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�e local level set method (LLSM) is higher than the LSMs with global models in computational e	ciency, because of the
use of narrow-band model. �e computational e	ciency of the LLSM can be further increased by avoiding the reinitialization
procedure by introducing a distance regularized equation (DRE).�e numerical stability of the DRE can be ensured by a proposed
conditionally stable di
erence scheme under reverse di
usion constraints. Nevertheless, the proposed method possesses no
mechanism to nucleate new holes in the material domain for two-dimensional structures, so that a bidirectional evolutionary
algorithm based on discrete level set functions is combined with the LLSM to replace the numerical process of hole nucleation.
Numerical examples are given to show high computational e	ciency and numerical stability of this algorithm for topology
optimization.

1. Introduction

Topology optimization is a numerical iterative procedure
for making an optimal layout of a structure or the best
distribution ofmaterial in the conceptual design stage [1].�e
level set method (LSM) is a recently developed approach to
topology optimization that uses a �exible implicit description
of the material domain [2]. �e central idea of the LSM is to
employ an implicit boundary describing model to parame-
terize the geometric model, and the boundary of a structure
is embedded in a high-dimensional level set function that
is called its zero level set [3]. �e level set-based method
is able to not only fundamentally avoid checkerboards and
mesh-dependence, but alsomaintain smooth boundaries and
distinct material interfaces during the topological design
process [4]. Hence, many level set-based methods [5] have
been developed for topology optimization since the LSMwas
�rst introduced into structure optimization.

With an implicit local level set model, the computational
e	ciency of the local level set method (LLSM) [6] is much
higher than that of the global level set methods, especially
for shape optimization. However, the main shortcoming of
the conventional LSM is that it possesses no mechanism

to nucleate new holes in the material domain for two-
dimensional structures, resulting in the �nal design heavily
dependent on the initial guess [4]. A mechanism named the
bubble-method [7] was �rst proposed to create new holes
inside the structures in topology and shape optimization.
�is idea has been further developed into the mathemat-
ical concept of topological derivatives [8]. In the shape-
sensitivity-based level set approaches, topological derivatives
are incorporated to indicate the best place for introducing a
new hole in a separate step of the optimization process [9] or
as an additional term in the Hamilton-Jacobi equation [10].
�e globally supported radial basis function (RBF) [11] and
compactly supported RBF (CSRBF) [12] are typically used to
discretize the original time-dependent initial value problem
into an interpolation problem. �e CSRBF brings about the
strictly positive de�niteness and sparseness properties of
matrices under certain conditions. Hence the CSRBF has
generalized the practical applications of RBFs to a larger set
of scattered data [12].

In the conventional LSM [3], a reinitialization procedure
usually needs to reshape the level set function (LSF) to a
signed distance function (SDF) periodically. However, the
zero level set may dri� away from its initial position by
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iteratively solving a classical reinitialization equation [13]. To
suppress this dri�, an interface preserving level set redis-
tancing algorithm is proposed by Sussman and Fatemi [14].
Nevertheless, it has been proved that the SDF is not a feasible
solution to theH-J equation [15]. In practice, it not only raises
serious problems as when and how it should be performed,
but also a
ects numerical accuracy in an undesirable way and
thus should be avoided as much as possible [16]. �e need
for reinitialization was originally eliminated by introducing
a penalty term [17] into a variational level set approach [18].
�e undesirable boundary e
ect of the penalty term can be
eliminated by taking a distance regularized equation (DRE)
instead of this term. Hence, a so-called distance regularized
level set evolution (DRLSE) [16] is realized based on the
variational approach. As an unnecessary di
usion e
ect of
the DRLSE was found in some locations where the surface
is too �at, the DRE was recently modi�ed with a new and
balanced formulation to eliminate this e
ect [19]. Although
parts of the di
usion rates in the DRE are negative, the
numerical stability can still be maintained by incorporating
reverse di
usion constraints in the di
erence schemes of the
DRE, as can the reverse di
usion equations with all negative
di
usion rates [20].

�e aim of this work is to solve the aforementioned
numerical issues that still exist in the LLSM for topology
optimization of two-dimensional structures. A bidirectional
evolutionary algorithm based on the discrete level set func-
tions (DLSFs) is proposed to �nd a stable topological solution
�rst and then combined with the LLSM to further evolve
the local details of the topology and shape of the structure.
Transforming the DLSFs into the local level set function of
the LLSM is achieved by iteratively solving the DRE. A�er
that, the DRE is incorporated into the LLSM to avoid the
reinitialization procedure. A di
erence scheme under reverse
di
usion constraints is formulated for the DRE to improve its
numerical stability. Typical examples are given to show the
e
ectiveness of the proposed algorithm in terms of conver-
gence, computational e	ciency, and numerical stability.

2. Optimization Algorithm

2.1. Local Level Set Method Using Narrow-BandModel. In the
local level set method (LLSM) [6], the local level set equation
is de�ned as

���� + � (�)�� 				∇�				 = 0, (1)

where �(�, �) is de�ned as the local level set function (LLSF)
and �� is the normal velocity in normal direction � =∇�/|∇�|; the truncation function �(�) is

� (�) =
{{{{{{{{{{{

1 if
				�				 ≤ Δ(				�				 − �)2 (2 				�				 + � − 3Δ)(� − Δ)3 if Δ < 				�				 ≤ �

0 if
				�				 > �,

(2)

with �0 = {� : 				�(�)				 < �} being a narrow band with
the half-band width �. �e narrow-band model and the
corresponding LLSF are described as shown in Figure 1.

It can be seen from Figure 1 that only the LLSF within the
narrow-band �0 needs to be updated during each iteration.
Hence, the LLSM is higher in computational e	ciency than
the LSMs based on global level set models.

2.2. Bidirectional Evolutionary Algorithm with Discrete Level
Set Functions. A two-dimensional structural model is built
in the work region � ⊂ �2. And the set � = �1 ∪ �2 ∪ �3
represents the �nite elements in the domain �. It can be
divided into three parts, �1 that consists of the solid elements
with a full-material density; �2 that covers the elements
with intermediate material densities; �3 that involves the
void elements with a weak-material density. Accordingly, the
nodal sets corresponding to the elemental sets �1, �2, and �3
are de�ned as ��1 , ��2 , and ��3 , respectively. If it is assumed that��2 ⊂ ��3 , ��1 ∪ ��3 consist of all the nodes within the region �,
then a discrete level set function (DLSF) for node � can be
de�ned as

�� = {{{
−�0 � ∈ ��1�0 � ∈ ��3 , (3)

where �0 is a prede�ned constant set as 1 in this study.
�e values of elemental densities can be derived from the

DLSFs. If the �th element belongs to �1, that is, � ∈ �1, then
the element density �� = 1; if � ∈ �3, then �� = �min, where�min is a small value 0.001; if � ∈ �2, then �� ∈ (�min, 1),
where �� is calculated in terms of the interpolation criterion
given in the code manual [21]. In the structural model, the
rectangular element is split into four triangles �rst, and the
value of theDLSF at the commonpoint of the triangles is then
given by the average of the values of the four points. A�er
that, each triangle is examined separately in the same logic.
Finally, the elemental density is found to be the average of the
contributions of the triangles.

�e structural sti
ness design has been widely inves-
tigated in numerous literatures for topological sensitivity
analysis. �e standard notion [1] of minimum compliance
design problems under a global volume constraint can be
mathematically de�ned as follows:

minimize
�

� (Ω) = 12!�"!,
Subject to

�∑
�=1
���� (�) = �∗,

�� ∈ [�min, 1] ,
(4)

where � is known as the mean compliance, the open set Ω
represents all admissible shapes in the design region �, !(�)
is the nodal displacement vector, and " denotes the global
sti
ness matrix; �� is the volume of an individual element,�∗ is the prescribed total volume, and & is the number of
elements.
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Figure 1: Narrow-band model and local level set function in LLSM.

Similar to the bubble-method [7] and the level set-based
optimization methods [4, 10], topological derivatives are
taken as topological sensitivities in this study.�e topological
derivative for node � is given by [9]

'�� = ��� (��) = . (4 + 25)45 (4 + 5) {458�9 (!) : 9 (!)
+ (4 − 5) tr (8�9 (!)) tr (9 (!))} ,

(5)

where 8� denotes the material elasticity tensor for node �, 9
is the strain tensor, and the lame constants 4 = 80]/(1 − ]

2),5 = 80/2(1+])with the Poisson ratio ] and Young’s modulus
of solid materials 80. tr(?) denotes the trace of a matrix ?.

Based on an interpolation function proposed by Shepard
[22], a �lter scheme of mesh independence is proposed to
avoid the checkerboard patterns and mesh dependencies. A
circular domain Ω	 is �rst de�ned as the in�uence region
centered round point x with cut-o
 radius @	, and &Ω
denotes the number of points located inside the in�uence
domain. �e sensitivity �ltering using the Shepard method
with scattered points is then de�ned by

'̃� (x) = �Ω∑
�=1
B� (x) ⋅ '� (x) ,

B� (x) = �� (x)∑��=1�� (x)
(� = 1, . . . , &) ,

(6)

where B�(x) is the Shepard interpolation with the basis

function ��(x) = 1/√(G�(x))2 + �2, in which G�(x) = ‖x − ��‖
denotes the radial distance from point � to ��, and if G�(x) ≥@	, then��(x) is set to zero. � is a positive constant and chosen
as a onefold mesh size in terms of numerical experiences.

Over the last two decades, many topology description
models have been developed for topology optimization of
structures, which can roughly be classi�ed into two cate-
gories, the material distribution model and the boundary
description model [23]. Based on the material distribu-
tion model, the ESO (Evolutionary Structural Optimization)
methodhaswon a great deal of popularity in recent years [24].
�e bidirectional ESO (BESO) method [25], as an extension
of the ESO method, allows e	cient material to be added to
the structure while the ine	cient one is removed simultane-
ously. So a bidirectional evolutionary algorithm is developed
by integrating both the DLSFs and topological derivatives
into the optimization criteria of the BESOmethod [25]. Note
that the design variables and topological sensitivities in the
BESO method are based on the elemental pseudo densities
while those in the proposed algorithm are based on the
discrete level set functions.

It is assumed that the volume in the Jth iteration �� is
known, and J ≥ 0.�e target volume��+1 in the next iteration
is then updated by

��+1 = {{{
min (�� (1 + ER) , �∗) if �� ≤ �∗
max (�� (1 − ER) , �∗) if �� > �∗ (7)

with the evolutionary volume ratio ER and the volume limit�∗ de�ned in (4).
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A parameter AR� is de�ned as the adding number
of nodes in the set ��1 divided by the total numbers of
nodes and AR� ≤ AR�max, where AR�max is a prede�ned
positive constant. �e de�nition of AR� is di
erent from
that of AR in the original BESO method, since the former
parameter corresponds to nodal sensitivity while the latter
one corresponds to elemental sensitivity.

It is assumed that the DLSF ��� of node � is known in

the Jth iteration. �en the DLSF ��+1� in the next iteration

is updated by

��+1� = {{{
−�0 '�� ≥ 'addth , ��� = �0
�0 '�� ≥ 'delth , ��� = −�0, (8)

where the threshold sensitivity numbers 'delth and 'addth are
determined as the number of nodes decreased from the
set ��1 and that increased from the set ��3 , respectively.
�ese thresholds are similar to those based on elemental
sensitivities given in the original BESO method. Full details
of determining these thresholds are described in [25].

Finally, a stable topological solution is obtained when the
following convergence criterion is satis�ed:

					∑�−5�−9 � (Ω) − ∑��−4 � (Ω)					∑��−4 � (Ω) ≤ K, (9)

where K is an allowable convergence error with typical values
ranging from 0.001 to 0.01.

�e majority of logical steps of the bidirectional evolu-
tionary algorithm are presented in Figure 2.

2.3. Distance Regularized Equation (DRE) and Its Improve-
ment. In the distance regularized level set evolution (DRLSE)
[16], the DRE can retain the signed distance feature |∇�| =1 at least within the narrow-band region near boundaries
without reinitialization, whose formula is expressed in the
standard form of the di
usion equation as

���� = 5 div ('1 (�) ∇�) , (10)

with the di
usion rate '1(�) = 5G�1(|∇�|), where the

di
usion function is set to G�1(L) = M1(L)/L with L = |∇�|.
In the original DRLSE, the energy density M1(L) was

de�ned as

M1 (L) =
{{{{{{{{{

(1 − cos (2.L))(2.)2 if L ≤ 1
(L − 1)22 if L > 1,

(11)

which is a double-well potential function because there are
two minimum points of M1(L) at L = 1 and L = 0. So the
di
usion function G�1(L) is given by

G�1 (L) =
{{{{{{{{{

sin (2.L)2.L if L ≤ 1
1 − 1L if L > 1. (12)

It is easy to verify the boundedness of the di
usion rate'1(�) = 5G�1(|∇�|) and |'1(�)| ≤ 5. It can be seen from (12)
that, for |∇�| > 1, G�1(|∇�|) is positive, and |∇�|will decrease
and approach 1; for 0.5 < |∇�| ≤ 1, G�1(|∇�|) is negative, and|∇�| will increase and approach 1; for |∇�| ≤ 0.5, G�1(|∇�|) is
positive, and |∇�| will decrease and approach 0.

If |∇�0| ≤ 0.5 is satis�ed for all the initial values �0, the
di
usion e
ect of (10) will make |∇�| approach 0. So it loses
the ability to regularize |∇�| to 1. An improved di
usion rate'2(�)with a di
usion function like the following is proposed
in [19]:

G�2 (				∇�				) =
{{{{{{{{{{{

2. arctan ((				∇�				 − 1) /O) 				�				 ≤ 9
									 2. arctan ((				∇�				 − 1) /O)

									 				�				 > 9,
(13)

where O is a positive constant and is chosen as fourfold mesh
sizes in terms of numerical experiences. �1 = {� : 				�(�)				 < 9}
is a narrow band with a half-band width 9.

�e di
usion e
ect can be divided into two parts: the
forward di
usion for |∇�| ≥ 1 and the backward di
usion
for |∇�| < 1. It will make |∇�| approach one within �1 but
zero outside �1. However, the two parts are balanced within�1 but unbalanced outside �1 so that multiple iterations are
required to retain a �atter level set surface outside �1. In this
paper, the di
usion function G�2(|∇�|) is further localized by
introducing the half-band width � of the narrow-band �0 in
LLSM, thereby resulting in an improved di
usion rate '3(�)
using the di
usion function

G�3 (				∇�				) = {{{
2. arctan ((				∇�				 − 1) /O) 				�				 < �0 				�				 ≥ �. (14)

With the di
usion rate '3(�), the two parts are balanced
within �0 without in�uencing the level set surface outside �0.
2.4. A Conditionally Stable Di�erence Scheme for DRE. It
is noted that the common di
erence schemes for the DRE
with parts of the negative di
usion rates are incapable of
remaining stable during an iterative process, according to the
stability de�nition of the di
erence equation. In our numer-
ical experiments, |�| is apt to gradually become divergent
alongwith the process of iterations. To enhance the numerical
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Figure 2: Flow chart depicting logical steps of the bidirectional evolutionary algorithm.

stability of the DRE, a di
erence scheme similar to that of the
mean curvature given in [18] is developed and described as

��+1�,� − ���,�Δ�

= ' (��)�+1/2,� P�+��,� − ' (��)�−1/2,� P�−��,�Δ�
+ ' (��)�,�+1/2 P�+��,� − ' (��)�,�−1/2 P�−��,�ΔQ ,

(15)
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where

P�+��,� = (���+1,� − ���,�)Δ� ,
P�� ��,� = (���+1,� − ���−1,�)(2Δ�) ,
P�−��,� = (���,� − ���−1,�)Δ� ,
P�+��,� = (���,�+1 − ���,�)ΔQ ,
P�� ��,� = (���,�+1 − ���,�−1)(2ΔQ) ,
P�−��,� = (���,� − ���,�−1)ΔQ ,

(16)

and '(�) fl '3(�), in which the di
erence schemes of|∇�|�±1/2,�, |∇�|�,�±1/2 are given by

				∇�				�±1/2,� = √(P�±��,�)2 + [(P�� ��,� + P�� ��±1,�)2 ]2,
				∇�				�,�±1/2 = √(P�±��,�)2 + [(P�� ��,� + P�� ��±1,�)2 ]2.

(17)

It has been veri�ed by our numerical experiments that
the evolution of level set can remain bounded stability even
a�er a large number of iterations for solving (15). However,
the maximum of |�| o�en exceeds the initial value �0 de�ned
by (1), which leads to the level set surface unsmoothed
near the edges of the narrow-band �0, thereby reducing
the computational accuracy of (15). Furthermore, multiple
iterations are required to �nd a suitable Courant-Friedrichs-
Lewy (CFL) condition to ensure the stability of (15). �e
issues related to the numerical instability of the DRE can
be resolved by imposing reverse di
usion constraints on the
di
erence scheme (see (15)), since it has been proved that the
constraints can ensure the numerical stability of the di
usion
equations with all negative di
usion rates [20].

First, (15) can be subdivided along the direction of � andQ into
��+1/2�,� − ���,� = ( Δ�Δ�)
⋅ [(���+1,� − ���,�) '�+1/2,� + (���−1,� − ���,�) '�−1/2,�] ,

��+1�,� − ��+1/2�,� = ( Δ�ΔQ)
⋅ [(���,�+1 − ���,�) '�,�+1/2 + (���,�−1 − ���,�) '�,�−1/2] ,

(18)

with '�±1/2,� = (1/Δ�)'(��)�+1/2,� and '�,�±1/2 =(1/ΔQ)'(��)�,�±1/2.

�en the four �ow functions are de�ned as

[��,� = (���+1,� − ���,�) '�+1/2,�,
[��−1,� = (���−1,� − ���,�) '�−1/2,�,
[��,� = (���,�+1 − ���,�) '�,�+1/2,

[��−1,� = (���,�−1 − ���,�) '�,�−1/2,
(19)

where [��,� denotes the change from ���,� to ���+1,� in one time

step Δ� and in the � direction, and the de�nitions of [��,�, [��,�,
and [��,�−1 are similar to that of [��,�. �e lowest and highest

limit values of these �ow functions are de�ned as

[low = min
�,�=−1,0,1

���+�,�+� − ���,�,
[high = max

�,�=−1,0,1
���+�,�+� − ���,�. (20)

It can be seen that the four di
usion rates in (15) satisfy

the boundedness |'(��)| ≤ 5. If 5 ≤ Δ�, the reverse di
usion
constraints can be de�ned by

[low ≤ [��,�, [��−1,�, [��,�, [��,�−1 ≤ [high. (21)

If Δ�/Δ� ≤ 1/4, �rst substituting (20) into inequalities
(21) and then substituting the result into (18), one can obtain
a solution using the inequalities

min
�,�=−1,0,1

���+�,�+� ≤ ��+1�,� ≤ max
�,�=−1,0,1

���+�,�+�. (22)

It can be seen that the absolute values of ���+�,�+� for M, \ =−1, 0, 1 are lower than their initial value �0.�atmeans that all
the absolute values |�| ≤ �0 if the CFL conditions are satis�ed:

5Δ�Δ�2 ≤ 14 ,5Δ�ΔQ2 ≤ 14 .
(23)

2.5. Flow Chart for Di�erence Schemes to LLSM with DRE.
�e procedure for the LLSM with the DRE consists of two
main parts, transforming the models of discrete level set
functions into the local level set function and solving the
di
erence schemes of the LLSE associated with the DRE.�e
�nal DLSFs corresponding to the stable topological solution
can be transformed into the LLSF within the initial narrow-
band�0 by iteratively solving theDREunder reverse di
usion
constraints. �e LLSE can be solved by di
erence schemes
using the third-order Runge-Kutta (R-K) scheme for tem-
poral discretization and the ��h-order weighted essentially
nonoscillatory (WENO) scheme for spatial discretization.
�e reader is referred to [26] for more numerical details. �e
logical steps of the two parts can be described by a �ow chart
given in Figure 3.
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2.6. Shape Derivatives and Normal Extension Velocities. With
the classical level set model [4], the minimum compliance
design problem given in (4) can be converted to an uncon-
strained problem with the Lagrangian method:

Minimize
�

] (!, �)
= � (!, �) + 4+ (∫

�
_(�) GΩ − �∗) , (24)

where the Lagrangian function ](!, �) is the objective func-
tional. 4+ is the Lagrangian multiplier of the volume con-
straint._(�) is theHeaviside function.�emean compliance�(!, �) is reformulated as

� (!, �) = 12 ∫� 89 (!) : 9 (!)_ (�) GΩ. (25)

For a number of level set-based approaches [4, 9, 11, 12],
the steepest descent method is used to ensure the decrease of
the objective function by directly setting the normal velocity
�eld �� as the negative shape derivative of ](!, �). For the
particular case of a 2-D model of a linear elastic structure,
the boundary traction is �xed and remains unchanged, the
displacement constraint is �xed, and the body force is set to
zero; thus �� can be given by

�� = 0.589 (!) : 9 (!) − 4+. (26)

�e reader is referred to the article [4] for more detailed
theoretical proofs. In addition, a bisectioning algorithm is
used to �nd the Lagrangian multiplier 4+ to guarantee
that the volume constraint be exactly satis�ed during each
iteration.

�e normal velocity �eld can be naturally extended to the
whole domain using the so-called “ersatz material” approach,
which �lls the void areas with a weak material and then the
material density is assumed to be piecewise constant in each
element and is adequately interpolated in those elements cut
by the zero level set (the shape boundary) [4]. In the LLSM,
the extension velocity �eld is localized within the narrow-
band �0. By iteratively solving the di
erence scheme for the
DRE (see (15)), one can obtain a smooth velocity �eld in the
region near the edges of the narrow-band �0 to improve the
computational accuracy of the extension velocity.

3. Numerical Examples

In this section, two widely researched examples, the can-
tilever beam and the arch bridge, are presented in the context
of structuralminimumcompliance design to demonstrate the
characteristics of the proposed method. Some of the system
parameters using the same values are de�ned as follows.

Young’s elasticity modulus for the solid material is 80 =200GPa and for weak material is 8min = 10−3 Pa, and the
Poisson ratio is 0.3. �e volume constraint �∗ = 0.5�all,
where �all is the total volume in the design region �. �e
convergence tolerance K is set as 0.01 in the bidirectional
evolutionary algorithm and 0.001 in the LLSM.

3.1. First Cantilever-Beam Model. Shown in Figure 4 is the
design domain of a cantilever beam with a size 40mm ×25mm. �e le� side of the domain is �xed as the Dirichlet
boundary, and a concentrated force ` = 100N is vertically
applied at the central point of the right side as a nonhomoge-
neous Neumann boundary. In the bidirectional evolutionary
algorithm, ER = 2%, AR�max = 5%, and @	 = 2mm. In the
di
erence schemes for the LLSE, Δ� = 0.1, Δ = 0.3, and� = 0.999. In the di
erence schemes for the DRE, 5 = 0.5 andG� = 0.001. �e design domain is discretized with a mesh of80 × 50 quadrilateral elements.

In the design domain as shown in Figure 4, the initial
volume �0 of the solid region Ω is set to �0 = �all. �e
structural topologies corresponding to the zero level set and
related level set surfaces are shown in Figures 5 and 6, respec-
tively. �e convergence histories of the mean compliance
and volume fraction are depicted in Figure 7. �e result in
Figure 5(e) stands for a stable topological solution obtained
from the bidirectional evolutionary algorithm. Topological
results given by this algorithm are characterized by a smooth
boundary attributed to the structural model described by the
DLSFs. By comparing Figures 6(e) and 6(f), the sharp level
set surface corresponding to the DLSFs has been successfully
converted into a smooth one related to a local level set
function by iteratively solving the DRE at the initial stage
of the LLSM. �en the shape of the boundary is further
improved by iteratively solving the LLSE. In addition, all
the absolute values of the level set function are less than
the initial value �0. �erefore it veri�es the e
ectiveness of
reverse di
usion constraints on the numerical stability of the
di
erence scheme for the DRE.

3.2. Second Cantilever-Beam Model. �is study has also
investigated the in�uence of di
erent initial models of struc-
ture on the �nal design. Figure 8 depicts the design domain
with a size 4.0mm × 2.5mm. �e le� side of the domain is
�xed and a concentrated force ` = 1N is vertically applied
at the bottom of the right side. All the parameters but @	 =0.2mm and AR�max = 1% remain unchanged as those of
the �rst cantilever-beam model. Figure 9 shows two cases of
the initial con�gurations with full materials and the least but
essential materials and their topologies during the process
of optimization. �e two �nal designs are made with the
same topology and almost similar shape of the structure,
which shows the complexity of the �nal topology is not
changing appreciably with di
erent initial structures. �ere-
fore, the numerical process of the bidirectional evolutionary
algorithm can be used to replace the numerical process of
hole nucleation in the LLSM to avoid the �nal design heavily
dependent on the initial guess.

Figure 10 shows the topological topologies for almost@	 = 0.2mm using several mesh sizes. It can be seen that
the optimal topology does not depend on the discretization
in terms of layout and number of bars.

3.3. Arch-BridgeModel. �edesign domain of an arch-bridge
model with a size 2.0mm × 1.2mm is shown in Figure 11.
Both the bottom corners of the domain are the �xed support.
A uniform static pressure is vertically applied on the upper
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Design domain

P

40mm

25
m

m

Figure 4: Design domain of the �rst cantilever beam and its boundary conditions.

(a) (b) (c)

(d) (e) (f)

Figure 5: Topologies of zero level set at di
erent steps: (a) Step 1; (b) Step 10; (c) Step 20; (d) Step 30; (e) Step 43; (f) Step 57.
side, and the sum of the pressure is 5N. In accordance with
the same de�nitions of the cantilever-beam parameters, the
parameters are set to ER = 3%, AR�max = 5%, @	 = 0.1mm,Δ� = 0.02, Δ = 0.3, � = 0.99, G� = 0.001, and 5 = 0.0167.
�e design domain is discretized with a mesh of 120 × 72
quadrilateral elements.

�is example focuses on the new characteristic of the
proposed algorithm for improving the convergence of the
bidirectional evolutionary algorithm using the LLSM. �e
structural topologies corresponding to the zero level set
are depicted in Figure 12. Note that it starts from the
initial model with the volume � = 0.5�all and remains
unchanged, so as to maintain the stability of the evolution
process of the object function. �e evolutionary histories
of the objective and the volume constraint starting from

the initial models are plotted in Figure 13. A design of the
structure shown in Figure 12(b) corresponding to a stable
topological solution is also the �nal design of the topology
(not shape)mademerely using the bidirectional evolutionary
algorithm in our numerical experiments. �e subsequent
topologies given in Figures 12(c)–12(f) show that the LLSM
can further optimize the topology of the structure to improve
convergence.Moreover, the LLSMcan also improve the shape
of the boundary to obtain a smoother shape design till it
reaches the convergence tolerance in the 38th iteration. It
is worth noticing that the �nal topology obtained by the
LLSM is just a local optimal design because of the use of
the steepest descent method. Despite the optimal solution
of this arch-bridge model obtained by an element-wise ESO
method [27], in this case the optimized topology obtained
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(a) (b) (c)

(d) (e) (f)

Figure 6: �e corresponding level set surface at di
erent steps: (a) Step 1; (b) Step 10; (c) Step 20; (d) Step 30; (e) Step 43; (f) Step 57.
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Figure 7: Convergent histories of the objective function and the
constraint.

by the proposed bidirectional evolutionary algorithm is not
reasonable compared with the �nal optimal solution shown
in Figure 12(f).

Starting from di
erent initial models, the �nal models
obtained by the bidirectional evolutionary algorithm and the
LLSM, respectively, are shown in Figure 14.

It can be seen from Figures 12 and 14 that the �nal
topologies obtained by the bidirectional evolutionary algo-
rithm are inconsistent. In contrast, the �nal optimized results
found using the LLSM subsequently are of the same topology
and similar shape. Although the local optimal solution of
the arch-bridge model can also be obtained by using the
ESO/BESO methods with elemental variables, numerical

Design domain

4mm
2.
5

m
m

P

Figure 8: Design domain of the second cantilever beam and its
boundary conditions.

instabilities and zigzag boundaries can result in these ele-
mental variables-based methods. Hence, nodal variables are
needed to take the place of the elemental variables in these
methods. �e combined algorithm with the bidirectional
evolutionary algorithm and the LLSM can also resolve this
problem and achieve at least the consistent local optimal
solution for the di
erent cases of initial models.

4. Conclusions

�e LLSM is intended to remarkably increase the compu-
tational e	ciency of the conventional LSMs using global
models. To overcome the issue of hole nucleation of the
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Initial Step 20 Step 40 Step 43

(a) �e case starts from the full-material initial con�gurations

Initial Step 20 Step 60 Step 76

(b) �e case starts from the least-material initial con�gurations

Figure 9: Topologies of zero level set in the two cases of the second cantilever beam.

(a) (b) (c) (d)

Figure 10: Mesh-independent solutions of the second cantilever beam: (a) 40 × 25; (b) 96 × 60; (c) 128 × 80; (d) 160 × 100.
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Figure 11: Design domain of the arch bridge.
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(a) (b) (c)

(d) (e) (f)

Figure 12: Topologies of zero level set at di
erent steps starting from the case of � = 0.5�all: (a) Initial; (b) Step 19; (c) Step 20; (d) Step 21;
(e) Step 22; (f) Step 38.
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Figure 13: Convergent histories of the objective function and the constraint.

LLSM, a bidirectional evolutionary algorithm is combined
with the LLSM. �is proposed algorithm has been used
successfully in topology optimization of two-dimensional
(2-D) structures, and it is easy to be extended to 3-D
structures. �e main features of this algorithm unknown to
the conventional LSMs and the LLSM can be summarized as
follows:

(a) �e discrete level set functions can be e	ciently
transformed into the local level set function by
iteratively solving the distance regularized equation
(DRE).

(b) �e DRE can be used instead of the reinitialization
equation to further increase the computational e	-
ciency of the LLSM.

(c) A conditionally stable di
erence scheme under
reverse di
usion constraints is formulated to ensure
the numerical stability of the DRE.

(d) If the stable topological solutions of the bidirectional
evolutionary algorithm are inconsistent, the LLSM
can achieve at least the consistent local optimal
solution for the di
erent cases of initial models.
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(a)

(b)

(c)

Figure 14: Topologies of zero level set for the initial model, and the �nal models obtained by the bidirectional evolutionary algorithm and
the LLSM, respectively: (a) case 1, � = 0.4�all; (b) case 2, � = 0.6�all; (c) case 3, � = 0.8�all.

High computational e	ciency and numerical stability of
the proposed algorithm have been veri�ed by three typical
numerical examples.
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