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The Resolution of the Identity second-order Møller-Plesset perturbation theory (RI-MP2) method
is implemented within the linear-scaling Divide-Expand-Consolidate (DEC) framework. In a DEC
calculation, the full molecular correlated calculation is replaced by a set of independent fragment
calculations each using a subset of the total orbital space. The number of independent fragment calcu-
lations scales linearly with the system size, rendering the method linear-scaling and massively paral-
lel. The DEC-RI-MP2 method can be viewed as an approximation to the DEC-MP2 method where the
RI approximation is utilized in each fragment calculation. The individual fragment calculations scale
with the fifth power of the fragment size for both methods. However, the DEC-RI-MP2 method has a
reduced prefactor compared to DEC-MP2 and is well-suited for implementation on massively parallel
supercomputers, as demonstrated by test calculations on a set of medium-sized molecules. The DEC
error control ensures that the standard RI-MP2 energy can be obtained to the predefined precision. The
errors associated with the RI and DEC approximations are compared, and it is shown that the DEC-
RI-MP2 method can be applied to systems far beyond the ones that can be treated with a conventional
RI-MP2 implementation. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940732]

I. INTRODUCTION

The resolution-of-the-identity (RI) approximation1–5 has
emerged as an important tool to reduce the computational
cost of second-order Møller-Plesset perturbation theory6

(MP2) and related methods. The RI approximation was
first applied to MP2 by Feyereisen et al.,7 and subsequently
implemented by different groups.8–18 For reviews, the reader is
referred to Refs. 19 and 20. In RI-MP2, also denoted density-
fitting MP2 (DF-MP2), the four-center electron repulsion
integrals (ERIs) are decomposed into a sum involving only
two-center and three-center ERIs. The RI technique reduces
the computational cost as well as the required memory
considerably by removing the linear dependencies of the
original atomic orbital (AO) product basis while maintaining
reliable accuracies for practical chemical applications. The
development of optimized auxiliary basis sets21–25 has reduced
the error introduced by the RI approximation, and the
error is often judged to be so small that RI-MP2 is
the recommended method for calculating energies of MP2
quality. It should also be noted that MP2 with Cholesky
decomposition of the ERIs is in many ways similar to
RI-MP2.26–28

For large molecular systems, conventional RI-MP2
implementations encounter a scaling wall, both memory- and
time-wise. The correlation effects described by the RI-MP2

a)Electronic mail: pablo.baudin@chem.au.dk
b)Electronic mail: tkjaergaard@chem.au.dk

method are local, and the steep scaling of the method with the
system size — O(N5) where N is a measure of the system
size — is therefore unphysical. In the last decades, many
groups have been developing alternative implementations of
RI-MP2 in order to reduce the fifth order scaling using the
locality of correlation effects (see Ref. 20 for a review of new
developments within MP2 theory). One approach consists
in compressing the number of wave function parameters
required to describe the correlation energy by using projected
atomic orbitals (PAOs) and pair natural orbitals (PNOs)12,29

or orbital specific virtual orbitals (OSVs).30 Ochsenfeld
and co-workers have developed an AO-MP2 algorithm,
where the orbital energy denominator is eliminated from
the conventional molecular orbital (MO)-based MP2 energy
expression by means of a Laplace transformation31,32 to
obtain a formulation in terms of AO integrals. Since AOs
are local by construction, efficient integral screening may
be performed.33–35 Pioneer work in that direction was done
by Ayala and Scuseria.36 Another commonly used approach
for carrying out approximations in a MP2 calculation relies
on a physical fragmentation of the molecular system and
performing standard canonical calculations for each of the
fragments before collecting the information for the full
system. This category of methods includes the divide and
conquer (DC),37 the Fragment Molecular Orbital (FMO)
methods,38–41 the Molecular Tailoring Approach (MTA),42

and the systematic molecular fragmentation approach.43

Yet another category of methods for obtaining linear-
scaling MP2 energies relies on a partitioning of the orbital
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space rather than on a physical fragmentation of the
molecule. This category contains the cluster in a molecule
(CIM) method,44,45 the incremental scheme,46 and our recently
proposed local correlation method, the Divide-Expand-
Consolidate (DEC) scheme.47–52 In a DEC calculation, the
correlation energy is expressed in terms of local molecular
orbitals,53–64 and the full molecular calculation is replaced
by a set of independent fragment calculations. The number
of fragments scales linearly with the system size, rendering
the method linear-scaling and massively parallel. The linear-
scaling and parallel performance of the DEC-MP2 model has
been demonstrated recently.65

In this paper, the DEC scheme is applied in connection
with the RI-MP2 method. The overall linear-scaling properties
of the DEC-MP2 scheme are not affected when the RI approx-
imation is applied in the fragment calculations. However,
the DEC-RI-MP2 method has a reduced computational cost
as well as reduced memory requirements compared to the
DEC-MP2 method. The resulting DEC-RI-MP2 method thus
provides an efficient linear-scaling and massively parallel
algorithm for the calculation of MP2 energies with rigorous
error control.

In a DEC-MP2 calculation, the error introduced compared
to a canonical MP2 calculation is controlled by the fragment
optimization threshold (FOT).47,48 The canonical MP2 result
is thus systematically approached when the FOT is tightened.
Compared to the canonical MP2 energy, the DEC-RI-MP2
model contains an intrinsic DEC error governed by the FOT
as well as an error associated with the RI approximation.
In this work, we compare these two errors to analyze the
performance of the DEC-RI-MP2 model. We also show that
the DEC-RI-MP2 algorithm can be applied to systems that are
much larger than the ones that can be treated using a standard
RI-MP2 implementation.

The paper is organized as follows. In Section II, we
present the basic equations of the DEC model and introduce
the RI approximation. In Section III, we present numerical
results and perform a detailed error and performance analysis
for the DEC-RI-MP2 model. The parallel performance is
discussed in Section IV, while Section V contains some
conclusive remarks.

II. THEORY

A. The divide-expand-consolidate energy expression

The MP2 correlation energy EMP2
corr for a closed shell

molecule may be expressed as66

EMP2
corr =



ijab

tab
ij

�

2gaibj − gbiaj

�

, (1)

where tab
ij

are the MP2 doubles amplitudes. In this article, the
indices i, j (a,b) refer to occupied (virtual) localized real HF
orbitals, and gaibj is a 4-center ERI in the local molecular
orbital (MO) basis using the Mulliken notation. Assigning
each orbital to an atomic site (given by the nuclear positions
P,Q, . . .), the summation over two occupied orbitals in Eq. (1)
may be replaced by a summation over atomic sites and pair

sites,

EMP2
corr =



P

EP +


P>Q

∆EPQ. (2)

The atomic fragment energy EP and the pair interaction energy
∆EPQ are defined according to

EP =


ij∈P



ab

tab
ij (2gaibj − gbiaj), (3)

∆EPQ =


i∈P

j∈Q



ab

tab
ij (2gaibj − gbiaj) +



i∈Q

j∈P



ab

tab
ij (2gaibj − gbiaj),

(4)

where P denotes the set of occupied orbitals assigned to
atomic site P.

Using a local HF orbital basis, the free summations over
virtual orbitals ab in the atomic fragment energy EP may be
restricted. This is justified by the fact that the integrals gaibj

(with i j ∈ P) vanish for virtual orbitals spatially far from the
atomic site P. We introduce the notation [P] for the set of
virtual orbitals spatially close to atomic site P in the sense that
the integrals gaibj are non-vanishing (to the desired precision),
and the virtual summations in Eq. (3) may thus be restricted
to the [P] space. A similar replacement leading to the union
of orbital spaces is introduced for the pair interaction energy
∆EPQ,48 and Eqs. (3) and (4) may thus be written as

EP =


i j ∈P



ab∈[P]

tab
ij (2gaibj − gbiaj), (5)

∆EPQ =


ab∈[P]∪[Q]

(



i∈P

j∈Q

tab
ij (2gaibj − gbiaj)

+


i∈Q

j∈P

tab
ij (2gaibj − gbiaj)

)

. (6)

The details on how each local molecular orbital is assigned
to atomic sites and how the [P] space is obtained is not the
subject of this paper, and the reader is referred to Ref. 48. Here
we just note that the [P] space is determined in a black box
manner such that the error of EP is smaller than the FOT, which
is the central threshold that defines the precision of a DEC
calculation. Naturally, in the limit where the space [P] includes
all virtual orbitals for all atomic sites P, the conventional
MP2 correlation energy is recovered. The approximations
introduced in Eqs. (5) and (6) are summarized in Section II C
along with other approximations of the DEC-RI-MP2 scheme.

The set of orbitals used to evaluate the fragment energy
is denoted the energy orbital space (EOS), i.e., for atomic
fragment P in Eq. (5) this corresponds to P ∪ [P]. In order to
describe coupling effects between the amplitudes in the EOS
and the amplitudes outside the EOS, the MP2 equations
(Eq. (7)) have to be solved in an extended space, and
[P] ∪ [P] denoted the amplitude orbital space (AOS), where
[P] includes P as well as additional occupied orbitals involved
in the coupling mechanism. As for the [P] space, the practical
determination of [P] is described in Ref. 48.

Equation (5) requires amplitudes and integrals in the
local basis. However, in practice, the solution of the amplitude
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equation in the AOS is simplified by transforming the subset
of localized HF orbitals to a pseudocanonical basis,67 which
is defined by diagonalizing the local Fock matrix blocks
Fij (ij ∈ [P]) and Fab (ab ∈ [P]). The amplitudes are then
constructed directly in a pseudocanonical basis according to

tAB
IJ = −gAIBJ(ϵ A + ϵB − ϵ I − ϵ J)

−1, (7)

where I, J (A,B) are occupied (virtual) MO indices in the
pseudocanonical basis, and ϵ I , ϵ J, ϵ A, and ϵB are the diagonal
Fock matrix elements in the pseudocanonical basis. The
amplitudes are later transformed to the local basis where
the energy is evaluated using Eq. (5). This transformation is
necessary since the occupied summation restriction in Eq. (5)
is only defined in the local basis.

The DEC algorithm described above scales quadratically
with system size due to the number of pair calculations
in Eq. (2). However, the pair energies describe dispersion
interactions decaying with the inverse pair distance to the
sixth power. Distant pairs with small energy contributions
may therefore be neglected without affecting the precision of
the total correlation energy, which already contains an error of
size FOT for each atomic fragment. In the simplest approach,
a distance-based cutoff can be used to determine which pairs
to include.48 A more elaborate scheme based on approximate
pair energy contributions will be described in a forthcoming
paper.

The DEC-MP2 algorithm may be summarized as follows:

1. Determine localized occupied and virtual HF molecular
orbitals.

2. For each atomic fragment P, determine the optimized
orbital spaces [P] and [P] (the AOS) as detailed in Ref. 48.
This step also provides all atomic fragment energies EP.
Each fragment calculation is carried out using the following
procedure:

(a) Transform the local HF orbitals of the AOS into a
pseudocanonical basis in order to generate the doubles
amplitudes using Eq. (7).

(b) Transform the integrals and amplitudes back to the
local HF basis and extract their EOS contributions.

(c) Evaluate the fragment energy using Eq. (5).

3. Pair screening: Use pair energy estimates to screen
away pairs with negligible contributions (detailed in a

forthcoming paper) to get a list of the important pair
fragments.

4. For each important pair fragment PQ, calculate ∆EPQ

according to steps 2(a)-2(c) above, where Eq. (6) is used
in step 2(c).

5. Add up the fragment energies to obtain the total DEC-MP2
energy using Eq. (2).

B. The resolution of the identity
within a DEC framework

The resolution of the identity can be expressed
in its standard V approximation5 using the symmetric
decomposition,68

gaibj ≈



αβ

(ai|α)(α|β)−1(β |bj),

gaibj ≈



αβγ

(ai|α)(α|γ)−1/2(γ |β)−1/2(β |bj) =


γ

C
γ

ai
C
γ

bj
, (8)

where (ai|α) is a 3-center ERI, (α|β) is a 2-center ERI, and
C
γ

ai
=


α(ai|α)(α|γ)−1/2. We let {α, β,γ} refer to auxiliary
AO indices, while {µ, ν} are used for standard AO indices.
We can directly apply the DEC-MP2 algorithm summarized
in Section II A to the DEC-RI-MP2 model by calculating
2-electron integrals using Eq. (8).

Algorithm 1 shows in detail how the EOS amplitudes
and EOS integrals entering Eqs. (5) and (6) are determined
in the DEC-RI-MP2 method. Here, the i, j,a,b indices refer
to localized HF orbitals in the EOS, while the I, J, A,B

indices label pseudocanonical orbitals in the AOS. We use
Cµ I (CµA) to denote elements of the transformation matrix
from the AOs to the occupied (virtual) pseudocanonical
orbitals, while UI i (UAa) represents a transformation from the
occupied (virtual) pseudocanonical orbitals to the occupied
(virtual) local orbitals. The cost of the fragment calculation
is determined by the number of occupied MOs in the EOS
(OEOS), occupied MOs in the AOS (OAOS), virtual MOs in
the AOS (VAOS), standard AOs (NAO,AOS), and auxiliary AOs
(Naux,AOS). Note that these dimensions all refer to a fragment
(EOS or AOS subscript), not the full molecular system. The
determination of NAO,AOS and Naux,AOS is discussed below.
The scaling of each step is shown in Algorithm 1.

ALGORITHM 1. DEC-RI-MP2 algorithm for calculating EOS amplitudes tab
ij

and EOS integrals gaibj. The
scaling with the fragment size of the time-dominating step is given in parentheses for each term. Bold: Done
by local master using OpenMP parallelization. Normal font: MPI-parallelized across n nodes, where each MPI
process utilizes OpenMP parallelization. The notation is described in the text.

1 Calculate (α |µν) (Naux,AOSN
2
AO,AOS)

2 Calculate (α ||β) (N2
aux,AOS

)

3 Construct (α ||β)−
1
2 (N3

aux,AOS
)

4 (β |AI)=


µCµA

�


νCν I(β |µν)
�

(Naux,AOSN
2
AO,AOSOAOS)

5 Cα
AI
=


β(α |β)
−

1
2 (β |AI) (N 2

aux,AOSVAOSOAOS)

6 tAB
IJ
=


α

Cα
AI
Cα

BJ
ϵ I+ϵJ−ϵA−ϵB

(Naux,AOSV
2
AOSO

2
AOS)

7 tab
ij
=


AUaA

(



BUbB

�


IUiI

�


JUjJt
AB
IJ

��

)

(OEOSV
2
AOSO

2
AOS)

8 Cα
ai
=


AUaA

�


IUi IC
α
AI

�

(Naux,AOSVAOSOAOS)
9 gaibj=



αC
α
ai
Cα

bj
(Naux,AOSV

2
AOS)
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The memory requirements of the standard RI-MP2
method are very small, since the method does not require the
storage of the full doubles amplitudes, but only requires the
fitting coefficients (N2

auxVO) for the full molecular system.
However, the DEC-RI-MP2 method additionally requires
a transformation from the pseudocanonical basis to the
local basis. In practice, pseudocanonical amplitudes tAB

IJ
are

generated and immediately transformed to the local EOS (first
transformation in step 7 in Algorithm 1), tAB

IJ
→ tAB

iJ
, and the

tAB
iJ

amplitudes are stored before they are fully transformed
to the local basis (tAB

iJ
→ tab

ij
). The memory requirements are

therefore V 2
AOSOAOSOEOS in addition to the N2

aux,AOSVAOSOAOS

requirements for the fitting coefficients. Thus, although the
memory requirements of the DEC-RI-MP2 scheme are slightly
more involved than for the conventional RI-MP2 method, the
storage of doubles amplitudes with four AOS indices (tAB

IJ
) is

avoided in the DEC-RI-MP2 scheme, which also does not use
any I/O. We also note that, since the doubles amplitudes are
stored in the local basis (tab

ij
), it is also possible to construct the

MP2 density, molecular gradient, electrostatic potential, etc.,
within the DEC framework.49,51,69 Once the EOS amplitudes
and EOS integrals have been determined, the actual evaluation
of the fragment energy (Eq. (5) or (6)) is a minor task, which
is not shown in Algorithm 1.

The parallelization of the DEC-RI-MP2 scheme is
discussed in detail in Section IV. For now, we just note
that each fragment calculation is parallelized over n compute
nodes, where one of the nodes is assigned to be the local
master. In Algorithm 1, the steps that are performed only by
the local master are shown in bold, while the steps which
are parallelized across the n nodes using the message passing
interface (MPI) are shown in regular font.

The number of occupied (OAOS) and virtual (VAOS) orbitals
assigned to a fragment is defined by the fragment optimization
procedure.48 To determine the number of AOs in a fragment,
NAO,AOS, we need to consider the expansion of a localized MO
assigned to atomic site P, φP

r , in terms of atomic orbitals χµ

and MO coefficients cPµr ,

φP
r =


µ

χµcPµr , (9)

where r is a general MO label which may refer to either an
occupied or a virtual orbital. Even though the bulk of the
localized MO φP

r is confined to a small volume of space, the
localized MO has small tail coefficients far from P. To reduce
the number of 4-center AO integrals to be determined, we
therefore introduce an approximate MO φ̃P

r ,

φ̃P
r =



µ∈{P}

χµc̃Pµr , (10)

where {P} is the so-called atomic extent (AE) which is a
subset of atomic orbitals close to atomic site P, and the
c̃Pµr coefficients are determined such that φ̃P

r resembles φP
r

as much as possible in a least squares sense. The practical
determination of {P} and c̃Pµr is detailed in Ref. 48. The
number of AOs (NAO,AOS) thus corresponds to the number of
atomic basis functions included in {P}.

Concerning the set of auxiliary AOs used in the RI
approximation, we investigate two choices:

A: Include the full auxiliary AO basis set in all fragment
calculations.

B: Include auxiliary AO basis functions on atoms of the
atomic extent (e.g., for atomic fragment P, include
auxiliary AOs on atoms in the {P} space, see Eq. (10)).

Option A is only interesting for analysis purposes, since
it would destroy the linear-scaling of the DEC-RI-MP2
algorithm (Naux,AOS in Algorithm 1 would be the full molecular
system). Option B is the practical choice and is appealing due
to its simplicity and since it ensures a linear-scaling DEC-
RI-MP2 algorithm. Naturally, both options will lead to the
full RI-MP2 result in the limit where the FOT approaches
zero. The approximation associated with option B is expected
to be small, since, for an atomic fragment P, only ERIs gaibj

(i, j ∈ P), where the local virtual orbitals a and b are far
from P, will be poorly described using the RI approximation,
and such integrals have very small energy contributions.
In essence, option B corresponds to a local domain fitting
procedure, and local domain fitting has previously been used
successfully for MP2.12,70,71 Options A and B are compared
in Section III C.

C. DEC-RI-MP2 approximations

In order to investigate the efficiency of the DEC-RI-MP2
model, it is convenient to summarize the approximations
introduced so far:

Approx AOS: The amplitude equations are solved in
the restricted AOS, and the virtual orbital
summations are restricted in Eqs. (5) and (6).

Approx AE: The orbitals in the AOS are spanned by the
restricted set of AOs in the atomic extent.

Approx PAIR: Distant pair interaction energies are ne-
glected.

These approximations are present for all wave function
models within the DEC framework, while the following two
approximations arise from the introduction of the resolution
of the identity:

Approx AAE: The auxiliary AOs are restricted to the atomic
extent (option B).

Approx RI: The RI approximation.

Approx AE, Approx AOS, Approx PAIR, and Approx

AAE are DEC specific, while Approx RI represents the
intrinsic RI error. When the FOT is tightened, the errors
associated with Approx AE, Approx AOS, Approx PAIR,
and Approx AAE all decrease. However, the RI error persists.
Thus, as the FOT approaches zero, the DEC-RI-MP2 energy
approaches the RI-MP2 energy, not the canonical MP2 energy.
In Section III B, we investigate the convergence of the DEC-
RI-MP2 with the FOT and compare the DEC specific errors
to the intrinsic RI error.
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III. NUMERICAL RESULTS

A. Computational details and molecular systems

In order to investigate the performance of the DEC-
RI-MP2 algorithm both in terms of errors in the total
correlation energy and in terms of timings, we have selected a
set of medium to large molecules (see supplementary material
for the molecular geometries72). All calculations have been
performed using Dunning’s correlation consistent cc-pVTZ
basis set73 and the cc-pVTZ-RI auxiliary basis set.23,74,75 The
considered molecular systems are as follows:

(a) Coronene (C24H12): 78 occupied orbitals, 810 virtual
orbitals, 888 atomic basis functions, 2304 auxiliary basis
functions.

(b) Tetrahexacontanoic acid (C64O2H128): 264 occupied
orbitals, 3508 virtual orbitals, 3773 atomic basis functions,
9186 auxiliary basis functions.

(c) Heptapeptide (Asn-Phe-Gly-Ala-Ile-Leu-Ser): 208 occu-
pied orbitals, 2240 virtual orbitals, 2448 atomic basis
functions, 6155 auxiliary basis functions.

(d) Valinomycin (C54H90N6O18): 300 occupied orbitals, 3300
virtual orbitals, 3600 atomic basis functions, 9018
auxiliary basis functions.

These molecules have rather different chemical struc-
tures, including a delocalized aromatic electronic structure
(coronene), a highly one-dimensional molecule (tetrahexa-
contanoic acid), and a more compact structure (valinomycin).
Furthermore, all considered molecules are rather large, since
the DEC-RI-MP2 scheme is only useful for large molecular
systems, as we discuss will in detail in Section III D.

All calculations have been performed using a local version
of the LSD program, and the methods used in this paper
are part of the kernel of the D2016 suite.76,77

B. The DEC correlation energy

In this section, we want to study the effect of the
different approximations (RI and DEC) on the canonical
MP2 correlation energy. We therefore introduce the following
notations to quantify energy errors:

δRI =
�

EDEC−RI−MP2
corr − EDEC−MP2

corr

�

, (11)

δDEC =
�

EDEC−RI−MP2
corr − ERI−MP2

corr

�

, (12)

δDEC-RI =
�

EDEC−RI−MP2
corr − EMP2

corr

�

, (13)

where δRI denote the error associated with the RI
approximation, δDEC the error associated with the DEC
scheme, and δDEC-RI the error associated with both RI and
DEC. We also introduce the DEC recovery of the canonical
RI-MP2 correlation energy,

∆DEC =
EDEC−RI−MP2

corr

ERI−MP2
corr

. (14)

The error associated with both RI and DEC (δDEC-RI) are
only reported for the coronene system as the other systems
were too large to perform a canonical MP2 calculation of
triple zeta quality. Furthermore, the RI errors (δRI) are not
reported for the heptapeptide and the valinomycin systems
(the DEC-MP2 calculations can in principle be performed,
but for these systems they are very expensive for tight FOT
values).

In Tables I–IV, we examine the convergence of the
total correlation energy as the FOT is tightened. As for
the DEC-MP2 scheme, the error δDEC in the total energy
decreases by roughly an order of magnitude when decreasing
the FOT by an order of magnitude, demonstrating that the
combined DEC error associated with Approx AE, Approx

AOS, Approx PAIR, and Approx AAE systematically
decreases with the FOT. Thus, although in principle there
are several approximations in DEC, they are all controlled by
one threshold.

From Table I, we note that the RI error (δRI) of the
DEC-RI-MP2 calculation converges to the error associated
with the RI approximation for the canonical calculations on
coronene (5.55 · 10−4 a.u.) when tightening the FOT. The
same observation can be made for the carbon chain in Table II
even though the exact number could not be calculated. It is
important to realize that at approximately FOT = 10−5 a.u.,
the DEC-RI-MP2 calculation is dominated by the RI error
(Approx RI) and further tightening of the FOT is futile. We
also note that the DEC-RI-MP2 model provides results of
similar accuracy for the different systems under consideration
in Tables I–IV, i.e., independently of the spatial structure (1,
2, or 3-dimensional) and the chemical structure (conjugated
or not conjugated system).

C. Selection of the auxiliary basis
functions (Approx AAE)

Having demonstrated the general convergence of the
DEC-RI-MP2 energy with the FOT, we now examine Approx

AAE in more detail. In Table V, we compare option A (include

TABLE I. Total errors (δDEC, δRI, and δDEC-RI, a.u.) and recovery (∆DEC, %) in the total correlation energy
of the coronene molecule for different values of the FOT (a.u.). Speed up of DEC-RI-MP2 with respect to
canonical RI-MP2 is also reported.

FOT δDEC δRI δDEC-RI ∆DEC Speed up

1.0 ·10−3 7.576 ·10−2 5.255 ·10−4 7.632 ·10−2 98.153 0.127
1.0 ·10−4 6.475 ·10−3 5.598 ·10−4 7.032 ·10−3 99.842 0.045
1.0 ·10−5 4.430 ·10−4 5.703 ·10−4 1.000 ·10−3 99.989 0.029
1.0 ·10−6 2.447 ·10−5 5.555 ·10−4 5.816 ·10−4 99.999 0.023
1.0 ·10−7 8.749 ·10−7 5.555 ·10−4 5.580 ·10−4 100.00 0.022
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TABLE II. Total errors (δDEC and δRI, a.u.) and recovery (∆DEC, %) in the
total correlation energy of the tetrahexacontanoic acid for different values of
the FOT (a.u.). Speed up of DEC-RI-MP2 with respect to canonical RI-MP2
is also reported.

FOT δDEC δRI ∆DEC Speed up

1.0 ·10−3 1.285 ·10−1 1.823 ·10−3 98.986 25.8
5.0 ·10−4 6.492 ·10−2 2.416 ·10−3 99.488 24.8
1.0 ·10−4 1.414 ·10−2 2.066 ·10−3 99.888 17.2
5.0 ·10−5 8.393 ·10−3 1.918 ·10−3 99.934 14.6
1.0 ·10−5 1.821 ·10−3 2.050 ·10−3 99.986 6.7
5.0 ·10−6 8.520 ·10−4 2.051 ·10−3 99.993 3.7

all auxiliary functions) and option B (include auxiliary
functions associated with atomic centers in the atomic extent
{P}) for tetrahexacontanoic acid. The difference between
options A and B (δB−A in Table V) should be compared with
the DEC error for this molecule in Table II. It is clear that the
error related to option B is minuscule compared to the error
associated with the DEC partitioning scheme, and option B

is therefore well-justified. Note that option B is the practical
implementation used for all other DEC-RI-MP2 calculations
reported in this paper.

The numbers in Table V indicate that it is in fact
possible to further reduce the size of the auxiliary space.
For the FOT = 10−5 a.u. calculation, the largest and smallest
fitting domains contained 3197 and 1147 auxiliary functions,
respectively. These fitting domains are quite large compared to
what has typically been used in the literature,12,14,70,71,78,79 and
the δB−A numbers in Table V strongly support the conclusion
that smaller auxiliary domains can be used without affecting
the precision. In the present implementation, we have used
option B due to the simplicity of the approach, but we are
currently investigating alternative choices leading to smaller
auxiliary domains. Possible options include the use of Natural
Auxiliary Functions (NAFs),80 or 3 center integral screening
techniques such as the SQVℓ81 or Löwdin charges.12

D. Performance analysis

The overall goal of DEC is to provide a framework to
calculate energies and properties at the CC level of theory for
molecular systems where a conventional implementation hits
a scaling wall. Furthermore, the DEC scheme is designed to
utilize the thousands of computing cores available on modern
supercomputers. One of the consequences of the massively
parallel character of DEC is a large amount of recalculations,
which makes it vastly inefficient for small molecular systems

TABLE III. Total errors (δDEC, a.u.) and recovery (∆DEC, %) in the total
correlation energy of the heptapeptide for different values of the FOT (a.u.).

FOT δDEC ∆DEC

1.0 ·10−3 1.162 ·10−1 98.944
1.0 ·10−4 1.455 ·10−2 99.868
1.0 ·10−5 1.575 ·10−3 99.986
1.0 ·10−6 1.606 ·10−4 99.999

TABLE IV. Total errors (δDEC, a.u.) and recovery (∆DEC, %) in the total
correlation energy of the valinomycin molecule for different values of the
FOT (a.u.).

FOT δDEC ∆DEC

1.0 ·10−3 2.349 ·10−1 98.512
5.0 ·10−4 1.205 ·10−1 99.237
1.0 ·10−4 3.064 ·10−2 99.806
5.0 ·10−5 1.774 ·10−2 99.888

compared to a conventional implementation. In this section
we analyze the general performance of the DEC-RI-MP2
algorithm and try to give simple rule of thumb for the general
user to choose between DEC or conventional implementations
to treat a given problem. We have therefore reported speed
ups of the DEC-RI-MP2 simulations with respect to the
canonical RI-MP2 calculations for both coronene and the
tetrahexacontanoic acid (see Tables I and II).

The calculations on coronene were performed on the Eos
cluster at Oak Ridge National Laboratory (ORNL).82 The
speed ups given in Table I show that the coronene molecule
is clearly too small to demonstrate the usefulness of the
DEC algorithm, i.e., the crossover between a conventional
implementation and the DEC scheme occurs for a system
that is larger than coronene. Indeed, in the case of a small
molecular system and a tight FOT value, the DEC algorithm is
basically repeating a conventional calculation using (almost)
the full orbital space for each fragment, and consequently no
speed ups are observed in Table I. For coronene, there are 300
fragments if all pair fragments are included. In the limit where
the FOT approaches zero, a DEC calculation would therefore
be 300 times slower than a canonical RI-MP2 calculation.
However, because the fragment calculations are completely
independent, it is always possible to bring down the time to
solution of a DEC calculation by using many nodes.

For the tetrahexacontanoic acid (Table II), the calculations
were performed using our local cluster.83 While using DEC
on the coronene system is clearly unfavorable, the situation is
very different for the highly linear tetrahexacontanoic acid. It
is seen that even without using the massively parallel feature
of DEC (all independent calculations are done one after an
other), the DEC-RI-MP2 simulation provides shorter time to
solution than the standard method for all FOTs in Table II.
We also note that at approximately FOT = 10−5 a.u., the
DEC-RI-MP2 calculation starts to be dominated by the RI
error, and the DEC-RI-MP2 calculation is still 6.7 times faster
than the conventional RI-MP2 calculation.

TABLE V. Comparison of options A and B concerning the choice of auxil-
iary basis functions for tetrahexacontanoic acid using a cc-pVTZ(cc-pVTZ-
RI) basis.

FOT δB−A
a

1.0 ·10−3 4.1 ·10−6

1.0 ·10−4 6.1 ·10−7

1.0 ·10−5 5.3 ·10−8

aDifference in total correlation energy between options A and B.
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FIG. 1. Comparison of the linear-scaling DEC-RI-MP2 method and the N 5

scaling standard canonical RI-MP2 method for a set of alkane chains of
increasing length. The cc-pVTZ(cc-pVTZ-RI) basis was employed.83

In order to further illustrate the crossover between
conventional and DEC implementations as well as to
demonstrate the linear-scaling behavior of the DEC-RI-
MP2 code, we have performed DEC-RI-MP2/cc-pVTZ(cc-
pVTZ-RI) calculations on alkane chains of increasing sizes,
from C16H34 (956 basis functions) to C160H322 (9308 basis
functions). The results are given in Figure 1 for calculations
performed using our local cluster.83 It is seen that the DEC-
RI-MP2 method indeed is scaling linearly with the system
size (N), while the standard RI-MP2 method scales as N5.
Obviously, tightening the FOT increases the prefactor, but
it does not change the overall linear-scaling behavior of the
method. Of course, the linear-scaling behavior emerges quite
early for these highly linear systems, while 3-dimensional
systems would enter the linear-scaling regime for larger
system sizes.

The timings reported in Tables I and II and Figure 1
should guide the general user to choose between the
conventional and DEC methods for RI-MP2 calculations.
For highly linear systems, the DEC algorithm in general
outperforms the conventional implementation. For more
complicated structures, the conventional algorithm is to be
preferred if it is at all feasible. However, when the canonical
implementation hits the scaling wall, the DEC scheme is still
feasible and becomes the method of choice. In particular, if
many compute nodes are available, the DEC algorithm always
provides a very short time to solution.

IV. PARALLELIZATION OF THE DEC SCHEME

In this section, we summarize the DEC parallelization
strategy65 and provide numerical results to investigate the
parallel performance of the DEC-RI-MP2 scheme. As a test
system, we use a cluster of 200 water molecules, (H2O)200,
and the standard AO and auxiliary basis sets, cc-pVTZ and cc-
pVTZ-RI, respectively. The calculations have been performed
using a FOT = 10−4 a.u and the Titan supercomputing system
at ORNL.84 In DEC, the different fragment calculations may
be run in parallel because they are independent of each other.

We refer to this as coarse grained parallelization, while
the parallelization of the individual fragment calculations is
referred to as medium grained parallelization (Algorithm 1).
The coarse grained parallelization is common to all wave
function models (RI-MP2, MP2, CCSD, CCSD(T), . . .), while
the medium grained parallelization is dependent on the model
of choice. At the coarse grained level of parallelization, one
MPI process called the global master dynamically distributes
the fragment jobs to the local masters according to a list where
the computational demands of each fragment is prioritized
(largest fragments are calculated first). At the medium grained
level, each local master has a set of associated local slaves,
which all together define a fragment slot. Each slot carries
out the fragment calculation and sends back the fragment
energy to the global master who adds up the fragment
energy contributions. Since the fragment calculations are
of very different size, we have chosen an approach where
the slots divide dynamically to ensure a good medium
grained parallelization. The medium grained parallelization
is investigated in Section IV A, while the coarse grained
parallel performance is discussed in Section IV B.

A. Medium grained parallelization

The medium grained parallelization of the DEC-
RI-MP2 method is very similar to the parallelization of the
standard canonical RI-MP2 calculation and as such several
options are possible. Katouda and Nakajima10 performed
the MPI work distribution based on the set of virtual
orbitals, while in a previous paper,9 the MPI parallelization
was based on the set of occupied orbitals. Hättig et al.85

concluded that the time-determining steps of RI-MP2 was
most efficiently parallelized over the pairs of occupied orbital
indices, because a parallelization over auxiliary basis functions
would require the communication of 4-index MO integrals
and thus require transfer rates which can only be reached with
high performance networks. However, in connection with the
DEC-RI-MP2 code, the 4-index MO integrals and amplitudes
that must be communicated are the ones residing in the
small EOS space. The medium grained parallelization of the
DEC-RI-MP2 model was therefore chosen to be based on a
parallelization over auxiliary basis functions. Each node in
the slot is thus simply assigned a subset of the auxiliary basis
functions in each of the MPI-parallelized steps of Algorithm 1.

The individual fragment calculations can have signifi-
cantly different sizes depending on the chemical environment.
For example, the smallest pair fragment in the water cluster
calculation (FOT = 10−4 a.u.), contained 17 occupied MOs,
222 virtual MOs, and 416 AOs, while the biggest fragment
contained 73 occupied MOs, 902 virtual MOs, and 1928 AOs.
The computational cost of the individual fragment calculations
is the standard O(N5

frag) scaling, where Nfrag is a measure of the
fragment size (see Algorithm 1). These differences in fragment
sizes thus lead to huge differences in terms of computational
requirements.

To minimize the time-to-solution for the total calculation,
it is important to know how many nodes can be used
efficiently for a given fragment at the medium grained level
of parallelization. In order to investigate the medium grained
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FIG. 2. Medium grained scaling: Speed up for a pair fragment consisting
of 38 occupied orbitals, 350 virtual orbitals, 690 basis functions, and 1923
auxiliary basis functions in a DEC-RI-MP2/cc-pVTZ(cc-pVTZ-RI) energy
calculation on a (H2O)200 cluster using FOT= 10−4 a.u. (The blue line repre-
sents ideal scaling and the relative speed up (in %) compared to ideal behavior
are given for each point.)

parallel performance, we present relative timings for two
fragments of very different sizes. In Figure 2, the relative
timings are given for a small pair fragment (with 38 occupied
orbitals, 350 virtual orbitals, 690 basis functions, and 1923
auxiliary basis functions) of the (H2O)200 calculation, while
Figure 3 shows the relative timings for a large pair fragment
with 69 occupied orbitals, 723 virtual orbitals, 1397 basis
functions, and 3999 auxiliary basis functions.

For the small fragment, the performance is quickly
saturated and for six nodes, we obtain 78.3% of the idealized
speed up. For the large fragment, the parallel performance
is superlinear with the number of nodes. The reason for
this superlinear behaviour is that the fitting coefficients C

γ

bj

have been distributed among the nodes, and this reduces
the datasize and improves cache memory performance. The

FIG. 3. Medium grained scaling: Speed up for a pair fragment consisting of
69 occupied orbitals, 723 virtual orbitals, 1397 basis functions, and 3999 aux-
iliary basis functions in a DEC-RI-MP2/cc-pVTZ(cc-pVTZ-RI) calculation
on a (H2O)200 cluster using FOT= 10−4 a.u. (The blue line represents ideal
scaling and the relative times (in %) compared to ideal behavior are given for
each point.)

smaller memory requirements on the individual node also
allow for more efficient AO to MO transformations.

The fragment size, which can be quantified in terms
of Naux,AOS, OAOS, and VAOS, thus determines the efficiency
of the parallelization in Algorithm 1. The most expensive
computational step (step 6 of the Algorithm 1) of a
fragment calculation scales as Naux,AOSV 2

AOSO2
AOS, while, in

the most expensive communication step, the 3 center ERIs
(α|AI) of size Naux,AOSVAOSOAOS are communicated among
n nodes. We therefore require that the ratio between the
computationally most expensive step and the most expensive
communication step is large. Thus, roughly speaking, the
larger Naux,AOSV 2

AOSO2
AOS/(Naux,AOSVAOSOAOS) = OAOSVAOS is,

the more nodes can efficiently be used in Algorithm 1. In
practice, we use the following condition to determine whether
a slot containing n nodes should divide or not:

Divide slot if: n > OAOSVAOS/X. (15)

The large number of fragments that must be calculated in a
DEC calculation allows us to use a conservative number of
nodes for each fragment, and empirical investigations have
established that X = 8000 is a reasonable value. For example,
if a slot of 4 nodes receives a fragment job where Eq. (15)
is satisfied, the slot would divide into two new slots each
containing two nodes. One of these slots would calculate the
fragment job in question, while the other slot would receive
another small fragment job from the global master.

B. Loss and coarse grained scaling

Concerning the parallel performance of the DEC-RI-
MP2 scheme as a whole, we distinguish between local
and global loss of efficiency.65 The local loss occurs in the
individual fragment calculation at the medium grained level of
parallelization and was analyzed in Section IV A. Local loss
is present due to nonideal load balancing, communication,
and the non-parallelized steps in Algorithm 1. Global loss
refers to the coarse grained parallelization level and occurs
when all jobs have been distributed by the global master and
some of the nodes wait for the remaining jobs to finish. It
may in principle also occur if many local masters are trying
to send/receive fragment job information to/from the global
master at the same time, but we have not observed this to
be a practical problem. In Figure 4, we investigate the coarse
grained parallel performance for a calculation on the (H2O)200

cluster using between 400 and 1600 nodes. The calculation
using 400 nodes is taken as reference and corresponds to a
time-to-solution of 8 h and 14 min. The coarse grained scaling
behavior for the DEC-RI-MP2 code is close to ideal in the
considered range, although it slowly starts to deteriorate for
1600 nodes for reasons detailed below.

Equation (15) was used to define the fragment slot sizes
for the calculations in Figure 4, and some local loss is therefore
expected. Global loss is present for any DEC calculation using
more than one fragment slot. The local and global losses
for the calculations in Figure 4 are compared in Table VI.
The global loss is increasing with the number of nodes,
reflecting the decrease in relative speed up in Figure 4, where
the calculation with 400 nodes was used as reference. This
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FIG. 4. Coarse grained scaling: Speed up for DEC-RI-MP2/cc-pVTZ(cc-
pVTZ-RI) calculations on (H2O)200 cluster using FOT= 10−4 a.u. compared
to the reference calculation using 400 nodes. The blue line represents ideal
scaling and the relative times (in %) compared to ideal behavior are given for
each point (relative to reference calculation).

TABLE VI. Local and global loss for DEC-RI-MP2/cc-pVTZ(cc-pVTZ-RI)
calculations on (H2O)200 cluster using FOT= 10−4 a.u.

Number of nodes: 400 800 1200 1600

Local loss (%) 11.9 11.3 10.3 9.66
Global loss (%) 2.14 4.13 6.91 10.5

increase in global loss happens because, as the number of
nodes is increased, more nodes are waiting for the last few
fragment jobs to finish at the end of the calculation. The
local loss from Table VI is roughly constant with the number
of nodes (≃10%), which means that the dividing procedure
relying on Eq. (15) is working properly.

The current DEC-RI-MP2 parallelization scheme can be
further improved, and work is being done in that direction.
At present, Eq. (15) has been defined in order to use as many
nodes as possible for a given fragment calculation without
having a non-beneficial scaling behaviour (see Fig. 2) and
keeping the local loss as low as possible. However, if a huge
number of nodes is available, it may be beneficial to use more
nodes for each fragment, which would reduce the global loss
at the expense of increasing the local loss. An optimal balance
between local and global losses to minimize the total loss
would require a more advanced criterion for determining the
slot sizes than the one in Eq. (15), or, at least X in Eq. (15)
should be chosen in a more sophisticated manner than simply
using a fixed predefined value. Nevertheless, the current status
of the code allows us to efficiently exploit large supercomputer
architectures and perform large DEC-RI-MP2 calculations
with a short time-to-solution and low computational loss.

V. SUMMARY AND OUTLOOK

We have presented the linear-scaling and massively
parallel DEC-RI-MP2 method, which shows substantial speed
up compared to the DEC-MP2 algorithm. The method can be
applied to systems that are much larger than the ones that

can be treated with the RI-MP2 method with small and
controllable errors. The massively parallel character of the
algorithm makes it particularly well suited for very large
computer architectures for which several thousand nodes can
be used efficiently, resulting in a very short time-to-solution.
The DEC error control ensures that the standard RI-MP2
energy can be obtained to the desired precision.

The results indicate that the size of the auxiliary basis
set can be further reduced, and work in this direction is
ongoing. We also currently investigate the possibility of
introducing a Laplace transformation of the orbital energy
denominators16,17,31,32,86 to further reduce the computational
cost of the DEC-RI-MP2 method. Current and future computer
architectures utilize graphical processing units (GPUs), and
the DEC-RI-MP2 scheme is ideally suited to exploit such
hardware as has already been done for standard RI-MP2.15,87

It is clear from the last two points that the DEC-RI-MP2
performance may be further improved — both concerning the
algorithm itself and adaptation to modern computer hardware.
It is therefore our intention to further develop DEC-RI-
MP2 algorithm such that it will be able to offer a tractable
alternative to density functional theory (DFT) calculations of
molecular energies. Finally, we note that molecular gradient
has already been implemented for the DEC-MP2 model.51

These developments are currently being adapted to the DEC-
RI-MP2 model with the goal of extending the DEC-RI-MP2
model to be able to calculate molecular properties.
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