
Efficient Longest Executable Path Search for Programs
with Complex Flows and Pipeline Effects

Friedhelm Stappert
∗

C-LAB
Fürstenallee 11

33102 Paderborn
Germany

fst@c-lab.de

Andreas Ermedahl
†

DoCS, Uppsala University
Box 325

SE-751 05 Uppsala
Sweden

ebbe@docs.uu.se

Jakob Engblom
‡

IAR Systems AB
Box 23051

SE-750 23 Uppsala
Sweden

jakob@iar.se

ABSTRACT
Current development tools for embedded real-time systems
do not efficiently support the timing aspect. The most im-
portant timing parameter for scheduling and system analysis
is the Worst-Case Execution Time (WCET) of a program.

This paper presents a fast and effective WCET calcula-
tion method that takes account of low-level machine aspects
like pipelining and caches, and high-level program flow like
loops and infeasible paths. The method is more efficient
than previous path-based approaches, and can easily han-
dle complex programs. By separating the low-level from the
high-level analysis, the method is easy to retarget.

Experiments confirm that speed does not sacrifice preci-
sion, and that programs with extreme numbers of potential
execution paths can be analyzed quickly.

Keywords
WCET, hard real-time, embedded systems, path search,
program flow, pipeline timing

1. INTRODUCTION
The purpose of Worst-Case Execution Time (WCET) anal-

ysis is to provide a priori information about the worst pos-
sible execution time of a program before using the program

∗Friedhelm is a PhD student at C-LAB (www.c-lab.de),
which is a cooperation between Paderborn University and
Siemens.†This work is performed within the Advanced Soft-
ware Technology (ASTEC, http://www.docs.uu.se/astec)
competence center, supported by the Swedish National
Board for Industrial and Technical Development (NUTEK,
http://www.nutek.se).
‡Jakob is an industrial PhD student at IAR Systems
(http://www.iar.com) and Uppsala university, sharing his
time between research and development work. He is par-
tially supported via ASTEC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’01, November 16-17, 2001, Atlanta, Georgia,USA.
Copyright 2001 ACM 1-58113-399-5/01/0011 ...$5.00.

in a system. Reliable WCET estimates are necessary when
designing and verifying embedded real-time systems, espe-
cially when used in safety-critical systems like vehicles and
industrial plants.

WCET estimates can be used to perform scheduling and
schedulability analysis, to determine whether performance
goals are met for periodic tasks, to check that interrupts
have sufficiently short reaction times, to find performance
bottlenecks, and for many other purposes. [1, 9, 12].

WCET estimates must be safe, i.e. guaranteed not to un-
derestimate the execution time, and tight, i.e. provide ac-
ceptable overestimations.

Measuring the execution time to find the worst case re-
quires access to the target hardware and is a very time-
consuming process. It is also very hard to guarantee to find
the worst case with measurements.

Static analysis promises to generate safe and tight esti-
mates by analyzing the source code and object code of the
program off-line (without executing it).

When performing static WCET analysis, it is assumed
that there are no interfering background activities, such as
direct memory access (DMA), and that the program execu-
tion is uninterrupted. Extra execution time caused by cache
interference between tasks, interrupts, etc. are assumed to
be handled in a separate analysis.

To make WCET analysis a mainstream tool for embed-
ded real-time systems development, the analysis should be a
part of the usual work-flow of edit-compile-test-debug. Just
like a program is checked for bugs, it should be checked for
timeliness.

For this to be achieved, WCET analysis should be per-
formed inside the compilation system, which demands a very
efficient method for calculating the WCET.

Furthermore, due to the fragmented character of the em-
bedded processor market [13], it is necessary that a tool is
easily retargeted to new architectures.

In this paper, we present a very fast method for calcu-
lating WCET estimates, given information about the pro-
gram flow and a program timing model (which is given in
a target-independent format). The method is path-based in
that it explicitly finds the longest path in the control flow
of the program, and more efficient than previous path-based
approaches (especially in the presence of many potential ex-
ecution paths). This makes it feasible to use the method
inside a compiler, for example.

1



�����
������	��

�����

������������������������	��

�����

��������

	��

�������

����

������
������

�����
��

�������������
��������

����������
�� ����

!��������

���������
�������������

�������	��
"��� �

#���
����

����$�$
��

#����������
�����

����
�������

�����
����

�����
����

��������
�����������
����%�����

%�����������
��������

%�����
�����

������
����

���&�
�����������

!&'���
��$�

��������
�������

Figure 1: WCET Analysis using Path-Based Calculation

The program timing model is obtained by using a trace-
driven simulator for the target architecture. The separation
from the calculation makes it easier to retarget, since the
calculation is not affected by target changes.

The concrete contributions of this work are:

• We adapt an acyclic longest-path search algorithm to per-
form longest executable path search in a program, pro-
viding a very efficient path-based WCET calculation al-
gorithm.

• We extend the basic algorithm to handle flow information
such as dependent conditional statements and implica-
tion, expressed using the flow language presented in [8].

• We extend the algorithm further to handle arbitrary pipe-
line effects, going beyond pipeline effects between adja-
cent basic blocks.

• We have implemented the new calculation algorithm
within an existing WCET prototype tool, replacing a dif-
ferent calculation module while using the existing hard-
ware model.

The rest of this paper is organized as follows: Section 2
describes previous work in the field of WCET analysis. Sec-
tion 3 presents our WCET tool framework. Section 4 shows
the basic path-based calculation method, while Section 5
shows how to add flow information and Section 6 arbitrary
pipeline effects to the calculation. Section 7 contains ex-
perimental evaluations, and Section 8 gives conclusions and
discusses future work.

2. PREVIOUS WORK AND
WCET ANALYSIS OVERVIEW

To generate a WCET estimate, we consider a program to
be processed through the phases of program flow analysis,
low level analysis and calculation.

The program flow analysis phase determines possible pro-
gram flows and provides information about which functions
get called, how many times loops iterate, if there are depen-
dencies between if-statements, etc. The information can
be obtained using manual annotations [11, 18, 25, 28], or
automatic flow analysis [3, 10, 14, 21, 30].

The purpose of low-level analysis is to determine the exe-
cution time for each atomic unit of flow (e.g. an instruction
or a basic block) given the architecture and features of the
target system. Low-level analysis can be further divided into
global low-level analysis, for effects that require a global view
of the complete program, and local low-level analysis, for ef-
fects that can be handled locally for an instruction and its
neighbors.

In global low-level analysis, instruction caches [11, 14, 19,
30], cache hierarchies [23], data caches [17, 30, 33], and
branch predictors [4] have been analyzed. Local low-level
analysis has built software models to deal with scalar pipe-
lines [7, 14, 19] and superscalar CPUs [20, 29, 30]. For some
complex architectures attempts have been made to use the
hardware itself [26].

The purpose of the calculation phase is to calculate the
WCET estimate for a program, combining the information
derived in the program flow and global and local low-level
analysis phases. There are three main categories of calcu-
lation methods proposed: path-based, tree-based, and IPET
(Implicit Path Enumeration Technique).

In a tree-based approach the WCET is found in a bottom-
up traversal of a tree, generally corresponding to a parse
tree of the program, using rules defined for each type of
compound program statement to determine the execution
time of the statement [2, 4, 19, 27]. The method is con-
ceptually simple and computationally quite cheap, but has
problems handling flow information, since the computations
cannot consider dependencies across statements.

In IPET, program flow and low-level execution time are
modeled using arithmetic constraints [8, 11, 18, 24, 28].
Each basic block and program flow edge in the program is
given a time variable (tentity) and a count variable (xentity),
and the goal is to maximize the sum

∑
i∈entities xi ∗ ti, sub-

ject to constraints reflecting the structure of the program
and possible flows. Very complex flows can be expressed,
but the computational complexity of solving the resulting
problem is potentially very high.

In a path-based approach, the possible execution paths of a
program or piece of a program are explored explicitly to find
the longest path [14, 15, 30]. In contrast to IPET, the path-
based approach explicitly computes the longest executable
path in the program.

3. TOOL OVERVIEW
The work presented in this paper is implemented within

the framework of our existing WCET tool. In addition to the
previous IPET-based calculation [8], we have implemented
a path-based calculation module. The pipeline analysis and
other components of the system remain unchanged, demon-
strating the modular structure of the tool, and in particular
the independence of the pipeline analysis and calculation
modules.

Figure 1 gives an overview of the WCET analysis system,
using a path-based search as described in this paper. The
calculation module is shown in detail.

2



����������	�
�
����	�
����	��()

����������	���
����	��	���

*
�
���

�
�
)

����	����
��	��(+
����	�
����	���

�
�
��

�

�

�

�

��
��

��
,��

��
�-

��
��

��
,�
��
��
-

��

����

������

������
���

��

��

�� 

���

�� 

�� ����

������

������
�

�

���

	




��
�!
��"#���$��
����
���!
����"#��$��
���������
����%
���������
����"#���$��
���������
����%
���������
���&
��'(��#��$�
��%
�������

�&
'(��#���$�	

���������������� ������������������������������ ���� ���

� �

Figure 2: Scopes with Attached Flow Facts

The target chip for the present implementation is the NEC
V850E, a typical 32-bit RISC embedded microcontroller ar-
chitecture [6]. The compiler used is an IAR V850/V850E
C/Embedded C++ compiler [32].

Flow analysis is currently performed manually, resulting
in a description of the possible program flow in the scope
graph data structure. The scope graph reflects the structure
of the program and the flow, as described in Section 3.1
below.

The timing graph data structure represents the low-level
view of the program used to build the program timing model.
The data structure and the analysis is presented in more
detail in Section 3.2.

We do not use cache analysis in the current experiments,
since our target hardware does not have a cache, but Fig-
ure 1 still shows where such an analysis module fits in.

3.1 Scope Graph and Flow Facts
The scope graph is a hierarchical representation of the

structure of a program. Each scope corresponds to a certain
repeating or differentiating execution context in the pro-
gram, e.g. loops and function calls, and describes the execu-
tion of the object code of the program within that context.

Each scope is assumed to iterate, and has a header node.
A new iteration starts each time the header node is executed,
and a maximal number of iterations must be given for each
scope. Scopes are allowed to iterate just once, i.e. not loop.
Each scope can carry a set of flow facts. The flow facts
language allows complex program flows to be represented in
a compact and readable manner. In this paper we address
a subset of the flow facts presented in [8].

Each flow fact consists of three parts: the defining scope,
a context specifier, and a constraint expression. The fact is
valid for each entry to the defining scope.

The context specifier describes the iterations for which
the constraint expression is valid. All iterations of a scope
is denoted <>, while a subrange is given as <min..max>.

The constraints are specified as a relation between two
arithmetic expressions involving execution count variables
and constants. An execution count variable, xentity, corre-
sponds to a node or edge in the code of a scope, and rep-
resents the number of times the entity is executed in the
context given in the fact. Note that for a path-based anal-
ysis, constants can only be zero or one.

Figure 2 shows an example of two nested scopes with some
attached flow facts. Each scope has an upper bound, to
guarantee program termination.

����������	
����
��������������������

�)!"#�*!"$

�+!""

�,!$

�-!"%

�+*!�& �+)!�'

�),!�"�*,!�(

�,-!�"

� �



�

�

������	�	������������

� �



�

�

)��������
�� ��������

*��������+
����

��������

����

����

������.����
/��
����������012/�3

������45���
/�3
�������6�0%2�������	
	������

�������	
	�������
�����������������
�������	
	������
�������	
	������

Figure 3: Timing Graph with Execution Facts

	���������
�����������

))

��������������

).

//

�����������

���������

�+())

�+*(�01

��������

��������

��������

�

�

�

�

�

�

�

� �*().

����

����

����

����

���� ����

Figure 4: Timing Effect Calculation

The fact inner : <> :xC + xF ≤ 1 gives that the nodes C

and F can never execute on the same iteration of the scope
(an infeasible path).

The fact inner : <1..8> :xC ≤ xG gives that, during the
first eight iterations of an entry to the loop inner, executing
node C implies that G is also executed.

The fact outer : <1..5> : xI = 1 gives that during the
first five iterations of outer, the execution has to pass the
I node, and can thus not enter inner.

Note that flow facts represent program flows implicitly
by constraining the set of possible program flows, in con-
trast to [15] where feasible paths are represented explicitly.
This makes the flow facts usable with calculation techniques
which are not path-based [8].

3.2 Timing Graph and Pipeline Analysis
The timing graph is a flat program flow graph, where the

nodes correspond to basic blocks in the code. Each node and
edge in the timing graph can be decorated with information
about the execution of that piece of code, extracted by some
preceding analysis module. Figure 3 shows an example of
a timing graph with information about instruction cache
behavior (icache hit and icache miss) and memory type
accessed (dmem SRAM). Other types of information can be
used.

The timing graph is generated for the whole program at
once, and the pipeline analysis generates times for all the
nodes and edges in the timing graph in one pass. The
pipeline analysis is described in more detail in [7]. Pieces
of the timing graph are then used in the calculation of the
WCET.

Times for nodes correspond to the execution times of
nodes in isolation, (e.g. tQ in Figure 4), and times for edges,
(e.g. δQR in Figure 4), to the pipeline effect when the two
successive nodes are executed in sequence (usually an over-
lap).

Timing effects for sequences of nodes are calculated by
first running the individual nodes (plus execution informa-
tion), in the simulator, then the sequence, and then compar-
ing the execution times. The process is illustrated in Fig-
ure 4. The timing effect, δQR, for the edge QR is 22−15−11 =

3



Dijkstra′s(TG):
/** Initialization **/
for each node v in TG do

predecessor[v] := nil
time sum[v] := 0

end for
/** Breadth-first-search **/
for each node u in TG in breadth-first order do
for each outgoing edge e = (u, v) in TG do

d := time sum[u] + tu + δe

/** Is u on the longest path to v **/
if time sum[v] < d then

predecessor[v] := u
time sum[v] := d

end for
end for
return TG

Figure 5: Longest Path Search Algorithm

−4; the time is negative since the execution of the nodes Q

and R overlap in the CPU pipeline.
There is a potential for timing effects along longer se-

quences of nodes than just two, usually caused by a node
using some CPU resource that is used by a later node in the
sequence, but not by the nodes in between.

The advantage of this approach to pipeline analysis is that
we only run each basic block through the machine model a
few times, that we do not require a special-purpose CPU
model, and that the pipeline model and calculation step are
kept separate and independent.

4. EFFICIENT PATH SEARCH
Since our pipeline timing model allows us to compose the

execution time of a program from smaller pieces, we base our
efficient path search on Dijkstra’s algorithm for longest-path
search in an acyclic (timing) graph TG (shown in Figure 5)
[5]. The algorithm computes the longest path in O(m + n)
time where m is the number of edges and n is the number
of nodes, i.e. it is linear in the size of the graph.

Our approach is more efficient than the classic approach
of generating all paths, running them through a pipeline
model, and then selecting the longest; in this case, the num-
ber of paths to explore is up to 2n, where n is the number
of decisions in the program segment being analyzed1. The
key to the efficiency is the timing model we use.

In order to be able to apply Dijkstra’s algorithm, we must
remove all cycles from the timing graph fragment for a scope.
We replace all backedges (i.e. edges to the header node of
the scope) with edges to a special continuation node ⊥c, and
all edges leading out of the scope are redirected to a special
exit node ⊥x (see Figure 6(b)). This is the “Path Search
Preprocessing” stage in Figure 1.

After this preprocessing, the algorithm works by breadth-
first search. For each node, it computes the predecessor with
the greatest total time used from the header node (called
time sum in the algorithm). If a node is not reachable from
the header node, the time sum is zero. This is the “Longest
Path Search” stage in Figure 1.

For each node v, predecessor[v] defines the predecessor of
node v on the longest path from the start node to v, and

1To keep complexity under control while losing some preci-
sion in the pipeline model, it is possible cut a program seg-
ment into smaller pieces with a lower number of decisions in
each [14].

�������������
�����
���������

������$��������������
��������2�������$�������3
��������$���$$�$2

���$��������4�����
����4��$������������
�������������������

�!"#�!"$

�!""

�!$

�!',�!"%

�!"$

�!�' �!�'

�!�"�!�(

�!�(�!�"

�!�( �!�"

�!�'

�

� �

�

��

�

�!"#�!"$

�!""

�!$

�!',�!"%

�!"$

�!�' �!�'

�!�"�!�(

�!�(�!�"

�!�( �!�"

�

� �

�

��

�

�!
�'

�!�
!, �

� �

�

��

�

�!

!%

�!�
!'$

�!-
!'#

�!-
!'%

�!.
!&/

�!�
!$%

������ ���

�!

!%

�!�
!/,

��

��

��

��
�!�"

�!�"

Figure 6: Longest Path Search

����������	���
%	�
����	��() 5�)6
%	�3��
��	��*��() 5�/6�

� �

� �

�
%	
���

5�)6

�
��

��


%	���
�
5�/6

%	3���
5�)4�/6

%	

����
536

%��������������$��������$�����!������������

Figure 7: Virtual Scope Expansion

following the predecessor chains allows complete paths to be
formed. Figure 6(c) illustrates the result of the algorithm,
showing the predecessor and time sum for each node.

When computing the WCET for a looping scope S, the
last iteration has to be treated specially, since a different
path is usually taken. Therefore, we calculate two longest
executable paths in each scope: one to ⊥c and one to ⊥x.
If there is no executable path to ⊥c, S does not iterate at
all, in which case the WCET for the scope is the longest
executable path to ⊥x.

If there is a path going to ⊥c the final WCET for scope
S becomes:
time sum(⊥c) ∗ (loopbound(S) − 1) + time sum(⊥x).

5. PATH SEARCH WITH FACTS
In this section, we show how flow facts can be used to

obtain more precise WCET estimates by removing infeasible
paths.

5.1 Ranges and Virtual Scopes
In order to account for flow facts with ranges, we expand

the scope graph to a number of virtual scopes. A virtual
scope corresponds to a certain range of iterations of a scope.
Whenever two consecutive iterations are covered by different
set of facts they should go into different virtual scopes, as
illustrated in Figure 7.

The two facts s : <1..5> :XC = 1 and s : <3..10> :XB +
XE = 1 are specified for the scope s. Since the facts over-
lap partially, the scope is split into the four virtual scopes
shown, each with a set of facts valid for their entire iteration
space.

4



V irtualScopeCreation(S) :
VS := ∅, begin := 1
Fcurrent := facts covering iteration begin in S
/** Loop over all iterations in the scope **/
for each iteration iter between 2 and loopbound(S) do

Fiter := facts covering iteration iter in S
/** Has set of covering facts changed **/
if Fcurrent �= Fiter then

end := iter - 1
VS := add virtual scope s : begin..end to VS
begin := iter, Fcurrent := Fiter

end for

return V S

Figure 8: Virtual Scopes Generation

SimpleFactRemoval(TG):
/** Handle ’forbidden’ nodes, (xnode = 0): **/
for each forbidden node v in TG do

delete v from TG
remove resulting dead paths

end for

/** Handle ’must-have’ nodes, (xnode = 1): **/
for each must-have node v in TG

mark all transitive predecessors of v
mark all transitive successors of v
for each node u in TG
if u not marked

delete node u from TG
end for

end for

return TG

Figure 9: Simple Facts Removal

The algorithm for finding the virtual scopes for a scope
S is given in Figure 8. Note that the split of the iteration
space of a scope is the inverse of the approach used in [15],
where they unify iteration spaces that have any information
in common, giving lower precision for facts that partially
overlap each other.

5.2 Simple Fact Removal
For efficiency, certain facts that can be expressed by mod-

ifying the timing graph are handled in a preprocessing stage
(the “Simple Fact Removal” stage in Figure 1).

A fact with a constraint of the form xnode = 0, i.e. node
must not be taken, is handled by simply removing node from
the graph.

A fact with a constraint expression of the form xnode = 1,
i.e. node must be taken, is handled by removing all paths
that do not include node. The paths can be found in time
linear to the size of the graph by the algorithm shown in
Figure 9.

5.3 Path Search with Infeasible Path Removal
After simplifying the graph as described above, the rest

of the facts are handled in a search loop.
Figure 10 shows the top-level algorithm. It performs a

bottom-up traversal of the scope graph (by recursion), di-
vides scopes to virtual scopes, performs preprocessing on
timing graph fragments, and searches for the longest path.

The longest path found for a scope is checked for feasibility
against the flow facts not removed in the preprocessing. Fea-

WCETCalculation(S) :
/** Check if WCET for S already has been calculated **/
if WCET for S exists in T imeCache then

return WCET for S from T imeCache
/** If not, we have to calculate WCET **/
WCET := 0
/** Replace call to subscopes with node with time **/
for each subscope sub reachable in S do

tsub := WCETCalculation(sub)
replace sub with node taking tsub time

end for
/** Divide scope S into virtual scopes **/
VS := V irtualScopeCreation(S)
/** Calculate times for virtual scopes **/
for each virtual vs in VS in increasing order do

/** Get and convert timing graph **/
TG := T imingGraphFragment(S, vs)
TG := PathSearchPreprocessing(TG)
TG := SimpleFactRemoval(TG)
TG := LongT imingEffectExpansion(TG)
/** Extract longest feasible paths **/
{tvs, stop} := V irtualScopeT ime(TG, vs, S)
/** Add time for virtual scope to WCET of S **/
WCET := WCET + tvs

/** Check if we have an early exit **/
if stop == true then break

end for
add calculated WCET of S to T imeCache
return WCET

Figure 10: WCET Algorithm for a Scope

sibility is checked by comparing the number of occurences
of nodes on the longest path with the constraints specified
in the facts.

For example, for a fact like “inner : <> :xC + xF ≤ 1”, we
check that the path does not contain both node F and node
C.

If the path is not feasible, it is removed from the graph
and the search begins again, finding the second-longest path.
The path is removed using an algorithm by Martins and
Santos [22], and the effect is illustrated in Figure 11. The
idea is to create a deviation around the path to be removed,
by adding some nodes and removing the last part of the
original path. In the process, time sum[v] and predecessor[v]
are updated, avoiding the need for another run of Dijkstra’s
algorithm.

The process of longest path search and infeasible path
detection and removal is repeated until a feasible path is
found, which is the longest executable path in the virtual

!������������������2
7$��������&���&�����2

"��� ������������,���	�3��������-
&���������
������4���
������������2

�!�
!, �

� �

�

��

�

�!

!%

�!�
!'$

�!-
!'#

�!-
!'%

�!.
!&/

�!�
!$%

�!

!%

�!�
!/,

��

��

���

�!�
!, �

� �

�

��

�

�!

!%

�!�
!'$

�!-
!'#

�!-
!'%

�!.
!&/

�!�0
!$1

�!

!%

�!�
!/,��

���

��

��

��

��

�!-0
!'(

�!*
!'"

�!)
!&$

%	��	��*���)

Figure 11: Infeasible Path Removal

5



LongestFeasiblePathSearch(TG, F, endnode) :
/** Extract longest path p in TG **/
TG = Dijkstra′s(TG)
begin loop

tp := time sum(endnode)
p := longest path from startnode(TG) to endnode
/** Is p feasible against flow facts or
was there no path to endnode? **/
if IsFeasible(p, F ) == true or tp == 0 then

return execution time tp
else

/** Remove p from TG
and extract the next longest path **/
TG := DeletePathFromGraph(TG, p)

end loop

Figure 12: Longest Feasible Path Search

V irtualScopeT ime(TG, vs, S) :
F := facts covered by vs
/* Time for longest paths to ⊥c and ⊥x */
tcont := LongestFeasiblePathSearch(TG, F,⊥c)
texit := LongestFeasiblePathSearch(TG, F,⊥x)
/* Continuation path feasible? */
if tcont > 0 then

/* Not the last virtual scope */
if lastiter(vs) �= loopbound(S) then

return {tcont * sizeof(vs),false}
/* Last virtual scope: must exit */
else if texit > 0 then

return {tcont * (sizeof(vs)-1) + texit,true}
/* Only exit path feasible */
else if texit > 0 then

return {texit,true}

Figure 13: WCET Calculation for Virtual Scope

scope. The algorithm for longest feasible path search, given
a timing graph TG, a factset F and a target node endnode,
is given in Figure 12.

After the initial run of Dijkstra’s Algorithm, the path
search algorithm runs in O(K ∗ m) time, where m is the
number of edges in the graph (the path removal runs in
O(m) time), and K is the number of paths removed. In an
extreme case, when the only feasible path in the program
is the shortest one, we could have to examine all paths (i.e.
exponential size). However, for real programs this is very
unlikely. It was not a noticeable problem for any of our
benchmark programs (see Section 7). Also note that it is
possible to interrupt the search at any time, still yielding a
safe (but probably pessimistic result).

The algorithm given in Figure 13 returns the WCET for a
given virtual scope vs, and a flag indicating if the execution
was forced to go to the exit path.

6. HANDLING LONG PIPELINE EFFECTS
Pipeline effects across basic block sequences longer than

two must be considered during the path search since they
affect the longest path, as examplified in Figure 15, where
the timing effect on the sequence CDE makes the longest path
different from the one in Figure 6. Path-based methods have
previously required complete paths to be executed to handle
such effects [14], while we use graph rewriting to keep the
search efficient.

A timing effect over a long sequence should only be ac-
counted for when all the nodes in the sequence have been
executed. Since our longest-path-search-algorithm only has

LongT imingEffectExpansion(TG):
/** Breadth-first-search **/
for each node v in TG in breadth-first order do
if in degree[v] > 1 and v in long timing effect then

for each incoming edge (u, v) inside a sequence do
/** Copy v and add and redirect edges **/
add node v′ to TG
add edge (u, v′) to TG
remove edge (u, v) from TG
for each outgoing edge e = (v, w) in TG do

add edge e′ = (v′, w) to TG
/** Add long timing effect to edge **/
if e is last in a timing sequence s then

add δs to weight of e′
end for

end for
end for

Figure 14: Long Timing Effects Expansion

��������������� ��
�� ������$��

���������$�$���
������������������������2

#��������������������3
�����4�
�����������������2

�!

!%

�!"#�!"$

�!""

�!$

�!',�!"%

�!"$

�!�' �!�'

�!�"�!�(

�!�(�!�"

�!�( �!�"

�

� �

�

��

�

�!2(

���

�!"#�!"$

�!""

�!$

�!',
�!"%

�!"$

�!�' �!�'

�!�"�!�(

�!�(�!�"

�!�( �!�"

�

� �

�

�

�!�"2(
��!2'

���

� ��

�

�!$

�!
�(

�

� �

�

�

���

�

�

��

�!�
!,

�!

!%

�!*
!'"

�!�
!'$

�!-0
!'#

�!-0
!('

�!)
!&1

�!�
!/"

�!
�'

�!
�'

��

��

��

��

��

��

�!�" �!�"

Figure 15: Path Search with Timing Effects

a local knowledge of the path (looking at predecessors), we
preprocess the graph in such a manner that each long timing
effect can be expressed as an extra timing effect on a regular
edge. The algorithm is given in Figure 14 and corresponds
to the box “Timing Effect Expansion” in Figure 1.

The process is illustrated in Figure 15. The node D is du-
plicated to make the path for the timing effect CDE distinct,
and the timing effect is added to the edge from D’ to E. The
longest path changes compared to the base version shown in
Figure 6.

6.1 Timing Effects Across Scope Boundaries
For programs with long pipeline timing effects there might

be effects across loop boundaries, such as the wrap-around
timing effect across the back edge illustrated in Figure 16(a),
or timing effects between nodes in different scopes when en-
tering or exiting the subscope (border crossing timing ef-
fects).

All timing effects of length two are accounted for at the
scope where the edges begin, giving us an exact solution for
programs without long timing effects.

To handle long effects, we add history nodes to the graph
for the scope where the effects end. The history nodes rep-
resent the potential paths taken before the beginning of a
path search and therefore have a time value of zero.

For example, the sequence GAB in Figure 16, makes us in-
sert the history node “(G)”. This changes the longest path

6



Program Description Properties

compress Compression using lzw. Nested loops, goto-loop, function calls.
crc Cyclic redundancy check computation on 40 bytes of

data.
Complex loops, lots of decisions, loop bounds depend
on function arguments, function that executes differ-
ently the first time it is called.

expint Series expansion for computing an exponential integral
function

Inner loop that only runs once, structural WCET es-
timate gives heavy overestimate.

fibcall Simple iterative Fibonacci calculation, used to calcu-
late fib(30).

Parameter-dependent function, single-nested loop.

fir Finite impulse response filter (signal processing algo-
rithms) over a 700 items long sample.

Inner loop with varying number of iterations, loop-
iteration dependent decisions.

insertsort Insertion sort on a reversed array of size 10. Input-data dependent nested loop with worst-case of
n2/2 iterations.

jfdctint Discrete-cosine transformation on a 8x8 pixel block. Long calculation sequences (i.e. long basic blocks),
single-nested loops.

lcdnum Read ten values, output half to LCD Loop with iteration-dependent flow.
matmult Matrix multiplication of two 20x20 matrices. Multiple calls to the same function, nested function

calls, triple-nested loops.
ns Search in a multi-dimensional array Return from the middle of a loop nest, deep loop nest-

ing.
nsichneu Simulate an extended Petri Net Automatically generated code containing massive

amounts of if-statements (� 250)

Figure 17: Benchmark Programs

��������������������
��8�������3�392

:���������$��&��������$�
�2����������������� �$2

#�������������������������4

�����������������������2

�!"#�!"$

�!""

�!$

�!',�!"%

�!"$

�!�' �!�'

�!�"�!�(

�!�(�!�"

�!�( �!�"

�!�'

�

� �

�

��

�

�!"#�!"$

�!""

�!$

�!',�!"%

�!"$

�!�' �!�'

�!�"�!�(

�!�(�!�"

�!�( �!�"

� �

�

��

�

�!
�'

�!

!%

�!*
!'/

�!-
!'1

�!�
!/"

������

��
��

�!2$

�

��� �!,

�!,

�!2$

�

��

�

��
��

�

���

��

�

�!�
!,

�!���
!,

�!�
!,

�!
0
!"& �

�!�'2$!2(

�!.
!&#

�!-
!(,

�!�
!/,�!�"

�!�"

���
Figure 16: Timing Effect Across Back-Edge

from ACDFG as shown in Figure 6 to ABDFG as shown in Fig-
ure 16(c).

The insertion of history nodes gives a safe but possibly
pessimistic estimate of the execution times, since we will al-
ways use the worst incoming timing effect. This remaining
pessimism is the price we have to pay for the convenience
and efficiency of extracting WCET times for scopes in iso-
lation.

7. EVALUATION
In order to demonstrate the effectiveness of our flow speci-

fication language and path-based WCET extraction method,
we performed a number of experiments, using the programs
listed in Figure 17.

The results of the execution time analysis are shown in
Figure 18. The column Basic gives the WCET estimate us-
ing only loop-bounds and ignoring pipeline overlap between
nodes (but including the pipeline overlap within nodes2).

2Completely ignoring pipeline effects within a block would
create a WCET about five times higher (since our chip has
a five-stage pipeline).

Columns including Flow hold WCET estimates resulting
from using flow facts. Columns including Pipeline indicate
that pipeline effects between nodes have been accounted for.
Actual gives the actual WCET of the program, as given by
a simulation of the target platform. The numbers in the
+% columns give the pessimism of each WCET estimate in
percent.

The results for the columns without Pipeline show that
the modeling of pipelines is very important for tight WCET
analysis. In most cases, the effect of the pipeline is much
larger than that of the control flow. The results show that
the pipeline analysis is precise.

For two programs (fibcall, matmult), loop bounds are
sufficient to get an exact WCET estimate. For jfdctint,
the facts reduce the pessimism somewhat, while compress,
expint and lcdnum show dramatic improvements when facts
are added (due to the structure of the programs).

The remaining overestimate in fir and insertsort is due
to triangular loops that cannot be expressed within the path-
based calculation system.

Figure 19 shows some information about the complexity of
the analysis. The Scopes column lists the number of scopes
required to model the program, and V.S. the number of vir-
tual scopes after virtual scope expansion. Paths shows the
number of possible execution paths in the entire program,
and Expl. the number of paths that our search actually ex-
plored. The last column shows how Expl. relates to Paths.
In every case, our tool explores only a subset of the paths,
and the more complex the programs get (many paths com-
pared to the number of virtual scopes), the proportion of
paths explored goes down.

In conclusion, our experiments clearly demonstrate the ef-
ficiency, precision, and safety of our WCET analysis method.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an efficient local longest-

path search algorithm for worst-case execution time analy-
sis. We have extended the algorithm to handle complex flow
facts and arbitrary pipeline effects. Using this approach, we
are able to quickly and efficiently calculate the WCET of
programs. The calculation method avoids exploring all the

7



Basic With Flow With Pipeline Flow & Pipeline Actual
Program Cycles +% Cycles +% Cycles +% Cycles +% Cycles

compress 126242 +1357 10388 +20 92482 +967 8672 +0.12 8662
crc 61624 +104 61624 +104 30389 +0.39 30389 +0.39 30271

expint 68077 +693 10062 +17.2 41359 +382 8588 0 8588
fibcall 559 +78.6 559 +78.6 313 0 313 0 313

fir 487970 +40.2 487808 +40.1 352162 +1.2 352073 +1.1 348095
insertsort 2328 +117 2328 +117 1794 +67.0 1794 +67.0 1249

jfdctint 5388 +9.4 5388 +9.4 4942 +0.35 4942 +0.35 4925
lcdnum 501 +153 341 +72.2 283 +42.9 198 0 198
matmult 278859 +24.4 278859 +24.4 221824 0 221824 0 221824

ns 22903 +64.6 20653 +48.5 15434 +10.9 13934 +0.2 13911
nsichneu 150841 +195 87193 +70.6 97662 +91 51133 +0.03 51116

Figure 18: Execution Time Estimates

Program Scopes V.S. Paths Expl. +/−
compress 23 27 244 39 -84%

crc 8 8 33 12 -64%
expint 6 8 25 13 -48%

fibcall 3 3 6 4 -33%
fir 4 8 34 15 -56%

insertsort 3 3 6 5 -17%
jfdctint 5 5 10 8 -20%

lcdnum 3 5 30 7 -77%
matmult 15 15 25 22 -12%

ns 6 7 16 11 -31%
nsichneu 2 2 3.73E97 3 ≈ -100%

Figure 19: Complexity Measures

paths of a program, typically giving it a computational com-
plexity close to linear in the size of the program.

We have implemented the new calculation method within
our generic WCET tool framework, demonstrating the flex-
ibility of that framework.

Our experiments show that the new calculation method
generates tight and safe WCET estimates, and that flow
information can be used effectively to improve the quality
of the estimates. The WCET analysis is efficient enough to
be integrated in the natural design-flow of real-time software
engineers.

For the future, we are considering whether it is possible
to create a hybrid approach between the path-based and
IPET-based calculation methods, combining the efficiency
of path-based approaches with the expressive power of IPET
(in particular, extending the sets of flow facts that can be
handled exactly).

Considering the availability of WCET tools, we are co-
operating with embedded programming-tools vendor IAR
Systems [16].

A longer version of this paper is available as a technical
report [31].

9. REFERENCES
[1] L. Casparsson, A. Rajnak, K. Tindell, and

P. Malmberg. Volcano – A Revolution in On-Board
Communications. Volvo Technology Report, 1:9–19,
1998.

[2] R. Chapman. Program Timing Analysis. Dependable
Computing System Centre, University of York,
England, May 1994.

[3] R. Chapman, A. Burns, and A. Wellings. Integrated
Program Proof and Worst-Case Timing Analysis of
SPARK Ada. In Proc. ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Real-Time
Systems (LCT-RTS’94), 1994.

[4] A. Colin and I. Puaut. Worst Case Execution Time
Analysis for a Processor with Branch Prediction.
Journal of Real-Time Systems, May 2000.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, 1990.

[6] NEC Corporation. V850E/MS1 32/16-bit Single Chip
Microcontroller: Architecture, 3rd edition, January
1999. Document no. U12197EJ3V0UM00.

[7] J. Engblom and A. Ermedahl. Pipeline Timing
Analysis Using a Trace-Driven Simulator. In Proc. 6th

International Conference on Real-Time Computing
Systems and Applications (RTCSA’99). IEEE
Computer Society Press, December 1999.

[8] J. Engblom and A. Ermedahl. Modeling Complex
Flows for Worst-Case Execution Time Analysis. In
Proc. 21th IEEE Real-Time Systems Symposium
(RTSS’00), November 2000.

[9] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson,
and H. Hansson. Worst-Case Execution-Time Analysis
for Embedded Real-Time Systems. Software Tools for
Technology Transfer, 2001. Accepted for publication.

[10] A. Ermedahl and J. Gustafsson. Deriving Annotations
for Tight Calculation of Execution Time. In Proc.
Euro-Par’97 Parallel Processing, LNCS 1300, pages
1298–1307. Springer Verlag, August 1997.

[11] C. Ferdinand, F. Martin, and R. Wilhelm. Applying
Compiler Techniques to Cache Behavior Prediction. In
Proc. ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Real-Time Systems
(LCT-RTS’97), 1997.

[12] J. Ganssle. Really Real-Time Systems. In Proceedings
of the Embedded Systems Conference San Fransisco
(ESC SF) 2001, April 2001.

[13] T. R. Halfhill. Embedded Market Breaks New
Ground. Microprocessor Report, January 17, 2000.

[14] C. Healy, R. Arnold, F. Müller, D. Whalley, and
M. Harmon. Bounding Pipeline and Instruction Cache
Performance. IEEE Transactions on Computers,
48(1), January 1999.

[15] C. Healy and D. Whalley. Tighter Timing Predictions
by Automatic Detection and Exploitation of
Value-Dependent Constraints. In Proc. 5th IEEE
Real-Time Technology and Applications Symposium
(RTAS’99), pages 79–88, June 1999.

[16] IAR Systems WWW homepage. URL:
http://www.iar.com.

[17] S.-K. Kim, S. L. Min, and R. Ha. Efficient Worst Case

8



Timing Analysis of Data Caching. In Proc. of
RTAS’96, pages 230–240. IEEE, 1996.

[18] Y-T. S. Li and S. Malik. Performance Analysis of
Embedded Software Using Implicit Path Enumeration.
In Proc. of the 32:nd Design Automation Conference,
pages 456–461, 1995.

[19] S.-S. Lim, Y. H. Bae, C. T. Jang, B.-D. Rhee, S. L.
Min, C. Y. Park, H. Shin, K. Park, and C. S. Ki. An
Accurate Worst-Case Timing Analysis for RISC
Processors. IEEE Transactions on Software
Engineering, 21(7):593–604, July 1995.

[20] S.-S. Lim, J. H. Han, J. Kim, and S. L. Min. A Worst
Case Timing Analysis Technique for Multiple-Issue
Machines. In Proc. 19th IEEE Real-Time Systems
Symposium (RTSS’98), December 1998.

[21] T. Lundqvist and P. Stenström. Integrating Path and
Timing Analysis using Instruction-Level Simulation
Techniques. In Proc. SIGPLAN Workshop on
Languages, Compilers and Tools for Embedded
Systems (LCTES’98), June 1998.

[22] E. Martins and J. Santos. A New Shortest Paths
Ranking Algorithm. Investigacao Operational,
20(1):47–62, 2000.

[23] F. Müller. Timing Predictions for Multi-Level Caches.
In Proc. ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Real-Time Systems
(LCT-RTS’97), pages 29–36, Jun 1997.

[24] G. Ottosson and M. Sjödin. Worst-Case Execution
Time Analysis for Modern Hardware Architectures. In
Proc. ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Real-Time Systems
(LCT-RTS’97), June 1997.

[25] Chang Yun Park. Predicting Program Execution
Times by Analyzing Static and Dynamic Program
Paths. Real-Time Systems, 5(1):31–62, March 1993.

[26] S. Petters and G. Färber. Making Worst-Case
Execution Time Analysis for Hard Real-Time Tasks
on State of the Art Processors Feasible. In Proc. 6th

International Conference on Real-Time Computing
Systems and Applications (RTCSA’99), December
1999.

[27] P. Puschner and C. Koza. Calculating the Maximum
Execution Time of Real-Time Programs. The Journal
of Real-Time Systems, 1(1):159–176, 1989.

[28] P. Puschner and A. Schedl. Computing Maximum
Task Execution Times with Linear Programming
Techniques. Technical report, Technische Universität,
Institut für Technische Informatik, Wien, April 1995.

[29] J. Schneider and C. Ferdinand. Pipeline Behaviour
Prediction for Superscalar Processors by Abstract
Interpretation. In Proc. SIGPLAN Workshop on
Languages, Compilers and Tools for Embedded
Systems (LCTES’99). ACM Press, May 1999.

[30] F. Stappert and P. Altenbernd. Complete Worst-Case
Execution Time Analysis of Straight-line Hard
Real-Time Programs. Journal of Systems Architecture,
46(4):339–355, 2000.

[31] F. Stappert, A. Ermedahl, and J. Engblom. Efficient
Longest Executable Path Search for Programs with
Complex Flows and Pipeline Effects. Technical Report

2001-012, Dept. of Information Technology, Uppsala
University, 2001.

[32] IAR Systems. V850 C/EC++ Compiler Programming
Guide, 1st edition, January 1999.

[33] R. White, F. Müller, C. Healy, D. Whalley, and
M. Harmon. Timing Analysis for Data Caches and
Set-Associative Caches. In Proc. 3rd IEEE Real-Time
Technology and Applications Symposium (RTAS’97),
pages 192–202, June 1997.

9


