
EFFICIENT LOADING AND VISUALIZATION OF MASSIVE FEATURE-RICH POINT

CLOUDS WITHOUT HIERARCHICAL ACCELERATION STRUCTURES

J. Otepka1,∗, G. Mandlburger1, Markus Schütz2, N. Pfeifer1, M. Wimmer2

1 TU Wien, Department of Geodesy and Geoinformation, Vienna, Austria -

(johannes.otepka, gottfried.mandlburger, norbert.pfeifer)@geo.tuwien.ac.at
2 TU Wien, Institute of Visual Computing & Human-Centered Technology, Vienna, Austria -

(mschuetz, wimmer)@cg.tuwien.ac.at

Commission II, WG II/3

KEY WORDS: Visualizing Huge Point Clouds, Parallel File Loading, Attribute Inspection, Real-Time Progress Rendering

ABSTRACT:

Nowadays, point clouds are the standard product when capturing reality independent of scale and measurement technique. Es-

pecially, Dense Image Matching (DIM) and Laser Scanning (LS) are state of the art capturing methods for a great variety of

applications producing detailed point clouds up to billions of points. In-depth analysis of such huge point clouds typically requires

sophisticated spatial indexing structures to support potentially long-lasting automated non-interactive processing tasks like feature

extraction, semantic labelling, surface generation, and the like. Nevertheless, a visual inspection of the point data is often necessary

to obtain an impression of the scene, roughly check for completeness, quality, and outlier rates of the captured data in advance.

Also intermediate processing results, containing additional per-point computed attributes, may require visual analyses to draw con-

clusions or to parameterize further processing. Over the last decades a variety of commercial, free, and open source viewers have

been developed that can visualise huge point clouds and colorize them based on available attributes. However, they have either a

poor loading and navigation performance, visualize only a subset of the points, or require the creation of spatial indexing struc-

tures in advance. In this paper, we evaluate a progressive method that is capable of rendering any point cloud that fits in GPU

memory in real time without the need of time consuming hierarchical acceleration structure generation. In combination with our

multi-threaded LAS and LAZ loaders, we achieve load performance of up to 20 million points per second, display points already

while loading, support flexible switching between different attributes, and rendering up to one billion points with visually appealing

navigation behaviour. Furthermore, loading times of different data sets for different open source and commercial software packages

are analysed.

1. INTRODUCTION

Modern surveying sensors capture the real world with high de-

tails producing an enormous amount of data in case of large

projects. The newest generation of airborne laser scanning sys-

tems (e.g. RIEGL VQ-1560 II, Leica TerrainMapper) feature an

effective pulse repetition rates of 2 MHz or more. Hence, such

systems can measure more than 2 million points per second

not even considering multi-target returns. In addition to con-

ventional linear-mode LiDAR (Light Detection And Ranging),

single photon sensitive laser scanners increase the measure-

ment rate by utilizing highly sensitive sensor arrays, potentially

achieving high areal capturing performance by flying from high

altitude (Degnan, 2016), (Stoker et al., 2016) at the price of

a higher measurement noise (Ullrich, Pfennigbauer, 2016). In

addition to LiDAR, 3D point clouds obtained from multi-view

stereo via dense image matching (Hirschmüller, 2008), (Haala,

Rothermel, 2012) are widely used today, with the clear bene-

fit of inherently providing color information for each matched

point. The quality of photogrammetrically derived point clouds

is constantly improving considering the ongoing progress in

camera technology w.r.t. geometric and radiometric resolution.

Multi-head cameras with nadir and oblique viewing directions

mounted into a single camera frame are becoming state-of-the-

art. With such sensors, city regions are typically captured with

a Ground Sampling Distance (GSD) in the order of 10 cm and

∗ Corresponding author

below (Toschi et al., 2017). The latest trend in airborne sens-

ing is combining active laser scanners and passive cameras in a

comprehensive hybrid sensor (Toschi et al., 2018), (Mandlbur-

ger et al., 2017). Therefore, resulting point clouds do have

100+ points/m2. For large cities like Vienna, which has an

area of approx. 415 km2, this would mean a final point cloud

of 50+ billion points.For many applications like city modelling,

administrative planning, flood simulations, natural hazard and

landslide monitoring, vegetation and forestry studies, the cap-

tured point clouds constitute the data basis rather than the final

product. Usually in-depth analysis based on specific processing

pipelines containing feature extraction, semantic labelling, and

surface modelling steps lead to the final products, which are

often geometric models like 3D-meshes or raster models.

Since there is no single optimal spatial index for all situations,

processing software often use different spatial acceleration

structures than point cloud viewers do. Rendering requires data

structures that provide quick access to varying levels of detail

of the model based on the position and direction of the viewer.

Processing tasks, on the other hand, usually need fast access

to all points and their attributes within a certain neighbourhood

without levels of detail information (Weinmann et al., 2015).

E.g., the point cloud processing framework OPALS (Pfeifer et

al., 2013) uses a coarse persistent tiling structure and a 2D or

3D in-core kd-tree structure of each tile depending on the task

to perform. While OPALS can quickly modify, filter, and aug-

ment all the data in a region, it cannot quickly display the res-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 

XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 

https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-293-2020 | © Authors 2020. CC BY 4.0 License.

 

293



ults. With state-of-the-art methods, rendering of massive points

clouds would require a time consuming hierarchical structure

generation whenever new features are computed or point co-

ordinates have changed (e.g. during strip adjustment or coordin-

ate transformation).

Many processing tasks rely on per-point attributes. As de-

scribed by (Otepka et al., 2013) attributes can be categorized

into, i) directly measured features such as RGB, near Infrared,

signal amplitude, echo width, scan angle, number of echos, and

echo number, ii) features extracted from the point cloud itself

like range corrected amplitude values, local normal vector, sur-

face roughness, curvature, and point distribution features, and

iii) features computed by combination with other data sources,

like normalized height based on existing DTM, Normalized

Difference Vegetation Index (NDVI) values for Laser Scanning

(LS) point clouds extracted from multi-spectral images.

These features are used in a variety of basic processing steps

like classification, but they are also used in very specific ways

for certain applications. For comprehensive surveying projects

it is usually necessary to establish, check and/or improve the

georeferencing of the data. Depending on the measuring plat-

form (static or kinematic, terrestrial or airborne) different al-

gorithms, like ICP, strip adjustment or hybrid adjustments, are

utilized to co-register different data subsets (Glira et al., 2019).

In general, planar non-penetrable surface are selected to per-

form the co-registration. To find such regions appropriate fea-

tures are extracted and attached to the point clouds.

Segmentation and classification tasks often use point features

to analyse points independently. E.g. (Mallet et al., 2011) used

Support Vector Machines (SVM) and attributes of different cat-

egories to point-wise classifying full-waveform LiDAR data

of urban areas. (Vosselman et al., 2017), on the other hand,

used segments and Conditional Random Fields (CRF) to clas-

sify points in large chunks rather than separately. Nevertheless,

attributes of different categories were also used in the overall

process again. (Kumar et al., 2019), who apply neural networks

for semantic segmentation, also rely on features computed in

neighborhoods of different size. No hand-crafted features are

required in deep learning (Liu et al., 2019), but it may be of

interest to study the learned features, e.g. by visualizing them.

Also modelling strategies often utilize point-wise attributes.

When deriving Digital Terrain Models (DTM), the full-

waveform echo width attribute can help to discriminate between

ground and low vegetation points (Wagner et al., 2008). For

separating leafs from woody elements in point clouds of single

or multiple trees, (Wang et al., 2017) used features from normal

vector computation. (Nebiker et al., 2010) stressed the import-

ance of ‘rich’ point clouds for city modeling, which are dense

point clouds carrying semantic information, i.e. additional at-

tributes.

Nowadays, an abundant list of commercial, free, and open-

source point cloud viewer exists. However, when demanding

the capability of displaying arbitrary attributes, the list nar-

rows down. Such mature viewers usually build hierarchical

structures to provide responsive navigation facility. Whereas

some viewer do this in memory only (e.g. CloudCompare and

FugroViewer) others rely on persistent structures (e.g. Potree,

RiProcess, Euclideon) which removes memory limitation and

therefore allows rendering even larger point clouds (>billion

points). Nevertheless, creating hierarchical structures costs per-

formance and consumes resources. In contrast, progressive ren-

dering does not require such structures and therefore can be ex-

pected to provide unmatched loading performance while still

providing high quality real-time rendering capabilities. As the

analysis will show that up to 20 million points per second can

be loaded and rendered when using the LAS file format.

Therefore, this method is ideal for a set of situation, at different

stages within the processing pipeline: The initial point cloud

will be viewed to obtain an overview, and roughly check qual-

ity and completeness, but also to check for outliers. An in-

termediate point cloud will be viewed for parameterize further

processing, e.g. by selecting thresholds or to judge the success

of previous operations. At any stage the points and features can

be viewed and distributed to colleagues or customers.

This work extends the approach of (Schütz et al., 2020) in sev-

eral ways at which the main contributions are

• implementing an efficient multi-threaded LAZ file reader

• emphasizing the importance of fast visualization of arbit-

rary attributes in the context of topographic point cloud

processing pipelines

• performance comparison of loading times with a variety of

open source and commercial point cloud viewer and pro-

cessing software

2. STATE OF THE ART AND RELATED SOFTWARE

The LAS file format is established as quasi-standard exchange

format for point cloud data, especially in the context of air-

borne sensing (ASPRS, 2019). Although it was originally de-

veloped by the American Society for Photogrammetry and Re-

mote Sensing (ASPRS) for handling LiDAR points clouds, it

is nowadays regularly used for image matching point clouds as

well. Virtually all current viewer software can read LAS files

and many of them support colorization based on the standard

point attributes. Depending on the format version and the used

point type, different standard attributes1 are supported, such as

intensity (2 bytes), GPS time (8 bytes), return number, num-

ber of returns, classification (varying sizes), point source id

(1 byte), etc. Some Point Data Record Formats (PDRF) also

support 16 bit RGB values, which are usually used for point

clouds from image matching or hybrid sensor systems (2, 3, 5,

7). The standard PDRFs 8 and 10 additionally provide an 16 bit

nIR attribute. Furthermore, from the initial version of the stand-

ard on, LAS has allowed for appending arbitrary amounts of

bytes to each point. The so called extra bytes allow storing ar-

bitrary user-defined attributes for each point within LAS. Prac-

tical relevance of this smart concept came with the release of

LAS version 1.4, which introduced a new Variable Length Re-

cord (VLR) for describing the stored features in detail (name,

description, data type, scale, offset, and valid sample range).

Although the standard was release in November 2011, there

is still only a handful of software packages that can properly

handle attributes using extra bytes records. Especially for large

point clouds, each additional attribute noticeably increases stor-

age consumption, which is why such features are often imme-

diately dropped after processing or only stored as intermediate

results in internal structures. On the other hand, extracted fea-

tures often describe the local neighborhood of a point which are

useful for subsequent processing steps. Therefore, it is justifi-

able to store attributes in an exchangeable way. Since hardly

1 https://opals.geo.tuwien.ac.at/html/stable/ref_fmt_

las.html

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 

XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 

https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-293-2020 | © Authors 2020. CC BY 4.0 License.

 

294

https://opals.geo.tuwien.ac.at/html/stable/ref_fmt_las.html
https://opals.geo.tuwien.ac.at/html/stable/ref_fmt_las.html


any point cloud processing software exports computed attrib-

utes into LAS files, it comes as no surprise that only a few point

cloud viewer directly support extra byte attributes.

As an addition to LAS, Martin Isenburg developed a com-

pressed counterpart called LAZ (Isenburg, 2013). It is available

under the liberal LGPL (GNU Lesser General Public License),

which allows integrating the code in open and closed source

applications free of charge. Although LAZ is (currently) not

included in the LAS standard, it has actually increased the sig-

nificance and the spread of the format.

Table 1 lists a range of open source and (free) commercial point

cloud software packages based on software products described

by (Rooms, 2020). Whereas some packages are viewers only,

others provide mature editing functionality. Most commercial

products provide a free standalone viewer. In those cases, the

free viewer rather than the full featured point cloud software is

listed. Although the presented table is not complete, it covers

the most commonly used software packages to the best of our

knowledge. As can be seen, nearly all products support colorz-

ing points based on RGB, intensity, or classification. However,

only CloudCompare, opalsView and Potree (currently under de-

velopment) support colorization based on arbitrary point attrib-

utes. Hence, users often have to misuse standard LAS fields for

transferring non standard attributes between software packages.

This constitutes an unsatisfactory and error-prone solution that

also limits the number of transferable attributes. This is why the

evaluated rendering strategy also focuses on arbitrary attribute

handling and fully supports extra byte attributes stored within

LAS files.

Most software packages use some sort of spatial index struc-

tures allow rendering large points clouds. The only exception is

lasview from LAStools, which thins out the data to a degree that

all remaining points can be directly rendered without any accel-

eration structure in order to get a quick but rough overview of

the data requiring very little memory. However, details get lost

in case of larger point clouds. A few software packages rely

on explicitly created acceleration structures, like e.g. Potree,

Bentley Pointools View, Leica Cyclone TruView or Euclideon.

Such concepts are necessary for rendering multi billion points

or streaming them through the internet. Therefore, they are

typically needed when publishing final results. Some viewers

(CloudCompare, Scene LT, 3DReshaper Free Viewer, etc.) use

a reduced point set while navigating through the data to provide

fluid and smooth motions. After the motion has stopped, miss-

ing points are added. This rendering concept is related to our

method.

In the fields of computer graphics, most work has focused on

rendering large point clouds by creating and rendering hier-

archical level-of-detail structures. Grouping points into a multi-

resolution tree structures, where each node stores a subset or a

representative model of the original model, is the key break-

through for efficient rendering arbitrarily large point clouds on

the GPU. (Rusinkiewicz, Levoy, 2001) was the first using point-

based hierarchical structures to render large meshes. (Dachs-

bacher et al., 2003) and (Gobbetti, Marton, 2004) improved

this concept and offered GPU-friendly structures. (Tredinnick

et al., 2016) and (Ponto et al., 2017) proposed a progressive

rending technique that re-projects the previous frame into the

current one and fills holes by rending additional points. The

full amount of data is visible after a few frames meaning that

the final images is visible. In computer graphics this is often

referred to as convergence is achieved. Their work differs in

that it focuses on hierarchical structures, which is not required

by the evaluated progressive method.

Due to advances of technical devices, computational power and

algorithmic concepts (Stotko et al., 2018) Virtual and Augmen-

ted Reality applications have experienced an signified boost

within the last years. For completeness it is mentioned that the

evaluated progressive rendering method is also suitable for such

applications (Schütz et al., 2020) but a thorough analysis is bey-

ond the scope of this paper.

3. PROGRESSIVE RENDERING

The concept of the evaluated progressive rendering method was

introduced by (Schütz et al., 2020). For convenience to the

reader, a summary with reduced technical details is presented

in the following. The central idea of the evaluated method is

reprojecting visible points of previous frame into the current

frame and filling holes by progressively rendering all points

over multiple frames until convergence. Maintaining real-time

frame rates and keeping the application responsive at all times,

is the sought-after target behaviour. Due to the spatial coher-

ence of consecutive frames, most of the points visible in the

previous frame will also be visible in the final image of the sub-

sequent frame. Furthermore, filling randomly selected rather

than sequentially loaded points, helps to achieve a pleasant and

uniform image convergence.

Next, the necessary data structures, the shuffling algorithm, and

the actual render pipeline is described. The concept especially

considers the possibility of rending arbitrary point attributes and

how they can be switched as fast as possible during rendering.

3.1 Data Structure

Our rendering concept makes use of two main data structures,

on the CPU side for loading and reorganizing the attributes and

one GPU side for shuffling and rendering the points. Since

we require all points loaded into the GPU memory, we aim at

keeping the GPU point size as small as possible, while the en-

tire point set including all attributes is kept in CPU memory.

The latter usually provides more memory and swapping attrib-

ute buffers to disk won’t effect the rendering speed.

To stream attributes with minimal memory bandwidth con-

sumption and, therefore, maximum speed from CPU to GPU,

it is necessary to organize the attributes in a Structure of Arrays

(SoA) fashion. Since point cloud file formats are typically writ-

ten as Array of Structures (AoS), it is necessary to reorganize

the data during loading. On the GPU side, we use a shuffled

vertex buffer with 16 bytes per point: 12 bytes for three reduced

float coordinates and 4 bytes for the displayed attribute. For

single attributes, a 4 byte float value is available, whereas for

RGB each value of the 3 channels is limited to a single un-

signed byte. It is up to the vertex shader to interpret the attribute

data correctly. The actual point data are not directly uploaded

into the vertex buffer. Instead, we use a Distribute buffer with

16 bytes per point during the initial upload and 4 bytes per point

when switching attributes. Finally, a Reproject buffer is used to

store all visible points (coordinates, attribute, and point index

within the VBO) at the end of a frame.

3.2 Incremental Parallel Shuffling

Rendering randomly selected points clearly improves the per-

ceived visual quality during convergence to the final image,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 

XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 

https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-293-2020 | © Authors 2020. CC BY 4.0 License.

 

295



Software Package License Viewer LAS LAZ extra bytes Attribute based App. type

(Company name) only Attributes Colorization

CloudCompare open source – x x x full standalone

MeshLab open source – – – – RGB, I standalone

ParaView open source – – – – full standalone

Potree/Entwine open source x x x in dev. full in dev. client/server

3DReshaper Free Viewer free commercial x x x – RGB, I, class standalone

Arena4D (Veesus) commercial – x x – RGB, class standalone

Bentley Pointools View free commercial x – – – RGB, I standalone

Capturing Reality commercial – – – – RGB, I, class standalone

EdgeWise (ClearEdge3D) commercial x x – – RGB, I, class standalone

Euclideon commercial x x x – RGB, I, class client/server

FugroViewer (Fugro) free commercial x x x – LAS attributes standalone

VisionLidar LTD (GeoPlus) free commercial x x x – RGB, I, class standalone

lasview (LAStools) mixed – x x – LAS attributes standalone

Leica Cyclone TruView free commercial x – – – RGB, I, class client/server

MARS (Merrick) free commercial x x – – RGB, I, class standalone

opalsView (TU Wien) mixed – x x x full standalone

PointCab commercial – x x – RGB, I, class standalone

Quick Terrain Reader free commercial x x x – RGB, I standalone

(AppliedImagery)

RiProcess (RIEGL) commercial – x x write only LAS attributes standalone

Scene LT (FARO) free commercial – x x – RGB, I, class standalone

TerraScan (Terrasolid) commercial x x x – LAS attributes CAD plugin

Table 1. List of open source and commercial point cloud software products.

compared to rendering points in their original and potentially

sorted order. When points are shuffled while loading, render-

ing N random points is identical to render any N consecutive

points of the (shuffled) vertex buffer. Since we aim to display

points while loading, a shuffling algorithm is required that can

incrementally shuffle points as they become available. We use

an algorithm described by (Preshing, 2012) to compute a per-

mutation of a sequence of numbers [0, ..., P − 1], where P is

a prime that is congruent to 3 (mod 4). This approach maps

each number in the sequence to another number of the same set

without collisions or duplicates. In our case, we use the point

index within the loaded array of points and compute the final

index position within shuffled vertex buffer:

permute(i) =











i2 modP, if i ≤ P

2

P − i2 modP, if i < P

i, otherwise

(1)

Since the formula only depends on the current index and the

prime number, efficient compute shaders can be utilised to copy

points to their final position inside the shuffled vertex buffer

without synchronization between threads. The only precondi-

tion is that the total number of points needs to be known in

advance. This is, however, of minor concern since most file

formats store this information in the header or, else, a conser-

vative estimate is still sufficient. The points above the selected

prime P stay simply unshuffled. There number is so low, that

they won’t affect the visual render appearance.

The disadvantage of the presented prime based permutation al-

gorithm is its relatively low randomness resulting in clearly vis-

ible patterns. Since Equation 1 is bijective, it can be applied

recursively still resulting an unique target index. It turnes out

that a single recursion (i.e. applying the formula twice) result

in a sufficient randomness for our rendering method so that no

patterns can be visually observed any more.

3.3 Loading Strategies

Our rendering method is capable of displaying points while the

remaining data are still being loaded. Therefore, files are loaded

and transformed into GPU friendly buffers, which can then be

efficiently sent to the GPU’s Distribute buffer within the render

loop. We have tested different loading strategies using our own

LAS reader class and LASlib (from LAStools by Martin isen-

burg) for reading LAS and compressed LAZ (Isenburg, 2013)

files. It turns out that the parsing of the LAS byte stream into

GPU friendly buffers is the limiting factor when reading such

files from SSD. Performing the parsing with multiple threads

can clearly speed up the overall loading process. This fact is

even more evident, when reading LAZ file since the decompres-

sion requires much more CPU resources. Since LAZ files are

organised in chunks (50,000 points per default), it is possible to

directly seek to the beginning of such point patches without any

decompression operation. By creating multiple LASlib reader

objects and seeking to different chunks, we were able to read

LAZ files in parallel which increased the reading performance

by a factor of 6 on an Intel hexa-core CPU.

3.4 Rendering Pipeline

The evaluated rendering pipeline reprojects points from the pre-

vious frame into the current and adds missing data by rendering

a certain number of random points. Over the course of multiple

frames, the result will converge to the same image as rendering

all points at once, neglecting render order and z-fighting issues.

The method consists of three steps:

1. Reproject: Render all the points that were visible in the

previous frame, reprojected to the current frame.

2. Fill: Render a batch of random points to fill holes from the

shuffled vertex buffer.

3. Prepare: Create a new vertex buffer from all points that

are visible in the rendered image. This vertex buffer will

be used in the reprojecting step of the next frame.

Reprojecting the visible points from the previous frame is an ef-

ficient method for rendering only a minimal subset of points and

achieving an image that is already close to convergence. Never-

theless, previously occluded parts or parts outside the previous

frustum may become visible. The Fill step tackles those un-

completed regions by adding random points. We chose to fill

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 

XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 

https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-293-2020 | © Authors 2020. CC BY 4.0 License.

 

296

https://www.cloudcompare.org/
http://www.meshlab.net/
https://www.paraview.org/
http://potree.org/
https://potree.entwine.io/
https://www.3dreshaper.com/en/software-en/download-software/free-viewer
http://veesus.com/
https://www.bentley.com/en/products/product-line/reality-modeling-software/bentley-pointools-view
https://www.capturingreality.com/
https://www.clearedge3d.com/products/edgewise/
https://www.euclideon.com/vault/
https://www.fugro.com/about-fugro/our-expertise/technology/fugroviewer
https://www.geo-plus.com/point-cloud-software/
https://rapidlasso.com/lastools/
https://leica-geosystems.com/de-at/products/laser-scanners/software/leica-truview
https://www.merrick.com/services/geospatial-services/software/
https://opals.geo.tuwien.ac.at/html/stable/ModuleView.html
https://www.pointcab-software.com/
http://appliedimagery.com/download/
http://www.riegl.com/products/software-packages/riprocess/
https://www.faro.com
http://www.terrasolid.com/products/terrascanpage.php


Figure 1. The adaptive fill budget renders a fixed amount of

points first, and then an estimated additional amount that can be

rendered in the remaining time of the frame.

points in a randomly shuffled order which results in a relatively

uniform and visually appealing convergence. Using unshuffled

points which are spatially sorted or structured in some way, will

result in unpleasant flickering artifacts during motion because in

each frame, parts of the image will fully converge, while other

parts will see no progress at all until later frames.

The central challenge of the Fill step is to select the appropri-

ate number points to be render within each frame. If too many

points are added, the frame rate drops and real-time navigation

capability gets lost. On other hand, too few points will increase

the number of frames that are necessary to achieve convergence.

It is impossible to pre-select an appropriate value since render

performance strongly depends on viewpoint, zoom level, data

complexity, and hardware performance of the GPU. Since the

first two parameters change every frame, an adaptive fill budget

strategy was developed that estimates the number of points to

be filled for each frame.

3.5 Handling Point Attributes

As described in Section 1, point-wise attributes are important

features for many different processing tasks. Hence, we see

it as a necessity that the viewer can visualize arbitrary attrib-

utes based on user-defined color maps. Our data sets contain

up to 40 different attributes using up to 100 bytes per point

(bpp). Assuming a graphics card with 8 GB memory, a max-

imum of 8∗1024
3

100
≈ 85 points can be stored on the GPU. Since

we generally only need up to 4 attributes at once on the GPU,

the remaining attributes unnecessarily consume GPU memory.

Furthermore, our rendering pipeline is also strongly affected by

memory bandwidth, because the Reproject vertex buffer is re-

computed each frame. More bytes per vertex results in slower

buffer generation and reduces the adaptive fill budget. Con-

sequently, we limit the GPU points size to 16 bytes, comprising

of 3 · 4 = 12 bytes for the XYZ coordinates and another 4 bytes

encoding 1-4 attributes. Hence, we can store many more points

on the GPU, namely 8∗1024
3

16
= 536M points (assuming again

8 GB GPU memory). In reality, the entire GPU memory will not

be available, since other parts of the viewer and other applica-

tions including the operating system also require some GPU

memory.

In order to be able to instantly visualize any attributes, we keep

them in main memory and stream them to the GPU based on

user requests. At the start of each frame, the main thread

sends multiple patches of attributes to the GPU. A compute

shader distributes the vertex attribute data to the respective

vertices with the same shuffle algorithm as during the initial

loading step, thereby overriding the previous vertex attribute

data. Streaming a new attribute from CPU to GPU happens at

rates of 125-800 million points per second depending on GPU

memory speed and attribute size. For the Vienna data set with

124M points, switching attributes takes 0.155-0.356 ms on a

RTX 2080 TI, whereas on the GTX 1650 and the GTX 1050

TI switching times are approx. twice as long.

4. EVALUATION

In the following section our viewer concept is tested and evalu-

ated with the data sets shown in Figure 2. We provide a compar-

ison by listing the loading times of selected software packages

(cf. Table 1). The list of investigated software mainly focuses

on freely available packages. Although a comparison of frame

rates, render performance and quality is also of interest2, the

rendering and navigation strategies vary strongly among differ-

ent products, which complicates the definition of appropriate

measures. Therefore, we limit the comparisons to loading times

.

When it comes to visualising arbitrary attributes directly from

LAS files, the software list reduces to the following packages:

CloudCompare, opalsView, and Potree/Entwine. Although Po-

tree and Entwine are fully capable of storing arbitrary attributes

in their hierarchical structures, the actual viewing part currently

cannot utilize the additional attributes for visualization.3 Never-

theless, we still put them into the category of ’arbitrary attribute

viewers’ . All tests were performed on a standard desktop com-

puter equipped with the following hardware: Intel Core i7-4771

3.5 GHz CPU (4 cores/8 threads), NVIDIA GeForce GTX 1650

GPU with 4 GB GPU memory, 120 GB Intel + 1 TB Samsung

860 EVO SSD, and 16 GB RAM.

4.1 Data Sets

The performance analyses were carried out using four different

data sets: Three Airborne Laser Scanning (ALS) point clouds

with 19M, 124M, and 407M points, respectively, and one Ter-

restrial Laser Scanning (TLS) point cloud with 208M points as

described in Table 2. The two smaller data sets (Forest and Vi-

enna) existed in two different variants: With standard LAS at-

tributes (point record format 1 and 2, respectively) and with an

extended attribute set (31 and 40 attributes in total). The latter

is used for testing the attribute capabilities of different software

packages.

4.2 Performance Analyses

The performance analyses were carried out in two groups, (i)

software packages that only support standard attributes and (ii)

point cloud software supporting the full set of attributes stored

in LAS extra bytes. In the first group, all four data sets were

tested and for the Forest and Vienna data set only the standard

LAS attributes were used. Table 3 shows considerable differ-

ences between LAS and LAZ reading performance. Whereas

some packages read the same content from compressed LAZ

nearly as fast as from uncompressed LAS, others are up to 3

times slower. In cases were no obvious log file or log window

existed, loading times were measured by hand. The timer was

started when the actual import began and stopped when a point

cloud was displayed or a finished import dialog was presented

(i.e. some user interaction was required).

The last two columns of Table 3 show the points per second

loading performance averaged over all four data sets. It clearly

shows the outstanding performance of our concept. Whereas

LAS files are read more than 5 times faster in average compared

to other software packages, LAZ files are read even faster: our

multi-threaded LAZ reader is in average more than 10 times

2 Details on our method are given in (Schütz et al., 2020).
3 This is feature is currently being developed.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 

XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 

https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-293-2020 | © Authors 2020. CC BY 4.0 License.

 

297



Data Set File Size [GB] #points #attributes bpp Density Area Acquisition Sensor

LAS LAZ [Mio] pt / m2 km2 RIEGL

Forest (standard) 0.52 0.18 19.2 11 28 136 0.14 ALS RIEGL LMS-Q1560

Forest (extended) 1.8 1.0 19.2 31 100

Vienna (standard) 3.1 1.2 124.5 15 36 56.43 2.58 ALS RIEGL LMS-Q1560

Vienna (extended) 10.6 5.3 124.5 40 88

St. Elisabeth 5.7 1.7 208.6 12 28 34 T 0.01 TLS RIEGL VZ-2000i

Morro Bay 13.5 1.8 407.0 13 34 22.06 18.45 ALS Leica ALS70 + Optech Orion

Table 2. Key parameters of used data sets. For data set Forest and Vienna standard and extended attribute sets are available. ALS:

Airborne Laser Scanning. TLS: Terrestrial Laser Scanning.

(a) Forest (b) Vienna (c) St. Elisabeth Church (d) Morro Bay

Figure 2. Data sets used in this paper

faster. The only tested software that comes close to the pro-

gressive rendering method is the Merrick Advanced Remote

Sensing Software (MARS) package. For the Morro Bay data

set, MARS displays a strongly reduced point cloud after 54 s

already. However, it takes at another 39 s with heavy SSD ac-

cess before one can navigate within the point cloud. So the real

import duration is rather above 90 s. We acknowledge that some

of the tested software use accelerations structures for support-

ing sophisticated feature analysis, which slows down loading

times. Since we do not generate any spatial index, such fea-

tures may not be provided if not implemented directly on the

GPU.

From a practical point of view, displaying points while load-

ing and still providing a responsive 3d windows is a valuable

feature that can clearly speed up certain operations. An incor-

rect specified file can be usually identified after a few seconds

of loading. In other viewers one has to wait til the file is fully

loaded before realizing ones error. In some situations the object

or area of interest is maybe fully loaded at the begin. Due to the

responsive navigation, the user can instantly inspect the object

and could be finished even before the file is fully loaded.

From the authors point of view, however, one of the most

valuable feature of the presented viewer is the capability of

efficiently visualizing arbitrary point attributes of large point

clouds, as shown in Figure 3. To the best of our knowledge,

there are only three other viewers that can directly visualize ar-

bitrary extra bytes attributes from LAS and LAZ files. Hence,

the full set of attribute evaluation test was limited to four soft-

ware packages. Besides the loading times of the extended

LAS/LAZ files, also the duration of switching attributes was

investigated. Comparing the last two columns of Table 3 and

Table 4, it is clearly visible that the overall performance meas-

ured as points-per-second has dropped. This is not surpris-

ing since the extended files are 3-5 times larger. The actual

throughput performance in bytes stays roughly the same. Our

method also outperforms the other packages in switching attrib-

utes. However, from a practical point of view this is of minor

concern, as even the slowest measured switching duration of

4.4 s is still acceptable.

For completeness it is mentioned that a standard desktop com-

puter with medium performance was deliberately selected for

testing. 4 GB GPU memory is actually not enough to fully up-

load the Morro Bay data set, since 407M points with 16 bytes

per point results in a memory consumption of 6.1 GB. Graph-

ics card drivers usually implement a shared memory concept by

occupying CPU Ram when needed. Due to this inherent mech-

anism, it was possible to load the Morro Bay point cloud where

3.4 GB GPU and 4.5 GB shared memory were used. When

the computer started to use shared memory, the loading pro-

cess perceivable slowed down and responsive navigation got

lost for about 20 s. Once the file was fully loaded, the navig-

ation became smooth again. Using a better graphics card (e.g.

NVidia RTX 2080 Ti with 11 GB), the file was loaded in about

14 s and the viewer was responsive at any time (see https:

//www.youtube.com/watch?v=YFAThGdXL8s and (Schütz et

al., 2020)). The limited GPU and CPU memory has presum-

ably affected the performance of other tested software as well,

specially for the larger data sets. Hence, a more powerful sys-

tem would have decreased the import duration, but the overall

trend and ratios between the different products should roughly

stay the same. This will be verified in future tests. It should

be noted that all tests were made on SSDs only. Import res-

ults and ratios between different software and formats may be

significant differently on hard disks, but definitely slower.

5. DISCUSSION AND CONCLUSION

In this investigation, we make use of a progressive rendering

method that can render any point cloud that fits in GPU memory

in real time without the need to generate acceleration structures

in advance (Schütz et al., 2020). The central idea is to distrib-

ute the actual rendering over multiple frames til convergence is

achieved. The method reprojects visible points from the previ-

ous into the current frame and randomly adds points to generate

visually appealing results. Points are displayed already while

loading but in a way, that the applications stays responsive at

any time.

Point-wise attributes are important features throughout the en-

tire processing pipeline. Tasks like outlier detection, georefer-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 

XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 

https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-293-2020 | © Authors 2020. CC BY 4.0 License.

 

298

https://www.youtube.com/watch?v=YFAThGdXL8s
https://www.youtube.com/watch?v=YFAThGdXL8s


Forest / 28 bpp Vienna / 36 bpp St. Elisabeth / 28 bpp Morro Bay / 34 bpp avg. Mio pts / s

LAS LAZ LAS LAZ LAS LAZ LAS LAZ LAS LAZ

Evaluated Method 00:01 00:02 00:07 00:20 00:18 00:32 01:07 01:01 13.6 7.2

CloudCompare 00:19 00:32 01:54 03:43 03:26 06:08 08:12 10:45 1.0 0.6

Entwine4 00:36 00:48 04:48 06:23 08:03 10:30 15:50 18:54 0.5 0.4

FugroViewer 00:08 00:22 –1 –1 –1 –1 –1 –1 2.4 0.9

QT Reader 00:05 00:19 00:39 02:12 01:07 03:43 03:58 –2 2.9 1.0

SCENE LT 00:16 00:29 01:40 03:17 02:59 04:58 06:29 06:59 1.2 0.7

VisionLidar 00:17 00:53 01:40 06:09 03:03 09:20 08:31 17:07 1.1 0.4

3DReshaper 00:11 00:23 00:55 02:14 01:40 03:41 5:36 07:25 1.8 0.9

MARS3 00:02 – 00:24 – 00:25 – 00:54 – 7.6 –

ReCap 01:43 01:53 10:57 12:21 11:32 13:36 36:15 38:00 0.2 0.2

Arena4D VPC Creator4 00:40 00:51 04:23 05:46 03:57 06:08 15:38 19:16 0.6 0.4

Table 3. Import/Loading duration [mm:ss] for LAS/LAZ files with standard attributes. 1Crash while loading. 2Loading aborted

without message. 3Loading without indexing/No LAZ support. 4Hierarchical Structure Generator only.

Forest / 100 bpp Vienna / 88 bpp avg. Mio pts / s

Loading Switching Attr. Loading Switching Attr. Loading

LAS LAZ min [s] max [s] LAS LAZ min [s] max [s] LAS LAZ

Evaluated Method 00:04 00:15 0.08 0.09 00:19 01:07 0.6 0.7 5.64 1.56

CloudCompare 00:47 02:06 0.41 0.51 07:04 11:23 2.21 4.41 0.35 0.17

opalsView 01:20 02:23 2.11 2.21 –2 –2 –2 –2 0.24 0.13

Entwine3 01:07 02:34 15:22 19:47 0,19 0,08

Table 4. Loading [mm:ss] and Switching Attribute [s] duration for LAS/LAZ files with extended attributes. 1Hand stopped. 2Out of

memory. 3Hierarchical Structure Generator only.

(a) Planarity: For identifying planar regions (b) NormalizedZ: Height above terrain

(c) EchoRatio: Vertical penetration measure (d) NormalSigma0: For detecting smooth or rough areas

Figure 3. Visualisation of Different Attributes

encing, segmentation, semantic classification, and change de-

tection all make use of various attributes during computation.

Although such computational intensive steps are often carried

out offline, a visual inspection of the point data including their

attributes is usually needed at various stages of the processing

pipeline. Since such pipelines often utilize application specific

spatial indices different from the hierarchical acceleration struc-

tures generally used for rendering, productivity is improved if

the generation of such structures can be omitted for viewing

the data. On moderate GPU hardware with 4 GB memory, our

method can rapidly render up to 250M points. In general, visu-

alizing larger point clouds is still be possible, but partly reduced

loading performance and navigation speed have to be accep-

ted due to the limited bandwidth of shared CPU memory. On

high-end graphics cards with a lot of GPU memory, the number

of renderable points linear increases with the size of the GPU

memory. Our method has been successfully tested on a RTX

Titan with 24 GB memory rendering 1 billion points.

Currently our method has a large CPU memory footprint since

the full point clouds including all attributes are kept in memory.

Due to its organisation as structure of arrays (see 3.1), it is

straight forward to write back attributes into separate binary

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 

XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 

https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-293-2020 | © Authors 2020. CC BY 4.0 License.

 

299



files after they have been loaded. Once attribute files have been

created and relevant data uploaded to GPU, its CPU memory

can be released. When switching attributes, the corresponding

attribute file can be loaded and directly uploaded to the GPU.

If those temporary attribute files are placed on an SSD, the fi-

nal attribute switching duration is hardly affected due to the

fast reading speed of today’s SSDs on large files (typically >

500 MB/s).

Our tests have shown that the reading speed of LAZ files can

be dramatically improved if the file is read/parsed with mul-

tiple threads. LAZ files are organized in chunks (50K points per

default), which can be directly accessed and parsed in parallel.

Based on the LASlib, our implementation was able to read LAZ

files up to 6 times faster than in standard single thread mode.

Finally, we want to encourage other developer to fully support

extra byte attributes in their software. The LAS file format al-

lows exchanging arbitrary point-wise attributes in a flexible and

efficient manner.

ACKNOWLEDGEMENTS

The authors with to thank Riegl Laser Measurement Systems for

providing the Forrest, Vienna and St. Elisabeth church data set

and Open Topography for funding and hosting the data set of

Morro Bay.

REFERENCES

ASPRS, 2019. LAS Specification 1.4 - R15. https://www.asprs.

org/committees/standards-committee. Accessed 2020/05/04.

Dachsbacher, C., Vogelgsang, C., Stamminger, M., 2003. Sequential

point trees. ACM Transactions on Graphics, 22, 657.

Degnan, J. J., 2016. Scanning, Multibeam, Single Photon Lidars for

Rapid, Large Scale, High Resolution, Topographic and Bathymetric Map-

ping. Remote Sensing, 8(11), 923–958.

Glira, P., Pfeifer, N., Mandlburger, G., 2019. Hybrid Orientation of Air-

borne LIDAR Point Clouds and Aerial Images. ISPRS Annals of Photo-

grammetry, Remote Sensing and Spatial Information Sciences, IV-2/W5.

Gobbetti, E., Marton, F., 2004. Layered point clouds: A simple and ef-

ficient multiresolution structure for distributing and rendering gigantic

point-sampled models. Computers & Graphics, 28, 815-826.

Haala, N., Rothermel, M., 2012. Dense Multi-Stereo Matching for

High Quality Digital Elevation Models. PFG Photogrammetrie, Fern-

erkundung, Geoinformation, 2012(4), 331–343.

Hirschmüller, H., 2008. Stereo Processing by Semiglobal Matching and

Mutual Information. IEEE Trans. Pattern Anal. Mach. Intell., 30(2), 328–

341. http://dx.doi.org/10.1109/TPAMI.2007.1166.

Isenburg, M., 2013. LASzip: lossless compression of LiDAR data. Pho-

togrammetric Engineering & Remote Sensing, 79, 209-217.

Kumar, A., Anders, K., Winiwarter, L., Höfle, B., 2019. Feature relev-

ance analysis for 3d point cloud classification using deep learning. ISPRS

Annals of Photogrammetry, Remote Sensing & Spatial Information Sci-

ences, IV-2W5, 373–380.

Liu, W., Sun, J., Li, W., Hu, T., Wang, P., 2019. Deep Learning on Point

Clouds and Its Application: A Survey. Sensors, 19(19), 4188.

Mallet, C., Bretar, F., Roux, M., Soergel, U., Heipke, C., 2011. Relevance

assessment of full-waveform lidar data for urban area classification. Isprs

Journal of Photogrammetry and Remote Sensing, 66, 85-91.

Mandlburger, G., Wenzel, K., Spitzer, A., Haala, N., Glira, P., Pfeifer, N.,

2017. Improved topographic models via concurrent airborne LiDAR and

dense image matching. ISPRS Annals of the Photogrammetry, Remote

Sensing and Spatial Information Sciences, IV-2/W4, 259–266.

Nebiker, S., Bleisch, S., Christen, M., 2010. Rich point clouds in virtual

globes – A new paradigm in city modeling? Computers, Environment and

Urban Systems, 34(6), 508 - 517. GeoVisualization and the Digital City.

Otepka, J., Ghuffar, S., Waldhauser, C., Hochreiter, R., Pfeifer, N., 2013.

Georeferenced Point Clouds: A Survey of Features and Point Cloud Man-

agement. ISPRS Int. Journal of Geo-Information, 2(4), 1038–1065.

Pfeifer, N., Mandlburger, G., Otepka, J., Karel, W., 2013. OPALS – A

framework for Airborne Laser Scanning data analysis. Computers, Envir-

onment and Urban Systems, 45, 125-136.

Ponto, K., Tredinnick, R., Casper, G. R., 2017. Simulating the experience

of home environments. 2017 International Conference on Virtual Rehab-

ilitation (ICVR), 1-9.

Preshing, J., 2012. How to generate a sequence of unique

random integers. https://preshing.com/20121224/

how-to-generate-a-sequence-of-unique-random-integers.

Accessed 2020/05/04.

Rooms, F., 2020. Point clouds – 4: A cloud of software. https://blog.

bricsys.com/free-point-cloud-software. Accessed 2020/05/04.

Rusinkiewicz, S., Levoy, M., 2001. QSplat: A Multiresolution Point

Rendering System for Large Meshes. Proceedings of SIGGRAPH, 2000,

343–352.

Schütz, M., Mandlburger, G., Otepka, J., Wimmer, M., 2020. Progress-

ive Real-Time Rendering of One Billion Points Without Hierarchical Ac-

celeration Structures. Computer Graphics Forum (Proceedings of Euro-

graphics), 39(2).

Stoker, J. M., Abdullah, Q. A., Nayegandhi, A., Winehouse, J., 2016.

Evaluation of Single Photon and Geiger Mode Lidar for the 3D Elevation

Program. Remote Sensing, 8(9), 716–767.

Stotko, P., Krumpen, S., Hullin, M. B., Weinmann, M., Klein, R., 2018.

SLAMCast: Large-Scale, Real-Time 3D Reconstruction and Streaming

for Immersive Multi-Client Live Telepresence. CoRR, abs/1805.03709,

2102-2112. http://arxiv.org/abs/1805.03709.

Toschi, I., Ramos, M., Nocerino, E., Menna, F., Remondino, F., Moe, K.,

Poli, D., Legat, K., Fassi, F., 2017. Oblique Photogrammetry Supporting

3D Urban Reconstruction of Complex Scenarios. Int. Arch. Photogramm.

Remote Sens. Spatial Inf. Sci., XLII-1/W1, 519-526.

Toschi, I., Remondino, F., Rothe, R., Klimek, K., 2018. Combing Air-

borne Oblique Camera and LIDAR Sensors: Investitation and new Pe-

sorectives. ISPRS - International Archives of the Photogrammetry, Re-

mote Sensing and Spatial Information Sciences, XLII-1, 437–444.

Tredinnick, R., Broecker, M., Ponto, K., 2016. Progressive feedback point

cloud rendering for virtual reality display. 2016 IEEE Virtual Reality

(VR), 301–302.

Ullrich, A., Pfennigbauer, M., 2016. Linear LIDAR versus Geiger-mode

LIDAR: impact on data properties and data quality. Proc. SPIE, 9832,

983204–983217.

Vosselman, G., Coenen, M., Rottensteiner, F., 2017. Contextual segment-

based classification of airborne laser scanner data. ISPRS Journal of Pho-

togrammetry and Remote Sensing, 128, 354 - 371.

Wagner, W., Hollaus, M., Briese, C., Ducic, V., 2008. 3D vegetation map-

ping using small-footprint full-waveform airborne laser scanners. Inter-

national Journal of Remote Sensing, 29, 1433-1452.

Wang, D., Brunner, J., Ma, Z., Lu, H., Hollaus, M., Pang, Y., Pfeifer, N.,

2017. Separating tree photosynthetic and non-photosynthetic components

from point cloud data using dynamic segment merging. Forests, 9(5), 252.

Weinmann, M., Jutzi, B., Hinz, S., Mallet, C., 2015. Semantic point cloud

interpretation based on optimal neighborhoods, relevant features and effi-

cient classifiers. ISPRS Journal of Photogrammetry and Remote Sensing,

105, 286 - 304.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 

XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 

https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-293-2020 | © Authors 2020. CC BY 4.0 License.

 

300

https://www.asprs.org/committees/standards-committee
https://www.asprs.org/committees/standards-committee
https://preshing.com/20121224/how-to-generate-a-sequence-of-unique-random-integers
https://preshing.com/20121224/how-to-generate-a-sequence-of-unique-random-integers
https://blog.bricsys.com/free-point-cloud-software
https://blog.bricsys.com/free-point-cloud-software

	Introduction
	State of the Art and Related Software
	Progressive Rendering
	Data Structure
	Incremental Parallel Shuffling
	Loading Strategies
	Rendering Pipeline
	Handling Point Attributes

	Evaluation
	Data Sets
	Performance Analyses

	Discussion and Conclusion

