the grouping key, all tuples of the DS contain-
ing the same value t(x) are placed in the same sub-stream.
The problem we target in this paper is how to perform the
DS partitioning such that all sub-streams are load balanced,
i.e., all sub-streams contain, on average, the same number
of tuples.

A common solution to this problem employed by several
SPSs is based on an hash function h: the index of the target
sub-stream for a tuple t is given by h(t(v)) mod k. This
solution is simple and highly scalable as the definition of h



is the only information that needs to be known by the PE
that partitions the stream. On the other side, it can produce
skewed load on the parallel instances1 of the target opera-
tor O, especially when the grouping key is characterized by
a skewed value distribution (like a Zipfian distribution), a
frequent case in many application scenarios [4, 12]. A sec-
ond common option is to use an explicit mapping between
the possible values of the grouping key and the set of k
available sub-streams; if the distribution of values is known
a-priori, it is theoretically possible to build an explicit map-
ping that produces the optimal load balancing on the target
operator; however, this approach is rarely considered as (i)
the assumption on a-priori knowledge on value distribution
does not usually hold, and (ii) the map would easily grow
to unmanageable sizes, even for typical value domains (e.g.,
strings).

For the sake of clarity, and without loss of generality, here
we restrict our model to a single DS Oin of the topology with
its producer PE P and its consumer PE O. In the rest of
this work we deal with streams of unary tuples with a single
non null positive integer value representing the values of the
grouping key(s). For instance, let key(t) be a function that
returns a positive integer value representing the grouping
key(s) value(s) of tuple t, i.e., key(t) = φ({t(x) | x ∈ X})
where X is the set of grouping keys, then the stream Ok,in

we consider is the output stream of key(t) executed on the
tuples carried by the stream Oin. We assume that values
of Ok,in are characterized by a possibly skewed distribution
and that each sequence extracted from Ok,in has the same
statistical characteristics of the whole stream (i.e., no adver-
sary in the model). Abusing the notation, we denote both
the tuple and the value encapsulated by tuple as t .

3. Distribution-aware Key Grouping
In this section we present our solution consisting of a

three-phase algorithm. (i) In the first phase the algorithm
becomes aware of the stream distribution (learning phase).
(ii) The following phase builds a global mapping function
taking into account the previously gathered knowledge of
the stream (build phase). (iii) The last phase uses the built
global mapping function to perform key grouping with near-
optimal balancing (deployment phase).

As previously motivated, we cannot afford to store the
entire input data stream in order to analyze it, or cannot
make multiple passes over it to keep pace with the rate
of the stream. As such we rely on data streaming algo-
rithms, which have shown their highly desirable properties
in data intensive applications to compute different kind of
basic statistics, including the number of different items in a
given stream [3, 7, 11], the frequency moments [1], the most
frequent data items [1, 5], or to provide uniform sampling [2].

3.1 Background
Data Streaming model — We present the the data stream
model [14], under which we analyze our algorithms and de-
rive bounds. A stream is a sequence of elements 〈t1, t2, . . . ,
tm〉 called tuples or items, which are drawn from a large uni-
verse [n] = {1, . . . , n}. In the following, the size (or length)

1With some abuse of terms, in the rest of the paper we will
use as synonyms the sub-streams and the parallel instances
of the target operator to which such sub-streams are in-
bound.

of the stream is denoted by m. Notice that in this work we
do not consider m as the size of the whole stream, but as the
size of the learning set, i.e., how long the first phase lasts.
In the following we denote by pi the unknown probability of
occurrence of item i in the stream and with fi the unknown
frequency of item i, i.e., the mean number of occurrences of
i in the stream of size m.

Heavy Hitters — An item i of a stream is called heavy
hitter if the empirical probability pi with which item i ap-
pears in the stream satisfies pi ≥ Θ for some given threshold
0 < Θ ≤ 1. In the following we call sparse items the items
of the stream that are not heavy hitters.

Space Saving — Metwally et al. [13] have proposed a de-
terministic counter-based solution to estimate the frequency
of heavy hitters. This algorithm, called Space Saving, takes
two parameters: Θ and ε, such that 0 < ε < Θ ≤ 1. It main-
tains d1/εe 〈tuple, counter〉 couples, and returns all items
whose frequency of occurrences are greater than or equal
to Θm. Metwally et al. [13] have proven that after having
received m items, the over-approximation made by the algo-
rithm on the estimated frequency f̂i of heavy hitter i verifies
f̂i − fi ≤ εm for any 0 < ε < Θ.

2-Universal Hash Functions — We make use of hash
functions randomly picked from a 2-universal hash func-
tions family. A collection H of hash functions h : {1, . . . ,M}
→ {0, . . . ,M ′} is said to be 2-universal if for every two differ-
ent items x, y ∈ [M ], for all h ∈ H, P{h(x) = h(y)} ≤ 1

M′ ,
which is the probability of collision obtained if the hash func-
tion assigned truly random values to any x ∈ [M ].

Greedy scheduling algorithm — A classical problem in
the load balancing literature is to schedule independent tasks
on identical machines minimizing the makespan, i.e., the
Multiprocessor Scheduling problem. In this paper we adapt
this problem to our setting. More formally we have (i) a set
of buckets bi ∈ B, each of them with an associated frequency
fi, and (ii) a set of instances rj ∈ R (|R| = k), each of them
with an associated load Lj . The load Lj is the sum of the
frequencies of the buckets assigned to instance rj . We want
to associate each bucket bj ∈ B, minimizing the maximum
load on the instances: maxj=1,...,k (Lj). To solve efficiently
this problem, known to be NP-hard, we make use of the
classic Least Processing Time First (LPTF) approximation
algorithm run over small inputs. The algorithm (referred as
scheduling algorithm in the following) assigns the bucket
bi ∈ B with the largest frequency fi to the instance rj with
the lowest load Lj , then removes bi from B and repeats until
B is empty. It is proven [9] that this algorithm provides a
( 4

3
− 1

3k
)-approximation of the optimal mapping.

3.2 DKG design
As previously mentioned, the unbalancing in key grouping

is mainly due to the skewness of the input stream distribu-
tion. For instance, let i and j be the stream heavy hitters,
most likely a good mapping should keep them separated.
In addition, if fi > m/k, the hash function should isolate
i on an instance. However, a randomly chosen hash func-
tion will almost certainly assign other (sparse) items with i.
Even worse, the hash function may end up putting i and j
together.

To cope with these issues, DKG becomes aware of the
stream distribution through a learning phase. It is then able
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Figure 1: DKG architecture and working phases.

to build a global mapping function that avoids pathological
configurations and that achieves close to optimal balancing.
Listings 3.1 and 3.2 show the pseudo code for each phase.

DKG (Figure 1 point A) chooses a hash function h̄ :
{1, . . . , n} → {1, . . . , kµ} randomly from a 2-universal hash
functions family, where µ is a user defined parameter (Line 2).
Increasing the co-domain size reduces the collision probabil-
ity, thus enhances the odds of getting a good assignment.
Having more buckets (elements of h̄ co-domain) than in-
stances, we can map buckets to instances minimizing the
unbalancing. More in details, DKG feeds to the previously
presented scheduling algorithm (cf., Section 3.1) the buck-
ets of h̄ with their frequencies as the set B and the number
of instances k. The frequencies of h̄’s buckets are computed
in the learning phase as follows. DKG keeps an array vh̄ of
size kµ (Line 3). When receiving tuple t, DKG increments
the cell associated through h̄ with t (Line 9, Figure 1 point
B). In other words vh̄ represents how h̄ maps the stream
tuples to its own buckets.

Listing 3.1: DKG Learning phase
1: init ( Θ, ε, k, µ ) do
2: h̄ : {1, . . . , n} → {1, . . . , kµ}: a randomly chosen 2-

universal hash functions.
3: vh̄ array of size µ× k.
4: SpaceSaving(Θ, ε): a Space Saving algorithm instance.
5: HH associative array mapping heavy hitters to instances.
6: SI associative array mapping h̄ buckets to instances.
7: end init
8: function learn(t : tuple)
9: vh̄[ h̄(t) ]← vh̄[ h̄(t) ] + 1

10: SpaceSaving.update(t)
11: end function

While this mechanism improves the balancing, it still does
not deterministically guarantee that heavy hitters are cor-
rectly handled. If the buckets have in average the same
load, the scheduling algorithm should be able to produce
a good mapping. To approximate this ideal configuration
we have to remove all the heavy hitters. As such, DKG
uses the Space Saving algorithm (Line 4) to detect heavy
hitters and manage them ad-hoc. To match the required
detection and estimation precisions, the Space Saving al-
gorithm monitors 1/ε distinct keys, where ε < Θ. Recall
that Θ is the relative frequency of heavy hitters and is a
user defined parameter. In the learning phase, DKG up-
dates the Space Saving algorithm instance with the values

of t (Line 10, Figure 1 point C). At the end of the learning
phase, the Space Saving algorithm will maintain the most
frequent values of t and their estimated frequencies. Then
(Figure 1 point D), DKG removes the frequency count of
each heavy hitter from vh̄ (Line 15). Finally (Figure 1e) ,
it feeds to the scheduling algorithm the vh̄ array and the
heavy hitters from the Space Saving algorithm, with the
frequencies of both, as the set of bucket B. The scheduling

algorithm will return an approximation of the optimal map-
ping from h̄ buckets and detected heavy hitters to instances
(Line 17).

When receiving tuple t in the deployment phase (Figure 1
point F), the resulting global mapping function: (i) checks
if t is a frequent item and returns the associated instance
(Line 21). (ii) Otherwise it computes the hash of t: h̄(t),
and returns the instance associated with the resulting bucket
(Line 23).

Listing 3.2: DKG Deployment phase
12: function build()
13: SS← SpaceSaving.query()

14: for all 〈`, f̂`〉 ∈ SS do

15: vh̄[ h̄(`) ]← vh̄[ h̄(`) ]− f̂`
16: end for
17: 〈 SI, HH 〉 ← scheduling( vh̄, SS )
18: end function
19: function getInstance(t : tuple)
20: if t ∈ HH then
21: return HH [ t ]
22: else
23: return SI

[
h̄(t)

]
24: end if
25: end function

Theorem 3.1 (Time complexity of DKG).
The time complexity of DKG is O(log 1/ε) per update in
the learning phase, O ((kµ+ 1/ε) log (kµ+ 1/ε)) to build the
global mapping function, and O(1) to return the instance
associated with a tuple.

Theorem 3.2 (Memory requirement of DKG).
The space complexity of DKG is O ((kµ+ 1/ε) logm+ logn)
bits in the learning phase and to build the global mapping
function. To store the global mapping function, DKG re-
quires O ((kµ+ 1/Θ) logn) bits.



4. THEORETICAL ANALYSIS
Data-streaming algorithms strongly rely on pseudo-random

functions that map elements of the stream to uniformly dis-
tributed image values to keep the essential information of the
input stream, regardless of the distribution of the elements
of the stream. Most of the research done so far has assumed
that the input stream is manipulated by an adversary. Such
worst case scenario rarely occurs in many real-world appli-
cations and do not allow the capture of a notion of average
case analysis [10]. Rather, and as motivated in Section 2, we
suppose that data set follow a Zipfian distribution and we
consider that the order of the items in the stream is random.

We characterize the mean error made by our algorithm
with respect to the optimal mapping according to the per-
centage of imbalance metric [16], which is defined as follows:

λ(L) =

(
maxi=1,...,k (Li)

L
− 1

)
× 100% (1)

where L represents the load vector of instances, Li is the load
on instance i and L is the mean load over all k instances. We
first derive in Theorem 4.1 the expected error made by the
Space Saving algorithm. In the following m denotes the
size of the portion of the stream read during the learning
phase.

Theorem 4.1 (Mean Error of Space Saving).
For any 0 < ε < Θ, the expected error made by Space Sav-

ing algorithm to estimate the frequency of any heavy hitter
i is bounded by 1− ε, that is,

0 ≤ E{f̂i} − fi ≤ 1− ε,

where f̂i represents the estimated frequency of item i.

Proof. We denote by p = (p1, . . . , pn) the probability
distribution of the occurrence of the items 1, . . . , n in the
input stream. For ` = 1, . . . ,m, we denote by Y` the value
of the item at position ` in the stream. These random
variables are supposed to be independent and identically
distributed with probability distribution p. We thus have
P{Y` = i} = pi and fi = mpi. Items in the stream are
successively selected at each discrete time ` ≥ 1, and are in-
serted in the Space Saving buffer (if not already present) ac-
cording to the Space Saving algorithm. Let c = 1/ε > 1/Θ
be the size of Space Saving. In the following SS(`) denote
the content of Space Saving at discrete time `. Let H be
the set of the heavy hitters, that is the set of all items i
whose probability of occurrence pi verifies pi ≥ Θ. We nec-
essarily have |H| < c. It has been proven in [13] that at time
m all the items i ∈ H are present in SS(m). It follows that
for every i ∈ H there exists a random time Ti ≤ m such that
item i is inserted for the last time in SS at time Ti (i.e., item
i was not present in the Space Saving buffer at time Ti − 1
and thus replaces another item), and is never removed from
SS afterwards. More precisely, we have

Ti = inf{` ≥ 1 | i ∈ SS(r) for every r = `, . . . ,m}.

For every j ∈ SS(`), we denote by Vj(`) the counter value of
item j at discrete time `. For every i ∈ H, by definition of
Ti item i is not in the buffer at time Ti − 1, thus we have,

Vi(Ti) = min{Vj(Ti − 1), j ∈ SS(Ti − 1)}+ 1,

and again by definition of Ti, we have, for every ` = Ti +
1, . . . ,m,

Vi(`) = Vi(`− 1) + 1{Y`=i}.

Putting together these results, we get

Vi(m) = min{Vj(Ti−1), j ∈ SS(Ti−1)}+1+Ni(Ti+1,m),

where Ni(s, s
′) =

∑s′

`=s 1{Y`=i} is the number of occurrences
of item i in the stream between discrete instants s and s′.
It is easy to see that Ni(s, s

′) has a binomial distribution
with parameters s′ − s+ 1 and pi. This relation can also be
written as

0 ≤ Vi(m)−Ni(1,m)

= min{Vj(Ti − 1), j ∈ SS(Ti − 1)}+ 1−Ni(1, Ti).

Note that this also implies that Ni(1, Ti) ≤ min{Vj(Ti −
1), j ∈ SS(Ti − 1)}+ 1.

Since for every ` ≥ 1, we have min{Vj(`), j ∈ SS(`)} ≤
`/c, we obtain, taking the expectations,

0 ≤ E{Vi(m)} −mpi ≤ E{Ti − 1}/c+ 1−E{Ti}pi.

This leads to

0 ≤ E{Vi(m)} −mpi ≤ 1− 1/c+E{Ti}(1/c− pi).

Since, by the Space Saving algorithm, Vi(m) represents the
estimated frequency of any heavy hitter i of the input stream,
and since 1/c− pi ≤ 0 and c = 1/ε, we finally get 2

0 ≤ E{Vi(m)} −mpi ≤ 1− ε.

Using the Markov inequality and the fact that pi ≥ 1/c, we
get for all ε > 0,

P

{
Vi(m)−mpi

mpi
≥ ε
}
≤ c− 1

εcmpi
≤ 1− ε

ε2m
.

Note that the last relation shows in particular that the rel-

ative error
Vi(m)−mpi

mpi
converges in probability (and thus

in law) to 0 when m tends to ∞, i.e., for all ε > 0, we have

lim
m−→∞

P

{
Vi(m)−mpi

mpi
≥ ε
}

= 0.

Theorem 4.2 (Accuracy of DKG).
DKG provides an (1 + Θ)-optimal mapping for key grouping
using O(kµ logm + logn) bits of memory in the learning
phase and O(kµ logn) bits of memory to store the global
mapping function, where µ ≥ 1/Θ ≥ k

Proof. The accuracy of the estimated frequency of heavy
hitters is given by Theorem 4.1. We now estimate the mean
value of each counter in vh, after having removed from these
counters the weight of the heavy hitters (cf., Line 15 of List-
ing 3.2). The value of every counter vh[i], 1 ≤ i ≤ µk, is
equal to the sum of the exact frequencies of all the received
items t such that h(t) = i, that is, the sum of the frequen-
cies of all the tuples that share the same hashed value. We
denote by Xi the random variable that measures the value
of vh[i]. We have

Xi =

n∑
j=1

fj1{h(j)=i} −
∑
j∈H

f̂j1{h(j)=i},

2This analysis assumes sampling with replacement. The
same analysis applies to sampling without replacement (hy-
pergeometric distribution) because this distribution and the
binomial distribution have the same mean.



where, as defined above, f̂j represents the frequency of heavy
hitter j as estimated by the Space Saving algorithm.

By the 2-universality property of the family from which
hash function h is drawn, we haveP{h(v) = h(u)} ≤ 1/(kµ).
Thus, by linearity of the expectation,

E{Xi} =

n∑
j=1

E

{
fj1{h(j)=i}

}
−
∑
j∈H

E

{
f̂j1{h(j)=i}

}

≤
m−

∑
j∈HE

{
f̂j
}

kµ
.

Let msp denote the sum of the frequencies of all sparse
items. From Theorem 4.1, we get

E{Xi} ≤
m−

∑
j∈H fj

kµ
≤ msp

kµ
.

By definition µ ≥ 1/ε and ε ≤ Θ, thus kµ ≥ 1/Θ, that is in
average, there is at most one heavy hitter in each counter
of vh. Thus, once the frequency of heavy hitters has been
removed from the counters, the mean error of each counter
is upper bounded by 0 and lower bounded by 1 − ε (from
Theorem 4.1). We now estimate the percentage of imbalance
λ (Relation (1)) of the mapping provided by DKG with re-
spect to the optimal one. Let LDKG denote the load vector
induced by the mapping provided by DKG and Ld denote
the optimal one. The error ∆ introduced by DKG is given
by

∆ = λ(LDKG)−λ(Ld) =
maxi=1,...,k L

DKG
i −maxi=1,...,k L

d
i

L
.

The analysis of the expected value of ∆ is split into three
cases. We do not make any assumption regarding the sta-
tistical moment of the input distribution and thus in a con-
servative way, we set Θ ≤ 1/k. Recall that any item whose
relative frequency (i.e., probability of occurrence) is greater
than or equal to Θ is considered as an heavy hitter.

Case 1 ∃i ∈ H such that fi > L = m/k. Let ` denote
the item with the largest frequency. We have λ(Ld) =
f`k/m since the optimal solution cannot do better than
scheduling item ` alone to a single instance. We also have
λ(LDKG) = f`k/m since from above f̂` ε-approximates f`
with probability close to 1 (by construction, ε� 1/m), and
thus scheduling also isolates item ` to a single instance.
Thus the error ∆ introduced by DKG in Case 1 is null.

Case 2 ∀i ∈ H, we have Θm ≤ fi ≤ L. By construction of
scheduling (that maps each tuple into the less loaded in-
stance in the decreasing frequency order), and by the fact
that the value of each counter of vh is equal to msp/(kµ),
we have that arg maxi=1,...,k L

DKG
i corresponds to the last

instance chosen by scheduling. This statement can be
trivially proven by contradiction (if the last mapping does
not correspond to the final largest loaded one, it must ex-
ist another instance that has been chosen previously by
scheduling without being the smallest loaded one). Let
L′ be the load vector before this last mapping. We have in
average

k∑
i=1

L′i =

k∑
i=1

LDKGi − msp

kµ
.

Thus, one can easily check that mini=1,...,k L
′
i cannot ex-

ceed (msp −msp/(kµ))/k = (kµ− 1)msp/k
2µ, leading to

max
i=1,...,k

LDKGi − L =

(
min

i=1,...,k
L′i +

msp

kµ

)
− m

k

≤ (µ+ 1)msp

kµ
. (2)

Moreover, by assumption, the distribution of the items in
the stream follows a Zipfian distribution with an unknown
parameter α (see Section 2). This means that, for any
i ∈ {1, . . . , n}, pi = 1/(iαHn,α) where Hn,α is the n-th
generalized harmonic number, that is Hn,α =

∑n
j=1 1/jα

(we assume without loss of generality that items are ranked
according to their decreasing probability). We have

msp = m−
∑
i∈H

fi = m

(
1−

H|H|,α
Hn,α

)
. (3)

Recall that |H| = |{i ∈ {1, . . . , n} | pi ≥ Θ}|. Thus, we get

1

(|H|+ 1)αHn,α
< Θ that is |H| > (ΘHn,α)−1/α − 1.

From Relations 2 and 3 we have

max
i=1,...,k

LDKGi − L ≤
(µ+ 1)

(
Hn,α −H|H|,α

)
m

kµHn,α

≤ (µ+ 1)m

kµ
.

Given the fact that maxi=1,...,k L
d
i ≥ L = m/k by defini-

tion, the expected error introduced by DKG is given by

E{∆2} ≤
maxi=1,...,k L

DKG
i − L

L
≤ µ+ 1

µ
.

Case 3 ∀i in the input stream of length m, we have fi <
Θm. In that case, there are no heavy hitters, and thus
msp = m. This case is handled similarly as Case 2 by
considering that the largest potential item has a frequency
equal to Θm− 1. Thus mini=1,...,k L

′
i cannot exceed (m−

(m/kµ + Θm − 1)/k = (k(mµ + Θmµ − µ) − m)/(k2µ),
leading to

max
i=1,...,k

LDKGi − L =

(
min

i=1,...,k
L′i +

m

kµ
+ Θm− 1

)
− m

k

≤ (Θµk + 1)m

kµ
.

By applying the same argument as Case 2, the expected
error introduced by DKG is given by

E{∆3} ≤
maxi=1,...,k L

DKG
i − L

L
≤ 1 + µkΘ

µ
.

Combining the three cases, we deduce an upper bound of
the expected error introduced by DKG, which is given by

E{∆} ≤ max{E{∆1},E{∆2},E{∆3}}

≤ max{0, 1 + µ

µ
,

1 + µkΘ

µ
}.

By assumption, we have kΘ ≤ 1 and 1/µ ≤ Θ. Thus

E{∆} ≤ 1 + Θ (4)



5. EXPERIMENTAL EVALUATION
In this section we evaluate the performance obtainable by

using DKG to perform key grouping. We will first describe
the general setting used to run the tests and will then discuss
results obtained through simulations (Section 5.2) and im-
plementing DKG as a custom grouping function in Apache
Storm (Section 5.3).

5.1 Setup
Evaluation metrics — To characterize how unevenly work
is distributed we take into account two well known [16] load
balance metrics:

Percentage of imbalance (λ) measures the performance
lost due to imbalanced load or, dually, the performance
that could be reclaimed by perfectly balancing the load. λ
has been already defined in Equation 1.

Load standard deviation (σ) measures if the load of the
instances tends to be closer (small values of σ) or farther
(large values of σ) from the mean. It’s the average number
of tuples that each instance handles in excess or deficiency
with respect to the mean.

CPU Load measured in Hz.
Throughput measured in tuples processed per second.

While λ measures a global performance of the system, σ
provides a per-instance perspective. Notice that in most of
the subsequent plots, points representing measured values
have been linked by lines. This has been done with the sole
purpose of improving readability: the lines do not represent
actual measured values.

Datasets — In our tests we considered both synthetic and
real datasets. For the synthetic datasets we generated streams
of integer values (items) representing the values of the tu-
ples. We consider streams made of 100, 000 tuples each con-
taining a value chosen among n = 10, 000 distinct items.
Taking from the machine learning field’s methodology each
stream was divided in two parts: a first part of m = 80, 000
tuples was used as training set in the learning phase while
the evaluation was performed on the last 20, 000 tuples of
the stream (validation set). Synthetic streams have been
generated using Zipfian distributions with different values
of α, Normal distributions with different values of mean and
variance, as well as the Uniform distribution. For the sake of
brevity, we omit the results for the Normal and Uniform dis-
tributions as they did not show any unexpected behaviour.
As such, we restrict the results showed in the following to
the Zipfian distributions with α ∈ {1.0, 2.0, 3.0}, denoted
respectively as Zipf-1, Zipf-2 and Zipf-3.

In order to have multiple different streams for each run, we
generate randomly 10, 000 n-permutations of the set {1, . . . ,
100 × n}. In other words we built 10, 000 injective random
mappings of the distribution’s universe {1, . . . , n} into a uni-
verse 100 times larger. As such, the 10, 000 distinct streams
(i) do not share the same tuple values, (ii) the probability
distribution of an item is not related to the natural ordering
of the item values and (iii) there are random gaps in the
natural ordering of the item values.

This dataset generation procedure was used to average
the performance of hash functions employed in the tested
algorithms and avoid that a casual match between the tuple
values from the stream and the used hash function always
deliver very good or very bad performance that would drive

Algorithm a b
O-apx 60.7 −100
Universal Mean 60.7 −60.7
Universal Worst Case 87.3 −73.0
DKG Mean 60.7 −100
DKG Worst Case 62 −100
SIA 100 −100

Table 1: Linear regression coefficients for the plots
in Figure 2

the results in an undesirable manner (as this match cannot
be forecasted or forced by the developer). However, in most
of the plots presented in the following the worst performance
figures among all the runs are reported as well.

As a real dataset we considered data provided by the
DEBS 2013 Grand Challenge [6]. The dataset contains a
sequence of readings from sensors attached to football play-
ers in a match, whose values represent positions on the play
field. We denote this data set as DEBS trace in the follow-
ing.

Tested solutions — To compare the performance of DKG,
we considered four key grouping algorithms:

Optimal approximation (O-apx) is an execution of the
scheduling algorithm introduced in Section 3.1 with com-
plete information on the distribution of the stream portion
used as validation set. From this point of view we consider
O-apx performance as an upper bound for DKG perfor-
mance.

Single Instance Allocation (SIA) is an algorithm that
statically allocates all the tuples on a single instance, thus
producing the worst possible balancing. From this point
of view we consider SIA as a lower bound for DKG perfor-
mance.

Modulo returns t mod k and represents a common imple-
mentation for key grouping in many SPSs; in particular it
is the implementation of field grouping in Apache Storm.

Universal provides a base line with respect to a family of
hash functions known to sport nice properties. It returns
h(t), where h : [n]→ [k] is chosen at random from a family
of 2-universal hash functions. Since Modulo often performs
similarly to Universal, in general we omit the former in the
results.

For the implementation of DKG, h̄ was built using the
same parameters of h, except for the co-domain size. To
comply with the Space Saving requirements (i.e., Θ > ε),
in all tests we set ε = Θ/2. In general Θ and µ are set to
arbitrary values, in other words the bound 1/k ≥ Θ > 1/µ
stated in Section 4 does not hold. In all tests discussed in
the following we assume a linear cost for managing incom-
ing tuples on operators. We also performed partial tests
considering a quadratic cost; their results confirm the gen-
eral findings discussed in this section, with different absolute
values for the measured metrics.

5.2 Simulation Results
Imbalance (λ) with respect to the number of in-
stances (k) — Figure 2 shows the imbalance as a func-
tion of k for DKG, Universal, O-apx and SIA, with Zipf-2
(Θ = 0.1 and µ = 2). For both DKG and Universal two
curves are shown that report the mean and the worst case
values respectively; while the mean curves report the average
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Figure 2: Imbalance (λ) as a function of k with Zipf-
2 (Θ = 0.1 and µ = 2)

performance for each of the two algorithms, the worst case
curves report the worst performance we observed among all
the runs.

Looking at SIA’s curve we get a better grasp of the mean-
ing of λ: with k = 10, SIA sports 900% of imbalance: this
means that it “wastes” 900% of the power provided by a sin-
gle resource (i.e., 9 instances are not used) which is exactly
what SIA’s implementation does. With Zipf-2, the empir-
ical probability of the most frequent item is 0.60, as such
it is not possible to achieve 0% imbalance with more than
1 instance (k > 1). This observation, with the definition
of imbalance (cf., Relation 1), justifies the monotonically
increasing behavior of all curves.

The most important observation we can do by looking at
the graph is that DKG mean matches O-apx and how lit-
tle is the gap between DKG worst case and O-apx. This
means that DKG is not susceptible to unlucky choices made
with the used hash functions. Furthermore, there is a note-
worthy gap between DKG and Universal mean values, while
Universal worst case is closer to SIA than to O-apx. In other
words DKG provides in any case a close to optimal balanc-
ing, whereas using a vanilla hash function can even approach
the worst possible balancing in unlucky cases. Table 1 shows
the values of the linear regression coefficients of the plotted
results: Universal worst case has indeed a value of a closer
to SIA than O-apx while DKG worst case has a value of a
close to O-apx; besides, Universal mean has not the same b
of O-apx, while DKG mean matches O-apx. Notice that the
results shown for DKG mean fall into the first case of the
proof of Theorem 4.2 (cf., Section 4), validating the claim
that, with Θ ≤ 1

k
and with at least one heavy hitter with

a frequency larger than L, DKG is optimal. Due to space
limitations we omit the plots for a uniform distribution or
Zipfian with α < 1; however, in these settings our solution
still provides better balancing than Universal. While the
absolute gain is less sizeable, it proves that it is safe (and
in general worthwhile) to deploy our solution with any de-
gree of skewness, in particular given the little memory and
computational overhead (cf., Section 3.2).

Standard deviation (σ) with respect to the number
of instances (k) — Figure 3 shows the standard deviation
for the same configuration of Figure 2. The main difference
with respect to Figure 2 is in the trend of the plots. σ is
normalized by k and represents the average number of un-
balanced items per instance. As such, σ for SIA decreases
with increasing values of k, as the number of unbalanced
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Figure 4: Standard deviation (σ) distribution for
Zipf-2 (Θ = 0.1 and µ = 2)

items is fixed. On the other hand, σ for O-apx grows from
k = 2 to k = 4, and then decreases. This means that the
number of unbalanced items grows more than k for k < 4
(i.e., k = 4 is a more difficult configuration for load balanc-
ing than k = 2), and grows less than k for k ≥ 4. However,
σ for SIA decreases faster than for O-apx, thus increasing k
shrinks the gap between SIA and O-apx, as well as reducing
DKG’s gain.

Figures 4 shows the distribution of σ values achieved by
DKG and Universal for k ∈ {2, 5} in the same runs of Fig-
ure 3. Each bar represents how many times a σ value has
been measured among the 10, 000 runs. Values are rounded
to the nearest multiple of 200. We can clearly see that Uni-
versal does no better than the worst result from DKG. In
addition, DKG boasts an extremely small variance: the val-
ues are concentrated in a small interval of σ for both values
of k. Conversely, Universal has a large variance, for instance
it spans from 2800 to 9600 items for k = 2.
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Impact of the cost function — Figure 5 shows the stan-
dard deviation as a function of k for DKG, Universal, O-apx
and SIA, with Zipf-1 (Θ = 0.1 and µ = 2), considering a
quadratic cost function. In other words, the load induced
by tuple j on an instance is f2

j . The scheduling algorithm
can take this into account by squaring the load value of the
buckets. This approach overestimates the load of the buck-
ets containing sparse items (i.e., the buckets associated with
vh̄), considering the square of the whole bucket load, instead
of the sum of the squares of the load induced by the tuples
hitting the bucket. This rough approximation has a sizeable
impact on DKG performance. DKG mean does not stick to
O-apx for k < 5 and there is a sizeable gap between DKG
mean and worst case. However, Universal in average does
only slightly better than DKG worst case, while Universal
worst case is pretty close to SIA. Notice that we can reduce
the overestimation on the sparse items by increasing µ (thus
decreasing the value of each vh̄ entry). Alternatively, we
could estimate the average number of distinct tuples in each
vh̄ entry (this can be easily achieved leveraging [3]) and use
this value to estimate more precisely the load induced by
each bucket.
Impact of µ — Figure 6 shows DKG mean and worst case
imbalance (λ) as a function of µ for Zipf-1, Zipf-2 and Zipf-3
(Θ = 1.0 and k = 2). Notice that with Θ = 1.0, this plot
isolates the effect of µ.

Increasing µ from 1 to 2 significantly decreases the mean
imbalance, while for larger values of µ the gain is less evi-
dent. Instead, the worst case imbalance is only slightly af-
fected by µ. A larger co-domain size allows h̄ to spread the
items more evenly on more buckets and gives more freedom
to the scheduling algorithm. Thus, increasing µ reduces the
chances to incur in pathological configurations, but cannot
fully rule them out. This mechanism grants DKG the abil-
ity, as stated previously, to provide better balancing than
Universal even with non skewed distributions.

Impact of Θ — Figure 7 shows DKG mean and worst case
imbalance (λ) as a function of Θ for Zipf-1, Zipf-2 and Zipf-3
(µ = 1.0 and k = 2). Notice that with µ = 1.0, this plot
isolates the effect of Θ.

Once Θ reaches the empirical probability of the most fre-
quent heavy hitter in the stream (0.8 for Zipf-3, 0.6 for
Zipf-2 and 0.1 for Zipf-1), both the mean and worst case
values drop. Further decrements of Θ do not improve signif-
icantly the performance. For Zipf-3 and Zipf-2, the values of
both the mean and worst case are very close, proving that
the mechanism used to separately handle the heavy hitters
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Figure 7: DKG imbalance as a function of Θ (µ = 1.0
and k = 2)

is able to rule out pathological configurations. Conversely,
most of the unbalancing for Zipf-1 comes from a bad map-
ping induced by h̄ on the sparse items. In other words, with
µ = 1.0 the scheduling algorithm does not have enough
freedom to improve the sparse item mapping.

We do not show O-apx in Figure 7, however notice that
for both Zipf-3 and Zipf-2 with Θ = 0.8 and Θ = 0.6 respec-
tively, DKG mean imbalance is equal to O-apx imbalance.
With Zipf-3 and Zipf-2, the theoretical analysis (cf., Sec-
tion 4) guarantees optimality with 1/µ < Θ ≤ 1/k = 0.5.
In other words the user can either leverage the theoretical
results to be on the safe side with any value of α, or, given
some a priori knowledge on the stream (i.e., a lower bound
on the value of α), use different values of Θ, ε and µ to
reduce resources usage.

Θ and µ trade-off — The heat-maps in Figure 8 show
DKG mean and worst case standard deviations (σ) as a func-
tion of both Θ and µ for Zipf-1, Zipf-2 and Zipf-3 (k = 5).
Notice that the heat-maps for different distributions do not
share the color-scale. In all figures darker is better.

Figures 8a and 8b confirm that, as for imbalance, with
non- or lightly-skewed distributions, µ drives the perfor-
mance, while Θ has a negligible impact. Figure 8c, 8d, 8c
and 8d confirm that, for skewed distributions, as soon as Θ
matches the empirical probability of the most frequent heavy
hitters, there is not much to gain by further increasing µ or
decreasing Θ.
Impact of the training set’s size m — Figure 9 shows
DKG mean and worst case standard deviation (σ) for Zipf-1,
Zipf-2 and Zipf-3 as a function of the training set’s size m
(Θ = 0.1, µ = 2 and k = 2).

This plot shows that DKG learns quite fast: less than
100 items for Zipf-3, less than 1.000 items for Zipf-2 and
less than 10.000 items for Zipf-1 are enough for its data
structures to converge. DKG learns faster with strongly
skewed distribution, i.e. it learns faster and produces a close
to optimal balancing when the distribution is potentially
more harmful.

5.3 Prototype
To evaluate the impact of DKG on real applications we

implemented it3 as a custom grouping function within the
Apache Storm [17] framework. More in details, DKG im-
plements the CustomStreamGrouping interface offered
by the Storm API, defining two methods: prepare() and

3The implementation’s code is available at the following
repository: http://github.com/rivetti/dkg_storm



0.1 0.5 1.0

Θ 

 1

 2

 3

 4

 5

µ
 

 200

 600

 1000

 1400

 1800

(a) Mean Zipf-1

0.1 0.5 1.0

Θ 

 1

 2

 3

 4

 5

µ
 

 200

 600

 1000

 1400

 1800

(b) Max Zipf-1

0.1 0.5 1.0

Θ 

 1

 2

 3

 4

 5

µ
 

 4500

 5000

 5500

 6000

 6500

(c) Mean Zipf-2

0.1 0.5 1.0

Θ 

 1

 2

 3

 4

 5

µ
 

 4500

 5000

 5500

 6000

 6500

(d) Max Zipf-2

0.1 0.5 1.0

Θ

 1

 2

 3

 4

 5

µ
 

 6400

 6750

 7100

 7450

 7800

(e) Mean Zipf-3

0.1 0.5 1.0

Θ

 1

 2

 3

 4

 5

µ
 

 6400

 6750

 7100

 7450

 7800

(f) Max Zipf-3

Figure 8: DKG standard deviation (σ) as a function of both Θ and µ for Zipf-1, Zipf-2 and Zipf-3 (k = 5)
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of the training set’s size m (Θ = 0.1, µ = 2 and k = 2)

chooseTasks(t). The former is a setup method, while the
latter returns the replica(s) identifier(s) associated with tu-
ple t. In DKG, the class constructor and the prepare()
method implement the init() pseudo-code (cf., Listing 3.1).
In particular they take Θ, ε, µ, k, the size of the learning
set m, and the function key(t) as parameters. key(t) is a
user defined function that returns a positive integer value
representing the grouping key(s) value(s) of tuple t. In all
our tests we set Θ = 0.1, ε = 0.05 and µ = 2, a set of
sensible values that proved to be meaningful in our testbed.
The chooseTasks(t) method implements the rest of the
pseudo-code (cf., Listings 3.1 and 3.2): it (i) uses the first
m tuples to learn (learn(t)), then (ii), once it has read m
tuples, stops learning and builds (build()) the global map-
ping function and (iii), finally, returns getInstance(t) for
any following tuple t.

The use case for our tests is a partial implementation of
the third query from the DEBS 2013 Grand Challenge [6]:
splitting a play field in four grids, each with a different gran-
ularity, the goal is to compute how long each of the mon-
itored players is in each grid cell, taking into account four
different time windows.

The test topology is made of a source (spout in Storm
jargon) and an processing element (bolt) with k instances
(tasks). To avoid I/O to be a bottleneck for our tests, the
source store the whole sensors reading data file in memory.
For each reading, it emits 4 tuples (one for each granularity
level) towards the processing element instances. The group-
ing key is the tuple cell identifier (i.e., row, column and
granularity level). We take into account the second half of
the match, which is made up of roughly 2.5× 107 readings,
generating close to 108 tuples. The training set is the first
half of the trace, while the renaming half is the validation
set.

We deployed the topology on a server with a 8-cores In-
tel Xeon CPUs with HyperThreading clocked at at 2.00GHz
and with 32GB of RAM. The source thread (spout’s task)
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Figure 10: Imbalance (λ) for the DEBS trace as a
function of k (Θ = 0.1, ε = 0.05 and µ = 2)

and the k processing element instances threads (bolts’ tasks)
are spawned each on a different JVM instance. We per-
formed tests for k ∈ {1, . . . , 10} with both the default key
grouping implementation (Modulo) and the DKG prototype.
Imbalance (λ) with respect to the number of in-
stances (k) — Figure 10 shows the imbalance as a func-
tion of k for O-apx, Modulo and DKG with the DEBS trace.
For Modulo and DKG we show both the simulated results
and the outcome from the prototype (i.e., the imbalance of
the number of tuples received by the processing element in-
stances). We can notice that, for both DKG and Modulo,
results from the tested topology closely match those pro-
vided by the simulations. DKG sticks very close to O-apx
for all k, and, except for k ∈ {7, 9}, largely outperforms
Modulo. Furthermore, we can clearly see the hardly pre-
dictable behavior faced when using a vanilla hash function.
For k ∈ {2, . . . , 5}, O-apx achieves 0% imbalance. However
the most frequent item of the source outgoing stream has an
empirical probability of roughly 1/5. It is then impossible
to achieve 0% imbalance for k ≥ 6 and O-apx, as well as
DKG, imbalance grows with k.

Cpu usage and throughput — Figure 11a shows the cpu
usage (Hz) over time (300 seconds of execution) for DKG
and Modulo with the DEBS trace in the test topology with
k = 4 instances. The cpu usage was measured as the av-
erage number of hertz consumed by each instance every 10
seconds. Plotted values are the mean, maximum and mini-
mum cpu usage on the 4 instances.

The mean cpu usage for DKG is close to the maximum
cpu usage for Modulo, while the mean cpu usage for Modulo
is much smaller. This was expected as there is a large re-
source underutilization with Modulo. Figure 11b shows the
cpu usage’s distribution for the same time-slice. In other
words the data point x-axis value represents how many times
an instance has reached this cpu usage (Hz). Notice that
the values are rounded to the nearest multiple of 5 × 107.
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Figure 11: Cpu usage (Hz) for 300s of execution
(Θ = 0.1, ε = 0.05, µ = 2 and k = 4)

This plot confirms that the cpu usage for DKG’s replicas
is concentrated between 2 × 109 and 2.5 × 109 Hz, i.e., all
instances are well balanced with DKG. On the other hand
Modulo does hit this interval, but most of the data points
are close to 5×108 Hz. The key grouping provided by DKG
loads evenly all available instances. Conversely, with Mod-
ulo some instance (in particular 3) are underused, leaving
most of the load on fewer instances (in particular 1).
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Figure 12: Throughput (tuples/s) for the DEBS
trace as a function of k (Θ = 0.1, ε = 0.05 and µ = 2)

This improvement in resource usage translates directly
into a larger throughput and reduced execution time, as
clearly shown by Figure 12; in particular, in our experi-
ments, DKG delivered 2× the throughput of Modulo for
k ∈ {4, 5, 6, 8, 10}.

6. RELATED WORK
Load balancing in distributed computing is a well known

problem that has been extensively studied since the 80s. It
has received new attention in the last decade with the in-
troduction of peer-to-peer systems. Distributed stream pro-
cessing systems have been designed, since the beginning, by
taking into account the fact that load balancing is a critical
issue to attain the best performance. In the the last year
new interest in this field was spawned by research on how
key grouping can be improved targeting better load balanc-
ing.

Gedik in [8] proposed a solution that is close to our from
several perspectives. In particular, he proposes to use a lossy
counting algorithm to keep track of the most frequent items
that are then explicitly mapped to target sub-streams. How-
ever, differently from our solution, sparse items are mapped

using a consistent hash function, while we map them in buck-
ets that are later scheduled, depending on their load, to
sub-streams. Our experimental evaluation showed that this
change in the approach provides a marked improvement in
performance.
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Figure 13: Imbalance (λ) as a function of α (Θ = 0.1,
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In particular, Figure 13 shows the imbalance (λ) as a
function of α of both the mean and worst cases for DKG
and DKG WOSIM. The latter is a modified version of DKG
where sparse items are mapped to sub-streams directly us-
ing the h̄ function whose co-domain has been set to k. In
other words the scheduling algorithm does not take into ac-
count the mapping of sparse items. As the curves show,
DKG always outperforms the WOSIM version for all tested
values of α. One further important difference between this
work and [8] is that the latter proposes a set of heuristics
for key mapping that take into account the cost of operator
migration, making its solution tailored to systems that must
adapt at runtime to changing workload distributions.

Nasir et al. in [15] target the same problem and pro-
pose to apply the power of two choices approach to provide
better load balancing. Their solution, namely Partial Key
Grouping (PKG), provides increased performance by map-
ping each key to two distinct sub-streams and forwarding
each tuple t to the less loaded of the two sub-streams as-
sociated with t; this is roughly equivalent to working on a
modified input stream where each value has half the load of
the original stream. Differently from our solution, the algo-
rithm proposed in [15] cannot be applied in general, but it
is limited to operators that allow a reduce phase to reconcile
the split state for each key. Interestingly, our solution can
work in conjunction with the one proposed in [15] to provide
even better performance.
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Figure 14 shows both the mean and worst case imbalance
(λ) as a function of k for DKG, PKG, and DKG PKG. The
latter is a modified version of DKG where we plug into it
the PKG logic. Each heavy hitter is fed to the scheduling
algorithm as two distinct items with half its original fre-
quency. As such, the scheduling algorithm provides two
different mappings for each heavy hitter. When hashing a
heavy hitter, DKG PKG will return the less loaded instance
between the two associated with the heavy hitter. Notice
that sparse items are still associated with a single instance.
PKG is the implementation provided by the authors of [15].
The curves show that combining both solutions it is possible
to obtain even better performance. Interestingly, both DKG
and DKG PKG worst case performance are better than PKG
worst case performances, stressing again how our solution is
able to provide stable performance irrespective of exogenous
factors.

7. CONCLUSIONS
In this paper we presented a novel key grouping solution

for parallel and distributed stream processing frameworks.
We theoretically proved that our solution is able to provide
(1 + Θ)-optimal load balancing when applied on skewed in-
put streams characterized by a Zipfian distribution (on the
key used for grouping). Through an extensive experimental
evaluation we showed that the proposed solution outper-
forms standard approaches to field grouping (i.e., modulo
and universal hash functions) and how this positively im-
pacts a real stream processing application.

In the near future we plan to further improve our pro-
posal by solving two issues; firstly, our solution, as proposed
in this paper, works as an offline algorithm that must learn
on a dataset before providing the desired mapping. While
this is an acceptable deployment approach for many appli-
cation domains, it would not fit a scenario where the value
distribution in the input stream changes over time; from
this point of view we think that the approach employed in
[8] to adapt the mapping at runtime, taking into account
the cost of operator migration, could be integrated in our
solution as well. A second issue that we plan to tackle is
related to how the learning phase can be executed in a par-
allel fashion; a trivial solution would be to share the local
state of the algorithm learning phase executed on parallel
instances to build a global state that can then be used to
calculate the correct final mapping. While this solution is
technically feasible, further investigation could possibly lead
to more efficient approaches with a reduced synchronization
overhead.
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