
Efficient Linear System Solvers

for Mesh Processing

Mario Botsch, David Bommes, and Leif Kobbelt

Computer Graphics Group,
RWTH Aachen Technical University

Abstract. The use of polygonal mesh representations for freeform ge-
ometry enables the formulation of many important geometry processing
tasks as the solution of one or several linear systems. As a consequence,
the key ingredient for efficient algorithms is a fast procedure to solve lin-
ear systems. A large class of standard problems can further be shown to
lead more specifically to sparse, symmetric, and positive definite systems,
that allow for a numerically robust and efficient solution.
In this paper we discuss and evaluate the use of sparse direct solvers for
such kind of systems in geometry processing applications, since in our
experiments they turned out to be superior even to highly optimized
multigrid methods, but at the same time were considerably easier to
use and implement. Although the methods we present are well known in
the field of high performance computing, we observed that they are in
practice surprisingly rarely applied to geometry processing problems.

1 Introduction

In the field of geometry processing suitable data structures that enable the im-
plementation of efficient algorithms are getting more and more important [23],
especially since the complexity of the geometric models to be processed is grow-
ing much faster than the steadily increasing computational power and available
memory of today’s PC systems. Typical examples are higher order spline surfaces
f (u, v) =

∑

i ciΦi (u, v), represented as a weighted average of control points ci,
or piecewise linear triangle meshes M obtained from sampling a surface at the
mesh vertices xi = f (ui, vi).

Using finite differences or finite elements, many standard geometry processing
problems, like for instance PDEs on or of surfaces, can be formulated as a set of
(linear or non-linear) equations in either the control points ci of a spline surface

or the vertex positions X = (x1, . . . ,xn)
T
∈ IRn×3 of an approximating triangle

mesh.
A common technique to efficiently handle non-linear problems is their de-

composition into a sequence of linear ones, like, e.g., the (semi-)implicit inte-
gration of non-linear geometric flows by solving a linear equation in each time
step [13] or the Levenberg-Marquardt method for non-linear optimization [17].
Similarly, continuous energy functionals E (f) =

∫

Ω
e (f ,x) dx are approximated

by quadratic forms E (X) = XT QX, such that their minimizer surfaces can



efficiently be derived by solving the linear systems QX = B, assuming proper
boundary constraints B [22]. These examples motivate why a large class of geo-
metric problems comes down to the solution of one or several linear systems. As
a consequence, high performance linear system solvers are of major importance
for the development of efficient algorithms.

Since differential surface properties are defined locally, the discretization of
PDEs typically leads to sparse linear systems, in which the ith row contains non-
zeros only in those entries corresponding to the geodesic or topological neighbor-
hood of vertex xi. We are therefore interested in solvers that exploit this sparsity
in order to minimize both memory consumption and computation times.

Within the class of sparse linear systems, we will further concentrate on
symmetric positive definite (so-called spd) matrices, since exploiting their spe-
cial structure allows for the most efficient and most robust implementations.
Such systems frequently occur when minimizing energy functionals of the form
E (X) = XT QX with an spd matrix Q. A very popular source of spd systems is
the discrete Laplace-Beltrami operator ∆S [30], which is closely related to fre-
quencies of scalar fields defined on a two-manifold surface S [41]. This operator
has various applications in surface smoothing [13, 41], surface parameterization
[32, 12], variational surface modeling [25, 7, 38, 44], mesh morphing [3, 4, 43], and
shape analysis [31]. Besides from surfaces, the standard Laplace operator is for
instance also used in image editing [40] and fluid simulation [39]. Finally, all lin-
ear problems Ax = b that cannot be solved exactly and hence are approximated
in the least squares sense by using the normal equations AT Ax = AT b also re-
sult in spd linear systems [26]. This large but still incomplete list of applications
involving spd systems legitimates focusing on this special class of problems.

Another important point to be considered is whether the linear systems are
solved just once or several times, e.g., for different right-hand sides. Since most
geometric problems are separable w.r.t. the coordinate components, they can be
solved component-wise for x, y, and z using the same system matrix. Multiple
right-hand side problems also naturally occur in applications where the user
interactively changes boundary constraints, e.g., in surface editing.

There is another situation for solving a sequence of similar systems: when
decomposing a non-linear problem into a sequence of linear systems, the values
of the matrix entries usually change in each iteration, but its structure, i.e., the
pattern of non-zero elements {(i, j) |Aij 6= 0}, stays the same, because it usually
depends on the mesh connectivity, only which does not change. In both cases
— solving for multiple right-hand sides or matrices of identical structure — this
additional information should be exploited as much as possible, e.g., by investing
pre-computation time in some kind of factorization or preconditioning.

In this paper we propose the use of direct solvers for the sparse spd systems,
as they arise from typical computer graphics and geometry processing problems.
We mainly focus on Laplacian or bi-Laplacian systems for triangle meshes, how-
ever, analogous results hold for systems of similar structure. The size of the linear
systems corresponds to the number of vertices in the mesh, which, in our context,
usually is of the order of 104 or 105. Due to the local definition of the Laplace



operator, the resulting matrices are highly sparse and in the average exhibit 7 or
19 non-zero entries per row for Laplacian or bi-Laplacian systems, respectively.
Since in many applications these systems have to be solved for multiple right-
hand sides, the sparse factorizations of direct solvers allow for highly efficient
implementations. After reviewing the commonly known and widely used direct
and iterative solvers, we introduce sparse direct solvers and point out their ad-
vantageous properties in Sect. 2. After comparing the different solvers in Sect. 3
we finally present a list of applications that greatly benefit from sparse direct
solvers in Sect. 4.

2 Linear System Solvers

We describe and compare the following classes of solvers: dense direct solvers, it-
erative solvers, multigrid solvers, and finally sparse direct solvers. For the follow-
ing discussion we restrict to sparse spd problems Ax = b, with A = AT ∈ IRn×n,
x,b ∈ IRn, and denote by x∗ the exact solution A−1b. For completeness, the
general case of a non-symmetric indefinite system is outlined in Sect. 2.5. More
elaborate surveys on how to efficiently solve general large linear systems can be
found in the books [10, 29].

2.1 Dense Direct Solvers

Direct linear system solvers are based on a factorization of the matrix A into
matrices of simpler structure, e.g., triangular, diagonal, or orthogonal matrices.
This structure allows for an efficient solution of the factorized system. As a
consequence, once the factorization is computed, it can be used to solve the
linear system for several different right-hand sides.

The most commonly used examples for general matrices A are, in the order of
increasing numerical robustness and computational effort, the LU factorization,
QR factorization, or the singular value decomposition. However, in the special
case of a spd matrix the Cholesky factorization A = LLT , with L denoting a
lower triangular matrix, should be employed, since it exploits the symmetry of
the matrix and can additionally be shown to be numerically very robust due to
the positive definiteness of the matrix A [18].

On the downside, the asymptotic time complexity of all dense direct methods
is O(n3) for the factorization and O(n2) for solving the system based on the pre-
computed factorization. Since for the problems we are targeting at, n can be of
the order of 105, the total cubic complexity of dense direct methods is prohibitive.
Even if the matrix A is highly sparse, the näıve direct methods enumerated here
are not designed to exploit this structure, hence the factors are dense matrices
in general (cf. Fig. 2, top row, on page 9).

2.2 Iterative Solvers

In contrast to dense direct solvers, iterative methods are able to exploit the spar-
sity of the matrix A. Since they additionally allow for a simple implementation



[33], iterative solvers are the de-facto standard method for solving sparse linear
systems in the context of geometric problems. A detailed overview of iterative
methods with precious implementation hints can be found in [5, 36].

Iterative methods compute a converging sequence x(0),x(1), . . . ,x(i) of ap-
proximations to the solution x∗ of the linear system, i.e., limi→∞ x(i) = x∗. In
practice, however, one has to find a suitable criterion to stop the iteration as
soon as the current solution x(i) is accurate enough, i.e., if the norm of the error
e(i) := x∗ − x(i) is less than some ε. Since the solution x∗ is not known before-
hand, the error has to be estimated by considering the residual r(i) := Ax(i)−b.
These two are related by the residual equations Ae(i) = r(i), leading to an upper
bound

∥

∥e(i)
∥

∥ ≤
∥

∥A−1
∥

∥ ·
∥

∥r(i)
∥

∥, i.e., the norm of the inverse matrix has to be
estimated or approximated in some way (see [5]).

The simplest examples for iterative solvers are the Jacobi and Gauss-Seidel
methods. They belong to the class of static iterative methods, whose update
steps can be written as x(i+1) = Mx(i) +c with constant M and c, such that the
solution x∗ is the fixed point of this iteration. An analysis of the eigenstructure
of the update matrices M reveals that both methods rapidly remove the high
frequencies of the error, but the iteration stalls if the error is a smooth function.
By consequence, the convergence to the exact solution x∗ is usually too slow in
practice. As an additional drawback these methods only converge for a restricted
set of matrices, e.g., for diagonally dominant ones.

Non-stationary iterative solvers are more powerful, and for spd matrices the
method of conjugate gradients (CG) [20, 18] is suited best, since it provides
guaranteed convergence with monotonically decreasing error. For a spd matrix
A the solution of Ax = b is equivalent to the minimization of the quadratic form

φ (x) :=
1

2
xT Ax− bT x .

The CG method successively minimizes this functional along a set of linearly
independent search directions p(i), such that

x(i) = argmin
{

φ (x)
∣

∣

∣x ∈ x0 + span
{

p(1), . . . ,p(i)
}}

.

Due to the nestedness of these spaces the error decreases monotonically, and
the exact solution x∗ ∈ IRn is found after at most n steps (neglecting rounding
errors). Minimizing φ by gradient descent results in inefficient zigzag paths in
steep valleys of φ, which correspond to strongly differing eigenvalues of A. In
order to cancel out the effect of A’s eigenvalues on the search directions pi,
those are chosen to be A-conjugate, i.e., orthogonal w.r.t. the scalar product
induced by A: pT

j Api = 0 for i 6= j [37]. The computation of and minimization
along these optimal search directions can be performed efficiently and with a
constant memory consumption.

The complexity of each CG iteration is mainly determined by the matrix-
vector product Ax, which is of the order O(n) if the matrix is sparse. Given the
maximum number of n iterations, the total complexity is O(n2) in the worst
case, but it is usually better in practice.



As the convergence rate mainly depends on the spectral properties of the
matrix A, a proper pre-conditioning scheme should be used to increase the effi-
ciency and robustness of the iterative scheme. This means that a slightly different
system Ãx̃ = b̃ is solved instead, with Ã = PAPT , x̃ = P−T x, b̃ = Pb, where
the regular pre-conditioning matrix P is chosen such that Ã is well conditioned
[18, 5]. However, the matrix P is restricted to have a simple structure, since an
additional linear system Pz = r has to be solved in each iteration of the solver.

The iterative conjugate gradients method manages to decrease the computa-
tional complexity from O(n3) to O(n2) for sparse matrices, but this is still too
slow to compute exact (or sufficiently accurate) solutions of large linear systems,
in particular if the systems are numerically ill-conditioned, like for instance the
higher order Laplacian systems used in variational surface modeling [25, 7].

2.3 Multigrid Iterative Solvers

As mentioned in the last section, one characteristic problem of most iterative
solvers is that they are smoothers: they attenuate the high frequencies of the
error e(i) very fast, but their convergence stalls if the error is a smooth function.
This fact is exploited by multigrid methods, that build a fine-to-coarse hierarchy
{M =M0,M1, . . . ,Mk} of the computation domain M and solve the linear
system hierarchically from coarse to fine [19, 8].

After a few (pre-)smoothing iterations on the finest level M0 the high fre-
quencies of the error are removed and the solver becomes inefficient. However,
the remaining low frequency error e0 = x∗−x0 onM0 corresponds to higher fre-
quencies when restricted to the coarser level M1 and therefore can be removed
efficiently on M1. Hence the error is solved for using the residual equations
Ae1 = r1 on M1, where r1 = R0→1r0 is the residual on M0 transfered to
M1 by a restriction operator R0→1. The result is prolongated back to M0 by
e0 ← P1→0e1 and used to correct the current approximation: x0 ← x0 + e0.
Small high-frequency errors due to the prolongation are finally removed by a
few post-smoothing steps on M0. The recursive application of this two-level
approach to the whole hierarchy can be written as

Φi = Sµ Pi+1→i Φi+1 Ri→i+1 Sλ ,

with λ and µ pre- and post-smoothing iterations, respectively. One recursive run
is known as a V-cycle iteration.

Another concept is the method of nested iterations, that exploits the fact that
iterative solvers are very efficient if the starting value is sufficiently close to the
actual solution. One starts by computing the exact solution on the coarsest level
Mk, which can be done efficiently since the system Akxk = bk corresponding to
the restriction toMk is small. The prolongated solution Pk→k−1x

∗
k is then used

as starting value for iterations on Mk−1, and this process is repeated until the
finest levelM0 is reached and the solution x∗

0 = x∗ is computed.
The remaining question is how to iteratively solve on each level. The standard

method is to use one or two V-cycle iterations, leading to the so-called full
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Fig. 1. A schematic comparison in terms of visited multigrid levels for V-cycle (left),
full multigrid with one V-cycle per level (center), and cascading multigrid (right). The
size of the dots represents the number of iterations on the respective level.

multigrid method. However, one can also use an iterative smoothing solver (e.g.,
Jacobi or CG) on each level and completely avoid V-cycles. In the latter case
the number of iterations mi on level i must not be constant, but instead has to
be chosen as mi = m γi to decrease exponentially from coarse to fine [6]. Besides
the easier implementation, the advantage of this cascading multigrid method is
that once a level is computed, it is not involved in further computations and can
be discarded. A comparison of the three methods in terms of visited multigrid
levels is given in Fig. 1.

Due to the logarithmic number of hierarchy levels k = O(log n) the full
multigrid method and the cascading multigrid method can both be shown to
have linear asymptotic complexity, as opposed to quadratic for non-hierarchical
iterative methods. However, they cannot exploit synergy for multiple right-hand
sides, which is why factorization-based approaches are clearly preferable in such
situations, as we will show in the next section.

Since in our case the discrete computational domainM is an irregular trian-
gle mesh instead of a regular 2D or 3D grid, the coarsening operator for building
the hierarchy is based on mesh decimation techniques [24, 14]. The shape of the
resulting triangles is important for numerical robustness, and the edge lengths
on the different levels should mimic the case of regular grids. Therefore the dec-
imation usually removes edges in the order of increasing lengths, such that the
hierarchy levels have uniform edge lengths and triangles of bounded aspect ratio.

The simplification from one hierarchy levelMi to the next coarser oneMi+1

should additionally be restricted to remove a maximally independent set of ver-
tices, i.e., no two removed vertices vj , vl ∈ Mi \ Mi+1 are connected by an
edge ejl ∈ Mi. In [2] some more efficient alternatives to this standard Dobkin-
Kirkpatric hierarchy are discussed. In order to achieve higher performance, we
do not change the simple way the hierarchy is constructed, but instead solve
the linear system on every second or third level only, and use the prolongation
operator alone on all in-between levels.

The linear complexity of multi-grid methods allows for the highly efficient so-
lution even of very complex systems. However, the main problem of these solvers
is their quite involved implementation, since special care has to be taken for the



hierarchy building, for special multigrid pre-conditioners, and for the inter-level
conversion by restriction and prolongation operators. A detailed overview of
these techniques is given in [2].

Additionally, the number of iterations per hierarchy level have to be chosen:
This includes the number of V-cycles and pre- and post-smoothing iterations per
V-cycle for the full multigrid method, or m and γ for the cascading multigrid
approach. These numbers have to be chosen either by heuristic or experience,
since they not only depend on the problem (structure of A), but also on its
specific instance (values of A). Nevertheless, if iterative solvers are to be used,
multigrid methods are the only way to achieve acceptable computing times for
solving large systems, as has been shown in [25, 34, 2].

2.4 Sparse Direct Solvers

The use of direct solvers for large sparse linear systems is often neglected, since
näıve direct methods have complexity O(n3), as described above. The problem
is that even when the matrix A is sparse, the factorization will not preserve
this sparsity, such that the resulting Cholesky factor is a dense lower triangular
matrix (cf. Fig. 2, top row).

However, an analysis of the factorization process reveals that a band-limitation
of the matrix A will be preserved. Following [15], we define the bandwidth β (A)
in terms of the bandwidth of its ith row

β (A) := max
1≤i≤n

{βi (A)} with βi (A) := i− min
1≤j≤i

{j | Aij 6= 0} .

If the matrix A has bandwidth β (A) then so has its factor L. An even stricter
bound is that also the so-called envelope or profile

Env(A) := {(i, j) | 0 < i− j ≤ βi (A)}

is preserved, i.e., no additional non-zeros (so-called fill-in elements) are generated
outside the envelope.

This additional structure can be exploited in both the factorization and the
solution process, such that their complexities reduce from O(n3) and O(n2) to
linear complexity in the number of non-zeros nz(A) of A [15]. Since usually
nz(A) = O(n), this is the same linear complexity as for multigrid solvers. How-
ever, in the graphics-related examples we will show in the following sections,
sparse direct method turned out to be more efficient compared to multigrid
methods, in particular for multiple right-hand side problems.

Since we assume the matrices to be sparse, but not band-limited or profile-
optimized, the first step is to minimize the matrix envelope, which can be
achieved by symmetric row and column permutations A 7→ PT AP using a
permutation matrix P , i.e., a re-ordering of the mesh vertices. Although this
re-ordering problem is NP complete, several good heuristics exist, of which we
will present the most commonly used in the following. All of these methods work
on the undirected adjacency graph Adj(A) corresponding to the non-zeros of A,
i.e., two nodes i, j ∈ {1, . . . , n} are connected by an edge if and only if Aij 6= 0.



The standard method for envelope minimization is the Cuthill-McKee algo-
rithm [9], that picks a start node and renumbers all its neighbors by travers-
ing the adjacency graph in a breadth-first manner, using a greedy selection in
the order of increasing valence. It has further been proven in [28] that revert-
ing this permutation leads to better re-orderings, such that usually the reverse
Cuthill-McKee method (RCMK) is employed. The result PT AP of this matrix
re-ordering is depicted in the second row of Fig. 2.

Since no special pivoting is required for the Cholesky factorization, the non-
zero structure of its matrix factor L can symbolically be derived from the non-
zero structure of the matrix A alone, or, equivalently, from its adjacency graph.
The graph interpretation of the Cholesky factorization is to successively elimi-
nate the node with the lowest index from the graph and connect all its immediate
neighbors mutually to each other. The additional edges eij generated in this so-
called elimination graph correspond to the fill-in elements Lij 6= 0 = Aij .

In order to minimize fill-in the minimum degree algorithm (MD) and its
variants [16, 27] remove the nodes with smallest valence first from the elimination
graph, since this causes the least number of additional pairwise connections.
Many efficiency optimizations of this basic method exist, the most prominent of
which is the super-nodal approach: instead of removing eliminated nodes from
the graph, neighboring eliminated nodes are clustered to so-called super-nodes,
allowing for more efficient graph updates. The resulting minimum degree re-
orderings do not lead to some kind of a band-structure (which implicitly limits
fill-in), but instead directly minimize the fill-in of L (cf. Fig. 2, third row).

The last class of re-ordering approaches is based on graph partitioning. Con-
sider a matrix A whose adjacency graph has m separate connected components.
Such a matrix can be restructured to a block-diagonal matrix of m blocks, such
that the factorization can be performed on each block individually. If the adja-
cency graph is connected, a small subset S of nodes, whose elimination would
separate the graph into two components of roughly equal size, is found by one of
several heuristics [21]. This graph-partitioning results in a matrix consisting of
two large diagonal blocks (two connected components) and |S| rows representing
their connection (separator S). Recursively repeating this process leads to the
method of nested dissection (ND), leading to matrices of the typical block struc-
ture shown in the bottom row of Fig. 2. Besides the obvious fill-in reduction,
these systems also allow for easy parallelization of both the factorization and
the solution.

For the comparison of the different matrix re-ordering strategies a rather
small matrix was used in Fig. 2 to allow for clearer visualization. On an analogous
5k × 5k matrix the number of non-zeros nz(L) decreases from 2.3M to 451k,
106k, and 104k by applying the RCMK, MD, and ND method, respectively. The
timings to obtain those re-orderings are 17ms, 12ms, and 38ms. It can further
be observed that for larger systems the nested dissection method [21] generally
leads to the best results.

One important advantage of the Cholesky factorization is that the non-zero
structure of the factor L can be determined from Adj(A) without any numerical



Fig. 2. The top row shows the non-zero pattern of a typical 500 × 500 matrix A

and its Cholesky factor L, corresponding to a Laplacian system on a triangle mesh.
Although A is highly sparse (3502 non-zeros), the factor L is dense (36k non-zeros).
The reverse Cuthill-McKee algorithm minimizes the envelope of the matrix, resulting
in 14k non-zeros of L (2nd row). The minimum degree ordering avoids fill-in during
the factorization, which decreases the number of non-zeros to 6203 (3rd row). The last
row shows the result of a nested dissection method (7142 non-zeros), that allows for
parallelization due to its block structure.



computations. This allows us to setup an efficient static data structure for L
before the actual numerical factorization, which is therefore called symbolic fac-
torization. Since suitable data structures and proper memory layout are crucial
for efficient numerical computations, this two-step factorization process allows
for significant optimizations.

Analogously to the dense direct solvers, the factorization can be exploited
to solve for different right-hand sides in a very efficient manner. In addition to
this, whenever the matrix A is changed, such that its non-zero structure Adj(A)
is preserved, then the matrix re-ordering as well as the symbolic factorization
can obviously be re-used. Solving the modified system therefore only requires to
re-compute the numerical factorization and performing the back-substitution,
which typically saves about 50% of the total computation time for solving the
modified system. As we will show in Sect. 4, this allows for an efficient implemen-
tation of a large class of algorithms that decompose a non-linear problem into
a sequence of similar linear ones, like for instance the implicit fairing approach
[13] or the Levenberg-Marquardt optimization for non-linear problems [33, 17].

Another advantage of sparse direct methods is that no additional parameters
have to be chosen in a problem-dependent manner, as for instance the different
numbers of iterations for the multigrid solvers. The only degree of freedom is
the matrix re-ordering, but this only depends on the symbolic structure of the
problem and therefore can be chosen quite easily. For more details and imple-
mentation notes the reader is referred to the book of George and Liu [15]; a
highly efficient implementation is publicly available in the TAUCS library [42].

2.5 Non-Symmetric Indefinite Systems

When the assumptions about the symmetry and positive definiteness of the
matrix A are not satisfied, optimal methods like the Cholesky factorization or
conjugate gradients cannot be used. In this section we shortly outline which
techniques are applicable instead.

From the class of iterative solvers the bi-conjugate gradients algorithm (BiCG)
is typically used as a replacement of the conjugate gradients method [33]. Al-
though working well in most cases, BiCG does not provide any theoretical conver-
gence guarantees and has a very irregular non-monotonically decreasing residual
error for ill-conditioned systems. On the other hand, the GMRES method con-
verges monotonically with guarantees, but its computational cost and memory
consumption increase in each iteration [18]. As a good trade-off, the stabilized Bi-
CGSTAB [5] represents a mixture between the efficient BiCG and the smoothly
converging GMRES; it provides a much smoother convergence and is reasonably
efficient and easy to implement.

When considering dense direct solvers, the Cholesky factorization cannot be
used for general matrices. Therefore the LU factorization is typically employed
(instead of QR or SVD), since it is similarly efficient and also extends well to
sparse direct methods. However, (partial) row and column pivoting is essential
for the numerical robustness of the LU factorization, since this avoids zeros on
the diagonal during the factorization process.



Similarly to the Cholesky factorization, it can be shown that the LU factor-
ization also preserves the band-width and envelope of the matrix A. Techniques
like the minimum degree algorithm generalize to non-symmetric matrices as well.
But as for dense matrices, the banded LU factorization relies on partial pivoting
in order to guarantee numerical stability. In this case, two competing types of
permutations are involved: symbolic permutations for matrix re-ordering and
pivoting permutations ensuring numerical robustness. As these permutations
cannot be handled separately, a trade-off between stability and fill-in minimiza-
tion has to be found, resulting in a significantly more complex factorization
process.

As a consequence, the re-ordering depends on the numerical values of the
matrix entries, such that an exact symbolic factorization like in the Cholesky
case is not possible. In order to nevertheless be able to setup a static data
structure, a more conservative envelope is typically used, such that pivoting
within this structure is still possible. A highly efficient implementation of a
sparse LU factorization is provided by the SuperLU library [11].

3 Laplace Systems

Most of the example applications shown in Sect. 4 require the solution of linear
Laplacian systems, therefore we analyze these matrices and compare different
solvers for their solution. Although we focus on Laplacian systems, we will see
in Sect. 4 that analogous results hold for matrices of similar structure, like for
instance sparse least squares systems.

The discrete Laplace-Beltrami operator ∆Sf of a scalar-valued function f on
the manifold S [13, 30, 32] is defined for a center vertex vi as a linear combination
with its one-ring neighbors vj ∈ N1 (vi):

∆Sf (vi) =
2

A (vi)

∑

vj∈N1(vi)

(cotαij + cotβij) (f (vj)− f (vi)) ,

where αij = 6 (xi,xj−1,xj), βij = 6 (xi,xj+1,xj), and xi represents the 3D po-
sition of the mesh vertex vi. The normalization factor A (vi) denotes the Voronoi
area around the vertex vi [30]. In matrix notation the vector of the Laplacians
of f (vi) can be written as









...
∆Sf (vi)

...









= D ·M ·









...
f (vi)

...









,

where D is a diagonal matrix containing the normalization factors Dii = 2/A (vi),
and M is a symmetric matrix of cotangent weights with

Mij =







0 i 6= j , vj 6∈ N1 (vi)
cotαij + cotβij , i 6= j , vj ∈ N1 (vi)

−
∑

vj∈N1(vi)
(cotαij + cotβij) i = j

.



Since the Laplacian of a vertex vi is defined locally in terms of its one-ring
neighbors, the matrix M is highly sparse and has non-zeros in the ith row only
on the diagonal and in those columns corresponding to vi’s one-ring neighbors
N1 (vi). Due to the Euler characteristic for triangle meshes, this results in about
7 non-zeros per row in average. Analogously, higher order Laplacian matrices
∆k

S have non-zeros for the k-ring neighbors Nk (vi), which are, e.g., about 19 for
bi-Laplacian systems (k = 2).

For a closed mesh without boundaries, Laplacian systems ∆k
S x = b of any

order k can be turned into symmetric ones by moving the first diagonal matrix
factor D to the right-hand side:

M (DM)
k−1

x = D−1b .

Boundary constraints are typically employed by restricting the positions of cer-
tain vertices, which corresponds to eliminating their respective rows and columns
of the left-hand side and hence keeps the matrix symmetric. The case of meshes
with boundaries is equivalent to a patch bounded by constrained vertices and
therefore also results in a symmetric matrix. Pinkall and Polthier [32] addition-
ally showed that this system is positive definite, such that we can apply the
efficient solvers presented in the last section.

In the following we compare the different kinds of linear system solvers for
Laplacian as well as for bi-Laplacian systems. All timings we report in this and
the next section were taken on a 3.0GHz Pentium4 running Linux. The iterative
solver from the gmm++ library [35] is based on the conjugate gradients method
and uses an incomplete LDLT factorization as preconditioner. Our cascading
multigrid solver performs preconditioned conjugate gradient iterations on each
hierarchy level and additionally exploits SSE instructions in order to solve for
up to four right-hand sides simultaneously. The direct solver of the TAUCS
library [42] employs nested dissection re-ordering and a sparse complete Cholesky
factorization. Although our linear systems are symmetric, we also compare to
the popular SuperLU solver [11], which is based on a sparse LU factorization,
for the sake of completeness.

Iterative solvers have the advantage over direct ones that the computation
can be stopped as soon as a sufficiently small error is reached, which — in typi-
cal computer graphics applications — does not have to be the highest possible
precision. In contrast, direct methods always compute the exact solution up to
numerical round-off errors, which in our application examples actually was more
precise than required. The stopping criteria of the iterative methods have there-
fore been chosen to yield sufficient results, such that their quality is comparable
to that achieved by direct solvers. The resulting residual errors were allowed to
be about one order of magnitude larger than those of the direct solvers. While
the latter achieved an average residual error of 10−7 and 10−5 for Laplacian and
bi-Laplacian systems, respectively, the iterative solvers were stopped at an error
of 10−6 and 10−4.



Table 1 shows timings for the different solvers on Laplacian systems ∆SX =
B of 10k to 50k and 100k to 500k unknowns, i.e., free vertices X. For each solver
three columns of timings are given:

Setup: Computing the cotangent weights for the Laplace discretization and
building the matrix structure (done per-level for the multigrid solver).

Precomputation: Preconditioning (iterative), building the hierarchy by mesh
decimation (multigrid), matrix re-ordering and sparse factorization (direct).

Solution: Solving the linear system for three different right-hand sides corre-
sponding to the x, y, and z components of the free vertices X.

Due to its effective preconditioner, which computes a sparse incomplete fac-
torization, the iterative solver scales almost linearly with the system complexity.
However, for large and thus ill-conditioned systems it breaks down. Notice that
without preconditioning the solver would not converge for the larger systems.

The experiments clearly verify the linear complexity of multigrid and sparse
direct solvers. Once their sparse factorizations are pre-computed, the compu-
tational costs for actually solving the system are about the same for the LU
and Cholesky solver. However, they differ significantly in the factorization per-
formance, because the numerically more robust Cholesky factorization allows
for more optimizations, whereas pivoting is required for the LU factorization to
guarantee robustness. This is the reason for the break-down of the LU solver,
such that the multigrid solver is more efficient in terms of total computation
time for the larger systems.

Interactive applications often require to solve the same linear system for sev-
eral right-hand sides (e.g. once per frame), which typically reflects the change
of boundary constraints due to user interaction. For such problems the solution
times, i.e., the third columns of the timings, are more relevant, as they corre-
spond to the per-frame computational costs. Here the precomputation of a sparse
factorization pays off and the direct solvers are clearly superior to the multigrid
method.

Table 2 shows the same experiments for bi-Laplacian systems ∆2
SX = B of

the same complexity. In this case, the matrix setup is more complex, the matrix
condition number is squared, and the sparsity decreases from 7 to 19 non-zeros
per row.

Due to the higher condition number the iterative solver takes much longer
and even fails to converge on large systems. In contrast, the multigrid solver
converges robustly without numerical problems; notice that constructing the
multigrid hierarchy is almost the same as for the Laplacian system (up to one
more ring of boundary constraints). The computational costs required for the
sparse factorization are proportional to the increased number of non-zeros per
row. The LU factorization additionally has to incorporate pivoting for numerical
stability and failed for larger systems. In contrast, the Cholesky factorization
worked robustly in all our experiments.

If we focus on the solution times for the bi-Laplacian systems and compare
them to the Laplacian systems, we observe that the direct solver scales with the
sparsity of the matrix, while the number of iterations required for the multigrid
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Size Iterative Multigrid LU Cholesky

10k 0.11/1.56/0.08 0.15/0.65/0.09 0.07/0.22/0.01 0.07/0.14/0.03

20k 0.21/3.36/0.21 0.32/1.38/0.19 0.14/0.62/0.03 0.14/0.31/0.06

30k 0.32/5.26/0.38 0.49/2.20/0.27 0.22/1.19/0.05 0.22/0.53/0.09

40k 0.44/6.86/0.56 0.65/3.07/0.33 0.30/1.80/0.06 0.31/0.75/0.12

50k 0.56/9.18/0.98 0.92/4.00/0.57 0.38/2.79/0.10 0.39/1.00/0.15

100k 1.15/16.0/3.19 1.73/8.10/0.96 0.79/5.66/0.21 0.80/2.26/0.31

200k 2.27/33.2/11.6 3.50/16.4/1.91 1.56/18.5/0.52 1.59/5.38/0.65

300k 3.36/50.7/23.6 5.60/24.6/3.54 2.29/30.0/0.83 2.35/9.10/1.00

400k 4.35/69.1/37.3 7.13/32.5/4.48 2.97/50.8/1.21 3.02/12.9/1.37

500k 5.42/87.3/47.4 8.70/40.2/5.57 3.69/68.4/1.54 3.74/17.4/1.74

Table 1. Comparison of different solvers for Laplacian systems ∆SX = B of 10k
to 50k and 100k to 500k free vertices X. The three timings for each solver represent
matrix setup, pre-computation, and three solutions for the x, y, and z components
of X. The graphs in the upper row show the total computation times (sum of all
three columns). The center row depicts the solution times only (3rd column), as those
typically determine the per-frame cost in interactive applications.
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10k 0.33/5.78/0.44 0.40/0.65/0.48 0.24/1.68/0.03 0.24/0.35/0.04

20k 0.64/12.4/1.50 0.96/1.37/0.84 0.49/4.50/0.08 0.49/0.82/0.09

30k 1.04/19.0/5.46 1.40/2.26/1.23 0.77/9.15/0.13 0.78/1.45/0.15

40k 1.43/26.3/10.6 1.69/3.08/1.47 1.07/16.2/0.20 1.08/2.05/0.21

50k 1.84/33.3/8.95 2.82/4.05/2.34 1.42/22.9/0.26 1.42/2.82/0.28

100k — 4.60/8.13/4.08 2.86/92.8/0.73 2.88/7.29/0.62

200k — 9.19/16.6/8.50 — 5.54/18.2/1.32

300k — 17.0/24.8/16.0 — 8.13/31.2/2.07

400k — 19.7/32.6/19.0 — 10.4/44.5/2.82

500k — 24.1/40.3/23.4 — 12.9/60.4/3.60

Table 2. Comparison of different solvers for bi-Laplacian systems ∆
2

SX = B of 10k
to 50k and 100k to 500k free vertices X. The three timings for each solver represent
matrix setup, pre-computation, and three solutions for the x, y, and z components of
X. The graphs in the upper row show the total computation times (sum of all three
columns). The center row depicts the solution times only (3rd column), as those typi-
cally determine the per-frame cost in interactive applications. For the larger systems,
both the iterative solver and the sparse LU factorization fail to compute a solution.



Fig. 3. Multiresolution modeling allows a low-frequency change of the global shape
based on the change of a smooth base surface, that is computed by solving a bi-
Laplacian system ∆

2

SX = B.

solver depends on the (squared) matrix condition. In our experiments it turned
out that the performance gap between multigrid and direct methods is even
larger for bi-Laplacian systems.

We also analyzed the memory consumption of the multigrid method and
the sparse Cholesky solver, although both methods were optimized more for
performance than for memory requirements. The memory consumption of the
multigrid method is mainly determined by the meshes representing the different
hierarchy levels. In contrast, the memory required for the Cholesky factorization
depends significantly on the sparsity of the matrix, too. On the 500k example
the multigrid method and the direct solver need about 1GB and 600MB for
the Laplacian system, and about 1.1GB and 1.2GB for the bi-Laplacian system.
Hence, the direct solver would not be capable of factorizing Laplacian systems
of higher order on current PCs, while the multigrid method would succeed.

These comparisons show that direct solvers are a valuable and efficient al-
ternative to multigrid methods even if the linear systems are highly complex.
In all our experiments the sparse Cholesky solver was faster than the multigrid
method, and if the system has to be solved for multiple right-hand sides, the
precomputation of a sparse factorization is even more beneficial.

4 Applications

In this section we finally show several typical computer graphics and geome-
try processing applications that benefit from the use of sparse direct solvers.
Most applications are based on solving Laplacian or bi-Laplacian systems, thus
their characteristic behavior for different complexities or different solvers can
be transferred from the experiments of the last section. Notice that it is diffi-
cult to compare to timings published in original papers on these approaches,
since the computational costs depend on hardware factors (e.g., CPU, memory
bandwidth), software factors (operating system, compiler), and on the datasets
used. Although we tried to pick similar machines, these comparisons should be
considered as a rough performance indication only.



Fig. 4. Mesh morphing of two bunny models based on Poisson shape interpolation.
Instead of absolute vertex positions, gradient fields (or Laplace coordinates) are inter-
polated as Dt = (1 − t) D0 + t D1, and the vertex positions are derived by solving the
Poisson system ∆Xt = Dt (Image courtesy of Xu et al. [43]).

Surface Modeling. The first application is freeform modeling or multiresolu-
tion modeling [25, 7], which requires to compute (the change of) a smooth base
surface by solving bi-Laplacian systems ∆2

SX = B for the x, y, and z coordi-
nates of the unconstrained (dark/blue) vertices X (cf. Fig. 3). Each time the
designer drags some points on the surface, the boundary constraints change and
the linear system has to be solved for another right-hand side in order to com-
pute the deformed surface. As a consequence, these approaches greatly benefit
from the sparse factorization solvers. The precomputation of basis functions for
the deformation [7] also requires to solve the linear system for several right-hand
sides, such that this precomputation gets more efficient, too.

Mesh Morphing. Given two meshes of identical connectivity, morphing be-
tween them corresponds to some linear interpolation of their geometry. But
instead of using absolute vertex coordinates xi for this task, Alexa [4] proposed
to represent the meshes by differential Laplace coordinates di := ∆xi and to
linearly interpolate those instead. In a recent approach, Xu et al. [43] propose a
non-linear interpolation of gradient fields, which avoids shrinkage of in-between
models. In both cases each morphing step leads to a new set of Laplace vectors
D = (d0, . . . ,dn), from which the vertex positions can be derived by solving
∆X = D. The resulting Laplacian multiple right-hand side problems can again
be solved efficiently by sparse Cholesky factorizations.

Implicit Smoothing. In the implicit fairing approach [13] meshes are smoothed
by an integration of the PDE ∂ xi/∂t = λ∆Sxi, leading to the so-called mean
curvature flow. Using semi-implicit integration, this non-linear problem is de-
composed into a sequence of linear ones, such that in each time-step the Laplace
discretization ∆X(i) is updated and the Laplacian system (I − λ∆X(i)) X(i+1) =
X(i) is solved. In this case the matrix re-ordering and the symbolic factoriza-
tion can be kept and just the numerical factorization and the solution have to
be computed. In our experiments this saved 40%-60% of the solver time per
iteration.



Fig. 5. Two different parameterizations of a car model: discrete conformal parameter-
ization with fixed boundary (left), least squares conformal map with free boundary
(right). Both parameterizations are computed by solving a sparse spd system for the
free 2D parameter values associated to the mesh vertices.

Conformal Parameterization. Computing a conformal parameterization [32,
12] with fixed boundary vertices requires the solution of a Laplacian system
∆SX = B for x and y (cf. Fig. 5, left). In [2] a highly elaborate multigrid solver
has been derived by evaluating different kinds of multigrid hierarchies and pre-
conditioning strategies. This solver was then used for the parameterization of
large meshes, where it takes only 37s for 580k DoFs on a 2.8GHz Pentium4.
This time includes loading the system from disk, building the hierarchy, and
solving the system for the x coordinate [1]. Our implementation based on the
sparse Cholesky solver takes (on a 3.0GHz Pentium4) 28s for for the parameter-
ization of 600k vertices, including matrix setup, re-ordering, factorization, and
two solutions.

Least Squares Conformal Maps. In the approach of [26] a conformal pa-
rameterization is not computed by minimizing the discrete Dirichlet energy, but
instead by solving a system of Cauchy-Riemann equations for each face (cf.
Fig. 5, right). Since the number of faces F is about twice the number of vertices
V , this system is overdetermined and hence solved in the least squares sense us-
ing the normal equations, leading to a spd matrix of dimension 2V ×2V , which is
similar in structure to a Laplacian matrix. Since the iterative solver used in the
original paper [26] was not capable of parameterizing large meshes, the use of
multigrid methods was proposed in [34]. On an 1.2GHz Pentium4 their hierarchi-
cal approach takes 18s, 31s, and 704s for meshes of 18k, 36k, and 560k vertices,
respectively. On a comparable machine (Athlon 1.2GHz) the direct sparse solver
is about 4–5 times faster; on the 3.0GHz machine these parameterizations can
be computed in 1.4s, 3.2s, and 95s, respectively.



Fig. 6. This example shows a fluid’s reaction to a high external force after 1, 3, and
20 time-steps (from left to right) on a 100 × 100 grid. The line segments visualize
the velocity field, the background color shows the amount of divergence. A constant
number of CG iterations per frame fails to sufficiently propagate the forces and to keep
the field free of divergence (top row). The sparse Cholesky solver requires a constant
time per frame, is significantly faster, and yields correct results independent from the
external forces (bottom row).

Fluid Dynamics. In Stam’s stable fluid approach [39] the Navier-Stokes equa-
tions are solved by a four-step procedure in each time step: after updating ex-
ternal forces and advecting the velocity field, a diffusion process considers the
viscosity and a final projection yields a divergence-free velocity field. The last
two steps both involve solving a Laplacian system. Since the field is assumed
not to change too much from one time-step to the next, the current state yields
good starting values, such that in most implementations a fixed small number of
CG iterations is used for solving both systems. The break-down of this method
in case of high external forces is shown in the top row of Fig. 6. In contrast, the
sparse direct solver is twice as fast in this example and yields correct results also
for rapidly changing fields (cf. Fig. 6, bottom row).

Poisson Matting. Laplacian systems are also used in image manipulation, like
for instance the Poisson matting approach of [40]. A given image I is considered
as a composition of a foreground object F and a background B using the matting
equation I = αF + (1 − α)B, which is to be solved for the matte α (x, y) (cf.
Fig. 7). We use a variant of the original approach, where taking the divergence
of an approximate gradient of the matting equation leads to the Poisson system
∆α = div (sign(F −B)∇I). Hence, the computation of the α-matte amounts
to solving a spd Laplacian system and therefore benefits from the sparse direct
solvers like the other examples.



Fig. 7. In order to separate an image I into foreground F and background B, the
Poisson matting approach derives an α-matte by solving a Poisson equation ∆α = b.

5 Conclusion

In this paper we discussed and compared different classes of linear system solvers
for large sparse symmetric positive matrices, and pointed out that sparse direct
solvers are a valuable alternative to the usually employed multigrid methods,
since they turned out to be more efficient and easier to use in all our experiments.

Although the class of sparse spd matrices seems to be quite restricted, many
frequently encountered geometry processing problems over polygonal meshes
lead to exactly this kind of systems or can easily be reformulated in this form.
As we demonstrated in our experiments, all these applications could benefit
considerably from the use of sparse direct solvers.
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cian surface editing. In Proc. of Eurographics symposium on Geometry Processing

04, pages 179–188, 2004.
[39] Jos Stam. Stable fluids. In Proc. of ACM SIGGRAPH 99, pages 121–128, 1999.
[40] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum. Poisson matting. In Proc. of ACM

SIGGRAPH 04, pages 315–321, 2004.
[41] G. Taubin. A signal processing approach to fair surface design. In Proc. of ACM

SIGGRAPH 95, pages 351–358, 1995.
[42] S. Toledo, D. Chen, and V. Rotkin. Taucs: A library of sparse linear solvers.

http://www.tau.ac.il/∼stoledo/taucs.
[43] D. Xu, H. Zhang, Q. Wang, and H. Bao. Poisson shape interpolation. In Proc. of

ACM symposium on Solid and Physical Modeling 05, 2005.
[44] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and

Heung-Yeung Shum. Mesh editing with Poisson-based gradient field manipulation.
In Proc. of ACM SIGGRAPH 04, pages 644–651, 2004.


