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Efficient List-Decoding of Reed-Solomon Codes

with the Fundamental Iterative Algorithm

Alexander Zeh, Christian Gentner and Martin Bossert

Department of Telecommunications and Applied Information Theory

University of Ulm, Germany

{alexander.zeh,christian.gentner,martin.bossert}@uni-ulm.de

Abstract—In this paper we propose a new algorithm that solves
the Guruswami-Sudan interpolation step for Reed-Solomon codes
efficiently. It is a generalization of the Feng-Tzeng approach, the
so-called Fundamental Iterative Algorithm. From the interpo-
lation constraints of the Guruswami-Sudan principle it is well
known that an improvement of the decoding radius can only be
achieved, if the multiplicity parameter s is smaller than the list
size l. The code length is n and our proposed algorithm has a
complexity (without asymptotic assumptions) of O

(

ls
4
n

2
)

.

Index Terms—Guruswami-Sudan algorithm, list decoding,
Fundamental Iterative Algorithm (FIA), Reed-Solomon codes,
Hankel matrices

I. INTRODUCTION

A Reed-Solomon code RS(n, k, d) with arbitrary rate R =
k/n can be list-decoded with the Guruswami-Sudan (GS)

principle (see [1], [2]). The received vector is interpolated with

a bivariate polynomial Q(x, y) and the y-roots of Q form the

list of possible sent codewords.

The reformulation of this interpolation problem over a univari-

ate polynomial ring was done by Roth and Ruckenstein [3]

for the Sudan case (where the multiplicity is s = 1) and

generalized to GS in [4]. This allows a syndrome-based

decoding method and a representation of the set of linear

equations as Hankel (or Töplitz) matrices. We generalize

here the Feng-Tzeng [5] approach, the so-called Fundamental

Iterative Algorithm (FIA), to the GS-case, where a block

Hankel-matrix occurs.

In the next section we recall the basic properties of the original

FIA and show how it can be used to solve the Key Equation

(KE) for classical decoding of RS codes up to half the

minimum distance. The original FIA [5] can be seen as special

case of our algorithm. To get an idea of the extension, we

summarize the GS-interpolation conditions in Section III. The

Sudan Key Equation (SKE) of [3] and the Guruswami-Sudan

Key Equation (GSKE) of [4] will be presented in Section IV.

The set of linear homogeneous equations of the SKE can be

represented as a row of Hankel matrices (where one Hankel

matrix occurs for the classical KE). For the GSKE the matrix

consists of many horizontally and vertically arranged Hankel

matrices (so-called block Hankel-matrix). To adapt the FIA

to GSKE, we first consider an intermediate step of one line

of vertically arranged Hankel matrices (see Section V). The

final algorithm is presented in Section VI and its complexity

is analyzed. We conclude in Section VII. In the appendix we

consider a simple example and illustrate the principle of our

algorithm. (The reference [6] was mentioned by the reviewer,

but in our opinion the connection to our algorithm solving the

complete set of equations for the GS-algorithm is marginal.)

II. KEY EQUATION, FIA AND HANKEL MATRICES

The so-called Fundamental Iterative Algorithm (FIA) (in-

troduced in [5]) is used to find the minimal number of first

columns of an arbitrary τ×(τ+1) matrix S = [Si,j ] where i =
0, . . . , τ − 1 and j = 0, . . . , τ which are linearly dependent.

The time complexity of the FIA for such a matrix is O
(

τ3
)

(comparable to the standard gaussian procedure). Nevertheless,

if the FIA is applied to structured matrices the complexity can

be reduced. Therefore, we recall the definition of the Hankel

matrix in the following.

Definition 1 (Hankel matrix) A τ×(τ+1) Hankel matrix S
is a matrix where Si−1,j+1 = Si,j ∀ i = 1, . . . , τ − 1 and j =
0, . . . , τ − 1 holds.

We remark that a τ × (τ + 1) Hankel matrix consists of 2τ
different elements. The FIA can be tailored to this Hankel

structure and it finds the smallest integer c, such that the

columns 0 through c of a τ × (τ + 1) Hankel matrix S are

linearly independent with time complexity O
(

τ2
)

.

Here, we want to point out that this algorithm can be used

to solve the classical Key Equation (KE) for RS-codes, where

the decoding radius τ ≤ ⌊n−k2 ⌋. The classical KE is:

Λ(x) · S(x) ≡ Ω(x) mod xn−k, (1)

where deg Ω(x) < n − k − τ and Λ(x) =
∑n−k−τ

i=0 Λix
i is

the error-locator polynomial. Representing the τ homogeneous

linear equations gives us the Hankel structure of the matrix

coming from the polynomial multiplication of the previous

equation. It is well-known that Massey’s algorithm [7] solves

the KE with complexity O
(

τ2
)

and that this problem is

equivalent to the problem of finding the the shortest linear

shift register that generates a zero sequence when the inputs

are the coefficients of the syndrome polynomial S(x).

III. GURUSWAMI-SUDAN PRINCIPLE

The Guruswami-Sudan principle [2] is recalled shortly.

Let {α1, . . . , αn} be the support of a Reed-Solomon code

RS(n, k, d), where all the αi ∈ F q are distinct. Let k be
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the dimension and d = n − k + 1 the minimum distance of

the RS code under consideration and a codeword (c1, . . . , cn)
is defined by ci = f(αi) ∀ i = 1, . . . , n. The received word

is denoted by r = (r1, . . . , rn) and is the addition of the

codeword and the error. The number of errors that can be

corrected is denoted by τ . The parameter s is the order of

multiplicity of the bivariate interpolation polynomial in the

GS-algorithm. Then the GS-polynomial Q(x, y) has to fulfill

the following three conditions:

① Q(x, y) 6= 0;

② Q(x, y) =
∑l

t=0Q
(t)(x)yt =

∑l

t=0

∑Nt−1
i qt,ix

iyt,
where degQ(t)(x) < Nt with Nt = s(n−τ)− t(k−1);

③ mult(Q(x, y), (αi, ri)) ≥ s, i = 1, . . . , n.

We recall that the condition ③ is the multiplicity condition

defined as follows: Let Q(x, y) = Q(0)+Q(1)+· · ·+Q(i)+· · ·
be given, where Q(i) is homogeneous of degree i. The

multiplicity of Q at the point (0, 0) (here denoted with

mult(Q(x, y), (0, 0)) is the smallest i such that Qi 6= 0 and

the multiplicity of Q at the point (αi, βi) is the multiplicity

at (0, 0) of the polynomial Q(x+ αi, y + βi).
Then for all f(x), corresponding to codewords c such that

Hamming distance d(f, c) ≤ τ , it holds, that Q(x, f(x)) = 0.

It is noted, that s = 1 in the case of Sudan.

To determine the number of correctable errors, the following

conditions (see [2]) have to be satisfied:

sτ ≤ sn− (m+ 1)− l(k − 1), (2)

where m is a nonnegative integer such that (m+1)(l+1)+(k−
1)

(

l+1
2

)

>
(

s+1
2

)

n. The degree of Q(t) can also be expressed

by Nt = m + 1 + (l − t)(k − 1). We remark that we search

the smallest m which satisfies the above condition. So we

can bound the number of unknowns (coefficients qt,i of the

polynomials Q(t)) by:

(

s+ 1

2

)

n <

l
∑

i=0

Nt <

(

s+ 1

2

)

n+ l. (3)

We will use this bound to determine the complexity of our

algorithm in Section VI.

In Table I we consider RS(16, 4, 13) code over F17 =
GF (17). Classical decoding permits to correct six errors (see

Table I, denoted with s = 0). Sudan’s algorithm increases the

decoding radius to τ = 7 already. If we apply the modified

interpolation conditions of Guruswami-Sudan (for s = 2),

we can correct eight errors and the corresponding list size is

l = 4. McEliece [8] has shown that l̄(τ) is slightly less than

TABLE I
EXAMPLE FOR RS(16, 4, 13) OVER GF (17).

Multiplicity s Radius τ List Size l(s) l̄(τ)

0 6 1 3.36183098 ×10−4

1 7 2 7.280428277 ×10−3

2 8 4 1.24464565671 ×10−1

28 9 64 1.449716376

a rigorous bound on the average number of codewords on the

list, which were not sent (and within the decoding radius τ
from the received word and).

So for s = 28 we have in average ≈ 2.45 codewords on the

list (l̄(τ) and the sent codeword). We refer to this example in

the annexe, where we apply our new algorithm to the GS-case

with multiplicity s = 2.

IV. LIST DECODING AND FIA

A. Overview

In this section we provide the link between the list-decoding

principle of Guruswami-Sudan for Reed-Solomon codes and

the FIA (as mentioned in Section II for Hankel matrices).

We first consider the Sudan case (where the interpolation

multiplicity is s = 1) and show how the corresponding

system of linear equations can be solved efficiently. If the SKE

represented in matrix form, we obtain a horizontal line of l+1
(without the original reduction of [3]) Hankel matrices. In the

GSKE case the matrix form of the set of linear equations gives

us a matrix of (l + 1)× s Hankel matrices.

B. Sudan case

Sudan’s original approach [1] was reformulated to the SKE

in [3] and [9]. In the following we skip the reduction step

(where the Q(0) with degree smaller than N0 = n − τ
can be interpolated) and present the full system of n linear

homogeneous equations. The following lemma gives the basic

idea of [3].

Lemma 1 Let Q(x, y) =
∑l

t=0Q
(t)(x)yt be the Sudan

interpolation polynomial that satisfies the conditions ①-③ for

s = 1 and let R(x), such that R(αi) = ri ∀ i = 1, . . . , n.

Furthermore, let G(x) =
∏n
j=1(x−αi). Then Q(x, y) satisfies

condition ③, if and only if there exist a polynomial B(x) over

F for which

Q(x,R(x)) = B(x) ·G(x), (4)

where degB(x) < l(n− k)− τ .

Using condition ② and dividing by G(x) gives us n equations

on the unknowns.

l
∑

t=0

Q(t)(x)
R(x)t

G(x)
= B(x) (5)

We write Q(x, y) as a vector Q:

Q =
(

Q(0) Q(1) . . . Q(l)
)T
,

where Q(t) = (Q
(t)
0 ,Q

(t)
1 , . . . ,Q

(t)
Nt−1)

T . Equivalent to this

representation the syndrome polynomials S(t)(x) lead to l+1

Hankel matrices S(t) = [S
(t)
i,c ]i,c ∀ t = 0, . . . , l.

In comparison to the original approach of Roth and Ruck-

enstein [3], the number of rows of the matrices S =
(S(0) S(1) · · · S(l)) is n (not τ ) and the number of columns is

Nt for all t = 0, . . . , l (for the definition see [3]). Finally, we

obtain the following matrix representation for the non-reduced

SKE:
(

S(0) S(1) · · · S(l)
)

·Q = 0. (6)
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The adaption of the FIA for horizontally arranged Hankel

matrices in [3] and [9] is done by a re-ordering of the columns

that correspond to the weighted degree of the interpolation

polynomial Q(x, y). Here, we will denote this as horizontal

ordering ≺H of the columns (denoted by t) of S(i) and it

will be used in our algorithm in Section VI. It is defined as

(i, t) ≺H (i′, t′) if and only if:

t+ i(k − 1) < t′ + i′(k − 1)
or

t+ i(k − 1) = t′ + i′(k − 1) and i < i′.
(7)

The time complexity of the FIA for this case (l+1 horizontally

arranged Hankel matrices) and for n equations is O
(

ln2
)

. We

remark that in [3] the SKE was called Extended Key Equation

(EKE) and that the complexity of the FIA-based algorithm can

be reduced by omitting the Q(0) to τ equations. They applied

the modified FIA to the reduced set and interpolate the missing

Q(0) with Q0(αi) = −
∑l

t=1Q
(t)(αi)r

t
i for all i = 1, . . . , n.

C. Guruswami-Sudan case

We also consider for the Guruswami-Sudan [2] the complete

set of
(

s+1
2

)

n homogeneous equations without any reduction.

This comes from the following lemma (proved in [4]):

Lemma 2 Let Q(x, y) =
∑l

t=0Q
(t)(x)yt be the Guruswami-

Sudan interpolation polynomial that satisfies the conditions

①-③ for s > 1 and let R(x), such that R(αi) = ri ∀i =
1, . . . , n. Furthermore let G(x) =

∏n
j=1(x−αi). ThenQ(x, y)

satisfies condition ③, if and only if there exist s polynomials

B(b)(x) ∀ b = 0, . . . , s− 1 over F for which

Q[b](x,R(x)) = B(b)(x) ·G(x)s−b, (8)

where degB(b)(x) < l(n− k)− sτ + b.

We remark that Q[b] denotes the b-th Hasse derivative of the

bivariate polynomial Q(x, y) with respect to the variable y.

It can be shown that the Equation (8) leads to a linear system

S · Q = 0, where the syndrome matrix S has the following

form (for details see [4]):










S(0,0) S(0,1) . . . . . . . . . S(0,l)

0 S(1,1) . . . . . . . . . S(1,l)

...
. . .

...

0 . . . 0 S(s−1,s−1) . . . S(s−1,l)











.

(9)

All matrices depend on the received vector r except the ones

on the diagonal S(i,i) ∀ i = 0, . . . , s − 1. To solve the

GSKE we adapt the FIA first for a single line of vertically

arranged Hankel matrices (see next section) and then combine

this algorithm with the idea of Roth and Ruckenstein to form

an algorithm for a block Hankel matrix.

In [4] the system (9) was reduced by omitting some S(i,i).

For the sake of simplicity, we outline our algorithm for the

non-reduced system of equations. Nevertheless, the algorithm

is also applicable to the reduced system, where also a block

Hankel matrix occurs.

V. INTERMEDIATE STEP: VERTICAL ARRANGEMENT OF

HANKEL MATRICES

In this section we derive an algorithm for determing the

column vector T of the equation S · T = 0 if S is matrix

where s syndrome matrices are arranged vertically.

S =
(

S(0) S(1) · · · S(s−1)
)T

Each matrix S(i) has a Hankel structure and

consists of (s − i) · n rows and N columns.

Algorithm 1: Multiple Hankel matrices aranged vertically

Input: Polynomials S(i)(x), where i = 0, . . . , (s− 1)
Output: Polynomial T (x)

Data structures:

Column pointer ψ, row pointer (ϑ, κ)
Arrays A and D indexed with the row pointer (ϑ, κ)
Variable ∆ ∈ F , variable compute ∈ {TRUE,FALSE}.

Initialize:

Reset arrays A and D to zero (ϑ, κ)← (0, 0); ρ← 0
compute ← FALSE

while (ϑ, κ) < (s, n) do1

if compute then2

∆← 〈xκ · T (x), S(ϑ)(x)〉3

else4

if κ < 1 and ϑ = 0 then5

T (x)← xψ6

∆← S
(ϑ)
ψ7

(ϑ, κ)V ← (0, 0)8

else9

T (x)← x · T (x)10

if κ = 0 then11

(ϑ, κ)← (ϑ− 1, n)12

∆← 013

end14

κ← κ− 115

end16

compute← TRUE17

end18

if ∆ = 0 or D[ϑ][κ] 6= 0 then19

if ∆ 6= 0 then20

T (x)← T (x)− ∆
D[ϑ][κ] · A[ϑ][κ](x)21

end22

(ϑ, κ) ≺ (ϑ, κ)23

else24

A[ϑ][κ](x)← T (x); D[ϑ][κ]← ∆25

ψ ← ψ + 126

compute← FALSE27

end28

end29

Let ≺V denote the order over the set of pairs

{(i, t)|i ∈ {1, . . . , s}, t ∈ N}, where (i, t) ≺V (i′, t′) if

and only if:

t+ i · n < t′ + i′ · n
or

t+ i · n = t′ + i′ · s and i < i′
(10)

The rows of S are indexed with (ϑ, κ) where 0 ≤ ϑ ≤ (s−1)
and 0 ≤ κ < (s − ϑ) · n. We rearrange the rows from top

to bottom of the matrix S to the order ≺V on their indexes.

A row in S is indexed with (ϑ, κ). For s = 2 we get the
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following structure of the matrix S:

S =











































S
(0)
0 S

(0)
1 S

(0)
2 · · · S

(0)
N−1

S
(0)
1 S

(0)
2 S

(0)
3 · · · S

(0)
N

...
...

. . .
...

...

S
(0)
n S

(0)
n+1 S

(0)
n+2 · · · S

(0)
N+n−1

S
(1)
0 S

(1)
1 S

(1)
2 · · · S

(1)
N−1

S
(0)
n+1 S

(0)
n+2 S

(0)
n+3 · · · S

(0)
N+n

...
...

. . .
...

...

S
(0)
2n−1 S

(0)
2n S

(0)
2n+1 · · · S

(0)
2n+N−1

S
(1)
n−1 S

(1)
n S

(1)
n+1 · · · S

(1)
n+N−1











































(11)

We can reformulate the equation S · T = 0 to a polynomial

structure and get

N−1
∑

i=0





((s−ϑ)·n−1)
∑

κ=0

Ti · S
(ϑ)
κ+i



 = 0, 0 ≤ ϑ ≤ (s− 1) (12)

or written with the inner product:

〈xκ · T (x), S(ϑ)(x)〉 = 0 (13)

where 0 ≤ ϑ ≤ (s − 1) and 0 ≤ κ < (s − ϑ) · n. Due

to each matrix S(i) has a Hankel structure we reformulate

the FIA algorithm for Hankel structure as described in [5]

to fit the particular structure of the Matrix S. Algorithm 1

presents an algorithm for solving this particular structure. The

algorithm allocates two arrays each indexed with the row

pointer (ϑ, κ), array A[ϑ][κ] for buffering the polynomials

and array D[ϑ][κ] for buffering the discrepancy values. The

iteration of the main loop starts with a computation of the

discrepancy ∆ in Line 2. Line 21 updates the polynomial as

described in [5]. Respectively to Equation (10) the row pointer

is incremented in Line 23 after the polynomial was updated

or the discrepancy was zero.

As it was the case with Hankel matrices, the idea is to start

off a new column in S with a clever choice of an initial

value of T (x). Specifically suppose we are calculating a

discrepancy at column ψ and row (ϑ, κ) where ϑ > 0. We

write this polynomial in the array A[ϑ][κ](x) and the current

discrepancy in D[ϑ][κ] and increment the column pointer to

ψ + 1. Like with Hankel matrices we select for our new

polynomial T (x) = x · A[ϑ][κ](x) when starting the column

ψ + 1 and take the same discrepancy. Clearly we have

〈xi · T (x), S(ϑ)(x)〉 = 〈xi+1 ·A[ϑ][κ](x), S(ϑ)(x)〉 (14)

for every i ≥ 1. The initial value of T (x) at column ψ + 1
already satisfies 〈xi ·T (x), S(j)(x)〉 = 0 for all (i, j) ≺ (ϑ, κ),
which means that the discrepancy values are zero for all

(i, j) ≺ (ϑ, κ). Thus, we can start examining row (ϑ, κ − 1)
in column ψ + 1 (see Lines 5 to 16).

The algorithm has one exception in Line 11, if we are

calculating a discrepancy for ϑ ≥ 1 and κ = 0 we cannot

decrement κ and we have to use the previous used ϑ, κ.

VI. A FIA FOR A BLOCK HANKEL MATRIX

A. Principle

In this section we derive an algorithm for determing the

Q(x, y) of the GSKE. In this case we have a syndrome matrix

as defined in Equation (9) which consists of multiple Hankel

matrices. The columns of the matrix S are indexed with (ν, µ),
where 0 ≤ ν ≤ l and 0 ≤ µ < Nν and the rows are indexed

with (ϑ, κ), where 0 ≤ ϑ ≤ (s − 1) and 0 ≤ κ < (s − ϑ) ·
n. We rearrange the columns from left to right with respect

to the order ≺H on their indexes and the rows from top to

bottom with respect to the order ≺V on their indexes. We can

generalize Equation (13) for two bivariate polynomials to

〈xκ · T (x, y), S(ϑ)(x, y)〉 = 0, (15)

where 0 ≤ ϑ ≤ (s − 1) and 0 ≤ κ < (s − ϑ) · n.

Algorithm 2: Solving the GSKE

Input: Biv. Polynomials S(i)(x, y), i = 0, . . . , (s− 1)
Output: Biv. Polynomial T (x, y)

Data structures:

Column pointer (ν, µ), row pointer (ϑ, κ)
Arrays A and D indexed with the row pointer (ϑ, κ)
Array R for buffering the row pointer (ϑ, κ)
Variable ∆ ∈ F , variable compute ∈ {TRUE,FALSE}.

Initialize:

Reset arrays A, D and C to zero

(ν, µ)← (0, 0) and (ϑ, κ)← (0, 0)
compute ← FALSE

while (ϑ, κ) < (s, n) do1

if compute then2

∆← 〈xκ · T (x, y), S(ϑ)(x, y)〉3

else4

if R[ν] < 1 then5

T (x, y)← yν · xµ6

∆← S
(0,ν)
µ7

(ϑ, κ)← (0, 0)8

else9

T (x, y)← x · A[R[ν]](x, y)10

∆← D[R[ν]]11

(ϑ, κ)← R[ν]12

if κ = 0 then13

(ϑ, κ)← (ϑ− 1, n)14

∆← 015

end16

κ← κ− 117

end18

compute← TRUE19

end20

if ∆ = 0 or D[ϑ][κ] 6= 0 then21

if ∆ 6= 0 then22

T (x, y)← T (x, y)− ∆
D[ϑ][κ] · A[ϑ][κ](x, y)23

end24

(ϑ, κ) ≺V (ϑ, κ)25

else26

A[ϑ][κ](x, y)← T (x, y)27

D[ϑ][κ]← ∆28

R[ν]← (ϑ, κ)29

compute← FALSE30

(ν, µ) ≺H (ν, µ)31

end32

end33

Algorithm 2 solves this equation by combining the algorithm

for the SKE defined in [3] and Algorithm 1. The iteration
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of this algorithm increments the row pointer in Line 25

with respect to Equation (10) and the column pointer in

Line 31 with respect to Equation (7). Line 3 presents the

computation of the discrepancy as described in Equation (15).

If the discrepancy is zero for all 0 ≤ ϑ ≤ (s − 1) and

0 ≤ κ ≤ (s− ϑ) · n− 1 we fullfill this equation.

B. Complexity Analysis

The Algorithm 2 is tailored for a block Hankel matrix,

where each submatrix S(b,t) is a ((s − b) · n) × Nt Hankel

matrix for all b = 0, . . . , s− 1 and t = 0, . . . , l.

Proposition 1 The time complexity of Algorithm 2 is

O
(

ls4n2
)

.

Proof: By Equation (3), one iteration of the main loop of

Algorithm 2 has time complexity O
(

s2n
)

.

For bounding the iterations of the main loop, we observe ν = t
and ϑ = j. For every ν = t we can increase µ at most Nt
times. Therefore, κ can be decreased also at most Nt times.

For every ϑ = j the initial value of κ is 0 and its final value

cannot exceed (s − j) · n − 1. It follows that the number of

iterations cannot increase (s−j)·n−1+Nt. Hence, the number

of iterations with ν = t and ϑ = j is at most (s−j)·n−1+2Nt.
Summing all over t and j, the number of iterations of the main

loop is at most
∑l

t=0

(

∑s−1
j=0 ((s− j) · n− 1 + 2Nt)

)

=
∑l

t=0

((

s+1
2

)

n+ 2sNt
)

, which equals to the complexity

O
(

l · s2n+ s · s2n
)

. With l > s in case of Guruswami-Sudan

we get the complexity of O
(

ls2n
)

. Thus, the overall time

complexity of the algorithm is at most O
(

ls4n2
)

.

VII. CONCLUSION

We proposed a generalization of the Fundamental Iterative

Algorithm from Feng and Tzeng to a block Hankel matrix. The

motivation was a fast realization of the interpolation problem

of the Guruswami-Sudan principle, where the block Hankel

structure of the set of linear homogeneous equations comes

from the reformulation over a univariate polynomial ring (Key

Equation).

The authors would like to thank Daniel Augot and Vladimir

Sidorenko for the various fruitful discussions.

APPENDIX

GENERALIZED FIA FOR THE GSKE

The RS(16, 4, 13) code defined over GF (17) with mul-

tiplicity s = 2 and the corresponding list size l = 4 is

considered. The corresponding set of homogeneous equations

coming from Equation (9) is a matrix 2 × 5 block Hankel

matrix S with 3n = 48 rows and
∑l

t=0Nt = 50 columns:

S =

(

S(0,0) S(0,1) S(0,2) S(0,3) S(0,4)

0 S(1,1) S(1,2) S(1,3) S(1,4)

)

.

Figure 1 shows the process of the row and column pointers

of S(ϑ,0) . . .S(ϑ,4) with 0 ≤ ϑ ≤ 1 of the Algorithm 2. The

ordering ≺H is identifiable, when we look at the vertical dis-

tances between two points of a graph. The horizontal distance

for example between the two column pointers (ν = 0, µ = 2)
and (ν = 0, µ = 3) in graph S(ϑ,0) is 1 whereas the distance

increases to 2 between the column pointers (ν = 0, µ = 5)
and (ν = 0, µ = 6) in the same graph. When we look at the

vertical distances between two points, we can recognize the

ordering ≺V . In the rows 1 to 16 the vertical distance is 1 as

marked in graph S(ϑ,1) with the row pointers (ϑ = 0, κ = 11)
and (ϑ = 0, κ = 12). Between row 16 and 47 the vertical

distance increases from 1 to 2 as marked in the same graph

with the row pointers (ϑ = 1, κ = 9) and (ϑ = 0, κ = 10).
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Fig. 1. Illustration of the column and row pointer of the generalized FIA
(Algorithm 2) applied to an 2 × 5 block Hankel matrix.
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