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Neural networks enjoy widespread success in both research and industry and, with the

advent of quantum technology, it is a crucial challenge to design quantum neural networks for

fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons,

which form quantum feedforward neural networks capable of universal quantum computa-

tion. We describe the efficient training of these networks using the fidelity as a cost function,

providing both classical and efficient quantum implementations. Our method allows for fast

optimisation with reduced memory requirements: the number of qudits required scales with

only the width, allowing deep-network optimisation. We benchmark our proposal for the

quantum task of learning an unknown unitary and find remarkable generalisation behaviour

and a striking robustness to noisy training data.
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M
achine learning (ML), particularly applied to deep
neural networks via the backpropagation algorithm, has
enabled a wide spectrum of revolutionary applications

ranging from the social to the scientific1,2. Triumphs include the
now everyday deployment of handwriting and speech recognition
through to applications at the frontier of scientific research2–4.
Despite rapid theoretical and practical progress, ML training
algorithms are computationally expensive and, now that Moore’s
law is faltering, we must contemplate a future with a slower rate
of advance5. However, new exciting possibilities are opening up
due to the imminent advent of quantum computing devices that
directly exploit the laws of quantum mechanics to evade the
technological and thermodynamical limits of classical
computation5.

The exploitation of quantum computing devices to carry out
quantum maching learning (QML) is in its initial exploratory
stages6. One can exploit classical ML to improve quantum tasks
(“QC” ML, see refs. 7,8 for a discussion of this terminology) such
as the simulation of many-body systems9, adaptive quantum
computation10 or quantum metrology11, or one can exploit
quantum algorithms to speed up classical ML (“CQ” ML)12–15,
or, finally, one can exploit quantum computing devices to carry
out learning tasks with quantum data (“QQ” ML)16–24. A good
review on this topic can be found in ref. 25. Particularly relevant
to the present work is the recent paper of Verdon et al.26, where
quantum learning of parametrised unitary operations is carried
out coherently. The task of learning an unknown unitary was also
studied in a different setting in ref. 27, where the authors focussed
on storing the unitary in a quantum memory while having a
limited amount of resources. This was later generalised to prob-
abilistic protocols in ref. 28. There are still many challenging open
problems left for QML, particularly, the task of developing
quantum algorithms for learning tasks involving quantum data.

A series of hurdles face the designer of a QML algorithm for
quantum data. These include, finding the correct quantum gen-
eralisation of the perceptron, (deep) neural network architecture,
optimisation algorithm, and loss function. In this paper we meet
these challenges and propose a natural quantum perceptron
which, when integrated into a quantum neural network (QNN), is
capable of carrying out universal quantum computation. Our
QNN architecture allows for a quantum analogue of the classical
backpropagation algorithm by exploiting completely positive
layer transition maps. We apply our QNN to the task of learning
an unknown unitary, both with and without errors. Our classical
simulation results are very promising and suggest the feasibility of
our procedure for noisy intermediate scale (NISQ) quantum
devices, although one would still have to study how noise in the
network itself influences the performance.

There are now several available quantum generalisations of the
perceptron, the fundamental building block of a neural
network1,2,29–35. In the context of CQ learning (in contrast to QQ
learning, which we consider here) proposals include refs. 36–40,
where the authors exploit a qubit circuit setup, though the gate
choices and geometry are somewhat more specific than ours.
Another interesting approach is to use continuous-variable
quantum systems (e.g., light) to define quantum perceptrons41–43.

With the aim of building a fully quantum deep neural network
capable of universal quantum computation we have found it
necessary to modify the extant proposals somewhat. In this paper
we define a quantum perceptron to be a general unitary operator
acting on the corresponding input and output qubits, whose
parameters incorporate the weights and biases of previous pro-
posals in a natural way. Furthermore, we propose a training
algorithm for this quantum neural network that is efficient in the
sense that it only depends on the width of the individual layers
and not on the depth of the network. It is also an important

observation that there is no barren plateau in the cost function
landscape. We find that the proposed network has some
remarkable properties, as the ability to generalise from very small
data sets and a remarkable tolerance to noisy training data.

Results
The network architecture. The smallest building block of a
quantum neural network is the quantum perceptron, the quan-
tum analogue of perceptrons used in classical machine learning.
In our proposal, a quantum perceptron is an arbitrary unitary
operator with m input qubits and n output qubits. Our percep-
tron is then simply an arbitrary unitary applied to the m+ n

input and output qubits which depends on ð2mþnÞ2 � 1 para-
meters. The input qubits are initialised in a possibly unknown
mixed state ρin and the output qubits in a fiducial product state
0 � � � 0j iout (note that this scheme can easily be extended to
qudits). For simplicity in the following we focus on the case where
our perceptrons act on m input qubits and one output qubit, i.e.,
they are (m+ 1)-qubit unitaries.

Now we have a quantum neuron which can describe our
quantum neural network architecture. Motivated by analogy with
the classical case and consequent operational considerations we
propose that a QNN is a quantum circuit of quantum perceptrons
organised into L hidden layers of qubits, acting on an initial state
ρin of the input qubits, and producing an, in general, mixed state
ρout for the output qubits according to

ρout � trin;hid Uðρin � 0 � � � 0j ihid;out 0 � � � 0h jÞUy
� �

; ð1Þ

where U � UoutULUL�1 � � �U1 is the QNN quantum circuit, Ul

are the layer unitaries, comprised of a product of quantum
perceptrons acting on the qubits in layers l− 1 and l. It is
important to note that, because our perceptrons are arbitrary
unitary operators, they do not, in general, commute, so that the
order of operations is significant. See Fig. 1 for an illustration.

It is a direct consequence of the quantum-circuit structure of
our QNNs that they can carry out universal quantum computa-
tion, even for two-input one-output qubit perceptrons. More
remarkable, however, is the observation that a QNN comprised of
quantum perceptrons acting on 4-level qudits that commute
within each layer, is still capable of carrying out universal
quantum computation (see Supplementary Note 1 and Supple-
mentary Fig. 1 for details). Although commuting qudit
perceptrons suffice, we have actually found it convenient in
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Fig. 1 A general quantum feedforward neural network. A quantum neural

network has an input, output, and L hidden layers. We apply the perceptron

unitaries layerwise from top to bottom (indicated with colours for the first

layer): first the violet unitary is applied, followed by the orange one, and

finally the yellow one.
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practice to exploit noncommuting perceptrons acting on qubits.
In fact, the most general form of our quantum perceptrons can
implement any quantum channel on the input qudits (see
Supplementary Fig. 2), so one could not hope for any more
general notion of a quantum perceptron.

A crucial property of our QNN definition is that the network
output may be expressed as the composition of a sequence of

completely positive layer-to-layer transition maps E l :

ρout ¼ Eout EL
¼ E2 E1 ρin

� �� �

¼

� �� �

; ð2Þ

where El X l�1
� �

� trl�1

Q1
j¼ml

U l
j X

l�1 � j0 � � � 0ilh0 � � � 0j
� �

�

Qml

j¼1U
l
j

y
�

, U l
j is the jth perceptron acting on layers l− 1 and l,

and ml is the total number of perceptrons acting on layers l− 1
and l. This characterisation of the output of a QNN highlights a
key structural characteristic: information propagates from input
to output and hence naturally implements a quantum feedfor-
ward neural network. This key result is the fundamental basis for
our quantum analogue of the backpropagation algorithm.

As an aside, we can justify our choice of quantum
perceptron for our QNNs, by contrasting it with a recent
notion of a quantum perceptron as a controlled unitary36,44, i.e.,
U ¼

P

α αj i αh j � UðαÞ, where αj i is some basis for the input
space and U(α) are parametrised unitaries. Substituting this
definition into Eq. (2) implies that the output state is the
result of a measure-and-prepare, or cq, channel. That is,

ρout ¼
P

αhαjρ
injαiUðαÞ 0j i 0h jUðαÞy. Such channels have no

nonzero quantum channel capacity and cannot carry out
general quantum computation.

The training algorithm. Now that we have an architecture for
our QNN we can specify the learning task. Here, it is important to
be clear about what part of the classical scenario we quantize. One
possibility is to replace each classical sample of an unknown
underlying probability distribution by a different quantum state.
Hence, in the quantum setting, the underlying probability dis-
tribution will then be a distribution over quantum states. The
second possibility is to identify the distribution itself with a
quantum state, which we assume in this work, in which case it is
justified to say that N samples correspond to N identical quantum
states. We focus on the scenario where we have repeatable access
to training data in the form of pairs ϕ in

x

�

�

�

; ϕ out
x

�

�

�� �

, x=
1, 2,…, N, of possibly unknown quantum states. (It is crucial that
we can request multiple copies of a training pair ϕ in

x

�

�

�

; ϕ out
x

�

�

�� �

for a specified x in order to overcome quantum projection noise
in evaluating the derivative of the cost function.) Furthermore,
the number of copies per training round needed grows quickly
with the number of neurons (linearly with the number of network
parameters), i.e., nproj × nparams, where nproj is the factor coming
from repetition of measurements to reduce projection noise, and
nparams is the total number of parameters in the network given by
PLþ1

l¼1 ð4
ðml�1þ1Þ � 1Þ ´ml , where ml is the number of perceptrons

acting on layers l− 1 and layer l, and the −1 term appears
because the overall phase of the unitaries is unimportant. See
Supplementary Note 5 for more details and a comparison to state
tomography. This means that in the near term, for large net-
works, only sparsely connected networks may be practical for
experimental purposes. An exception would be if the problem
being considered is such that the training data is easy to produce,
e.g., if the output states are produced by allowing input states to
thermalize by simply interacting with environment, thus produ-
cing the output states. For concreteness from now on we focus on
the restricted case where ϕ out

x

�

�

�

¼ V ϕ in
x

�

�

�

, where V is some
unknown unitary operation. This scenario is typical when one has

access to an untrusted or uncharacterised device which performs
an unknown quantum information processing task and one is
able to repeatably initialise and apply the device to arbitrary
initial states.

To evaluate the performance of our QNN in learning the
training data, i.e., how close is the network output ρ out

x for the

input ϕ in
x

�

�

�

to the correct output ϕ out
x

�

�

�

, we need a cost function.
Operationally, there is an essentially unique measure of closeness
for (pure) quantum states, namely the fidelity, and it is for this
reason that we define our cost function to be the fidelity between
the QNN output and the desired output averaged over the
training data:

C ¼
1

N

X

N

x¼1

hϕ out
x jρoutx jϕoutx i: ð3Þ

Note that the cost function is a direct generalisation of the risk
function considered in training calssical deep networks and we
can efficiently simulate it. Also note that it takes a slightly more
complicated form when the training data output states are not
pure (in that case, we simply use the fidelity for mixed states:

Fðρ; σÞ :¼ tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ1=2σρ1=2
p

h i2

), which may occur if we were to train

our network to learn a quantum channel.
The cost function varies between 0 (worst) and 1 (best). We

train the QNN by optimising the cost function C. This, as in the
classical case, proceeds via update of the QNN parameters: at
each training step, we update the perceptron unitaries according
to U ! eiϵKU , where K is the matrix that includes all parameters
of the corresponding perceptron unitary and ϵ is the chosen step
size. The matrices K are chosen so that the cost function increases
most rapidly: the change in C is given by

ΔC ¼
ϵ

N

X

N

x¼1

X

Lþ1

l¼1

tr σ lxΔE
l ρl�1

x

� �� �

; ð4Þ

where L+ 1= out, ρlx ¼ El � � � E2 E1 ρ in
x

� �� �

¼

� �

,

σ lx ¼ F lþ1 � � � F L F out ϕoutx

�

�

�

ϕoutx

	
�

�

� �� �

� � �
� �

, and FðXÞ �
P

αA
y
αXAα is the adjoint channel for the CP map

EðXÞ ¼
P

αAαXA
y
α. From Eq. (4), we obtain a formula for the

parameter matrices (this is described in detail in Supplementary
Note 2). At this point, the layer structure of the network comes in

handy: To evaluate K l
j for a specific perceptron, we only need the

output state of the previous layer, ρl−1 (which is obtained by

applying the layer-to-layer channels E1; E2
¼ El�1 to the input

state), and the state of the following layer σl obtained from
applying the adjoint channels to the desired output state up to the
current layer (see Box 1). A striking feature of this algorithm is
that the parameter matrices may be calculated layer-by-layer
without ever having to apply the unitary corresponding to the full
quantum circuit on all the constituent qubits of the QNN in one
go. In other words, we need only access two layers at any given
time, which greatly reduces the memory requirements of the
algorithm. Hence, the size of the matrices in our calculation only
scales with the width of the network, enabling us to train
deep QNNs.

Simulation of learning tasks. It is impossible to classically
simulate deep QNN learning algorithms for more than a handful
of qubits due to the exponential growth of Hilbert space. To
evaluate the performance of our QML algorithm we have thus
been restricted to QNNs with small widths. We have carried out
pilot simulations for input and output spaces of m= 2 and 3
qubits and have explored the behaviour of the QML gradient
descent algorithm for the task of learning a random unitary V
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(see Supplementary Note 4 and Supplementary Figs. 4–6 for the
implementation details). We focussed on two separate tasks: In
the first task we studied the ability of a QNN to generalise from a
limited set of random training pairs ð ϕ in

x

�

�

�

;V ϕ in
x

�

�

�

Þ, with x= 1,
…, N, where N was smaller than the Hilbert space dimension. The
results are displayed in Fig. 2a. Here we have plotted the
(numerically obtained) cost function after training alongside a
theoretical estimate of the optimal cost function for the best
unitary possible which exploits all the available information (for
which C � n

N
þ N � n

NDðDþ 1Þ Dþminfn2 þ 1;D2gð Þ, where n is the

number of training pairs, N the number of test pairs and D the
Hilbert space dimensions). Here we see that the QNN matches
the theoretical estimate and demonstrates the remarkable ability
of our QNNs to generalise.

The second task we studied was aimed at understanding the
robustness of the QNN to corrupted training data (e.g., due to
decoherence). To evaluate this we generated a set of N good
training pairs and then corrupted n of them by replacing them
with random quantum data, where we chose the subset that was
replaced by corrupted data randomly each time. We evaluated the
cost function for the good pairs to check how well the network
has learned the actual unitary. As illustrated in Fig. 2b the QNN is
extraordinarily robust to this kind of error.

A crucial consequence of our numerical investigations was the
absence of a “barren plateau” in the cost function landscape for
our QNNs45. There are two key reasons for this: firstly, according
to McClean et al.45, “The gradient in a classical deep neural
network can vanish exponentially in the number of layers […],
while in a quantum circuit the gradient may vanish exponen-
tially in the number of qubits.” This point does not apply to our
QNNs because the gradient of a weight in the QNN does not
depend on all the qubits but rather only on the number of paths
connecting that neuron to the output, just as it does classically.

(This is best observed in the Heisenberg picture.) Thus, indeed,
the gradient vanishes exponentially in the number of layers, but
not in the number of qubits. Secondly, our cost function differs
from that of McClean et al.45: they consider energy minimisation
of a local hamiltonian, whereas we consider a quantum version of
the risk function. Our quantity is not local, and this means that
Levy’s lemma-type argumentation does not directly apply. In
addition, we always initialised our QNNs with random unitaries
and we did not observe any exponential reduction in the value of
the parameter matrices K (which arise from the derivative of our
QNN with respect to the parameters). This may be intuitively
understood as a consequence of the nongeneric structure of our
QNNs: at each layer we introduce new clean ancilla, which lead to
in general, dissipative output.

Discussion
The QNN and training algorithm we have presented here lend
themselves well to the coming era of NISQ devices. The network
architecture enables a reduction in the number of coherent qubits
required to store the intermediate states needed to evaluate a
QNN. Thus we only need to store a number of qubits scaling with
the width of the network. This remarkable reduction does come at
a price, namely, we require multiple evaluations of the network to
estimate the derivative of the cost function. However, in the near
term, this tradeoff is a happy one as many NISQ architectures—
most notably superconducting qubit devices—can easily and
rapidly repeat executions of a quantum circuit. For example, the
recently reported experiment involving the “Sycamore” quantum
computer executed one instance of a quantum circuit a million
times in 200 s46. It is the task of adding coherent qubits that will
likely be the challenging one in the near term and working with
this constraint is the main goal here. A crucial problem that has
to be taken into account with regard to NISQ devices is the

Box 1 | Training algorithm
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inevitable noise within the device itself. Interestingly, we have
obtained numerical evidence that, for approximate depolarising
noise, QNNs are robust (see inset of Fig. 2).

In this paper we have introduced natural quantum general-
isations of perceptrons and (deep) neural networks, and proposed
an efficient quantum training algorithm. The resulting QML
algorithm, when applied to our QNNs, demostrates remarkable
capabilities, including, the ability to generalise, tolerance to noisy
training data, and an absence of a barren plateau in the cost
function landscape. There are many natural questions remaining
in the study of QNNs including generalising the quantum per-
ceptron definition further to cover general CP maps (thus
incorporating a better model for decoherence processes), studying
the effects of overfitting, and optimised implementation on the
next generation of NISQ devices.

Data availability
All results were obtained using Mathematica and Matlab. The code is available at https://

github.com/qigitphannover/DeepQuantumNeuralNetworks.
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Fig. 2 Numerical results. In both plots, the insets show the behaviour of the quantum neural network under approximate depolarizing noise. The colours

indicate the strength t of the noise: black t= 0, violet t= 0.0033, orange t= 0.0066, yellow t= 0.01. For a more detailed discussion of the noise model see

Supplementary Note 3 and Supplementary Fig. 3. Panel (a) shows the ability of the network to generalize. We trained a 3-3-3 network with ϵ= 0.1, η= 2∕3

for 1000 rounds with n= 1, 2, …, 8 training pairs and evaluated the cost function for a set of 10 test pairs afterwards. We averaged this over 20 rounds

(orange points) and compared the result with the estimated value of the optimal achievable cost function (violet points). Panel (b) shows the robustness of

the QNN to noisy data. We trained a 2-3-2 network with ϵ= 0.1, η= 1 for 300 rounds with 100 training pairs. In the plot, the number on the x-axis indicates

how many of these pairs were replaced by a pair of noisy (i.e. random) pairs and the cost function is evaluated for all “good” test pairs.
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