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Abstract We present a new approach for large-scale

multi-view stereo matching, which is designed to operate

on ultra high-resolution image sets and efficiently compute

dense 3D point clouds. We show that, using a robust descrip-

tor for matching purposes and high-resolution images, we

can skip the computationally expensive steps that other algo-

rithms require. As a result, our method has low memory

requirements and low computational complexity while pro-

ducing 3D point clouds containing virtually no outliers. This

makes it exceedingly suitable for large-scale reconstruction.

The core of our algorithm is the dense matching of image

pairs using DAISY descriptors, implemented so as to elim-

inate redundancies and optimize memory access. We use a

variety of challenging data sets to validate and compare our

results against other algorithms.

Keywords Multi-view stereo · 3D reconstruction ·

DAISY · High-resolution images

1 Introduction

Multi-view stereo reconstruction of complex scenes has

made significant progress in recent years, as evidenced by the

quality of the models now being produced. However, most
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state-of-the-art approaches do not exploit the very high reso-

lution—20 Megapixel and more—that modern cameras can

readily acquire. Instead, they rely on moderate sized images,

1–4 Megapixel in recent papers [6,10,17,26,28], and assume

a small capture space that makes it possible to use visual hull

constraints and volumetric optimization algorithms. Because

these are computationally expensive and have large mem-

ory requirements, this, in turn, limits the size of the images

that can be used. The few approaches that have been shown

to scale up to larger images, 2–6 Megapixel, rely on local

plane sweeping strategies [6–8,27], which tend to be very

slow when applied to larger images. Admittedly, some algo-

rithms are capable of operating on higher resolution images

as a whole [8] or by dividing them into overlapping tiles of

smaller sub-images and later combining the results [9] but

none have used whole images as large as we consider here,

mainly due to their inability to scale linearly in computation

time for image resolution or for their high memory require-

ments.

In this paper, we show that higher resolution images,

with their richer texture, can both provide more reliable

matches than lower resolution ones and be handled fast

enough for practical large scale use. To this end, we intro-

duce an approach, which has a very low memory and com-

putational cost requirement, for

– producing quickly point clouds such as the one depicted

in Fig. 1, which contain far fewer outliers than those

recovered by techniques that rely on plane sweeping

[6–8,27];

– exploiting images as large as 40 Megapixel, such as the

31 images depicted in Fig. 2, while reducing the process-

ing time to less than 15 min instead of the many hours that

most state-of-the-art algorithms [6–8,27] would have

required.
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Fig. 1 Statue reconstruction. The data set contains 127 18-Megapixel

images of a statue. The reconstruction time was 29.5 min and the final

cloud contains 15.3 million points. First row Some images from the

data set. Second row The depth maps computed for the images shown

in the first row. Last two rows The renderings of the cloud in its raw and

colored form from different viewpoints (color figure online)

Our approach operates directly at the highest resolution,

which is key for achieving both accuracy and robustness. This

is in complete contrast to typical hierarchical approaches

that are popular in the field and the effectiveness of our

approach therefore constitutes an important and novel result.

What makes this possible is the DAISY descriptor [25] that

has been shown to be very powerful for dense wide base-

line matching. However, while in our earlier work [25], we

focused on using it to compute a data term for use within

a graph cut framework, we show here that processing high-

resolution images reduces the need for smoothness priors to

the point where such a computationally demanding optimi-

zation scheme becomes unnecessary. Instead, we introduce a

much faster approach for checking match consistency across

multiple frames and rejecting erroneous matches, and the

resulting algorithm produces very dense and accurate 3D

clouds such as those depicted in Figs. 1, 2, and 3 in very

acceptable computation times, as can be seen in Table 2.
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Fig. 2 EPFL campus reconstruction. The data set contains 31

40-Megapixel images of the EPFL campus shot from a helicopter. The

reconstruction time was 14.2 min and the final cloud contains 11.3 mil-

lion points. First row Some images from the data set. Second row The

depth maps computed for the images shown in the first row. As can be

seen, depth maps, while being mostly correct, contain some outliers.

Third row The final point cloud from different view points in its raw

form. Last row The colorized renderings of the same view points shown

in third row. Notice that the few erroneous points present in the depth

maps are filtered out and final cloud contains virtually no outliers (color

figure online)

Our most important contribution in this work is the

development of an extremely memory efficient and computa-

tionally simple MVS system that requires very little memory.

Because of this our method can scale to very large scale, very

high resolution image sets on standard desktop systems eas-

ily and can build reconstructions in very short computation

times compared to other state-of-the-art approaches.

2 Previous work

Multi-view stereo (MVS) approaches can be roughly divided

into small-scale and large-scale methods. Small-scale meth-

ods are those, such as [5,6,10,17,26,28], that assume a

small capture space and can therefore take advantage of

visual hull constraints or volumetric optimization algorithms.
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Fig. 3 Lausanne Cathedral-Ground reconstruction. The 3D point cloud is rendered from several viewpoints. It was constructed in 419 min from

1,302 21-Megapixel images and contains 148.2 million points

While being very effective, these methods do not scale up to

modeling extended scenes because the memory and compu-

tational requirements would become prohibitive. Thus, large-

scale methods use different representations, as discussed

below.

A number of techniques replace the unified representation

of volumetric methods by a set of depth maps [3,7,14,19,27].

They scale up to very large scenes, sometimes at the cost of

losing some of the accuracy and completeness of volumet-

ric methods [16,22]. This class of MVS methods include

global approaches [20,23,25] that impose smoothness priors

in the form of Markov Random Fields and local ones [1,19]

that rely on gradient-based optimizations to enforce local

smoothness. The accuracy of the global methods is limited

by the fact that they can only handle relatively small resolu-

tion images. This is due to the very large amounts of memory

required to store many potential depth states for many pix-

els. Memory issues also limit GPU-based implementations

since it is hard to effectively deal with very large images

that do not fit into the relatively small memories of GPUs

[3,14]. By contrast, local approaches [1,19] can deal with

high-resolution images, in principle at least. However, not

only are they relatively slow, but they also require initial

depth estimates and do not converge well if these are not

sufficiently close to the desired solution.

A different approach for handling large-scale scenes and

images of arbitrary sizes is to directly reconstruct oriented

point clouds [6,8]. This is achieved by making it unneces-

sary to incorporate smoothness priors into the computation.

Instead, the algorithms rely on visibility constraints to filter

the points and reject erroneous ones. For example, in [6], a

very dense and accurate point cloud is computed by locally

estimating planar-oriented patches. A similar approach is

proposed in [8] with the addition of an energy minimization-

based method to compute and refine a mesh that represents

the 3D points. Both produce very impressive results and

outperform most other algorithms on many different data

sets [18].

In spirit, our approach is very close to that of [6], except

for the fact that using the DAISY descriptor [25] lets us han-

dle much higher resolution images by removing the need for

computationally intensive optimizations and produce higher

quality point clouds in a fraction of the time. We use tem-

porary depth maps while computing an oriented point cloud

but do not impose any smoothness. The inherent smoothness

and robustness of the DAISY descriptor makes it unneces-

sary and lets us skip many of the expensive computations

required by other algorithms. In principle, our results could

be further refined using a method such as [8], but their quality

and density is such that this is barely necessary.

3 Approach

Ours is a two-step approach. We start by computing dense

point clouds from image pairs and then check for consistency

using additional ones. This is an effective way to ensure with

high probability that only correct points are retained, espe-

cially if the pairwise clouds are of good quality. In the remain-

der of this section, we first sketch these two steps and then

provide more specific implementation details.

3.1 Pairwise point clouds

Given an image pair, ϒi = (Is, It ), whose baseline might be

relatively large, we use the DAISY descriptor we introduced

in earlier work [25] to measure similarity along epipolar lines
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Fig. 4 Computing the DAISY descriptor. DAISY is composed of

concatenated gradient histograms that are computed by first comput-

ing gradients in separate orientation layers and then aggregating the

weighted responses within each layer into orientation histograms. Using

Gaussian kernels for weighting allows to use separated 1D kernels in

the implementation and chaining smaller convolution responses to get

larger ones. This design pipeline allows for very efficient descriptor

computation over the whole image

and compute a dense depth map. DAISY is composed of

concatenated gradient histograms that are computed by first

estimating gradients into separate orientation layers and

aggregating their magnitudes within each layer into orien-

tation histograms, as shown in Fig. 4. This can be done by

simply thresholding and convolving the oriented gradients

with Gaussian filters of various sizes. It produces the same

kind of invariance as SIFT [13] or SURF [2] histogram build-

ing but can be computed much more efficiently for every

single image point and in every direction. DAISY is there-

fore ideally suited for dense matching.

In [25], we introduced an EM framework based on max-

flow min-cut optimization to estimate both depths and occlu-

sions, which made the complete approach computationally

very intensive. By contrast, here we discard this optimization

scheme. Instead, we directly use the DAISY matching score

to compute the probability of a pixel x having a depth d in

one image as

P(d) =
1

Z
exp

⎛

⎝−
‖ Di

x − D
j

x ′(d)
‖2

σ

⎞

⎠ , (1)

where Di
x and D

j

x ′(d)
are the descriptors at x in one image

and at the corresponding point x ′(d) in the other, assuming

that the depth is indeed d. The sharpness of the distribution is

controlled by σ and Z is a normalizing constant that ensures

that the probabilities sum to one.

To decide whether or not to assign a depth to a pixel, we

look for the first two probability maxima along the uniformly

sampled epipolar line and consider the ratio of their values:

RX =
Pbest(d)

Psecond best(d)
. (2)

Fig. 5 Searching along an Epipolar line. The line of sight emanating

from a pixel on Is is discretized non-uniformly such that the resulting

samples, depicted by black dots, project at uniform intervals on It . The

probability distribution, represented in purple, is computed over the

uniformly sampled epipolar line. Its maximum is only considered to

correspond to a valid disparity if it is significantly larger than all others

We treat the depth as valid if it is above a threshold, which

we take to be 0.8 for all results presented here. The choice

for this threshold will be justified in Sect. 5.1.

This approach is depicted in Fig. 5. As will be shown in

the results section, we tested the performance of this very

simple decision rule under changing image resolution, cam-

era baseline, and descriptor parameters and found it to be

very reliable.

This produces a dense point cloud, which we denote as

X
i
. These pairwise clouds may, of course, still contain a few

spurious points.

3.2 Enforcing consistency

To eliminate these spurious points, we only retain those for

which there is a consistent evidence in multiple pairs. Given a

3D point, X , computed from one specific pair, ϒi = (Is, It ),

consistency is measured by reprojecting the point in other

images and computing

ǫi, j (X) =
|d(X, i) − dmapi, j (X)|

dmapi, j (X)
, (3)

where d(X, i) is the depth of the 3D point X with respect to

camera i and dmapi, j (X) is the depth value computed at the

projection of X in image i using the image pair (i, j). A 3D

point is retained if this consistency measure is small enough

for at least C depth maps. Formally, we write

X =

⎧

⎨

⎩

{X j }, iff

⎡

⎣

∑

i∈Q j

V (X j ∈ X
i
)

⎤

⎦ > C

⎫

⎬

⎭

, (4)
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Fig. 6 Lausanne Cathedral-Aerial Reconstruction. The 3D point cloud

was constructed in 22 min from 61 24-Megapixel aerial images

and contains 12.7 million points. First row Some images from the

dataset. Courtesy of J.M. Zellweger. Last two rows The render-

ings of the colorized points from several viewpoints (color figure

online)

where X is the final point cloud, X
i

is the 3D point

cloud for the sub-maximization problem for ϒi introduced

above, V (.) is a boolean function that returns 1 if its argu-

ment is true and 0 otherwise and Q j represents a set of

image pairs. This definition inherently subsumes the com-

mon left-to-right and right-to-left tests often used by cor-

relation-based approaches [4]. This stems from the fact

that the depth map obtained by reversing the roles of the

cameras can be among the ones chosen for verification

(Figs. 6, 7, 8).

Since a point can be instantiated from several different

image pairs, for optimum results, it is important to only retain

the one whose precision can be expected to be highest and

to ignore the others. This is done by considering three geo-

metric factors: (i) baseline of the stereo pair, (ii) focal length

of the camera, and (iii) distance of the point to the camera

center. Factor (i) affects the expected precision of the point

since larger baselines tend to yield more precise depth esti-

mates. Factors (ii) and (iii) control the information content

as a closer camera or a zoomed-in one typically yield more

textured views. Thus, we take the precision estimate to be

q(X) =
f ∗ sin(θ)

||X − C ||
, (5)

where f is the focal length, sin(θ) the baseline measure with

θ being the angle between the two camera rays, and ||X −C ||

is the distance to the camera center. When merging the pair-

wise clouds, we cluster 3D points and only retain from each

cluster the one with the highest precision. Not only does this

ensure that our final cloud is formed of high precision points,

it also provides expected precision measures that could be

used to determine where additional images are needed so as

to guide further processing.

4 Implementation details

The two main computational steps introduced in Sects. 3.1

and 3.2 are conceptually simple but require careful imple-

mentation to yield accurate results and to run fast on many

big images, such as those presented in this paper. Here, we

provide some of the critical details.
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Fig. 7 Cathedral portal reconstruction. The 3D point cloud was con-

structed in 9.2 min from 13 21-Megapixel images and contains 20.3 mil-

lion points. Top row Some example images of the data set. Middle row

Computed 3D raw points are rendered from different view points and

bottom row shows the colorized rendering of these view points (color

figure online)

4.1 Viewpoint selection

View selection is very important since we need to pair images

that our algorithm is suited for to achieve a good precision.

To this end, we exploit the following metrics to decide if two

images are suitable candidates:

– The images should be close enough to one another to be

easily matched but should also be sufficiently separated

for reliable depth estimation. In general, we quantify this

by measuring the angle between the camera principal

rays. However, if the 3D points computed as a by-product

in the camera calibration stage are available, the angles

between these calibration points and the camera centers

are averaged for all the visible points to compute this

metric.

– Since the DAISY descriptor is not scale invariant, images

should be close to each other in scale. Rough scale esti-

mates are computed by projecting five virtual spheres

arranged in a cross-hair pattern at the mean value of the

expected depth range. The ratio of the radii of the pro-

jected spheres is used to measure the scale difference

between images. As before, if the calibration points are

available, we place a sphere at all the visible calibration

points, project them onto the cameras, and compute the

scale estimate by averaging the ratio of these projections.

Cameras with a baseline larger than 10◦ and smaller than

30◦ and scale difference between 0.8 and 1.2 are assumed to

be matchable. In practice, one single depth map is computed

per image by pairing it up with an image that has the closest

scale in the matchable set.

4.2 Depth map estimation

The matching probabilities, given in Eq. 1 for a pixel,

are computed at regular intervals along the epipolar lines.

If we were to sample the depth space uniformly instead
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Fig. 8 Pillar reconstruction. The dataset contains 214 18-Megapixel

images of a building pillar. The reconstruction time was 48.9 min and

the final cloud contains 63.1 million points. First row Some example

images, second row their depth maps, and last two rows the renderings

of the cloud from different viewpoints in its raw and colored form,

respectively (color figure online)

of its projection onto the image plane, as is done in most

plane sweeping-based methods, the probability distribution

would be compressed or expanded non-uniformly depend-

ing on camera positions and pixel locations. This sampling

has several advantages: (i) it removes the dependency of the

probability distribution from the geometry of the specific

matching problem, (ii) it produces a better modeling of the

distribution, (iii) it enables a finer control over the resolu-

tion of the search space, and (iv) it allows us to generically

define rules on the distribution without taking care of special

conditions. In addition, a preset number of depth states is not

desirable as it might be too small for some pixels, resulting in

the correct match being missed. Alternatively, it might be too

large, resulting in unnecessary computation. A closed form

solution for uniform sampling of the epipolar line is given in

“Appendix”.

In practice, we do not initially compute full probability

distributions for each pixel. Instead, we compute them at

sparse locations so that we can constrain the search for neigh-

boring ones. This has both computational and algorithmic

advantages: a smaller depth-range results in fewer opera-

tions and reduces the number of potential matches, thereby

increasing robustness. This effectively simulates what global

optimizers, such as belief propagation and graphcuts, do by

enforcing smoothness, but at a much lower computational

cost. This process may fail at depth discontinuities but the

resulting erroneous depths will be eliminated by the con-

sistency checks and, therefore, will not degrade the overall

performance.

Given the probability distribution, we perform non-

maxima suppression and require the best and second best

probabilities to be separated by at least the size of the descrip-

tor radius. This is necessary since the descriptor characteris-

tics change smoothly and the probabilities of nearby pixels

are correlated.

Finally, to compute the matching score, we modified the

original DAISY source code in a number of ways. Since

a scale estimate is associated to each image at the view

point selection stage presented in Sect. 4.1, we compute the

descriptors for each one at the correct scale. In addition, each

descriptor is computed orthogonal to the epipolar line pass-

ing through it to account for the perspective deformation of

the texture and instead of performing partial histogram nor-

malization, as suggested in the original paper, we normalize
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descriptors as a whole. The descriptors are computed over

relatively small regions since input images have a narrow

baseline setup and thus full normalization produces more

stable descriptors compared to partial normalization over

these small aggregation regions. Finally, as the images to be

matched have relatively close viewpoints, we use a very short

version of the descriptor, as will be discussed in the results

section. This stage is very efficient as descriptors are precom-

puted at their respective orientation and scale and matching

is performed at integer resolution.

4.3 Consistency computation

Once the depth maps have been computed, they are turned

into a point cloud by verifying the accuracy of each 3D

point on more than one depth map. This verification would

be costly if we checked each point against all depth maps.

Instead, for each point, the verification is performed on

the closest ten images whose corresponding camera looks

towards the point.

The depth projection error, given in Eq. 3, measures the

error made between two depth maps computed from differ-

ent view points using different image pairs and if this error

for a pixel is within a given threshold for at least C = 3 depth

maps, the point is included to the cloud. The threshold for

this error is set according to the discretization error of the

depth estimation procedure described above. Since the depth

maps are computed at integer resolution and since they are

computed using different camera configurations, there will

always be a difference in the estimated location of the same

point in two depth maps. This discretization error, however,

can be computed using calibration parameters but it will cost

valuable computation time. Therefore, instead of doing it for

each pixel, we settle for a single value for all the pixels of

an image by taking the maximum discretization error value

computed at only image corners as the depth projection error

threshold.

Since depth maps can be of different qualities depending

on the baseline of the cameras used to compute them, within a

given 3D volume, we retain only the 3D point whose expected

precision, as computed by Eq. 5, is greatest. To this end, a

sparse octree structure is employed. Points are placed in an

octree and only the point with the biggest precision value

within an octree cell is retained. This way, points of lower

quality are discarded when there is a point source with more

precision but they are kept within the reconstruction if no

other reliable point source exists.

After this filtering, the normals for the points are computed

by a plane fitting procedure over a kd-tree structure from the

closest 32 points. The colors of the points are assigned to

them using the images in which the points are initialized

from.

4.4 Memory requirements

The most memory-intensive steps of the algorithm are

depth-map computation and consistency estimation.

For depth map estimation, only two images need to be

loaded memory. Individual descriptors must then be com-

puted for each one of their pixels. Since each descriptor

requires 36 floating point numbers, this means that for two

X = 6 Megapixel images, the algorithm requires approx-

imately X × 36 × 4 × 2 = 1,728 MB of memory. The

output is a floating point depth value per pixel which takes

X × 4 = 24 MB of memory.

To enforce consistency, a 3D point from one depth-map

is instantiated if it is present in at lease C others. However,

as explained above, instead of checking consistency against

all depth-maps, we only use the ten closest ones. This means

that only 11 depth-maps need to be loaded at any one time,

which represents 11 × X × 4 = 264 MB of memory for our

6-Megapixel images. In practice, if enough RAM is avail-

able, we maintain several more depth maps in memory. This

reduces latency times since a depth map can be used by sev-

eral others to validate their 3D points.

5 Results

In this section, we present results of our multi-view stereo

algorithm. This section is divided into three subsections

where

– we validate our choice of parameters and compare the

discriminative power of DAISY against standard nor-

malized cross correlation (NCC) in the framework of

our approach,

– we compare our results against other approaches on pub-

licly available benchmark data sets where we also present

quantitative accuracy and computation time values,

– we show results on ultra high resolution and very large-

scale image sets for which the method here is primarily

designed for.

5.1 Parameter choices and image resolution

In Fig. 10, the Fountain-P11 sequence, given in Fig. 9, is

used to demonstrate the effect of various DAISY parame-

ters on the accuracy and density of the computed depth maps

and to compare it against basic NCC. We used the six pairs

of narrow-to-wide baseline images of 3,072 × 2,048 reso-

lution and the curves are plotted for the averaged results.

In these experiments, we used a standard baseline version of

NCC instead of more sophisticated recent implementations

that involve either warping the correlation window [6] or
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Fig. 9 Fountain-P11. The 3D point cloud was reconstructed in 2.2 min from 11 6-Megapixel images and contains 2.5 million points. First two

rows The raw 3D points and their colorized versions. Last row The mesh computed from these points using the Poisson reconstruction algorithm

(color figure online)

introducing a multi-resolution approach [14]. This is because

we are not trying to prove that DAISY performs much better

than these methods. Instead, we want to show that these time

consuming optimizations are not necessary when one uses

higher resolution images.

As discussed in Sect. 3, the probabilities of each depth

state along a uniformly sampled epipolar line is computed

and a depth value is assigned to a pixel if the ratio, Rx , of

the probability of the depth is larger than the probability of

the next best depth state by a threshold. The detection rate

is measured by changing this threshold and error rates are

expressed as the ratio of the error of the assigned depth to the

actual depth value defined as:

e =
|dassigned − dground truth|

dground truth
. (6)

Figure 10a depicts the influence of image resolution on

depth accuracy for a fixed set of DAISY parameters, R =

8, Q = 2, T = 4, and H = 4. For a detailed description of

these parameters, we refer the interested reader to [25]. For

comparison purposes, we also plot results using NCC with

patch size P = 17 which is roughly equivalent to the area

used by DAISY.

Graphs show that resolution has a direct impact on the

accuracy and motivates the use of higher resolution images

to achieve a low error rate. In addition, using higher reso-

lution images results in improved accuracy for both DAISY

and NCC but DAISY consistently and significantly outper-

forms NCC at all resolutions. This largely stems from the

fact that we compute depths at pixel resolution. DAISY is

more resilient to pixel sampling errors than NCC and hence

is not affected adversely by this fact.

Better NCC results could of course be obtained by taking

surface orientation into account to warp the sampling grid

appropriately [6]. Alternatively, as is done in [14], NCC

scores could be improved by averaging different measure-

ments for a set of surface normals to account for possi-

ble errors caused by incorrect normal estimates. However,

the results depicted in Fig. 10 are nevertheless significant

because they show that the DAISY descriptor is robust

enough to make these time consuming optimizations unnec-

essary, which is what makes our approach both effective and

fast. Moreover, in Sect. 5.2, we will show that our approach is

as accurate as that of [6], which relies on plane sweeping and,

in effect, warps the surface patches and therefore optimizes

the NCC parameters.
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Fig. 10 Parameter choices and image resolution. We use the 3,072 ×

2,048 images of the Fountain-P11 dataset. a Effect of the image resolu-

tion on depth map quality estimated by reducing the size of the original

images. Note that higher resolution images yield more pixels with low

error rates. b Varying the DAISY radius R and NCC patch size P

computed at 100% detection rate on the original images. R = 8 and

P = 17 perform best at low error rates. c Detection rate versus correct

pixel percentage for varying descriptor radius
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Fig. 11 Consistency threshold selection. We use the the Fountain-P11

dataset to see the effect of confidence threshold C on the quality of the

point clouds. A point is assumed an inlier if its distance to the ground

truth is smaller than 0.1% of the actual depth. a Number of outliers with

respect to varying C threshold values. b The inlier number for the same

thresholds

In Fig. 10b, c, to highlight the influence of various

parameters, we vary the descriptor radius size, R and NCC

patch size P . In these experiments, even though R = 16

produces more complete maps with higher detection rates,

R = 8 yields more accurate depth values. Because of this,

the parameters R = 8, Q = 2, T = 4 and H = 4 are used

for all results presented in this paper.

In Fig. 11, we tested different values for the visibility con-

sistency threshold, C , of Sect. 3.2. The experiments are per-

formed on the Fountain-P11 sequence. The number of inliers

and outliers for different C values are computed. A point is

assumed to be an inlier if its distance to the ground truth is

smaller than 0.1% of the actual depth. As can be seen from

the graphs, enforcing consistency using only C = 1 addi-

tional depth map allows many outliers to survive. However,

for C = 2 the number is much reduced and decays almost

to zero for C = 3. Increasing C further, while ensuring no

outliers will seep into the reconstruction, will result in less

complete reconstructions as points will be forced to be visible

in more images.

5.2 Comparative results

To compare our algorithm against other approaches, we used

a publicly available benchmark data set [22], which con-

tains both close-range shots of highly textured scenes and

more distant views of less textured ones. Ground truth data

are obtained using a laser scanner and it consists of a mean

depth and its variance for each 3D point.

5.2.1 Accuracy

As indicated in Table 1, we ran our algorithm on the

Fountain-P11, HerzJesu-P25, Entry-P10, and Castle-P30

image sets to produce the results of Figs. 9, 12, 13 and 14.

Since the benchmarking algorithm relies on comparing tri-

angulated meshes, we used the Poisson reconstruction algo-

rithm [12] to turn our point clouds into meshes.

Figure 15 compares our algorithm against the best meth-

ods reported in the benchmarking site [6,8,15,27]. The per-

formance of each algorithm is represented by a cumulative

123



E. Tola et al.

Table 1 Computation times and scene details for benchmark datasets

Data set Image Res. Comp. time, Comp. time, Point no.

no. 1 core 8 core

HerzJesu-P8 8 6 8.9 1.5 3.2

Entry-P10 10 6 9.3 1.6 1.4

Fountain-P11 11 6 12.2 2.2 2.5

Castle-P30 30 6 20.8 4.2 1.8

HerzJesu-P25 25 6 23.1 4.3 4.9

Resolutions are given in megapixels, point numbers are in millions, and

computation times are in minutes

histogram of deviations of recovered depth from the ground

truth. These deviations are expressed as multiples of the

ground truth variance and the percentage of recovered depths

that fall below this error threshold. On these moderate sized

images, we perform roughly equivalently to [6], albeit much

faster as will be discussed below. We are a little less accu-

rate than the best approach [8], which was to be expected

for two reasons. First, we only triangulate for benchmark-

ing purposes and use a standard triangulation algorithm that

does not enforce global consistency constraints as is done in

[8]. Second, Ref. [8] includes a variational mesh refinement

scheme, whereas we discretize the depth states as discussed

in Sect. 3. This does not influence the algorithm adversely on

the high-resolution image sets, like the ones that will be pre-

sented in the next section, for which our method is designed

for, but handicaps it on lower resolution ones. So, one can

deduce that to achieve the accuracy of [8] run for 6 Megapixel

images, our method would need higher resolution images

to reduce the discretization error inherit in our approach.

However, since our method runs very efficiently for high-

resolution images, this handicap for lower resolution images

does not constitute a major problem as long as higher-res-

olution images can be acquired. In case no high-resolution

images exist, Ref. [8] seems to be a better solution than ours.

In a sense, the benchmarking site compares two things

that are not comparable: The raw output of the matching

algorithm in our case, against a refined version in the other

cases. For a more direct comparison, we therefore used the

publicly available code of one of the best performing point

cloud-based algorithms [6] and ran it using either 7 × 7 or

17 × 17 patches, on the Fountain and Herzjesu sequences,

which consist of 3,072 × 2,048 images. In Fig. 16, we plot

the number of correctly found points versus the allowed error

threshold where a point is assumed correct if its distance to

the ground truth is smaller than the error threshold. To com-

pute point error, both the reconstructed 3D points and the

ground truth are projected onto the images. The error is then

taken as the smallest ratio of the depth error to the actual

depth value as given in Eq. 6 across all the input images.

Using the 17 × 17 patches result in denser clouds than using

the 7 × 7 ones but they remain far sparser than ours for any

given accuracy level.

5.2.2 Speed

Running [6] using 17×17 patch size takes 843 min for

Fountain and 508 min for Herzjesu. These numbers become

338 and 204 min for 7 × 7 patches. When using our method

with descriptor size R = 8 they drop to 12.2 and 8.9 min,

respectively. For consistency, we used a single core in all

cases. Our approach is about 40–50 times faster than [6] for

parameters chosen so as to produce clouds as dense as ours.

The speed difference would have been much more dramatic

for large-scale sequences like the ones presented in the next

section such as the Lausanne Cathedral-Ground sequence

shown in Fig. 3 or the Lausanne City sequence shown in

Fig. 17.

There are two main reasons for the speed difference. First,

the use of NCC as a similarity measure in [6] forces an opti-

mization over the surface normal for all the points besides

an optimization over depth. This is necessary for NCC since

failure to do so will result in poor performance as it is known

to be very sensitive to perspective deformations. This addi-

tional optimization over the surface normal is avoided in our

algorithm mainly because DAISY is quite robust to both per-

spective and sampling errors and thus a single optimization

over depth is sufficient. Second, memory access pattern of our

depth estimation framework is very efficient. In [6], authors

propose a diffusion-like approach where starting from some

seed points, new points are included into the cloud by iter-

atively searching, expanding and filtering new points near

already included points. In addition, more than two images

are used for measuring the photo-consistency score of a point

and this may mean to load and release an image many times if

the image set is large enough not to fit to memory. In our case,

however, depth estimation is done only on a pair of images

and the consistency check is done in the cloud computation

stage. This separation of jobs is what enables us to access

memory very efficiently.

We are unfortunately unable to give timing estimates for

the other methods discussed above because the correspond-

ing publications do not mention them and no source code is

publicly available. However, there is little reason to believe

that any of those implemented on CPUs would be any faster.

Furthermore, since the DAISY descriptor relies on convolu-

tions, it could easily be implemented on a GPU. This should

yield further increase in speeds such as those reported in [14]

without a need for a computer cluster as is done in that

work.

In Fig. 18, we present the computation times for depth

map estimation using different image resolutions and differ-

ent number of cores. All the experiments are done on a 12 GB

Intel Xeon 2.5 GHz Quad Core machine. When all 8 cores are

used, depth maps are computed for 40, 20, 10, and 5 Mega-

pixel images in 35, 20, 11, and 5 s with an average 2,100

depth tests per pixel for the highest resolution. From these
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Fig. 12 HerzJesu-P25. The 3D point cloud was constructed in 4.3 min from 25 6 Megapixel images and contains 4.9 million points. Top row

images The raw 3D points and bottom row ones show their colorized renderings (color figure online)

Fig. 13 Entry-P10 The 3D point cloud was constructed in 1.6 min from 10 6 Megapixel images and contains 1.4 million points. The left images

The raw points and the right images The colorized versions of these points (color figure online)

Fig. 14 Castle-P30. The 3D point cloud was constructed in 4 min from 30 6 Megapixel relatively low textured images and contains 1.8 million

points. We show the raw 3D points as seen from several viewpoints

experiments, we see that doubling the core number, roughly

halves the computation time. Naturally, computation time

can be further reduced using larger number of cores.

Note that running our approach on all eight cores for the

whole pipeline is on average 6 times faster than running on

a single one as seen in Table 1, even when using only simple

OpenMP preprocessor instructions for for-loop paralleliza-

tions, thus indicating that our method is inherently parallel

and could easily be made to run even faster on a cluster if

additional speed was required. Albeit minor, there is a speed

loss compared to depth map computation stage for parallel

operation and this is mostly due to disk read/write operations

when storing intermediate results.

5.3 Handling large data sets

We now present the results on large scale sets of very high

resolution images. We used the algorithm outlined in [21] to

register these images. For each set, we render the final point

cloud, which is computed by combining individual depth

maps as explained in Sect. 3.2, from different view points.

The points are shaded according to their estimated normals
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Fig. 15 Comparing against state-of-the-art. We compare our recon-

structions to those of other methods reported in [22] on a Fountain-P11,

b HerzJesu-P25, c Entry-P10 and d Castle-P30. We plot the cumu-

lative error histograms and the legend is Hiep [8], Fur [6], Tyl [27],

St [19] and Jan [11]. Our own method is labeled as “Ours”. On these

moderate-resolution images, our accuracy is comparable to that of [6]

and a little worse than that of [8], which can be attributed to the fact

that, unlike [8], we do not refine the point clouds

Fig. 16 Comparison against [6]. For Fountain-P11 on the left and

HerzJesu-P8 on the right, we plot the total number of reconstructed

pixels whose depth is within a given distance of the ground-truth value

as function of that distance. Note that for any such distance, our method

produces many more points and therefore far denser clouds. Further-

more, it is also faster since, when using a single core, it only requires

12.2 min for Fountain and 8.9 min for Herzjesu, whereas [6] using

17 × 17 patches, requires 843 and 508 min, respectively

as explained in Sect. 3. We also show colorized point clouds,

where the color of each point is assigned from the image

where the point is initialized from. For some data sets, we

also show the depth maps computed from selected image

pairs in inverse depth representation. The red color denotes

the pixels for which the algorithm decides that there is no

good match.

Each set was processed on a 12 GB Intel Quad Core Xeon

2.5 GHz machine and computation times and input charac-

teristics are listed in Table 2. For more extensive, detailed

and animated results, please visit our website [24].

Figure 2 depicts the EPFL Campus dataset. It consists of

40 Megapixel images taken from a helicopter, which rep-

resents the highest resolution we tested our algorithm on.

The campus is fully reconstructed including trees, grass

walkways, parked cars, and train tracks. The only excep-

tions are some building façades that were not seen from any

viewpoint.

Next, in Figs. 1 and 8, we tested our algorithm on two

datasets, Statue and Pillar, that contain images of very dif-

ferent scales. The viewpoint selection algorithm successfully

paired up images that are similar in scale and thanks to the

Table 2 Computation times and scene details for large scale datasets

Data set Image no. Resolution CPU time Point no.

Portal 13 21 9.2 20.3

EPFL 31 40 14.2 11.35

Lausanne

Cathedral-Aerial 61 24 22.1 12.7

Statue 127 18 29.5 15.3

Pillar 214 18 48.9 63.1

Lausanne

Cathedral-Ground 1,302 21 419 148.2

Lausanne City 4,484 6–21 1,632 272

Resolutions are given in megapixels, point numbers are in millions, and

computation times are in minutes using 8 cores

precision measure of Eq. 5, only the highest-precision 3D

points are retained.

Figures 3 and 6 show the reconstructions of the Lausanne

Cathedral computed using ground-level and aerial images,

respectively. The ground-level reconstruction is the more

accurate but some of the roofs are missing because they

were not visible in any of the images. By contrast, the aerial
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Fig. 17 City scale reconstruction. The 3D point cloud was constructed

from 4,484 6 to 21 Megapixel ground-level images in 27 h and contains

272 million points. For lack of a machine able to display the whole

cloud, this figure depicts a decimated version of it. The top left figure

is a top view that shows the extent of the reconstruction and the others

are close-up views seen from different perspectives

reconstruction is more complete, even though fewer images

were used, because almost all the input images contain the

full façade of the cathedral as can be seen in the first row

of Fig. 6. It is less accurate because the images were taken

from further away. In addition, in Fig. 7, we reconstructed

the main portal of the cathedral using a smaller subset of

the ground-level data set. In this case, to increase the density

of the computed cloud, we computed two depth maps per

image of the data set by pairing it up with the closest two

cameras.

Finally, in Fig. 17, we present results on the the Lausanne

City sequence [21], which is the largest data set we tested our

algorithm on. It contains 3,504 6-Megapixel images and 980

21-Megapixel images of the downtown area of Lausanne,

seen at different scales. There is much clutter, such as people

and cars, and some images were taken at different times of

day. In addition, since the cameras are distributed more or

less uniformly across the whole area, instead of being clus-

tered at a few landmark locations, there is sometimes only a

small overlap between them and only a few images see the

same location. This means that, unlike in the case of com-

munity photo collection datasets [3,7], we cannot rely on

the same place being imaged many times over. Instead, our

MVS has to operate effectively even when the scene is only

sparsely covered, which it does. It took 1,632 min to com-

pute a cloud containing 272 million points. This may seem

long but represents only 27 h or a little over 1 day on a single

PC, as opposed to a cluster and without using GPU process-

ing. In other words, this remains manageable on an ordinary

computer even though the dataset involved is quite large.

6 Conclusion

In this paper, we presented a novel multi-view stereo

algorithm that can handle large-scale very high resolution

images at relatively very low computational costs. In con-

trast to many state-of-the-art methods that use moderate sized
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Fig. 18 Depth map computation times. Computation times for depth

maps of different resolution images with respect to different core num-

bers. The experiments are performed on a 12 GB Intel Xeon 2.5 GHz

Quad Core machine. Using 8 cores, we can compute depth maps for

40, 20, 10 and 5 Megapixel images in 35, 20, 11 and 5 s, respectively.

In the experiments, on average 2,100 depth states are tested per pixel

for the highest resolution. Computation times decrease almost linearly

with the number of the cores, i.e., increasing the core number twice its

size, reduces the computation time by half

images, we advocate the use of larger resolution ones. We

showed that the rich texture of such images removes the need

for expensive optimization algorithms and makes it possible

to obtain very dense high-quality 3D point clouds using a

computationally very simple scheme. This in part is due to

the DAISY descriptor being more reliable than normalized

cross correlation, making the kind of plane sweeping strate-

gies used in many competing approaches unnecessary.

We validated our approach on various large-scale high-

resolution data sets acquired under different conditions such

as from a helicopter, from an airplane, or from the ground

with different view point densities and scale changes, also

compared our results to that of state-of-the-art methods on

benchmark data sets and showed that we produce reconstruc-

tions of similar accuracy but much faster.

In short, using a robust metric for matching purposes,

one can bypass the complex processing other algorithms

have to use and reduce computational load immensely. This

makes for a very efficient algorithm to process ultra high-

resolution images in minutes on a standard desktop machine

as evidenced by the experiments we have presented.

The accuracy of the proposed approach could be further

improved by performing sub-pixel sampling of the epipo-

lar line for depth estimation but this would slow down the

algorithm by allocating CPU time unnecessarily across the

whole disparity range. A better approach would be a multi-

resolution sampling of the range by moving in smaller steps

for plausible depth values and in larger steps otherwise. Using

a descriptor for this type of algorithm has advantages over

intensity-based measures where a descriptor would be more

robust to errors in translation or sampling.

Additional speed improvements can be achieved by con-

straining depth ranges per pixel instead of per image as is

done in this work. This could be accomplished easily using

an initial rough mesh computed from the calibration points.

Also, preventing unnecessary computation for low contrast

regions such as sky or saturated areas will definitely help.

Another natural extension of this work would be the com-

putation of a triangulated mesh from the reconstructed point

cloud that takes visibility into account, both for compact

representation and to eliminate the few remaining outli-

ers. Finally, since we believe that the output of our algo-

rithm could serve as input to point cloud refinement tech-

niques such as [8], we make our software available from our

website [24].

Appendix: Uniform step sampling

Given two camera calibrations, we present a closed form

method to compute a sequence of 3D points such that they

all project to a single location on one camera and that their

projection forms a uniformly sampled line on the other

camera.

Let a camera be parametrized by its intrinsic parameters

K, and extrinsic parameters of rotation matrix R and camera

center C. The projection of a 3D point X is defined as

λx = KR(X − C) (7)

with x = [x y 1]T its image coordinates and λ its depth. Then,

the back projected ray emanating from point x = [x y 1]T is

parametrized in terms of the depth variable λ as:

X(λ) = λRT K−1x + C. (8)

Given two cameras P0 = (K0, R0, C0) and P1 =

(K1, R1, C1), we would like to sample the back projected

line X(λ) so that the projected samples on camera P1 are

uniformly separated (see Fig. 19). The two points separated

by depth dλ on X(λ) is equal to:

X(λ) = λRT
0 K−1

0 x + C0

X(λ + dλ) = (λ + dλ)RT
0 K−1

0 x + C0.
(9)

Then, the projection of these points on image P1 are

ω

⎡

⎣

u

v

1

⎤

⎦ = λa + b, (10)

(ω + dω)

⎡

⎣

u + rdu

v + rdv

1

⎤

⎦ = (λ + dλ)a + b, (11)
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Fig. 19 Uniform step sampling framework

with a = K1R1RT
0 K−1

0 x and b = K1R1(C0 −C1). In the

equations above, (u, v) and ω are the coordinates and depth

of X(λ) on image P1, respectively, w + dω the depth of the

point X(λ + dλ), (du, dv) the slope of the epipolar line and

r is the sampling resolution.

The slope of the epipolar line can be found by projecting

any two points X(λmin) and X(λmax) onto P1. Let the coordi-

nates of the projections to be (umin, vmin) and (umax, vmax).

The slope is then computed as:

dl =
√

(umax − umin)2 + (vmax − vmin)2

du = (umax − umin)/dl

dv = (vmax − vmin)/dl.

(12)

Rearranging Eqs. 10 and 11, one can see the relationship

between the changes in the depths for two views as:

adλ = ω

⎡

⎣

rdu

rdv

0

⎤

⎦ + dω

⎡

⎣

u + rdu

v + rdv

1

⎤

⎦ . (13)

If we denote the i th element of vector a with ai and expand

the third row of the Eq. 13 as a2dλ = dω, the first two rows

of Eq. 13 becomes

dλ =
ωrdu

a0 − a2(u + rdu)
=

ωrdv

a1 − a2(v + rdv)
. (14)

Equation 14 is the update in the depth with respect to cam-

era P0 that one must make in order to move r pixels in the

direction of (du, dv) on camera P1 where (u, v) and ω is the

current projection and current depth with respect to camera

P1 (see Fig. 19). By iterating this process, the sequence of 3D

points with a uniform sampling projection can be computed.

Algorithm 1 presents the pseudo-code for this closed form

solution.

Algorithm 1: Non-uniform Space Sampling

Require: Camera Parameters: (K0, R0, C0) and (K1, R1, C1)

Require: Point location x

Require: Depth range (λmin, λdmax )

Require: Sampling resolution r

1: a ⇐ K1R1RT
0 K−1

0 x

2: b ⇐ K1R1(C0 − C1)

3: umin ⇐
λmina0+b0

λmina2+b2
, vmin ⇐

λmina1+b1

λmina2+b2

4: umax ⇐
λmax a0+b0
λmax a2+b2

, vmax ⇐
λmax a1+b1
λmax a2+b2

5: dl ⇐
√

(umax − umin)2 + (vmax − vmin)2

6: du ⇐ (umax − umin)/dl, dv ⇐ (vmax − vmin)/dl

7: ωmin ⇐ λmina2 + b2

8: ω ⇐ ωmin

9: λ ⇐ λmin

10: (u, v) =⇐ (umin, vmin)

11: while λ < λmax do

12: if |du| not equal to 0 then

13: dλ ←
ωrdu

a0 − a2(u + rdu)
14: else

15: dλ ←
ωrdv

a1 − a2(v + rdv)
16: end if

17: λ ← λ + dλ

18: (u, v) ← (u + rdu, v + rdv)

19: X ← λRT K−1x + C

20: ω ← λa2 + b2

21: end while
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