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Abstract -- A new and efficient method for calculating the load 
flow solution of weakly meshed transmission and distribution sys- 
tems is presented. Its essential advantages over a previous 
approach' are the following: (1) It uses active and reactive powers 
as flow variables rather than complex currents, thus simplifying 
the treatment of P,V buses and reducing the related computational 
effort to half; (2) It uses an efficient tree labeling technique which 
also contributes to the computational efficiency of the procedure; 
(3) It uses an improved solution strategy, thereby reducing the bur- 
den of mismatch calculations which is an important component of 
the solution process. Results of tests with 30,243,1380, and 4130 
bus systems are given to illustrate the performance of the proposed 
method. 

Keywords: Load flow, Radial network, Weakly meshed network, 
Tree labeling. 

INTRODUCTION 
Several efficient and generally reliable load flow solution 

techniques have been developed over the last few decades. These 
include the Gauss-Seidel load f l o d ,  the Newton-Raphson load 
flow4 and the Fast Decoupled Load H o d .  Although these classi- 
cal techniques have been widely used, there are situations when 
they may experience difficulties or become inefficient, as in the 
case of 
(1) Ill-conditioned or poorly initialized 
(2) Special applications' or special network structure, e.g. 

weakly meshed networks'. 
This paper presents a fast and efficient method for obtaining 

load flow solutions of weakly meshed power systems or distribu- 
tion systems. It represents a significant improvement over our first 
approach reported in [I] due to three new features. First, by using 
powers (P,Q) as variables in the solution process instead of com- 
plex currents, it handles the P,V buses in a direct manner as simple 
loop breakpoints, thereby reducing the related computational effort 
to half. Second, by ap lying the tree labeling technique of net- 
WO* flow programminj to labeling the radial network (unlike for 
instance in reference [IO] where network flow programming is the 
underlying method of the load flow calculation), the sensitivity 
matrix (equivalent to the breakpoint impedance matrix of reference 
[l]) can be constructed using the network graph which minimizes 
the effort. Third, based on the finding that in each iteration the 
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CPU time required for obtaining the breakpoint voltage 
mismatches is dominant, savings are achieved by using single 
sweeps (instead of converged sets) to calculate the mismatches. 

The proposed method has been programmed and tested in 
systems of different sizes in order to demonstrate its performance. 

To put the problem of weakly meshed networks and their 
solution method into perspective, we note that they can be viewed 
as the dual of nodal approaches, as for instance the Fast Decoupled 
Load Flow. The latter deals with the solution of a general problem 
with arbitrarily many loops and uses a nodal approach for the solu- 
tion. Correspondingly, the unknowns are nodal voltages and the 
mismatches are nodal powers which, incidentally, can be calcu- 
lated analytically. In the case of weakly meshed networks, the dual 
approach based on mesh equations represents a viable alternative. 
Then the unknowns become mesh currents or powers and the 
mismatches are loop breakpoint voltages. The latter, however, can 
not be obtained analytically, so that additional calculations 
(sweeps) are needed in the radial network obtained by breaking up 
the loops. Clearly, the mesh based approach is specifically tailored 
for systems where the number of meshes is not too large. 

PREVIOUS WORK 
To make this paper self-contained, the basic idea of our pre- 

vious method' is briefly reviewed in this section. Note that all 
variables are complex quantities. 

Read network d a t a  and i n i t i a l i z a t i o n  
I 

Numbcr brdnches and selcct, open b r o e k p o i n t s  

C a l c u l a t e  t h e  b r e a k p o i n t  impedance m a t r i x  

S e t  i t e r a t i o n  c o u n t  m = I 

1 

S o l v e  r a d i a l  network l o a d  f l o w ;  
Update v o l t a g e  miamntch a t  b r e a k p o i n t s  ( 3 )  

1 
I 

s m a l l  enough? 

C a l c u l a t e  b r e a k p o i n t  c u v r e n t e ;  

d i a g n o s t i c s  Maximum i t e r a t i o n ?  

Fig. 1 Computational flow chart of reference [ 11 
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Fig.1 shows the algorithm for weakly meshed networks of 
reference [l]. The process starts with converting the meshed net- 
work into a radial network by means of selecting and opening a 
number of breakpoints (Block 1). The second step is to calculate 
the breakpoint impedance matrix based on the multi-port compen- 
sation princip1e'O. A complete backwani-forwani sweep must be 
performed to obtain each column of the matrix. This implies that 
the same mathematical operation must be performed for every 
node in the radial network. Blocks 3 and 4 represent the main 
steps in the iterative process. In Block 3 there is an inner iterative 
process in which a converged radial network load flow solution is 
obtained by repeated backward-forward sweeps. To obtain the 
breakpoint currents, a set of linear equations in the complex 
domain is solved in Block 4. 

Since the P,V buses were treated in a different way than the 
loop breakpoints, it was shown in reference [l] that the efficiency 
of the solution method for weakly meshed networks is adversely 
affected by the introduction of the P,V nodes. 

DESCRIPTION OF THE PROPOSED METHOD 

General Procedure 
In order to efficiently obtain the load flow solution of a 

weakly meshed network, the network is 6rst converted to a radial 
network with the slack bus as its root, This conversion is done by 
breaking all  the loops in the meshed network. To compensate for 
the breaking, proper power injections (active and reactive) must be 
assigned to both sides of a breakpoint to reflect the power circulat- 
ing in the original loop. The breakpoint power injections are 
proper if the voltages at the two sides of the breakpoints in the 
radial network are equal (both in magnitude and in phase). The 
solution procedure will start with an initial guess of these power 
injections. In the process, they will be corrected iteratively until 
they converge to their final values. 

Each iteration of the procedure contains two stages: 
Mismatch Calculation (Stage 1) and Injection Correction (Stage 2). 
At Stage 1, breakpoint voltage mismatches (magnitude and angle) 
are calculated in the radial network with the assigned breakpoint 
power injections. This is done by a Backward-Forward Sweep 
along the radial network. At Stage 2, comctions of the breakpoint 
power injections are calculated by means of a sensitivity matrix, 
with the breakpoint voltage mismatches obtained at Stage 1 as 

To obtain the load flow solution of the meshed network, the 
above iteration is repeated until the breakpoint voltage mismatches 
and/or the corrections of the breakpoint power injections are 
within the preset error tolerance. 

When P,V buses are encountered, each P,V bus is handled 
similarly to a loop bredpiit ,  but the computational effort is half. 
Details of how to treat a P.V bus as a particular type of breakpoint 
will be discussed later. 

inputs. 

Classification of the Breakpoints 
As mentioned before, there are two types of breakpoints in 

the network: Loop Breakpoint (LBP) and P,V Bus Breakpoint 
(PVBP). 

Loop Breakpoint (LBP) 
A LPB breaks a loop in the network. The location of a LBP 

is normally chosen at a bus so that it breaks the bus into two: the 
original bus and an artificial bus. These two buses form the two 
sides of the LBP as shown in Fig.2. 

We note that the LBP in this paper is the same as in reference 
[ 13, except that the associated variables different. In the exam- 
ple of Figure 2, the breakpoint voltage mismatches are AV 
(=V&) and A6 ( 4 k - S ; ) .  The power injections are P and Q. 

The corrections of LBP power injections are not shown in the 
figure. 

(a) Before the loop is broken (b) After the loop is broken 
Fig2 Explanation of a LBP 

P,V Bus Breakpoint (PVBP) 
Since at a P.V bus P and V are specified, it can be treated as a 

particular type of breakpoint. This can be seen in Fig.3 where an 
artificial bus j '  serves as the other side of the PVBP. This artificial 
bus has a fixed voltage magnitude which is equal to the predefined 
value of the P,V bus voltage. Since the active power P of a P.V 
bus is specified, the PVBP active power injection P is known from 
the beginning and the correction of active power injection is 
always zero. Therefore, the only unknown associated with a 
PVBP is the reactive power injection Q and the effort of handling 
a PVBP is correspondingly half of that for a LBP. 

. . 

P', VS: specified values 

(a) Before the P,V bus is broken b) After the P,V bus is broken 
Fig.3 P,V bus breakpoint 

With this procedure, the mismatch of a PVBP is only the 
breakpoint voltage magnitude difference AV (=Vj-Vpv) and the 
correction AQ of the reactive power injection is the only quantity 
sought at each iteration. 

Network Flow Tree Labeling 
Modified Network Flow Progr;Mlqing tree labeling2 has been 

applied to label the radial network. Th~s makes possible the con- 
struction of the sensitivity matrix in a very efficient way, as 
explained later. The labeling includes several functions which are 
node oriented: an order function o (.), a predecessor function p (*), 
a distance function d (.), and an arc function a (a). Below are their 
definitions. 

Order o t ) :  
A sequence pointer puts the nodes in the tree in order. It goes 

through each node only once in a top to bottom, left to right 
sequence, starting from the root node. 

Precedessor p (.): 
Upward pointer. A pointer list which contains for each node 

w (other than the root) the unique node (say v) above node w 
which is connected by an arc (i.e. a branch), e.g. p(w)=v. By 
definition p(root) = 0. 

! 

Authorized licensed use limited to: The University of Toronto. Downloaded on December 27, 2008 at 12:37 from IEEE Xplore.  Restrictions apply.



Distance d (.): 

path of the node to the root, not containing the root arc itself. 

Arc a(.): 

A one to one node-arc correspondence function. This func- 
tion contains the arc index which connects the node to its prede- 
cessor. For the root we define an additional arc so that a(root) = 
n,+l, where nu is the total number of arcs in the tree. 

As an example, the tree labeling functions for the tree illus- 
trated in Fig.4 have the following values: 

This function indicates the number of arcs in the predecessor 

w 
3 6  

11 

Fig.4 A sample tree 

Meshed-to-Radial Network Conversion with Tree Labeling 
Breakpoints are first selected for the conversion of a meshed 

network to a radial network. As noted in reference [l], breakpoint 
selection does not affect the convergence performance of the solu- 
tion method in any noticeable manner. Therefore, the algorithm 
for selection of breakpoints described in [l] could have been 
adopted with appropriate modifications to fit the tree labeling and 
the related algorithms described in this paper. To avoid 
modifications, another algorithm was chosen to do the conversion. 
Although this algorithm is very similar to that described in 111, it 
combines the conversion and the Network Flow Tree Labeling into 
a single process. This has been summarized as Algorithm A given 
in the Appendix. 

Sensitivity Matrix 

The Sensitivity Matrix (SM) is defined as the matrix M in the 
equation 

MAS =AV (1) 
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where AV is the breakpoint voltage mismatch vector (magnitudes 
and angles) and AS is the breakpoint power injection correction 
vector (real and reactive powers). This matrix gives a measure of 
how the changes in AV depend on AS assuming that all nonlineari- 
ties are neglected. Based on the compensation theoremlO*ll, the 
Sensitivity Matrix used in (1) can be the breakpoint impedance 
matrix described in [l]  based on the following assumptions: 
(1) The loads and other shunt elements are not represented, and 
(2) All bus voltages are assumed close to 1.0 p.u. and their phase 

angles close to zero. 
Since the breakpoint im ce matrix has been proven 

effective as a sensitivity m a t r i x e i s  also used in the present 
approach. However, the appearance of the SM employed now is 
different since we-are using real variables (P,Q,V,6) rather than 
complex ones (V,r) and breakpoints have been generalized to 
include P,V buses. 

Fig.5 A network with breakpoints 

Suppose a network has m LBPs and n PVBPs as shown in 
FigS. When LBPs and PVBPs are not distinguished, the Thevenin 
equivalent impedance matrix, as seen from the breakpoints, is 
defined by: 

where V and Tare the breakpoint voltage vector and the breakpoint 
current vector, respectively. Since the radial network is linear, 
eqn.(2) applies to the incremental quantities as well, so that 

z T = V  (2)  

z E = A F .  (3) 

M- E AS-* 

With the assumption of all bus voltages being close to 1.0 p.u. and 
the phase angles small, the following holds 

(4) 
so that 

ZAF' = A V .  (5) 
By expressing the complex quantities in eqn.(5) in their rectangu- 
lar form 

= R+jX (6a) 

A? = AP - jAQ 
and 

AV = AV+ jA6 (W 
eqn.(5) can be rearranged and expressed as 

RAP +XAQ = AV (74  

XAP -RAQ = A6 
or in a more compact form 

which corresponds to eqn.( 1). 
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Note that the dimension of the vectors AP and A8 is only m since 
the A8 for each PVPB is always zero. As a result of this, the 
dimension of eqn.(8) is equal to 2m+n. 

To illustrate how a sensitivity matrix can be constructed, a 
simple example is given below. Remember that the diagonal ele- 
ments in matrix X are the self reactances of the breakpoints and the 
off-diagonal elements are the mutual reactances of two break- 
points. A self reactance can be obtained by adding the line reac- 
tances of the lines which form the loop connecting the two buses 
of a breakpoint, while a mutual reactance is the sum of the line 
reactances which are common for two breakpoint loops. The same 
rule applies to matrix R except that the word ‘reactance’ should be 
replaced by ‘resistance’. 

Let us take the network shown in Fig.6 as an example. This 
network contains two LBPs (1-1’ and 2-2’) and one PVBP (3-3’). 
The line impedances are marked on the figure. 

The X and R matrices for this example are 

0.7 -0.5 0.2 

0.2 -0.2 0.35 

and the Sensitivity Matrix and eqn.(8) become 
r - !  

1.4 -1.0 0.4 0.7 -0.5 
-1.0 1.3 -0.4 -0.5 0.65 1 I AQ2 A Q 1 /  

1 0.4 -0.4 0.7 0.2 -0.21 I AQ31 = 
-0.7 0.5 -0.2 1.4 
0.5 -0.65 0.2 -1.0 1.3 I 

Slack bus 

RrO .2 
X=O .4 \ 

R.0.1 

Fig.6 Sample system for illustrating the 
construction of the sensitivity matrix 

Note that the heads (number without prime in Fig.6) and the tails 
(number with prime in Fig.6) of the breakpoints can be assigned 
randomly. This assignment will affect the sign of the off-diagonal 
elements in the X and R matrices of eqns.(9). 

Construction of Sensitivity Matrix with Tree Labeling 
An algorithm for constructing the elements of SM related to 

one breakpoint is presented in this section. A complete SM can be 
formed by repeated calls of the algorithm. 

The algorithm consists of three major steps. Step 1 finds the 
unique path connecting the two side nodes of the breakpoint, 
which has been divided into a positive path and a negative path in 
the algorithm. Step 2 first establishes the nodal voltages for the 
nodes on the path and then the remaining nodal voltages. The ele- 
ments of SM are then calculated in Step 3. 

The two side nodes of a loop breakpoint are labeled by k and 
k’ in the tree, as shown in Fig.7. The details of the corresponding 
Algorithm B are given in the Appendix. 

-._.- W S I T I V E  PATH 

- - - - - - - NEGATIVE PATH 

Fig.7 Sample tree for illustration of Algorithm B 

Note that the whole algorithm is a graph based approach. For 
the breakpoint k shown in Fig.7, Step 1 establishes the positive 
path (8,7,6,5) and the negative path (13,12,11). Step 2 establish 
the voltages for the nodes on the paths by adding (for positive 
path) and subtracting (for negative path) the line parameters. Step 
3 sets V9 and Vlo equal to v6 as well as S, and 810 equal to 86. 
Note that in this step only a small subset of nodes (node 9 and 
node 10 in this example) are involved. The voltages of the rest 
(e.g. nodes 1-4, 14-21) remain at their initialized value (4). This 
is why the algorithm is so efficient. 

Algorithm B is also applied to PVBP. In this case, the posi- 
tive path is the path connecting the P,V node to the root and there 
is no negative path involved. 

Calculation of the Breakpoint Voltage Mismatch 
The breakpoint voltage mismatches are calculated from the 

nodal voltages of the radial network. The latter are obtained from a 
single backward-forward sweep. The backward sweep serves to 
sum the load powers and the power losses from the end nodes to 
the root. The forward sweep establishes the nodal voltages from 
the mot to the end nodes based on the power flows obtained in the 
backward sweep. 

To illustrate the mathematical operations involved for one 
node during the sweep, we have set up a one branch (node) exam- 
ple shown in Fig.8. 

Fig.8 One branch example for explaining the sweeping 

In Fig.8, subscripts s and r stand for “sending end“ and 
“receiving end“ respectively. P, and Q, are the sums of the loads, 
generations, powers absorbed by shunt components, powers drawn 
by the downstream branches, and power injections, if any. 

T -  1 
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In the backward sweep, the sending end power is calculated 
from 

Pf+Qf  Ps = Pr+R- 
V? 

In the forward sweep, with the sending end voltage known, the 
receiving end voltage is calculated from 

RADIAL. NE"% CONVERSION 
AND TREE LADELING 

(ALUWUTlM A )  

I S E N S I T I V I T Y  M4lRIX 
CONSlRUCTION 

6, = 6s-tan-' - [ ;%7j 
t 

I I I N I T I A L I Z E  MEAKPOINT WWER INJECTIONS I 
v, = ~ ( V , - A V ~ ) * + A V ~ ~ ~  

where AV' and AV" are the longitudinal and transversal voltage 
drops respectively, obtained from 

Applying to each node and branch in the radial network the 
mathematical operations presented in the above example, the cal- 
culations of the breakpoint mismatches can be described as fol- 
lows. 

Backward -Forward Sweeps 
(1) Backward Sweep (power summation): 

Calculate the sending end powers (Ps, Q,) in the reverse 
sequence of the order function. This step employs eqn.( 11). 

Calculate the nodal voltage (V, 6) of each node following the 
sequence defmed by the order function. Equations (12) and 
(13) are employed in this step. 

Calculate the loop breakpoint mismatch by taking the voltage 
difference (magnitude and angle) between the two side nodes. For 
PVBP the only mismatch is the voltage magnitude difference 
between the P ,  V node and the specified value. 

(2) Forward Sweep (voltage calculation): 

Calculation of Breakpoint Power Injection Corrections 
Once the breakpoint voltage mismatches have been obtained, 

the breakpoint power injection corrections can be calculated by 
solving eqn.(l), presented earlier in this paper. To speed up the 
process, matrix M is factorized only once. 

Computational Flow Chart 
To summarize and to make clearer the procedure of the pro- 

posed method, a computational flow chart is given in Fig.9. Note 
that the block updating the breakpoint power injections in the flow 
chart does this for the (k+l) th iteration by summing up the break- 
point power injections and the power injection corrections at the 
k th iteration. 

NUMERICAL TESTS 
The proposed method has been programmed and has been 

tested in four different systems with the R /X ratio varying from 0.1 
to 5.0. Fig.10 shows the descriptions of the four systems. 

Sparsity techniques for solving linear equations have been 
implemented. While this is of little consequence for small size 
systems (e.g. systems TS1 and TS2), 30% of CPU savings for 
matrix factorization and 20% of CPU savings for forward- 
backward substitutions have been achieved in system TS3. The 
sparsity structure of the sensitivity matrix for this system is given 
in Fig.11. 

I t 
BREAKWINT MISMATCH 

CALCULATION AI (FORWARD-BACKWARD W E E P S )  

UPDATE 

INJECTIONS CALCULATE BRWKWINT 
WWER INJECTION CORRECTIONS 

(EQUATION ( I ) ) 1 PRINT RESULT 

Fig.9 Computation flow chart of the proposed method 

Fig. 10 Description of four test systems 
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. *  
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Fig. 11 Sparsity structure of the sensitivity matrix of system TS3 

Authorized licensed use limited to: The University of Toronto. Downloaded on December 27, 2008 at 12:37 from IEEE Xplore.  Restrictions apply.



I 

1314 

The program has been run on a PC/AT compatible micro- 
computer (with a 287 coprocessor) and on a VAX Micro-2. With 
an error tolerance of 0.005 P.u., the average CPU requirement and 
the number of iterations needed are given in Fig.12. In the table, 
"Prep" means preparation phase which includes the processes of 
building the tree and the Sensitivity Matrix, and the SM factoriza- 
tion. "Sol" means the solution phase which covers all iterations. 
Total CPU includes the input/output process. 

Run on PC 

Fig. 12 CPU requirements of the tests 

To verify that it is more efficient to use a single backward- 
forward sweep in the mismatch calculation, comparisons have 
been made for the two methods: the one using converged sweeps 
and the proposed method. Fig.13 shows the results of the com- 
parisons. We see that about 60% of CPU savings in the solution 
phase has been achieved by the proposed method. We note, how- 
ever, that in some cases using a single sweep may not ensure con- 
vergence of the program so that more sweeps may have to be used. 

NO.OF ITER. * 
5 .  

4 .  

3 .  

2 .  

1 .  NO. OF 
LOOPS 

Fig. 15 Performance of the proposed method 
as the number of loops is increased 

As already emphasized, this method is designed for weakly 
meshed networks. We have tested the proposed method in System 

TS2 by increasing the number of the loops in order to see how the 
CPU time increases. In the test, starting with a case of 6 loops, the 
number of loops were increased, by 2 at each step, up to 52. The 
CPU time and the number of iterations for some steps have been 
listed in Fig.14. Plots showing the behavior of the proposed 
method as the number of loops increased are shown in Fig. 15. It is 
clear that, as the number of loops increases, the method becomes 
less efficient, as the total CPU time increases rapidly. 

CONCLUSIONS 
This paper presents a fast and efficient method for load flow 

solutions of weakly meshed networks. The main improvements 
compared to the work reported in reference [ 11 are the following. 

Using real variables (P,Q) rather than complex ones enables 
us to handle the P ,V buses in an exact manner as loop break- 
points. This not on1 eliminates the convergence difficulty 

tional effort of handling the P,V buses. 
Applying Modified Network Tree Labeling makes it possible 
to construct the sensitivity matrix by a graph based approach. 
This approach reduces the related computational effort to a 
minimum. 
Based on the fact that the CPU required for backward- 
forward sweeps is dominant in each iteration of the solution 
phase, savings of CPU time have been achieved by using a 
single sweep instead of converged sweeping. 

due to the P,V buses Y , but also reduces to half the computa- 

Numerous tests of the proposed method have been conducted. 
They have shown that the method is fast, efficient, robust, and 
eminently suitable for large scale systems with a small number of 

From the general structure of the proposed method it appears 
that, with appropriate modifications and extensions, it has the 
potential of being applied to three phase unbalanced load flow 
problems in weakly meshed networks. 

loops. 
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Fig.13 Comparison of two methods different in sweeping strategy 

Fig.14 CPU time and number of iterations for increasing number of loops 

T 
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APPENDIX 

Algorithm A 
,This algorithm needs two counters: a node counter n (which 

counts the nodes in the tree) and the dangling node counter k (which 
counts how many nodes are dangling during the process). It also needs 
an auxiliary array w to store the dangling buses. 

Algorithm A 
(Al) Initializations: n=l,  k=l ,  na=nb (nb is the total number of buses 

in the network); o (n) = slack bus number; U (n) = nl + 1 (nl is 
the total number of branches in the network); w(k)  = n; 

(A2) D = d(w (k)); for all the branches and nodes having been used, 
raise a flag. 

(A31 bd = o (w (k)); examine all the remaining branches one by one 
until a branch (say branch b,) connected to bus bd is selected. If 
such a branch can not be found, then k =k-1, go to (A2). 

(A4) Breakpoint detection: Check whether the other bus incident (say 
bus I )  to the branch b, has been used. If not, then n = n + 1 ;  
U (n) = b,; o (n) = j .  Otherwise, an artificial bus numbered n,+l 
is created and n, = n, + 1;  o ( n )  = n,. 

d ( n )  = O p ( n )  = 0. 

(A51 d ( n )  = D ; p ( n )  = bd; k = k +  1;  ~ ( k )  = ~(n). 
(A6) If n =nl+l ,  stop; otherwise go to (A2). 

Algorithm B 
Assuming that the two side nodes of a loop breakpoint are labeled 

by k and k' in the tree, as shown in Fig.7, Algorithm B can be described 
as follows. 

Algorithm B 
(B 1) Finding the path: 

(1) Initialization: i1=1, i2=1, u=k, v=k'. 
(2) Stopif u=v. Otherwise t l ( i l )=u and t2(i2)=v; 

Stop if pu=pv. Otherwise 
(4) IfdU2&thenu=p,, i l= i l+ l , t l ( ! l )=u;  

go if d,,*,then to step (2). v=p,, iz=iz+l ,  t 2 ( 1 2 ) = ~ ;  

(3) du4 . (u ) .  d,=d(v); p u p  (u)*pv=p(v);  

(B2) Establishing the nodal voltages: 
Initialize a l l  nodal voltages (magnitude and angle) to zero; 

Do the following for i, starting with i =i 1 and decreasing i 
by 1 each time until i < 1 :  
u = r l ( i ) ;  1 = u(u); V 1  = Vl+X,  61 = 61+R; 

Do the following for i ,  starting with i=iz and decreasing i 
by 1 eachtimeuntil i < l :  
v = rz(i); 1 = u(v); V2 = V2-X S, = 61-R; 

Do the following for i, starting with i =1 and increasing i by 
1 each time until i >i 1 : 
(4a) n=t l ( i ) ,  d,=d(u); 
(4b) t=u+l ,  d ,=d(t);  
(44 Increase i by 1 and restart from (4a), if dr I d , .  Other- 

(4d) V(t )=V(u) ,  6(t)=6(u), u=t and go to step (4b). 
Do the following for i, starting with i =1  and increasing i by 
1 each time until i >i2: 
(Sa) v=tz( i ) ,  d,=d(v); 
(5b) t=v+l ,  dr=d(t); 
(5c) Increase i by 1 and restart from (Sa), if d, I d , .  Other- 

(5d) V(t )=V(v) ,  6(t)=6(v), v =t and go to step (5b). 

set v 1 4 ,  vz=o, 61 =o, S,=o. 

V ( u )  = v1; 6(u) = 61 . 

V ( v )  = v2; 6 ( v )  = 62 . 

wise 

wise 

(B3) Element calculations: 
(1) Diagonal elements in Eqn. (9): 

xk = v ( u ) - v ( v )  
6, = 6 ( u ) - 6 ( v )  . 

(2) Off-diagonal elements in Eqn. (9): 
xk, = voltage magnitude difference between the two side 
nodes of breakpoint j ,  
6k j  = angle difference between the two side nodes of break- 
point j .  

Note that the arrays t 1 (.) and t2(') in the algorithm are used D 
store the indices of the nodes on the positive and negative paths respec- 
tively. 
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Discussion 
The paper is a considerable advance on the concepts outlined in the 

original paper [I]. The use of network flow techniques to implement a 
labelling method of building the sensitivity matrix demonstrates the power 
of network flow methods to minimize the processing required. Such 
methods have been used with great success when the problem can be 
formulated to take advantage of the special structure of electrical power 
systems and has been particularly successful in identifying optimum power 
flow configurations. 

Distribution systems are typically multi-source. To avoid the representa- 
tion of a significant proportion of the transmission system, it would be 
convenient to include all sources in the distribution network. Would the 
authors comment on whether the methods used in the paper can be adapted 
for more than one source, each with magnitude and phase angle reference? 

The dual nature of the power flow solution to the popular decoupled 
method is interesting; the latter introduces approximations in the Jacobian 
to solve for the voltage and angle and has been found to fail to converge 
on some distribution networks with a wide range of R/X values. The 
paper states that the loop method does not suffer from similar convergence 
problems. Because of the loop solution technique, one would expect a 
better performance. Has the proximity of large and small impedance 
branches of differing R/X ratios been tried? 

In weakly coupled networks the diagonal of the sensitivity matrix is 
dominant. It may be possible to use only the diagonal elements and 
employ relaxation techniques to converge on the true solution for the 
injection powers. This would avoid processing for the mutual loop 
impedances. 

How would the methods described in the paper be adapted to deal with 
multi-voltage level systems? 

G. Dromey, Dromey Design Inc. (non-member) 

Reference 

[I] D. Shirmohammadi, H. W. Hong, A. Semlyen and G. X. Lou. “A 
Compensation-Based Power Flow Method for Weakly Meshed Dis- 
tribution and Transmission Networks”. IEEE Trans. on Power 
Systems, Vol. 3, No. 2, May 1988, pp. 753-762. 

The authors have presented a well-written paper addressing the need for 
alternative power flow methods for large weakly meshed networks. Appli- 
cation of graph-based algorithms and tree labeling methods opens up 
exciting possibilities for introducing advanced programming methods. 

1. Although the break point selection may not affect the convergence 
performance of the algorithm, total number of break points seem to be 
non-unique and a larger number increases the computational demands. Is it 
possible to select the minimum number of loops consistent with the least 
computations? 

2. The PV busses are assumed to have unlimited var supply. How can 
the algorithm accommodate var limits? What is the best starting value for 
vars at the PV busses? 

3. Use of real variables P, Q, V and 6 instead of complex currents have 
improved the previous algorithm. Real and reactive power losses and 
voltage magnitudes have been suggested as variables in Reference D1. 
Can the algorithm be modified to accommodate these ‘real world’ vari- 
ables? 
4. The example systems are given in terms of ‘topological’ specifica- 

tions. It would be interesting to know the total P and Q demands of the 
various systems. 

5. What is the sparsity algorithm used in the solution of the sensitivity 
equations? The special sparsity structure with diagonal and border bands 
(Fig. 11 of paper) offer scope for the application of modified techniques. 

6. Is the numerical asymmetry of the sparse matrix taken into considera- 
tion in a special manner? 

The authors are commended for an interesting paper. 

Reference 
[D11 A. Chandrasekaran and R. P. Broadwater, ‘A New Formulation of 

Load Flow Equations in Balanced Radial Distribution Systems’, 
Chadian Electrical Engineering Journal, Vol. 12, NO. 4, 1987, 
pp. 147-151. 

Manuscript received July 25, 1989. 

G.X. Luo and A. Semlyen: We would like to thank both discussers for 
their remarks and questions which give us the opportunity to clarifying 
some of the problems raised in the paper. Our answers are as follows. 
To Dr. A.  Chandrasekaran: 
1. The number of breakpoints is determined by the number of P,V buses 
and the topology of the network. We need one breakpoint for each P,V 
bus and one for each independent loop of the network. The number of the 
latter is 

~ r o o p = ~ r i ~ s - ~ ~ s + ~  (a) 
since the number of tree branches is n d S - l .  It is convenient to select 
meshes for independent loops, whenever it is possible. 
2. In order to account for the VAR limits of P,V buses, the algorithm has 
to be slightly modified. The modification will convert the P,V bus to a 
P,Q bus when its VAR limit is violated. The latter is handled similarly to 
the load buses. 
3. We thank the discusser for having brought their pertinent paper 
(Ref.[Dl]) to our attention. 
4. The total loads in our test systems, including the real and reactive 
losses, are: 

5. and 6. Our program did not take advantage of the special sparsity 
structure of the sensitivity matrices, mentioned by the discusser. Even in 
large weakly meshed systems these matrices will not be large. We cer- 
tainly agree with the possibility of further improvements which could be 
obtained by using more efficient numerical algorithms. 
To Dr. G.  Drorney: 
1. We agree with the discusser that in distribution systems several fixed 
phasor sources have to be considered simultaneously. This does not 
present any difficulty in our method. One of the sources will be the root 
and each of the other sources will be represented as connected to the root 
by a branch containing a voltage source equal to the (complex) voltage 
difference of the two sources. This branch must belong to the system 
tree. Another tree branch will therefore become a link thus increasing the 
number of independent loops (by one for each of the sources other than 
the root). When the breakpoint voltages are calculated (as voltage differ- 
ences at two adjacent points), the voltages of the new voltage sources 
have to be taken into account. Alternatively, the problem of an additional 
source point can be solved by adding a new breakpoint for that bus: this 
will serve to obtain the P, Q injections to the bus with the prescribed 
complex voltage. Fundamentally, the calculations remain as simple as in 
the case of a single source. 
2. In many power systems that consist of transmission networks the 
number of lines is of the order of approximately 1.5 times the number of 
buses. Correspondingly, according to equation (a), the number of 
independent loops is about half of the number of buses. Clearly, for such 
cases a load flow method based on loop equations will not be appropri- 
ate. Only in the case of networks which are weakly meshed will the use 
of loop equations become attractive, since then the size of the sensitivity 
matrix remains small. It is in such situations that the load flow program 
of the paper becomes computationally superior to conventional load flow 
methods. Because of the relatively small size of the sensitivity matrix, 
we did not feel that it would be needed to decouple the matrix as it is 
done in the well known Fast Decoupled Load Flow. This is why no prob- 
lems are expected related to the R/X ratio. For the same reason, we did 
not examine other computational simplifications as, for example, the 
approximation of the sensitivity matrix by its main diagonal. 
3. Regarding the possibility of handling multi-voltage level systems, we 
believe that this can be done by either a per-unit approach or by reducing 
different voltage levels to a single common one with proper care to the 
representation of phase shifting produced by transformer connections. 

Manuscript  rece ived  September 1, 1989. 
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