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Abstract— Lane detection in urban environments is a challeng-
ing task. That is mainly due to the non existence of unique models,
poor quality of lane markings due to wear, occlusions due to the
presence of traffic and complex road geometry. In this work we
present a novel lane detection and tracking algorithm for urban
road scenarios based on weak models, which is implemented by
a particle filter. The algorithm is implemented and experiments
were carried out on Sydney urban roads. The results show the
robustness of the algorithm to the problems inherent in urban
road environments.

Index Terms— Lane Tracking, Particle Filters, Lane Detection,
Urban Environments

I. INTRODUCTION

Today we observe an increasing demand for traffic safety

systems to minimize the risk of accidents. There are a large

number of vision based systems for lateral and longitudinal ve-

hicle control, collision avoidance and lane departure warning,

which have been developed during the last decade around the

world (some examples are [1], [2], [3], [4] and [5]). Recently

announced DARPA Urban Grand Challenge is yet another

proof of enthusiasm in autonomous urban driving.

The development of advanced driver assistance systems and

ultimately autonomous driving requires the ability to analyse

the road scene. One prerequisite for this is the detection of

lanes and subsequent tracking of lanes. Lane detection is

the problem of analyzing a single image and determine the

lane markings. Lane tracking is process of using temporal

knowledge in lane detection. Traacking helps in reducing the

computational burden whilst improving robustness.

Large numbers of research work are reported in the lit-

erature, which effectively solved the lane detection/tracking

problem especially for highway like situations. However, they

have shortcomings to be used in urban road scenarios. Several

numbers of different constraints are commonly used to be able

to detect and track lane markings, such as lanes being straight

[7] or only slightly curved [8]. Such an assumption holds for
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Fig. 1. a) The testbed vehicle and b) the sensors mounted on the roof.

freeways but is certain to fail in urban areas. Furthermore,

geometric models were applied [8], [9], which describe the

shape of a lane. These models rely on the visibility of

markings. However, in urban areas we often have to deal with

occlusions and bad or missing markings over extended periods

of time, which can be catastrophic for such assumptions.

Therefore as outlined, strong assumptions about the lane

geometry must be expected to be violated and weaker models

are preferable. We have previously proposed a lane marking

detection algorithm [6] for urban environments giving due

regards to the inherent problems. We here extend it to in-

corporate temporal information by using a Particle filter based

approach. The particles move from the bottom to the top of

the 2D image plane of a inverse perspective mapped image

detecting lanes. Each sample represents the possible position

of a piece of lane marking and it’s probability as a weight. The

temporal information is incorporated by employing a second

motion model and observation prediction.

The experiments were carried out to test the effectiveness of

the algorithm in real situations. The CRUISE (Cas Research

Ute for Intelligence, Safety and Exploration) is used for data

collection in Sydney urban roads. A vertically mounted SICK

laser and a CCD camera are used as perceptual sensors.

The remainder of this publication is organised as follows.

In section II we briefly outline the functionality of the particle

filter. In section III we present our solution to lane detection

and in section IV we extend this to lane tracking. Section V

contains some experimental results. Finally, we discuss future

work in section VI and the conclusions in section VII.

II. PARTICLE FILTERS

Monte Carlo Methods or Particle Filters allow to approxi-

mate arbitrary multimodal probability distributions recursively.

To estimate the state of a system a set of samples X at time

t is used. This set Xt = 〈xi
t | i = 1...N〉 and it’s associated

weights ωi
t represent the belief at time t. The weights are
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TABLE I

THE THREE STEPS OF THE PARTICLE FILTER ALGORITHM

1) Prediction: Draw xi

t
∼ p(xi

t
| xi

t−1
, ut−1).

2) Update: Compute the importance factors ωi

t
= ηp(yt | xi

t
),

with η being a normalization factor to ensure that the weights
sum up to 1. Here, yt is a sensor reading at time t.

3) Resample.

computed according to a sensor model, which contains the

information of how likely it is that a sample x represents the

true state. The computation of the posterior is then done in

three steps: 1. Prediction. 2. Update 3. Resampling.

The additional resampling step ensures that the resources,

i.e. the particles, are concentrated in areas of high probability.

Thus, the samples are used in the areas of interest. However,

due to this step the particle filter also tends to converge to

one state, which means that in the basic implementation this

filter would not be suitable to track multiple hypotheses over

extended periods of time. Clearly in our application we need

to able to track multiple lane markings, also without prior

knowledge of how many.

For a more wholesome summary of Monte Carlo methods

refer to [10], [11].

A. Clustered Particle Filters

In order to be able to track multiple lane markings we apply

a clustered particle filter, similar to what is presented in [12].

There the sample set is divided into clusters that each represent

one hypothesis. A cluster is divided into two clusters when a

subset of samples has a certain distance to the others and if

this subset has a high average weight. If the clusters get near

to each other, they get fused to one single set.

This approach uses a modified proposal distribution, where

we take account of the existence of multiple hypotheses.

According to [10], the weights are calculated as

ωi
t = η

p(yt | xi
t)p(xi

t | xi
t−1

)

q(xi
t | xi

t−1
, yt)

(1)

η is a normalizing constant, which ensures that the weights

sum up to 1. In that way, ωi
t is only dependent on xi

t, yt,

and yt−1. To take account of the existence of clusters, the

normalizing constant η is now dependent on the individual

clusters and becomes ηi and consequently the weights are now

computed as

ωi
t = η(xi

t)p(yt | xi
t) (2)

For Cj
t being the sum of weights of the jth cluster

η(xi
t) = 1/Cj

t (3)

This method is known in statistics literature as two stage

sampling. The application to mobile robot localization is

described in [12].

III. LANE MARKING DETECTION

In this section our approach to lane marking detection

is presented. Furthermore, we outline all the background

necessary to implement the proposed method.

A. Principle

Detection of lane markings in image data is not a trivial task.

That is mainly due to the non existence of unique models, poor

quality of lane markings due to wear, occlusions due to the

presence of traffic and complex road geometry.

This leads us to the conclusion that any method using a

too strong model of the road (lane), will fail eventually. Thus,

weak models are an advantageous choice. As a result of this,

particle filters are a good choice for the task of lane marking

tracking due to their ability to handle poor process models.

The idea of the proposed method is to use an inverse

perspective mapped image (IPM image) to run a particle

set from the bottom to the top and observe the presence of

lane markings in each line. Furthermore, we make sure that

the filter is able to track multiple lines and to store each

estimated line as a trail. In this way we produce a correct

data association, e.g. we associate every detected piece of lane

marking to one trail, which then represents the marking of one

lane.

Various issues need to be solved to apply this method. A

clustering routine needs to be implemented which allows to

detect a number of lane markings at any time. We need to

be able to split clusters into subclusters to correctly detect

markings in special situations like the appearance of an

additional lane, where a line splits up into two lines. Above

this, we want to be able to handle high degrees of curvature

also in the presence of broken markings with large gaps.

The basic principle is illustrated in Fig. 3. 3(a) shows the

original image from which the IPM image (3(b)) is computed.

In Fig. 3(b) we do not have any prior knowledge about the lane

markings and therefore the filter is initialized with a uniform

distribution. As the particles move up in the image (according

a process model), the filter eventually converges to the position

of the marking. In Fig. 3(c) and 3(d) the filter tracks the lane

marking correctly.

In the following subsections we will present the information

on the process model, the observation model and clustering.

Above this, we present the usage of an uncertainty measure

for the estimate of a marking. To extend this method to obtain

information about a lane, and not only the marking, one may

add the measure of lane width to the state space vector, if

available (e.g. DARPA Urban Grand challenge).

B. Inverse Perspective Mapping

Lane detection is generally based on the localization of a

specific pattern (the lane markings) in the acquired image and

can be performed with the analysis of a single still image. The

method for low level image processing employed in our work

is based on the Generic Obstacle and Lane Detection (GOLD)

implementation. Details of this method are summarized in [4],

[6] and [14]. In Fig. 2(a) and Fig. 2(b) we show the result of

the inverse perspective mapping.
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(a) (b)

Fig. 2. a) The original image and b) The inverse persepctive mapped imaged.

(a) (b)

(c) (d)

Fig. 3. a) The original image. b) Initialization phase, the particles (in red)
are uniformily distributed. c) and d) The filter converges and then follows the
marking

In this processing step we also use the data of a vertically

mounted laser to correct for uneven road surface and the

changing pitch of the vehicle. For more details see [6].

The result of this method is exploited as a sensor model in

this work, because it produces high quality observations even

in areas of shadow and changing light conditions. Another

reason to use the 2D image plane of an IPM image is the easier

implementation of a process model as described below. For

further details refer to the section about observation models

below.

To decrease the computational effort, the IPM image has

a decreased resolution. In our current implementation we are

using a 200x400 pixels resolution, which means that we are

dropping some information.

C. The Process Model

In the process model we define how the particles move in

the image. For every incoming observation, the filter starts

from the bottom of the image. In every time step the particles

are then moved to the next line of the image according to a

defined Markov model, which incorporates general knowledge

about road design.

In this model we define that a straight lane is more likely

than a lane of any degree of curvature. Furthermore, a low

degree of curvature is more likely than a high degree of cur-

vature. This property is derived from the observation that most

road segments are straight or only slightly curved and larger

degrees of curvature are usually only present for relatively

short times. Finally, we also take into account that there is a

certain maximum degree of curvature, which will by definition

not be exceeded.

A simplified Markov model for this is illustrated in Fig.

4 as an example of how it works in principle. This simple

version lacks the distinguishment between different degrees

of curvature and should be regarded for illustrational purposes

only. Qualitatively, we define that if the particle was moving

straight it is then more likely to move straight again than

moving to the left or the right. Moreover, if a sample moved

left or right, then it is equally likely to move into this direction

again or to just move straight.

D. Observation Models

It is reasonable to apply a number of observation models

to gain additional robustness for the estimate. Currently we

are using an edge image, which also encodes the strength of

the edges. The model assumes that the stronger an edge is the

more likely it is to be part of a lane marking. This assumption

is reasonable, because markings are generally features on the

road which are designed to be outstanding. Thus, these features

should always be very distinguishable from the surroundings.

So the model can be defined as

ωedge(t) = p(yt | xt) =
1

σ
√

2π
exp−

1

2

yt−µ

σ (4)

where yt denotes the observation, in this case the edge

strength at a particles position xt at time t. The edge strength

is defined to be between 0.0 and 1.0. µ is the expected edge

strength and is set to 1.0.

Fig. 4. A simplified Markov model for lane marking detection.
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Additionally, we use prior knowledge about the colour of

the lane markings, i.g. we know whether these are white or

yellow and can therefore use the distance to this colour as

a quality measure, where for this the original image can be

used. Again, this is a reasonable assumption because the lane

markings colour is different to that of the background (usually

high contrast).

The definition of this model, called ωcolour looks similiar

to 4. Only yt − µ denotes the difference to the target colour.

The weight of the sample is then calculated as ωedge ∗ωcolour.

E. Uncertainty

There are certain reasons why we want to keep track of

the uncertainty in our estimates. Whenever we do not have

enough data for a good estimate we want to be able to not

regard it in further considerations. That means, if data is bad

or incomplete, which gives rise to high uncertainty, then it is

necessary to have a measure for the uncertainty.

This measure is derived from the variance in the sample set.

Obviously, when there is no or bad data, the samples will be

distributed over a larger area. This indicates that the produced

estimate is less accurate.

Adding the uncertainty measure we can now see the full

functionality of the filter, which is illustrated in Fig. 5. Here

the particles are shown as red dots, the estimates are shown

in green and the uncertainty in yellow.

In Fig. 5(b) the filter is initialized with a uniform distribu-

tion. Fig. 5(c) shows when the filter converges the uncertainty

decreases. As long as there is a meaningful observation, the

uncertainty remains low. However, in a gap the uncertainty

grows as in Fig. 5(d). After reconverging at the end of the

gap the uncertainty is low again. Hence, this measure allows

us to extract dashed and non dashed lines and also enables the

filter to produce meaningful outputs with bad data.

IV. LANE MARKING TRACKING

In this section we present one possible approach to extend

the functionality of the lane marking detection to tracking. As

tracking we denote the use of previously obtained information

in subsequent time steps. Note that in this section one time

step means one image. The tracking algorithm is summarized

in Fig. 6, which is described in the following. The yellow box

contains the processing of a single image as described in the

previous section.

A. Motion Model

In order to implement tracking we need a second motion

model which we apply to carry information on to the next

obtained image. For this we use the ego motion of the vehicle,

which allows us to predict where on the bottom of the image

the particles should be initialized. Furthermore, we also use

the uncertainty measure from the previous time step.

Hence, we use two motion models. One to move the

particles within one image to detect lanes and one to move

particles to the following image. This second motion model is

shown as Motion Model 2 in Fig. 6.

(a) (b)

(c) (d) (e)

Fig. 5. a) The original image. b) Initialization phase, the particles (in red)
are uniformily distributed and uncertainty is high. c) The filter converged, so
the uncertainty is low d) Due to a gap in the marking the uncertainty grows,
and decreases again as soon as the filter starts converging again.

B. Observation Model

Above the particle information, we can also carry on the

detected markings and project these into the newly obtained

camera image according to the vehicles ego motion. This step

we call Observation Prediction, as shown in Fig. 6.

We identified two ways to implement this step. The first

possibility is to remember the edge strength and colour of

the estimates, information which can be obtained from the

best particle or an average including samples around the best

particle during the detection phase. Alternatively, we may only

consider the uncertainty of an estimate, which however would

imply a loss of information.

In the first case we can use the same observation models as

shown in section III-D. The only difference is that we use a

higher variance due to uncertainty in the odometric data. Thus,

when observing the newly found markings and the projected

ones, the new estimate will average between these.

C. Initialization

In the first time step, the filter is initialized as described in

lane detection. For this difficult task we need many particles

to pick up all markings. For the following time steps, we

already know where to look for markings and thus we place the

particles only in the places of interest. Hence, the number of

particles needed is lower, which results in lower computational

effort.
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Fig. 6. The tracking algorithm.

Fig. 7. The camera and vertically mounted laser.

V. EXPERIMENTAL RESULTS

In this section we present preliminary experimental re-

sults. These were produced with early implementations in the

ORCA2 Software Framework [15] on our research vehicle.

The vertically mounted laser scanner and the camera can be

seen in Fig. 7.

The figures in the previous chapters showed results from

our Matlab implementation, whereas the figures in this section

present results from our actual Orca/C++ implementation. For

one time step (one image) the filter needs below 0.1s on an up

to date desktop computer, which we consider real time since

our camera is currently operating at 7.5Hz and a resolution of

1024 by 768 pixels. Furthermore, the current implementation

of the lane tracking algorithm is in an early stage and thus not

optimized.

In Fig. 8 to 14 the left image shows the original image as

it is retrieved from the camera, the middle one is the IPM

transformed image and the right one shows the detected and

tracked lane markings. It can be seen that in normal traffic

situations and in the presence of shadows our algorithm still

performs well. In these cases we see increased noise levels and

obstructions. It is worth noticing that in the presented data set

the markings are of different quality, i.e. worn or even missing.

VI. FUTURE WORK

The presented approach is part of ongoing research and

several things could not be discussed in this paper. Some of

(a) (b) (c)

Fig. 8. a) The original image. b) The IPM image c) The estimated lane
markings.

(a) (b) (c)

Fig. 9. a) The original image. b) The IPM image c) The estimated lane
markings.

(a) (b) (c)

Fig. 10. a) The original image. b) The IPM image c) The estimated lane
markings.

(a) (b) (c)

Fig. 11. a) The original image. b) The IPM image c) The estimated lane
markings.

these are briefly discussed in this section.
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(a) (b) (c)

Fig. 12. a) The original image. b) The IPM image c) The estimated lane
markings.

(a) (b) (c)

Fig. 13. a) The original image. b) The IPM image c) The estimated lane
markings.

(a) (b) (c)

Fig. 14. a) The original image. b) The IPM image c) The estimated lane
markings.

Currently we are working on the implementation of new

sensor models. The goal is to avoid any process that would

work on the whole image (as the one presented in section III-

B. Instead, we only want to process parts of the image where

we have samples. The main benefit is lower computational

effort.

Above this we want to use the original image directly for

sensor models rather than using IPM images alone, because the

IPM process drops some information of the original image. In

the original image colour models and template matching might

be used. Template matching is especially interesting to track

specific kinds of markings like double lines.

Finally, we think that target tracking alongside the lane

marking tracking is a good way to improve results. In some

cases it might happen that part of a white car appears as a lane

marking, a situation which would be avoided by using target

tracking. Also it would enable us to not do any detection in

places where we track a target.

VII. CONCLUSIONS

In this work we presented a novel approach to lane tracking

based on the use of weak models in a particle filter. As opposed

to many previously presented algorithms we avoid strong

assumptions about the geometry of a lane, which enables the

filter to operate even in difficult situations where markings

are obstructed or otherwise absent. Furthermore, even early

implementations run in real-time, i.e. operate at least with the

speed of our camera.

We discussed the most difficult task of lane marking de-

tection as well as the task of lane marking tracking, where

we benefit from the use of previous information. Using prior

knowledge enables us to gain more robustness and at the same

time to decrease the number of samples, as we already know

where to place the samples at the beginning of a time step.
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