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E�cient learning in Boltzmann Machines using linearresponse theory�H.J. Kappenyand F. B. Rodr��guezzOctober 29, 1997AbstractThe learning process in Boltzmann Machines is computationally very expensive. The computationalcomplexity of the exact algorithm is exponential in the number of neurons. We present a new approximatelearning algorithm for Boltzmann Machines, which is based on mean �eld theory and the linear responsetheorem. The computational complexity of the algorithm is cubic in the number of neurons.In the absence of hidden units, we show how the weights can be directly computed from the �xed pointequation of the learning rules. Thus, in this case we do not need to use a gradient descent procedure forthe learning process. We show that the solutions of this method are close to the optimal solutions andgive a signi�cant improvement when correlations play a signi�cant role. Finally, we apply the method toa pattern completion task and show good performance for networks up to 100 neurons.1 IntroductionBoltzmann Machines (BMs) (Ackley et al., 1985), are networks of binary neurons with a stochastic neurondynamics, known as Glauber dynamics. Assuming symmetric connections between neurons, the probabilitydistribution over neuron states ~s will become stationary and will be given by the Boltzmann-Gibbs distributionP (~s). The Boltzmann distribution is a known function of the weights and thresholds of the network. However,exact computation of P (~s) or any statistics involving P (~s), such as mean �ring rates or correlations, requiresexponential time in the number of neurons. This is due to the fact that P (~s) contains a normalization termZ, which involves a sum over all states in the network, of which there are exponentially many. This problemis particularly important for BM learning. This is because the BM learning rule requires the computation ofcorrelations between neurons. Thus, learning in BMs requires exponential time.For speci�c architectures, learning can be dramatically accelerated. For instance (Saul and Jordan, 1994)discuss how learning times become linear in the number of neurons for tree-like architectures. (Kappen,1995) show how strong inhibition between hidden neurons reduces the computation time to polynomial in thenumber of neurons.A well-known approximate method to compute correlations is the Monte Carlo method (Itzykson andDrou�e, 1989), which is a stochastic sampling of the state space. Glauber dynamics is an example of such amethod. The terms in the sum over states are proportional to a 'Boltzmann factor' exp(�E). Monte Carlomethods can be more e�ective than the summation of all terms because the sampling is biased towards stateswith lower E. These terms will give the dominant contribution to the sum over states. This is the approachchosen for learning in the original Boltzmann Machine (Ackley et al., 1985). Practical use requires that theMarkov process converges su�ciently fast, i.e. in polynomial time, to the equilibrium distribution. Thisproperty is known as rapid mixing and does probably not hold in general for Glauber dynamics (Sinclair,1993). Useful results can be obtained with Glauber dynamics when the network is not too large and has smallweights.In (Peterson and Anderson, 1987), an acceleration method for learning in BMs is proposed. They suggestto replace the correlations in the BM learning rule by the naive mean �eld approximation: hsisji = mimj ,�To appear in Neural ComputationyRWCP SNN Laboratory, Department of Biophysics, University of Nijmegen, Geert Grooteplein 21, NL 6525 EZ Nijmegen,The NetherlandszInstituto de Ingenier��a del Conocimiento & Departamento de Ingenier��a Inform�atica, Universidad Aut�onoma de Madrid,Canto Blanco,28049 Madrid, Spain. 1



where mi is the mean �eld activity of neuron i. The mean �elds are given by the solution of a set of n coupledmean �eld equations, with n the number of neurons. The solution can be e�ciently obtained by �xed pointiteration. The method was further elaborated in (Hinton, 1989). In this paper, we will show that the naivemean �eld approximation of the learning rules does not converge in general and explain why.Another way to speed-up learning is to observe that the Kullback-Leibler divergence is bounded fromabove by an e�ective free energy expression using Jensen's inequality. Such an approach can be applied toarchitectures whose probability distribution does not contain a sum over all states for normalization, such asthe Helmholz Machine (Dayan et al., 1995) and the sigmoid belief network (Saul et al., 1996). The applicationof such an approach to Boltzmann Machines is not as simple because it requires in addition an upper boundon Z, which is computationally more complex (Jaakkola and Jordan, 1996).We will argue, that in the correct treatment of mean �eld theory for BMs, the correlations can be computedusing the linear response theorem (Parisi, 1988). In the context of neural networks this approach was �rstintroduced by (Ginzburg and Sompolinsky, 1994) for the computation of time-delayed correlations and later by(Kappen, 1997) for the computation of stimulus dependent correlations. We will show, that this approximationcan be used succesfully to approximate the gradients in the Boltzmann Machine.This paper is organized as follows. In Section 2, we introduce learning in Boltzmann Machines and showwhy the naive mean �eld approximation of the gradients does not work. In Section 3, we derive the mean�eld approximation for the correlations based on the linear response theory. We argue that an e�ectiveself-coupling term can be included to obtain better results. In the absence of hidden units, the �xed pointequations for the learning rules can be solved directly in terms of the weights and thresholds of the network. InSection 4, we show results of simulations. We compare our methods with the exact computation of the optimalweights and with a factorized probability model that assumes absence of correlations. We use the Kullback-Leibler divergence as a criterion for comparison on small networks. However for large networks, this criterioncan no longer be computed, because it requires exponential time. We propose an approximate criterion forcomparison on large networks and show that it correlates well with the Kullback-Leibler divergence for smallproblems. Subsequently we show good performance of our method for increasing problem size.2 Boltzmann Machine learning2.1 General Dynamics of Boltzmann MachinesThe Boltzmann Machine is de�ned as follows. The possible con�gurations of the network can be characterizedby a vector ~s = (s1; ::; si; ::; sn), where si is the state of the neuron i, and n the total number of the neurons.Each neuron can be in two states (si = �1) and its dynamics is governed by the following stochastic rule. Ateach time step, a neuron is selected ad random. Its new value is determined as:si = � +1 with probability g(hi)�1 with probability 1� g(hi) (1)with g(hi) and hi (local �eld) de�ned byg(hi) = 11 + expf�2�hi)g ; hi =Xj 6=i wijsj + �i: (2)The magnitude wij (weight) refers to the connection strength between the neuron i and neuron j, and �i isthe threshold for neuron i. The weights are chosen symmetric, wij = wji. The parameter � controls the noisein the neuron dynamics. � is often interpreted as � = 1T , where T acts like the temperature of a physicalsystem. Since � is just a scaling of the weights and the thresholds, and the latter are optimized throughlearning, we can set � = 1 without loss of generality.Let us de�ne the energy of the system for a certain con�guration ~s as�E(~s) =Xi<j wijsisj +Xi si�i: (3)After long times, the probability to �nd the network in a state ~s becomes independent of time (thermalequilibrium) and is given by the Boltzmann distributionp(~s) = 1Z expf�E(~s)g: (4)Z =P~s expf�E(~s)g is the partition function which normalizes the probability distribution.2



2.2 Slow learning in Boltzmann MachinesA learning rule for Boltzmann Machines was introduced by Ackley, Hinton and Sejnowski (Ackley et al.,1985). Let us partition the neurons in a set of nv visible units and nh hidden units (nv + nh = n). Let �and � label the 2nv visible and 2nh hidden states of the network, respectively. Thus, every state ~s is uniquelydescribed by a tuple ��. Learning consists of adjusting the weighs and thresholds in such a way that theBoltzmann distribution on the visible units p� =P� p�� approximates a target distribution q� as closely aspossible.A suitable measure for the di�erence between the distributions p� and q� is the Kullback divergence (Kull-back, 1959) K =X� q� log q�p� : (5)It is easy to show that K � 0 for all distributions p� and K = 0 i� p� = q� for all �.Therefore, learning consists of minimizing K using gradient descent and the learning rules are givenby (Ackley et al., 1985; Hertz et al., 1991)��i = �� hsiic � hsii�; �wij = �� hsisjic � hsisji� i 6= j: (6)The parameter � is the learning rate. The brackets h�i and h�ic denote the 'free' and 'clamped' expectationvalues, respectively. The 'free' expectation values are de�ned as usual:hsii = X�� s��i p��hsisji = X~s s��i s��j p��: (7)The 'clamped' expectation values are obtained by clamping the visible units in a state � and taking theexpectation value with respect to q�: hsiic = X�� s��i q�p�j�hsisjic = X�� s��i s��j q�p�j� (8)s��i is the value of neuron i when the network is in state ��. p�j� is the conditional probability to observehidden state � given that the visible state is �. Note that in Eqs. 6{8, i and j run over both visible andhidden units.Thus, the BM learning rules contain clamped and free expectation values of the Boltzmann distribution.The computation of the free expectation values is intractible, because the sums in Eqs. 7 consist of 2n terms.If q� is given in the form of a training set of p patterns, the computation of the clamped expectation values,Eqs. 8, contains p2nh terms. This is intractible as well, but usually less expensive than the free expectationvalues. As a result, the BM learning algorithm can not be applied to practical problems.2.3 The naive mean �eld approximationPeterson and Anderson (Peterson and Anderson, 1987) proposed an approximation to calculate the expectationvalues based on mean �eld theory. In their approach, the free and clamped expectation values in Eq. 6 areapproximated by their mean �eld valueshsii � mi; hsisji � mimj ; i 6= j; (9)where mi is the solution to the set of coupled mean �eld equationsmi = tanh�Xj 6=i wijmj + �i�: (10)We will refer to this method as the naive mean �eld approximation. In each step of the gradient descentprocedure, one must solve the mean �eld equations given by Eq. 10. This can be done quite easily using �xedpoint iteration. In Section 3, we will give more details about mean �eld theory.3



Peterson and Anderson found that this method was 10 to 30 times faster than the Monte Carlo method.However, there are many data sets for which the naive mean �eld approximation does not work. Here, weshow the consequences of their approach in the case that there are no hidden units.Consider a network with only two visible neurons and no hidded neurons. We want to learn the probabilitydistribution given by two patterns (1; 1) and (�1;�1) with equal probability. Thus, hs1ic = hs2ic = 0 andhs1s2ic = 1.On this particular problem, the gradient descent procedure combined with the naive mean �eld computa-tion does not converge. The reason is very simple. If we assume that the learning process converges to �xedpoint (�wij = 0 and ��i = 0) then we obtain from Eqs. 6 and 9hsiic = mi; hsisjic = mimj i 6= j:Thus, the �xed point equations of the learning process combined with the naive mean �eld approximationimply that the data set has no non-trivial correlations. In our example, this condition is clearly violated, since0 = hs1ic hs2ic 6= hs1s2ic = 1.Thus, we expect that if we use the naive mean �eld approximation for the computation of the gradients,the resulting learning process will not converge. This is illustrated in Fig. 1. We compare the exact gradientdescent method, where the correlations are calculated using Eqs. 7, and gradient descent using the naivemean �eld approximation. Although the mean �eld method sometimes reaches close to optimal solutions, thegradients Eqs. 6 are not zero at these points and therefore the solution does not remain there.
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EVOLUTION of BIAS 2Figure 1: Gradient descent learning. The network consists of 2 visible neurons and no hidden neurons. Thetarget distribution q is given by two patterns (1; 1) and (�1;�1) with equal probability. The solid line showsthe evolution of the Kullback divergence and the di�erent network parameters when the exact gradient descentmethod is used. The dotted line shows the evolution of the di�erent network parameters when the naive mean�eld approximation gradient descent procedure is used. Learning rate � = 0:1, momentum � = 0:9From this example we conclude that the naive mean �eld approximation leads to a converging gradientdescent algorithm only when the data are such thathsisjic = hsiic hsjic i 6= j: (11)For i and j visible units, this is simply a property of the data. It is equivalent to the statement that thetarget probability distribution q� is factorized in all its variables: q(~s) = �iqi(si). The quality of the naivemean �eld approximation will depend on to what extend Eq. 11 is violated. This conclusion holds regardlessof whether the network has hidden units or not.3 The mean �eld method and the linear response correctionIn this Section we introduce an improved method to compute correlations within the mean �eld framework.We will consider the mean �eld approximation and its formulation in the �rst subsection. In the following4



subsection we will derive our main result based on the linear response theory. In the special case that thenetwork has no hidden units, the optimal weights and thresholds can be computed directly from the �xedpoint equations, i.e. no gradient procedure needs to be applied.3.1 Mean �eld formulationThe basic idea of mean �eld theory is to replace the quadratic term in the energy, wijsisj in Eq. 3, by a termlinear in si. Such a linearized form allows for e�cient computation of the sum over all states, such as Eqs. 7and 8 and the partition function Z. We de�ne the mean �eld energy�Emf (~s) =Xi sifWi + �ig (12)where we introduce n mean �elds Wi. The mean �elds approximate the lateral interaction between neurons.The values of Wi must be chosen such that this approximation is as good as possible. How to do this will beshown below.We de�ne the mean �eld probability distribution aspmf (~s) = expf�Emf (~s)gZmf : (13)with Zmf =X~s expf�Emf (~s)g =Yi 2 cosh(�i +Wi) (14)the mean �eld partition function.The expectations values for si and sisj in the mean �eld approximation are given by:hsiimf � X~s sipmf (~s) = tanh(Wi + �i) � mi; (15)hsisjimf � X~s sisjpmf (~s) = mimj i 6= j; (16)where we have introduced the parameters mi, which are still to be �xed because of their dependence on Wi.The real partition function Z, Eq. 4, can be computed in the mean �eld approximation (Itzykson andDrou�e, 1989): Z = X~s exp(�E) =X~s exp(�Emf + Emf �E)= Zmf hexp(Emf � E)imf � Zmf exp(hEmf � Eimf ) = Z 0: (17)The mean �eld approximation is in the last step and is related to the convexity of the exponential functionhexp fi � exp hfi (Itzykson and Drou�e, 1989). Note that h�imf denotes expectation with respect to the mean�eld distribution Eq. 13 and not with respect to the Boltzmann distribution Eq. 4. Therefore, the free energyin the mean �eld approximation can be easily computed and is given by�F = logZ 0 =Xi log(2 cosh(�i +Wi))�Xi Wimi +Xi<j wijmimj (18)We can calculate the mean �elds Wi, by minimizing the free energy:@F@Wi = (1 �m2i )(Wi �Xj 6=i wijmj) = 0: (19)It can be shown, that the solutions m2i = 1 maximize F . The required minima are therefore given byWi = Pj 6=i wijmj , which, combined with equation Eq. 15, give the mean �eld equations Eq. 10. Theseequations can be solved for mi in terms of wij and �i using �xed point iteration. The mean �elds Wi canthen be directly computed using Eq. 19. 5



3.2 Derivation of linear response correctionWe can go beyond the naive mean �eld prediction hsisjimf = mimj of Eq. 16 in the following way. Firstobserve that the mean �ring rates and correlations arehsii = 1Z dZd�j � 1Z0 dZ 0d�j ; hsisji � 1Z 0 d2Z 0d�id�j : (20)We will compute these quantities using the approximation Eq. 17. While computing dZd�j , using Eq. 18, wemust be aware that the mean �elds Wi depend on �i through Eq. 10 and Eq. 19:hsii � dd�i logZ 0 = 0@ @@�i +Xj @Wj@�i @@Wj1A logZ 0 = mi (21)hsisji � 1Z 0 dd�j (Z 0mi) = mimj +Aij; (22)with Aij = dmid�j . The last step in Eq. 21 follows when we use the mean �eld equations Eq. 19. Thus, there areno linear response corrections to the mean �ring rate. Eq. 22 is known as the linear response theorem (Parisi,1988). The inverse of the matrix A can be directly obtained by di�erentiating Eq. 10 with respect to �i. Theresult is: (A�1)ij = �ij1�m2i � wij (23)When the network is divided into visible and hidden units, the above approximation can be directly appliedto computation of the free expectation values Eqs. 7.When the visible units are clamped, the above derivation can be repeated to compute the expectationvalues for the hidden units. The only di�erence is that the thresholds �i for the hidden units receive an extracontribution from the clamped visible neurons. Let us assume that the visible units are clamped in state �.The mean �ring rates of the hidden units are denoted by hsii� = m�i ; i 2 H where m�i satisfy the mean �eldequations m�i = tanh(Xj2H wijm�j +Xj2V wijs�j + �i); i 2 H: (24)V and H denote the subsets of visible and hidden units, respectively. Note, that m�i depends on the clampedstate �. The correlations hsisji� are given as follows:i; j 2 H : hsisji� = m�i m�j + A�ij (25)i 2 V; j 2 H : hsisji� = s�i m�j (26)i; j 2 V : hsisji� = s�i s�j (27)(A�;�1)ij = �ij1� (m�i )2 � wij (28)Finally, the clamped expectation values are given by taking the expectation value over q�: hsiic =P� hsii� q�and hsisjic =P� hsisji� q�.Thus, our approximation consists of replacing the clamped and free expectation values in Eqs. 6 by theirlinear response approximations. Eqs. 10, 21-23 and Eqs. 24-28 de�ne the linear response approximationsin the free phase and the clamped phase, respectively. The complexity of the method is dominated by thecomputations in the free phase. The computation of the linear response correlations involves the inversionof the matrix A, which requires O(n3) operations. The computation of the mean �ring rates through �xedpoint iteration of Eq. 10 requires O(n2) or O(n2 logn) operations, depending on whether �xed precision inthe components of mi or in the vector norm Pim2i is required. Thus, the full mean �eld approximation,including the linear response correction, computes the gradients in O(n3) operations.3.3 TAP correction to the mean �eld equationsIt is well-known that the standard mean �eld description Eq. 18 is inadequate for the description of frustratedsystems. In general, terms involving higher powers of the coupling matrix wij must be included. For example,6



for the Sherrington-Kirkpatrick (SK) model the appropriate mean �eld free energy becomes (Thouless et al.,1977) �F =Xi log(2 cosh(�i +Wi))�Xi Wimi + 12Xi;j wijmimj + 14Xi;j w2ij(1�m2i )(1 �m2j ); (29)and the corresponding mean �eld equations become the TAP equations:mi = tanh�Xj 6=i wijmj + �i �miXj 6=i w2ij(1�m2j )�: (30)The additional term is called the Onsager reaction term (Onsager, 1936). It describes how the mean �ring ofneuron i a�ects the polarization of the surrounding spins and thus a�ect the local �eld of spin i. The e�ectof this additional term, but in the absence of the linear response correction, was studied by (Galland, 1993).In general there is an in�nite sum of terms, each involving a higher power of the couplings wij (Fischer andHertz, 1991). It is interesting to note that all higher order terms in the �xed point equation are proportionalto mi and thus represent corrections to the self-coupling term. In the case of the SK model, it can be shownthat all terms beyond the Onsager term are negligible (Plefka, 1982). (For unfrustrated systems, like the Isingmodel, the Onsager term itself is negligible).One can obtain the linear response corrections for TAP and higher order mean �eld corrections in a similarway as was described above, i.e. by variation around the TAP equations. These extensions will be explored ina future publication. In this paper, we will restrict ourselves to the linear response corrections to the lowestorder mean �eld equations and ignore higher order corrections. However, we will consider the e�ect of ane�ective self-coupling term wiimi. The mean �eld equations Eq. 10 becomemi = tanh�Xj wijmj + �i�; (31)where the sum now includes the diagonal term. The derivation of the linear response correction is unaltered,except that wij has now non-zero diagonal terms (e.g. in Eq. 23). We propose to �x the value of wii throughlearning. We will demonstrate that the inclusion of the self-coupling term is 1) bene�cial to obtain a closedform solution for the learning problem in the absence of hidden units and 2) gives signi�cantly better resultsthan without the self-coupling term.3.4 No hidden unitsFor the special case of a network without hidden units and with the e�ective self-coupling we can makesigni�cant simpli�cations. In this case, the gradients Eqs. 6 can be set equal to zero and can be solveddirectly in terms of the weights and thresholds, i.e. no 'gradient based learning' is required. First note, thathsiic and hsisjic can be computed exactly from the data for all i and j. Let us de�ne Cij = hsisjic�hsiic hsjic.The �xed point equation for ��i gives ��i = 0, mi = hsiic : (32)The �xed point equation for �wij, using Eq. 32, gives�wij = 0, Aij = Cij i 6= j: (33)Because we have introduced n self-coupling parameters, we must specify n additional constraints. An obviouschoice is to ensure that 
s2i � = 1 is also true in the linear response approximation: 1 = 
s2i �lr = m2i +Aii ,Aii = Cii. Then, Eq. 33 is equivalent to (A�1)ij = (C�1)ij if C is invertible. Using Eq. 23 we obtainwij = �ij1�m2i � (C�1)ij (34)In this way we have solved mi and wij directly from the �xed point equations. The thresholds �i can now becomputed from Eq. 10: �i = tanh�1(mi) �Xj wijmj (35)7



Note, that this method does not require �xed point iterations to obtain mean �ring rates mi in terms of wijand �i. Instead, the 'inverse' computation of �i given mi and wij is required in Eq. 35. Note also, that thethresholds depend on the diagonal weights. The solution of the example task of two neurons discussed insection 2.3 is computed in the appendix.Although the above choice of constraint is particular convenient, we should keep in mind that in principleother choices could be made, leading to other solutions. The justi�cation for our choice is that it gives aclosed form solution of high quality, as we will show.4 ResultsIn this Section we will compare the accuracy of the linear response correction with and without self-couplingwith the exact method and with a factorized model that ignores correlations. We restrict ourselves to networkswithout hidden units. Of course, there are many probability estimation problems, for which the BM withouthidden units is a poor model. Our main concern is whether the linear response approximation will give asolution which is su�ciently close to the optimal solution, and not whether the optimal solution is good orbad.The correct way to compare our method to the exact method is by means of the Kullback divergence.However, this comparison can only be done for small networks. The reason is that the computation of theKullback divergence requires the computation of the Boltzmann distribution, Eq. 4, which requires exponentialtime due to the partition function Z. In addition, the exact learning method requires exponential time. Thecomparison by Kullback divergence on small problems is the subject of Section 4.1.For networks with a large number of units, we will demonstrate the quality of the linear response methodby means of a pattern completion task i.e. the network must be able to generate the rest of a pattern, whenpart of the pattern is shown. The comparison of pattern completion on larger problems is the subject ofSection 4.2.4.1 Comparison using Kullback divergenceIn order to show the performance of the linear response correction, we have compared it with the resultsobtained with a factorized model and with the exact method.For the exact method (ex) we have used conjugate gradient. The mean �ring rates and correlations arecomputed using Eqs. 7. For the linear response method without self-coupling term (lr0) we have solved the�xed point Eqs. 33 for i 6= j using least squares and the Levenberg-Marquardt method. The matrix A isgiven by Eq. 23 with wii = 0. For the linear response method with self-coupling (lr) we obtain the weightsand thresholds from Eq. 34 and Eq. 35. This method can be applied when det(C) > 0. When det(C)=0, wehave solved the �xed point Eqs. 33 for all i; j using least squares and the Levenberg-Marquardt method. Thematrix A is given by Eq. 23 with wii free parameters.In the case of the factorized model we assumepmf (~s) =Yi 12(1 + simi): (36)The mean �ring rates are given by mi = hsiic. The four methods are compared by computing the Kullbackdivergence, using Eq. 5.In Fig. 2, we present the results for a network of 6 neurons. The number of patterns in the training set isvaried from p = 1 until p = 64. For each p, 5 data sets were randomly generated. Each of the p patterns inthe data set is assigned a random probability such that the total probability on the p patterns sums to 1.The lr method used least squares minimization for 2 � p � 6. For the methods lr0 and lr we observed for2 � p � 6 in approximately 10 % of the cases that the �xed point equations could not be solved. This canof course happen because the equations are approximations to the true gradients and therefore do not needto have a �xed point solution. These cases were deleted from the computation of the average Kullbacks inFig. 2.We see that the exact method approaches the target distribution (K = 0) for very small number ofpatterns and for p ! 2n. For p = 1, the correlations in the target distribution are absent, and all methodsyield Kullback zero. For p ! 2n the factorized model approaches the exact model. This is because thetarget distribution becomes more or less constant over all patterns and correlations are absent in the constantdistribution. The most di�cult learning tasks are for low and intermediate values of p. The di�erence between8
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4.2 Comparison on pattern completionIn this subsection, we demonstrate the quality of the linear response method for larger networks. As wementioned above, this can not be done by comparison of the Kullback divergence. Therefore, we propose tocompare the di�erent methods on n pattern completion tasks.We �rst train the networks as before as if the problem were a joint probability estimation problem, i.e. withno distinction between 'input' and 'output'. Subsequently, we measure the quality of the di�erent solutionsby computing Q = � 1npXi� log(p(s�i j~s�i )); ~s�i = (s�1 ; ::; s�i�1; s�i+1; ::; s�n) (37)The quantity p(s�i j~s�i ) is the conditional probability of �nding neuron i in the state s�i , given that the rest ofthe state is ~s�i . We can do this for the exact method (for small networks) for the linear response method andfor the factorized model. Note, that the computation of Q is fast because it does not require the computationof the partition function.
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Figure 4: Variation of the pattern completion quality Q with respect to the Kullback divergence K, for 200data sets on 6 neurons. Each data set consists of 10 patterns. In the left graph, the plus signs represent thelinear response method and the open circles represent the factorized model. In the right graph we plot thedi�erence between the two pattern completion qualities (Qmf � Qlr) versus the di�erence of the Kullbackdivergence (Kmf �Klr) for the same data sets.In order to use Q to assess the quality of the various methods, we must establish that low Q implies lowKullback divergence K and vice versa. This is shown in Fig. 4. The left graph shows for the linear responsesolutions and for the factorized model solutions separately that there is a more or less linear relation betweenthe quality in terms of K and in terms of Q. In the right graph we show for the same data sets the di�erencein pattern completion quality, Qmf �Qlr , versus the di�erence in Kullback divergence, Kmf �Klr . From thiswe see that if one method has a lower Q than another method, we can expect that its Kullback divergence islower as well.Thus, one can use the more or less linear relation between Q and K to test the performance of the linearresponse method for problems with a large number of neurons. In Fig. 5, we show the pattern completionquality for the di�erent methods as a function of the network size. The exact method was only computedup to 10 neurons, because of the time required. (Depending on the stop criterion, the exact method requiresapproximately 10-30 minutes on a network of 10 neurons on a SPARC 5). We can see that the linear responsemethod is very close to the exact method. The much higher value of the factorized model indicates the obviousfact that correlations play an important role in this task. Note that the mean �eld method approaches q = log 2for large n, which is due to the fact that the mean �eld method assigns p(s�i ) � 12 (mi � 0) for all i and �.10
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The general probability distribution in 2 neurons is parametrized by 3 numbers. Consider the symmetriccase where hs1i = hs2i. Then only two parameters are needed, which we choose such thatp(+;+) = 12(1 +m) � ap(+;�) = p(�;+) = ap(�;�) = 12(1�m) � a:We must require that 0 < a < 12 and 2a � 1 < m < 1 � 2a to ensure that all probabilities are positive. Inthis parametrization hs1s2i = 1 � 4a and hs1i = hs2i = m. The special case of section 2.3 is obtained form = a = 0. The matrix C as de�ned in section 3.4 is given asC = � 1�m2 1� 4a�m21� 4a�m2 1�m2 �Eq. 34 gives directly w = 18a 1�m2 � 4a1�m2 � 2a � �1 + 4a1�m2 11 �1 + 4a1�m2 �and the thresholds are computed using Eq. 35. Note, that the diagonal weights play an important role in thecomputation of the thresholds.One can also compute the optimal weigths and thresholds using the exact method. Setting �wij = 0 and��i = 0 in Eq. 6 we obtain w12 = log� (1� 2a)2 �m24a2 ��i = 12 tanh�1� m1� 2a�The di�erences are illustrated for m = 0:1 and m = 0:5 for all allowed values of a in Fig. 6Note that the linear response approximation is very good in those instances where the optimal weights aresmall. For larger weights the di�erence between the two methods increases. However, in the regions of largeweights the di�erence has an exponentially vanishing infuence on the value of the the probability distributionand thus on the quality of the solution as measured by the Kullback diverence. The same statements aremore or less true for the thresholds.
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Figure 6: Examples of lateral connection and threshold(s) obtained by exact method and linear responsemethod (LR) for a network of two neurons with m = 0:1 and m = 0:5
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