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ABSTRACT Although face recognition has achieved great success due to deep learning, many factors may
affect the quality of faces in the wild, such as pose changes, age variations, and light changes, which can
seriously affect the performance of face recognition. In this work, an effective approach called Efficient
Lightweight Attention Networks (ELANet) is proposed to address the challenge brought by the impacts of
poses and ages on face recognition performance. First, similar local patches are particularly important when
the geometry and appearance of a face change drastically. To alleviate this challenge, spatial attention is
used to capture important locally similar patches and channel attention is employed to focus on features with
different levels of importance. Furthermore, Efficient Fusion Attention (EFA) module is designed to achieve
better performance, which can alleviate the computational effort required by fusing spatial and channel
attention. Second, multi-scale features learning is necessary because pose or large expression changes can
cause similar recognition regions to appear at different scales. For this purpose, pyramid multi-scale module
is presented, which constructs a series of features at different scales via pooling operations. Third, to unite
low-level local detail information with high-level semantic information, the features of different layers are
fused by Adaptively Spatial Feature Fusion (ASFF) instead of simply utilizing addition or concatenation.
Compared to recent lightweight networks, the ELANet improved performance by 1.83% and 2.17% on the
CPLFW and VGG2_FP datasets, respectively, and by 0.92% on the CALFW dataset. The ELANet addresses
the challenge regarding the impacts of poses and ages on face recognition performance with few parameters
and computational effort and is suitable for embedded and mobile devices.

INDEX TERMS Face recognition, local features, multi-scale, lightweight network.

I. INTRODUCTION

Significant progress has been achieved in the field of
face recognition by applying deep convolutional neural
networks (DCNNs) [1], [2], [3]. However, most works do not
simultaneously consider the importance of hierarchical multi-
scale features and local regions for face recognition.

Many factors influence the performance of face recogni-
tion, such as posture, age, illumination, occlusion, or quality
variations. For example, as shown in Fig. 1, the face images
in the second row are subject to different unconstrained
factors, which are still a challenge for current face recognition
algorithms, even though they can be easily recognised by
humans. And these problems may lead to great changes
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in facial geometries and appearances. In contrast, similar
local face areas are particularly important. Several works
depend on face landmarks to obtain face local information
[4], [5]. However, landmark detection may not work due to
posture, age, illumination, occlusion, or quality variations.
As illustrated in Fig. 1, changes in pose make parts of
the face disappear; blurred images of the face make the
whole face area unclear; changes in lighting make detailed
information about the face lost. Different face regions can
contribute to the final recognition results to different degrees.
Spatial attention is incorporated to automatically charac-
terize informative regions and extract local information.
As presented in [6], Local Aggregation Network (LANet)
is used to locate the most distinguishable face domains
and achieves good performance on datasets relating to
posture and age. Furthermore, channel attention aims to
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FIGURE 1. Faces are affected by several unconstrained factors, such as
posture, age, illumination, occlusion, or quality variations.

highlight important channels and suppress channels with less
information. The low-level feature channels contain local
detail information and that high-level channels represent
high-level semantic information. Thus, the Squeeze-and-
Excitation Network (SENet) [7] adaptively recalibrates the
channel characteristic response by modelling the interdepen-
dencies between channels and brings significant performance
improvements to the CNNs models at a slight increase
in computational cost. When employing CNNs to extract
face features, the most recognisable face regions should be
given more more weight, and similarly, the feature channels
with the most distinguishing feature information should be
assigned more weight. It is intuitive to combine them together
to obtain better performance. At the same time, to alleviate the
computational effort caused by their fusion, Efficient Fusion
Attention (EFA) module is introduced to our model.

Representing features at multiple scales is useful in various
vision tasks [6], [8], [9]. Multi-scale features are necessary for
face recognition because local face regions may have various
sizes or shapes due to dramatic facial changes. As shown
in the third and fourth rows of Fig. 1, mouths have various
sizes in columns 1, 2, 3 and 6; eyes appear at different sizes
in columns 3, 4 and 5. Most of the methods fail to consider
that useful feature information is not always fixed within the
same layer. [8] extracts multi-scale features with hierarchical
pyramid-based diverse attention network to address this
challenge and uses diverse learning to alleviate the redundant
response problem. This method also achieves state-of-the-
art results in posture and age challenges. However, local
discriminative face regions may appear in different layers.
Thus, pyramid multi-scale modul is proposed which is able
to scale features in the same layer to different sizes to extract
more local features.

Because high-level features have larger receptive fields
and represent high-level semantic information. Therefore,
most previous works do not use low-level features with
local information but directly use the last layer of con-
volution. These approaches inevitably lack local details or
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low-level small-scale information. To alleviate the above
problems, [10] obtains the local features from the first
network layer and the global features by principal component
analysis. Compared to MobileNet [11], this method extracts
more comprehensive feature information. [12] combines
low-level and high-level feature information to gain different
representations. However, these methods all use simple
addition or concatenation.

This paper proposes Efficient Lightweight Attention
Networks (ELANet) suitable for face recognition in mobile or
embedded devices. The contributions of paper are described
as follows:

1) The proposed ELANet can learn multi-scale features
from the same layer and local features from different
layers. The proposed pyramid multi-scale module is
embedded in the ELANet. The pyramid multi-scale
module encourages the model to learn multi-scale
features by dividing the same feature into features
of different scales through pooling operations. The
ELANet has small numbers of parameters and compu-
tations and is well suited for deployment on mobile or
embedded devices.

2) Spatial attention and channel attention are introduced
simultaneously in the EFA module. An SENet module
is used to assign different weights for different channels
according to their importance levels, highlighting the
discriminative channels while suppressing channels
with less information. The LANet module locates the
most discriminative face regions. The EFA module
achieves better performance while alleviating the
computational effort required for fusion and allows
focus on local features.

3) To unite low-level local detail information with
high-level semantic information, the features of dif-
ferent layers are fused by Adaptively Spatial Feature
Fusion (ASFF) instead of simply using addition or
concatenation. The proposed approach fuses hierar-
chical features to obtain extra comprehensive feature
information.

The rest of the paper is organized as follows. Section II
briefly reviews the work related to face recognition and
attention mechanisms. Section III describes the ELANet in
detail, Section IV provides the results of experiments and
discusses the performance of the ELANet in detail. Section V
gives our conclusions and discusses future work.

Il. RELATED WORK
A brief review of face recognition and attention mechanisms
is presented.

A. FACE RECOGNITION

DCNNs have achieved great success in the field of face
recognition. Due to the simplicity and probabilistic inter-
pretability of the softmax loss function, it is regarded as one
of the and important components in CNNs. Thus, in the early
stage, face recognition approaches mainly use softmax loss
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function, but it can not effectively lessen the within-class
variance and expand the between-class variance. Several
novel loss functions are proposed in [1], [3] to further reduce
the within-class variance and increase the between-class
variance. However, most of them do not effectively take into
account multi-scale representations and local features of the
face.

1) MUTIL-SCALE FACE RECOGNITION

Multi-scale feature representation is of great importance for
face recognition. [6] learns multi-scale representations in two
perspectives: on the one hand, it uses convolutional kernels of
different sizes to extract multi-scale information in the same
layer; on the other hand, it connects the output of each layer
to learn multiscale features across layers. [9] replaces a set of
3 x 3 filters with smaller set of filters, while connecting the
different filter groups in a hierarchical residual-like style. [13]
uses different structures of CNNs in the same level to extract
multi-scale features. However, most of them do not notice that
features may cover a larger range of scales in a given layer.
Thus, the proposed pyramid multi-scale module divides the
same feature into features of different scales through pooling
operations.

2) LOCAL FEATURE REPRESENTIONS

Local representation learning can effectively handle postural
and age variations. [4] trains multiple CNNs in facial regions,
but the overall features of the face are ignored. [5] unites
multiple face region features with global face features by
sharing shallow and mid-level features. [14] solves for
pose variation by simultaneously learning feature alignment
and feature extraction through deformable convolution with
spatial displacement fields. Most methods are inevitably
dependent on face landmarks. However, landmark detection
may not work due to posture, age, illumination, occlusion,
or quality variations.

B. ATTENTION MECHANISMS

One trend has involved the investigation of attention.
Attention mechanisms play a very important role in computer
vision [7], [15], [16]. Attention assign more weight to the
most informative features while suppressing the less useful
features. However, few studies have applied attention for the
general face recognition task. Residual-attention and self-
attention were combined to address cross-age face recogni-
tion in [17]. Efficient attention was introduced to recognize
faces under various poses in [18]. Two attention blocks
were used to adaptively add feature vectors into a single
feature for video face recognition in [19]. An improved SENet
module was applied in [20], and self-attention is employed
to capture more detailed information [21]. The LANet and
SENet were introduced sequentially to automatically locate
the most distinguishing face region in [6]. However, most
of these approaches apply only individual implementations
of attention or apply attention sequentially. In this work,
to achieve better performance, channel attention and spatial
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FIGURE 2. The framework of BA block, where h is the feature height, » is
the feature width, and c is the number of feature channels. ¢’ =t - c,

h =h/S, and o’ = /S, where S is the stride and ¢ is the expansion
factor.

attention are fused. Furthermore, the proposed EFA is used to
relieve the computational overhead caused by fusion.

Ill. A NEW NETWORK

The proposed ELANet model, which mainly contains three
modules: bottleneck attention module, pyramid multi-scale
module, and ASFF module.

A. BOTTLENECK-ATTENTION

MobileNet [22], [11] builds lightweight networks via depth-
wise separable convolution and inverted residual structure,
where the depthwise separable convolution can reduce the
number of required parameters and the inverted residual
structure ensures the performance of the model. The core
network in MobileNet is the bottleneck. Thus, combining
EFA with bottleneck results in BA, as shown in Fig. 1.
The BA module consists mainly of two 1 x 1 convolution
kernels, a 3 x 3 depthwise separable convolution kernel and
an EFA module, which perform different operations with
various step sizes. The first 1 x 1 convolution module is
designed to expand the feature channels to extract more
feature information; the second 1 x 1 convolution module is
introduced to reduce the feature channels; 3 x 3 depthwise
separable convolution module is used to reduce the amount
of parameters. To prevent retified linear unit (ReLU) from
destroying features, linear is used in the final output section.
Besides, to match the shortcut dimension, two different
structures are proposed for the BA module. When the stride
is 1, shortcut is used to boost the model performance similar
to the residual structure; a stride of 2 convolution module is
used as downsampling.

B. EFA MODULE

To achieve better performance, the EFA module is proposed,
which fuses the SENet and LANet instead of using them
separately, as shown in Fig. 3. The EFA module can alleviate
the computational effort required to fuse spatial and channel
attention.

Let the feature X € R “*¢ denote the input of the
EFA module, where h, w, and ¢ are the parameters of
the feature, representing the height, width, and number of
channels respectively. First, the input features are split into
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FIGURE 3. The framework of the EFA module, where h is the feature height, » is the feature width, c is the
number of feature channels and g is the number of groups.
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FIGURE 4. The framework of the LANet module, where h, », c, and r
represent the height, width, number of channels and reduction rate,
respectively.

outputs with different groups [X1, X, - - - , X, ], where g is the
number of groups. X; € R"*“*¢i is the output of the i group,
where c; represents the channel size. The channel size of each
output layer is determined by ¢ and g.

Second, the i group is divided into two groups according
to the channel equivalence [Xj1, Xj2]. To retain both spatial
and channel information, the LANet module [6] and SENet
module [7] are used.

The LANet, as shown in Fig. 4, uses two consecutive
1 x 1 convolution layers. The first convolutional layer outputs
c/r channels, where ¢ denotes the input channels and r is the
reduction rate, followed by a ReLU function. Then, an output
feature with 1 dimension is generated by a 1 x 1 convolution
layer followed by a sigmoid function, called spatial attention.
Finally, the LANet output is the input features scaled by
spatial attention.

The structure of the SENet is shown in Fig. 5. To obtain
a single descriptor, the squeeze operation compresses the
global channel information by global averaging pooling.
Formally, the statistic z € R® is obtained for channel 7 by
reducing U through the spatial dimensionality of the feature
as follows:

1 H W
& = Fyglue) = 7 ) uelin)) e
i=1 j=1

where u(i, j) is an element at position (7, j) on channel ¢ and
H x W is the spatial dimension of z;. The excitation operation
learns the weight coefficients of each channel, thus making
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FIGURE 5. The framework of the SENet module, where h is the feature
height, o is the feature width and c is the number of feature channels.
Fsq(-) means squeeze operation and Fex (-) represents the excitation
operation.

the model more discriminative with respect to the features
of each channel. Two fully connected (FC) layers are used,
which consist of a dimensional reduction layer w; and a
dimensional extension layer w:

§ = Fex(z, w) = o (028(w12)) (@)

where o denotes the sigmoid function, and § represents the
ReLU function. The dimensional reduction layer outputs &
channels, and the dimensional extension layer outputs ¢ chan-
nels. Finally, the learned activation values for each channel
are multiplied by the input features. By concatenation, the

j’h, jell,2,.--,g]final output the same channel size as the
i group.
Finally, i € [1,2,---,g] groups of subfeatures are

aggregated together and then output by the ““channel shuffle”
operator [23].

C. PYRAMID MULTISCALE MODULE

The framework is shown in Fig. 6. The features contained
in the same layer have multi-scale local representations to
extract more fine-grained features.

For a given feature map X € Ri>oxc b o and ¢ are the
parameters of the feature, representing the height, width, and
number of channels, respectively. The pyramid multi-scale
module first splits the feature X into outputs with different
scale sizes via pooling operations.

X = [X]’Xz’ e 5XS]9 Xl € Rhixwl‘X(j (3)
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FIGURE 6. The framework of the pyramid multi-scale module mainly consists of four parts: the EFA module,
up-sampling module, product module, and concatenation module.

where h; x w; stands for the subfeature size. The maximum
size of subfeature is the same as that for the input
feature. Second, the spatial and channel information of each
subfeature X; is obtained through the EFA module, followed
by a 1 x 1 convolution. The features at each scale are
upsampled by using bilinear interpolation and the upsampled
features are defined as X;;, 4i = j € [1,2, - - -, s], which have
the same size as the input features. Then refined feature maps
Rij,i=je€[l,2,---,s]are aggregated by the product of X;;
and the input X:

Rij=XjjoX Q)

where o denotes the Hadamard product. Finally, to output
the same number of channels as that contained in the
input features, the refined feature maps are connected by a
concatenation module, followed by a 1 x 1 convolution.

D. ASFF

Most previous works do not use low-level features with
local information but directly use the last convolutional layer
to learn features. These approaches do not consider the
fact that the representation obtained from each layer is not
comprehensive. Thus, it is natural to integrate the different
layers of features.

The pyramid multi-scale module is applied in every two
BA modules. Therefore, pyramid multi-scale module extracts
more integrated features from different layers with the EFA
module. Different from the previous methods that aggregate
information from different layers using elementwise sum-
mation or concatenation, the approach in [24] is taken to
integrate multilevel information, which consists of two steps:
scale transformation and adaptive fusion.

x! is defined as the features at the level /. Feature
x"!(n # 1) is denoted as the resizing of the features
from level n to level [. In the network, the features in
different layers have various scales and numbers of chan-
nels. Therefore, different up-sampling and downsampling
strategies are adopt for features at different scales. For up-
sampling, a 1 x 1 convolution is used to channel adjustment,
followed by bilinear interpolation to increase the resolution
of the features. For down-sampling with a 1/2 ratio, a 2 x
2 convolution with a stride of 2 and a padding of 1 are
used to change the number of channels and the resolution
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simultaneously. For the 1/4 ratio, a max-pooling with a
2-stride is added before the convolution operation.

The feature at position (i, j) of the feature map is indicated
as xlf}_’l. The layers interact with each other to obtain more
comprehensive information, as shown below:

!

I _ 1—1 1 2—1 I 3—1
Vi =y Xy By X A vy X )

where yfj implies the (i, j)-th vector of the output feature maps
y! for the channel. ozfj, ,31.’]. and yij- refer to the spatial weights of
different levels with respect to level /, which can be learned
adaptively in the network. afj is calculated by the following
formula:
1
! e %

Q= 6)

y A ! i
e ‘i + e)"ﬂij + e)”yij

where )»éll_j, )\%ij and Aé, i refer to the control parameters of the

softmax function and force afj + ﬂfi + yé =1, af/., ﬁll/ yij. €

[0, 1].
Finally, the FC layer is employed to reduce the number of
output dimensions to 128 dimensions.

E. EFFICIENT LIGHTWEIGHT ATTENTION NETWORKS

Due to its superior performance and use of fewer parameters
than popular lightweight networks, MobilefaceNet [2] is
used. The EFA module is introduced into a bottleneck,
as shown in Fig. 2, called BA. The SENet module and LANet
module are combined in the EFA module, as illustrated in
Fig. 3, where the SENet module and LANet module are
applied simultaneously. Multi-scale features are necessary for
face recognition because local face regions may have various
sizes or shapes due to dramatic facial changes. Meanwhile,
local discriminative face regions may appear in different
layers and features may cover a large range of scales in
a given convolutional layer. To solve the above problems,
the pyramid multi-scale module is introduced with EFA
module, as demonstrated in Fig.6. The pyramid multi-scales
modules are applied in every two BA modules to extract more
integrated features from different layers. Most methods use
only the last convolutional layer, but inevitably lack local
details or low-level small-scale information. At the same
time, simple fusion methods achieve sub-optimal results.
Since ASFF adaptively fuses features and introduces an
almost free overhead, it is used to aggregate the rich features
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Local features

FIGURE 7. The framework of the proposed ELANet.

of the different layers. As a result, a new model called the
ELANet is proposed for mobile or embedded devices. It can
learn multi-scale features as well as local features and fuses
them with global features to enhance the expressiveness of
the model.

The overall framework of the ELANet model is shown in
Fig. 7. Four parts are included: inputs, local features, global
features, and outputs. Two operations are included in the
convolution layer: a 3 x 3 convolution and a depthwise 3 x 3
convolution. The proposed BA module is repeated n times,
as shown in Fig. 2, which describes important local features
and the importance of channels. The pyramid multi-scale
module and ASFF learn local multi-scale features and fuse
them across layers. Local features and global features are
fused, and 128-dimensional features are output through the
fully connected layer. For the loss function, AraFace [3]
I is used to reduce the within-class variance and widen the
between-class variance based on the following formulation:

1 N escos(eyi-i-m)

L = —N Z lOg escos(ayﬁ-m) + Z” (7)

) s-cos;
i=1 Jj=1.j#yi

e

where N is the batch size, n is the number of classes, s is
the hypersphere radius of the characteristic distribution, m is
an additive angular margin, and 6; is the angle between the
weight W; and the feature x;.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental results of ELANet are presented. Training
datasets and test datasets in the experiments are explained and
ablation experiments are demonstrated. Next, the proposed
ELANet is compared with other popular networks. Cross-
pose and cross-age experiments are shown. Finally, the
performance of proposed model is evaluated on the IJB-B/C
datasets and compares it with state-of-the-art methods.

A. TRAINING DATA AND TEST DATA

1) TRAINING DATASETS

The MS1MV3 [25] dataset and the VGGFace2 [26] dataset
are used as training datasets.

a: MSTMV3

MS1MV3 dataset is called MS1M-RetinaFace, which is an
MS1MVO [27] dataset cleaned by a semiautomatic method.
It contains 5.1 M face images of 93K identities.
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b: VGGFace2

VGGFace?2 contains 3.14M face images in a large range of
poses, ages and ethnicities. If not explicitly state, MSIMV3
is used as the training dataset.

2) TEST DATASETS

The LFW [28], CALFW [29], CPLFW [30], CFP [31],
VGGFace2-FP [26], IIB-B/C [32] and are employed for
testing.

a: LFW

It contains 13,233 images of 5,749 famous people. It contains
face images with different backgrounds, orientations, and
facial expressions and is the benchmark for unconstrained
face recognition. To use it for cross-validation, 10-fold image
pairs are proposed.

b: CROSS-POSE

There are a total of 500 individuals in the CFP dataset, and
10 frontal and 4 profile faces are retained. The dataset is
divided into 10 folds with a pairwise disjoint set of individuals
in each protocol. The CPLFW dataset has 3000 positive face
pairs with large poses to increase the influence of poses in
face recognition. The dataset contains only negative pairs of
the same race and gender to reduce the effects of attribute
differences. It contains 2 or 3 images for each subject. The
VGGFace2-FP dataset contains 3.14 M faces images of 8,631
subjects covering a large range of poses, ages, and ethnicities.

c: CALFW

There are a total of 4,025 individuals in the CALFW dataset,
which has 2, 3, or 4 images. To increase the within-class
variance of the aging process, the dataset contains a large
number of face images with various ages. The dataset
contains only negative pairs of the same race and gender to
reduce the effect of attributes differences.

d: CROSS-QUALITY

The 1JB-B dataset contains 11,754 face images of 1,845
objects, 55026 video frames, 7011 videos, and 10044 nonface
images. The IJB-C dataset consists of 21,294 face images of
3531 objects and 10,040 nonface images.

B. IMPLEMENTATION DETAILS
The ELANet is implemented by PyTorch [33]. The hyperpa-
rameter s is set to 64 and the angular margin m of Arcface
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TABLE 1. Performance comparison among different models on different datasets. The reduction rate r is 2, and the number of groups g is 2.

MODEL LFW CPLFW CALFW VGG2_FP CFP_FF CFP_FP
Bottleneck [2] 99.53% 90.34% 95.42% 92.49% 99.55% 95.26%

BA 99.56% 91.02% 95.70% 93.83% 99.57% 96.47%

W/o pyramid multi-scale 99.58% 90.92% 95.47% 93.81% 99.48% 96.36%
W/o ASFF 99.65% 91.57% 95.53% 94.19% 99.56% 96.85%
ELANet 99.68% 92.17% 96.07% 94.66% 99.76% 97.16%

TABLE 2. Performance comparison among different models on different datasets. The reduction rate r in the EFA module is 2, and the number of

groups g is 2.

MODEL LFW CPLFW CALFW VGG2_FP CFP_FF CFP_FP PARAM FLOPs
SENet [7]] 99.53% 91.09% 95.66% 93.52% 99.61% 95.99% 1.03M 0.45G
LANet [6] 99.54% 89.61% 95.02% 91.79% 99.39% 94.38% 1.03M 0.46G

DFA [6] 99.60% 90.56% 95.60% 93.28% 99.56% 95.86% 1.05M 0.46G

EFA 99.56% 91.02% 95.70% 93.83% 99.57% 96.47% 1.03M 0.46G

is set to 0.5 according to [34]. The batch size is 256 and one
NVIDIA 309024 GB) GPU is used as training machine. The
initial learning rate is given as 0.1 and divided it by 10 every
epoch. The training process is finished after 25 epochs. The
momentum is set to 0.9, and the weight decay is set to Se — 4.

C. ABLATION STUDY

The importance of the three components is first demonstrated
in this section: BA module, pyramid multi-scale module,
and ASFF. The performance of different combinations of the
LANet and SENet are compared. Then, the effects of the
hyperparameter reduction r and the number of groups g on
model performance are investigated. Finally, the performance
of the different fusion methods on the model is shown.

1) THE IMPORTANCE OF THE THREE MODULES
To gain insight into ELANet model, the following modules
are analyze: the bottleneck [1], BA module, pyramid
multiscale module, and ASFF module. The importance of
each module is studied and is shown in Table 1.

The performance of the BA module is significantly
improved relative to that of the original model. This is
because the EFA module is added to the original model so that
it can emphasize both where facial parts are and which fea-
tures are significant. The experimental results in Table 1 show
that pyramidal multi-scale feature learning and cross-layer
information fusion are necessary. As illustrated in Table 1,
the proposed ELANet has better performance. The ELANet
model performs better than all of these variants in two aspects.
On the one hand, it incorporates the pyramid multi-scale
module for extracting multi-scale features and enriching
fine-grained feature information. On the other hand, it uses
ASFF to fuse different levels of information, which makes
the final output feature information more comprehensive and
richer and helps to improve the recognition accuracy.

2) DIFFERENT ATTENTION COMBINATIONS

This section examines the effect of different combinations of
the SENet and LANet on the performance of the model. Four
combinations are shown: the first is to use the SENet module
alone and the second is to use the LANet module alone; the
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third uses dual face attention (DFA) [6]. The last is the EFA
module.

Table 2 summarizes the experimental results. The LANet
emphasizes where facial parts are, and the SENet learns
where the significant features are. In the LANet and DFA,
the parameters for the experiments are set as in [6]. The
performance of the LANet or DFA alone is not as good as
that of the other methods in Table 2. The possible reason
for this is that the number of channels in the network is
too small, and after compression in the LANet, the useful
information is drastically reduced, leading to a decrease in
model performance. The performance of the EFA model
on the cross-pose and cross-age datasets is significantly
improved compared to that of other methods except on the
CPLFW dataset. A possible explanation is that we divide the
number of channels into different groups with the parameter
g in the EFA model, so the SENet in the EFA model cannot
make good use of the global channel information, which
leads to slightly worse performance for the EFA module on
CPLFW than that of the SENet alone approach. Thus, the
use of both the SENet and LANet can improve performance
over that of the method of using one module before the other.
As demonstrated in Table 2, compared to other methods,
the EFA model makes a trade-off between accuracy and
complexity while improving performance.

3) THE EFFECTS OF THE PARAMETERS g AND r ON THE
MODEL

To investigate the effects of the parameters g and r in the EFA
module on the fusion of the SENet and LANet, the following
study is conducted. The effects of the parameters g and r are
investigated in Table 3.

The hyperparameter g is set to 2, 4, 8, and 16. The
overall performance increases when g decreases. This can be
explained by the fact that dividing the data into too many
groups leads to useless information or noisy information
being given more attention. To investigate the trade-off
between the computational cost and performance due to the
hyperparameter reduction parameter r, r is set to 2, 4, 8, and
16. However, the computational and parametric quantities of
the model are also related to the parameter g, as demonstrated
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TABLE 3. Performance comparison among different combinations of
values for parameters g and r on different datasets.

g r CPLFW CALFW VGG2_FP CFP_FP PARAM FLOPs
I 2 8994% 95.42% 92.44% 9460% 1.IM 047G
2 16 90.86% 95.59%  93.33% 9636% 1.01M 045G
2 8 90.78% 9547%  926%  96.01% 1.01M 045G
2 4 90.84% 95.82% 93.48% 96.38% 1.02M 0.46G
2 2 91.02% 9570%  93.83% 96.47% 1.03M 0.46G
4 8 90.53% 95.60% 93.26% 95.80% 1.01M 045G
4 4 90.69% 95.63% 93.15% 95.76% 1.01M 045G
4 2 9059% 95.66% 93.40% 95.80% 1.01M 046G
8 4 90.75% 95.72%  92.98%  95.47% 1M 0.45G
8 2 90.98% 9545% 93.40% 95.73% 1M 0.45G
16 2 90.75% 95.54%  92.79%  95.66% 1M 0.45G

in the actual experiments. The overall performance of the
model degrades when no group convolution is used relative to
the case with group convolution. Finally, g = 2 and r = 2 are
chosen to balance performance and complexity.

4) DIFFERENT INTEGRATION METHODS

Adding or concatenating features directly is the method
chosen for most feature fusion approaches. However, simple
addition or concatenation is not able to fuse cross-layer
information. To overcome this problem, ASFF is used to fuse
across-layer information.

Experiments results comparing ASFF with other fusion
methods are shown in Table 4. Compared to the addition
and concatenation fusion methods, the performance gains
of ASFF on the CPLFW dataset are 0.55% and 0.6%
respectively; on the CALFW dataset the performance gains
are 0.45% and 0.54% respectively. The advantages of ASFF
in capturing interlayer features as well as adaptive learning
weights are shown. However, ASFF does not perform as well
as the concatenation approach on datasets containing large
pose variations, such as VGG2(FP) and CFP(FP). In general,
when facing larger pose variations, we need more channels
to extract richer feature information. In our experiments,
the number of channels obtained with concatenation is the
highest, so it has the best performance on this problem.

D. COMPARISON WITH DIFFERENT BACKBONE
NETWORKS

Several popular CNNs are compared with ELANet, including
lightweight face recognition networks and large complex
networks. The experimental results are shown in Table 5.
Results of lightweight face recognition models on different
datasets derive from [35].

Compared with these lightweight models, the proposed
ELANet model achieves an overall improvement in per-
formance with only a small increase in computational
complexity. In particular, in the cross-pose datasets CPLFW,
VGG2_FP, and CFP_FP, ELANet performance improved
by 1.83%, 2.17% and 0.26% respectively over the other
best performing lightweight face recognition models. In the
cross-age dataset CALFW, ELANet performance improved
by 0.92% over the other best performing lightweight face
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recognition models. Compared with ResNet-50 [37] and
DenseNet [36], the ELANet model has fewer parameters and
computational effort and performs better. As a result, better
parameter efficiency is demonstrated in the ELANet model.
ResNet enhances the expressiveness of the model via short
connections and DenseNet achieves improved model perfor-
mance with dense connections. EfficientNet [38] optimizes
the expressiveness of the model from three aspects simul-
taneously: the height, width, and resolution of the network.
By using depthwise separable convolution in MobileNet, the
parameters of the model are reduced, and an inverse residual
structure is used to enhance the model representation. Thus,
the ELANet continues to use the bottleneck from MobileNet-
V2 to reduce the number of model parameters and integrates
the EFA module into the bottleneck, allowing it to learn
local patch feature information. The EFA module has better
performance and fewer fusion parameters. Different levels of
feature information are used and fused by ASFF to enhance
the performance of the model. The proposed EFA module
enables the ELANet to focus more on the most discriminative
features of pose changes, and thus, ELANet model performs
better on datasets containing multiple pose changes.

In summary, the ELANet model has good representation
capability, effectively uses its the parameters, performs well
under complex data distributions, and makes a good trade-off
between accuracy and complexity. Especially important is
that it has small numbers of computations and parameters,
making it is very suitable for use in some embedded devices
with low computing power.

E. EXPERIMENTS ON CROSS-POSE

In the cross-pose experiments, MS1MV3 and VGGFace2
datasets are used as training data. The results of the
comparison between ELANet model and state-of-the-art
methods are shown in Table 6.

PIM [41] proposes a two-way generative adversarial
network that learns both local and global information, and
a discriminative learning subnet that learns discriminative
and generic feature representations, achieving 93.10% in the
CFP_FP dataset. DA-GAN [42] generates high resolution
images by using a fully convolutional network and uses
the autoencoder as a discriminator with a double agent.
p-CNN [43] utilizes multi-task convolutional neural net-
work that groups different poses to learn pose specific
identity features, which obtains 94.39%. NoiseFace [44]
is trained with a large amount of noisy data and get
96.04%. LS-CNN [6] learns multi-scale and local feature
information, which improves performance to 97.17% in
CFP_FP. HDPA [8] results in 92.35% on the CPLFW
dataset by multivariate guided learning. DLL [45] proposes
distributed distillation loss to improve performance on hard
samples. It achieves state-of-the-art performance on both
the CFP_FP and CPLFW datasets. ELANet is simple and
efficient compared to data enhancement methods that require
a great deal of complexity (PIM, DA-GAN). And it achieves
very good performance in cross-pose datasets. Compared to
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TABLE 4. Performance comparison among different fusion methods on different datasets.

Integration method LFW CPLFW CALFW VGG2_FP CFP_FF CFP_FP
Concat 99.57% 91.62% 95.62% 94.66% 99.61% 97.17%
Add 99.65% 91.57% 95.53% 94.19% 99.56% 96.85%
ASFF 99.68% 92.17% 96.07% 94.66% 99.76% 97.16%
TABLE 5. Performance comparison among different CNNs models on different datasets.

MODEL LFW CPLFW CALFW VGG2_FP CFP_FF CFP_FP PARAM FLOPs
DenseNet [36] 99.22% 86.84% 93.03% 92.70% 99.18% 94.44% 66.37TM 8.52G
ResNet-50 [37] 99.64% 90.57% 95.28% 92.84% 99.63% 94.94% 40.29 M 2.19G

EfficientNet [38] 99.53% 90.92% 95.78% 94.32% 99.5% 96.32% 6.58 M 1.14G
MobieNet-V2 [11] 99.55% 89.43% 95.34% 91.58% 99.48% 93.17% 226 M 0.43G
MobileFaceNet [2] 99.53% 90.34% 95.42% 92.49% 99.55% 95.26% 1.0M 0.45G

MobileFaceNetV1 [35] 99.40% 87.17% 94.47% - 99.50% 95.80% - -
ShuffleFaceNet [39] 99.70% 88.50% 95.05% - 99.60% 96.30% 2.60M 0.58G
VarGFaceNet [40] 99.70% 88.55% 95.15% - 99.50% 96.90% - -
ProxylessFaceNAS [35] 99.20% 84.17% 92.55% - 98.80% 94.70% - -
ELANet 99.68% 92.17% 96.07% 94.66% 99.76% 97.16% 1.61M 0.55G
TABLE 6. Performance evaluation on the cross-pose datasets. TABLE 7. Performance evaluation on the cross-age dataset.
Method CFP_FP CPLFW Method CALFW
PIM [41] 93.10% - VGGFace [46] 86.50%
DA-GAN [42] 95.96% - CCL [47] 91.15%
p-CNN [43] 94.39% - AFJT-CNN [48] 85.20%
NoiseFace [44] 96.40% - LS-CNN [6] 92.00%
LS-CNN [6] 97.17% 88.03% VGGFace2, ELANET 93.95%
VGGFace2, ELANET 97.14% 92.23% MS1MV3, VGG-Face2 [26] 90.57%
MS1MV3, ResNet50, Arcface [3] 95.60% - MS-Celeb-1M, HDPA [8] 95.90%
MS1MV3, ResNet100, Arcface [3] 98.50% 92.08% MS1MV3, ResNet100, Arcface [3] 95.45%
MS-Celeb-1M, HDPA [8] - 92.35% MSIMV3, ELANET 96.07%
DDL [45] 98.50% 93.43%
MS1MV3, ELANET 97.16% 92.17% TABLE 8. Performance evaluation on the 1JB-B dataset and 1JB-C dataset.

the large and complex network LS-CNN, ELANet obtains
similar performance with few parameters and computational
effort. Compared to state-of-the-art methods, ELANet model
achieves sub-optimal performance with a lightweight model;
compared to lightweight face recognition models proposed in
recent years, ELANet model outperforms them on cross-pose
datasets.

F. EXPERIMENTS ON CROSS-AGE

In the cross-age experiments, MSIMV3 and VGGFace2
datasets are used as training data. ELANet is compared with
other state-of-the-art methods on the CALFW dataset in
Table 7.

VGGFace [46] and CCL [47] are trained by using advanced
loss function. VGGFace is trained using triplet loss. CCL
disperses the face features into coordinate space and divides
the classification vectors on the hypersphere. AFJT-CNN [48]
alternately trains fusion network and combines factor model.
The proposed ELANet performs far better than these methods
on cross-age datasets. Compared to LS-CNN, the EFA
module proposed in ELANET is able to focus on more
discriminative face regions. HDPA achieves state-of-the-art
performance through multivariate guided learning, but its
overall network is so complex that it is difficult to implement
in embedded or mobile devices. In contrast, ELANet utilizes
fewer parameters and easy and effective method to achieve
optimal performance.
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Method 1JB-B JB-C

ResNet50 [26] 0.784 0.825
SeNet50 [26] 0.80 00.840

MN-v [49] 0.818 0.852

MN-vc [49] 0.831 0.862
ResNet50+DCN(Kpts) [50] 0.850 0.867
ResNet50+DCN(Divs) [50] 0.841 0.880
SeNet50+DCN(Kpts) [50] 0.846 0.874
SeNet50+DCN(Kpts) [50] 0.849 0.885
VGG2, ResNet50, Arcface [3] 0.898 0.921
MS1MV3, ResNet50, Araface [3] 0917 0.937
ResNet100, Araface [3] 0.942 0.956
DDL [45] 0.907 0.931
MS1MV3, MobileNetv2 [11] 0.903 0.925
MS1MV3, MobilefaceNet [2] 0.909 0.930
MS1MV3, VarGFaceNet [40] 0.929 0.947
MS1MV3, ShuffleFaceNet [39] 0.923 0.943
MS1MV3, ELANet 0.927 0.944

G. EXPERIMENTS ON 1JB-B/C

A performance comparison between the ELANet model and
several other methods on the IJB-B/C datasets is given in
this section. The results of the ResNet50 [37], MN-v [49],
MN-vc [49] and DCN [50] models are obtained from [3].
We use Arcface [3] to conduct the same experiments.

This experiment compares the TAR(@FAR = 1e—4) of the
ELANet with those of the state-of-the-art models, as shown
in Table 8. With the exception of VarGFaceNet, ELANet
achieves slightly better performance on IJB-B/C than any of
the other lightweight face recognition models. The ELANet
has similar performance to the complex network model on
IJB-B/C except for ResNet100. This illustrates the necessity
of introducing local features and multilayer and multi-scale
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FIGURE 8. ROC curves on the 1)B-B and 1JB-C datasets.

information to face recognition. It also demonstrates that
introducing different layers of information to jointly extract
features is useful for face recognition. In Fig. 8, we show
the receiver operating characteristic (ROC) curves of the
proposed ELANet on the IJB-B dataset and the IJB-C dataset.

V. CONCLUSION

An effective approach is proposed to address the challenge
regarding the impacts of poses and ages on face recog-
nition performance. A new lightweight network structure
is proposed based on MobilefaceNet that can learn rich
multi-scale, multilevel features as well as discriminative
local features; it provides different for different channels
and spatial features and joins different levels of features
together for face recognition. The proposed ELANet model
can generalize across multiple datasets and achieve high
performance with fewer parameters and computations than
that required by other approaches, making it ideal for
deployment in mobile and embedded devices. Experiments
show that the ELANet achieves significantly improved model
performance over some other state-of-the-art lightweight
networks. The ELANet can achieve similar performance to
that of a complex model and even better performance on
some test sets. In the future, the ELANet will be tested in
real deployments in mobile or embedded devices to further
optimize the performance of the model.
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