
ar
X

iv
:1

20
7.

46
07

v1
 [

cs
.D

S]
 1

9
Ju

l 2
01

2

Efficient LZ78 factorization of grammar

compressed text

Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda

Department of Informatics, Kyushu University
{bannai,inenaga,takeda}@inf.kyushu-u.ac.jp

Abstract. We present an efficient algorithm for computing the LZ78
factorization of a text, where the text is represented as a straight line
program (SLP), which is a context free grammar in the Chomsky normal
form that generates a single string. Given an SLP of size n representing
a text S of length N , our algorithm computes the LZ78 factorization
of T in O(n

√
N + m logN) time and O(n

√
N + m) space, where m is

the number of resulting LZ78 factors. We also show how to improve the
algorithm so that the n

√
N term in the time and space complexities

becomes either nL, where L is the length of the longest LZ78 factor, or
(N − α) where α ≥ 0 is a quantity which depends on the amount of
redundancy that the SLP captures with respect to substrings of S of a
certain length. Since m = O(N/ log

σ
N) where σ is the alphabet size, the

latter is asymptotically at least as fast as a linear time algorithm which
runs on the uncompressed string when σ is constant, and can be more
efficient when the text is compressible, i.e. when m and n are small.

1 Introduction

Large scale textual data are usually stored in compressed form, while it is later
decompressed to be used. In order to circumvent the computational resources
required to handle and process the cumbersome uncompressed string, the com-
pressed string processing (CSP) approach has been gaining attention. The aim
of CSP is to process text given in compressed form without explicitly decom-
pressing the entire text, therefore allowing space efficient, as well as time efficient
processing of the text when it is sufficiently compressed.

Many CSP algorithms work on a representation of the compressed text called
straight line programs (SLPs). An SLP is a context free grammar in the Chomsky
normal form that derives a single string. SLPs can efficiently model the outputs
of many different types of compression algorithms (e.g.: grammar based [22,17],
dictionary based [28,29]), and hence, an algorithm that works on an SLP can
be applied to texts compressed by various compression algorithms. On the other
hand, there are many CSP algorithms which make use of specific properties that
are implicit in the compressed representation C(S) of text S obtained by using
a certain compression algorithm C [4,9,10,11]. Such CSP algorithms cannot be
applied to representations produced by any arbitrary compression algorithm. To
overcome this problem, we consider the problem of computing the compressed

http://arxiv.org/abs/1207.4607v1

representation C(S) from an arbitrary SLP representing S, without completely
decompressing the SLP.

In this paper, we focus on the well known LZ78 compression algorithm [29].
LZ78 compresses a given text based on a dynamic dictionary which is con-
structed by partitioning the input string, the process of which is called LZ78
factorization. Other than its obvious use for compression, the LZ78 factorization
is an important concept used in various string processing algorithms and ap-
plications [7,19,18,20]. The contribution of this paper is an O(n

√
N +m logN)

time and O(n
√
N +m) space algorithm to compute the LZ78 factorization of a

string given as an SLP, where N is the length of the string, n is the size of the
SLP, and m is the number of LZ78 factors.

We further show how to improve the n
√
N term in the time and space com-

plexities in two ways. An application of doubling search enables the term to
be reduced to nL, where L is the longest LZ78 factor. Also, by applying the
recent techniques of [13], the term can be reduced to N − α, where α ≥ 0
is a quantity which depends on the amount of redundancy that the SLP cap-
tures with respect to substrings of S of a certain length. Since it is known that
m = O(N/ logσ N) [29], where σ is the alphabet size, our approach is guaranteed
to be asymptotically at least as fast as a linear time algorithm which runs on the
uncompressed string if σ is considered constant, and can be even more efficient
when the text is compressible, i.e. when m and n are small.

As a byproduct of the above results, we also obtain an efficient algorithm
which converts a given LZ77 factorization of a string [28] to the corresponding
LZ78 factorization without explicit decompression. We conclude the paper by
mentioning several other interesting potential applications of our algorithm.

Related Work

An efficient algorithm for computing the LZ78 factorization was presented in [14].
Their algorithm requires only O(N(log σ + log logσ N)/ logσ N) bits of work-
ing space and runs in O(N(log logN)2/(logσ N log log logN)) worst-case time

which is sub-linear when σ = 2
o(logN

log log log N

(log log N)2
)
. However, their input assumes

the uncompressed text and it is unknown how to apply their algorithm without
completely decompressing the SLP.

2 Preliminaries

2.1 Strings

Let Σ be a finite alphabet and σ = |Σ|. An element of Σ∗ is called a string. The
length of a string S is denoted by |S|. The empty string ε is a string of length 0,
namely, |ε| = 0. For a string S = XY Z,X , Y and Z are called a prefix, substring,
and suffix of S, respectively. The set of all substrings of a string S is denoted
by Substr(S). The i-th character of a string S is denoted by S[i] for 1 ≤ i ≤ |S|,
and the substring of a string S that begins at position i and ends at position j is

2

denoted by S[i : j] for 1 ≤ i ≤ j ≤ |S|. For convenience, let S[i : j] = ε if j < i.
For a string S and integer q ≥ 0, let pre(S, q) and suf (S, q) represent respectively,
the length-q prefix and suffix of T , that is, pre(S, q) = S[1 : min{q, |S|}] and
suf (S, q) = S[max{1, |S| − q + 1} : |S|]. We also assume that the last character
of the string is a special character ‘$’ that does not occur anywhere else in the
string.

Our model of computation is the word RAM: We shall assume that the
computer word size is at least log |S|, and hence, standard operations on values
representing lengths and positions of string S can be manipulated in constant
time. Space complexities will be determined by the number of computer words
(not bits).

2.2 Straight Line Programs

A straight line program (SLP) is a set of assignments T = {X1 → expr1, X2 →
expr2, . . . , Xn → exprn}, where each Xi is a distinct non-terminal variable and
each expri is an expression that can be either expri = a (a ∈ Σ), or expri =
Xℓ(i)Xr(i) (i > ℓ(i), r(i)). An SLP is essentially a context free grammar in the
Chomsky normal form, that derives a single string. Let val(Xi) represent the
string derived from variableXi. To ease notation, we sometimes associate val(Xi)
with Xi and denote |val (Xi)| as |Xi|. An SLP T represents the string T =
val(Xn). The size of the program T is the number n of assignments in T .

The derivation tree of SLP T is a labeled ordered binary tree where each
internal node is labeled with a non-terminal variable in {X1, . . . , Xn}, and each
leaf is labeled with a terminal character in Σ. The root node has label Xn.
Let V denote the set of internal nodes in the derivation tree. For any internal
node v ∈ V , let 〈v〉 denote the index of its label X〈v〉. Node v has a single child
which is a leaf labeled with c when (X〈v〉 → c) ∈ T for some c ∈ Σ, or v has
a left-child and right-child respectively denoted ℓ(v) and r(v), when (X〈v〉 →
X〈ℓ(v)〉X〈r(v)〉) ∈ T . Each node v of the tree derives val(X〈v〉), a substring of
T , whose corresponding interval itv(v) = [b : e], with T [b : e] = val (X〈v〉), can
be defined recursively as follows. If v is the root node, then itv(v) = [1 : |T |].
Otherwise, if (X〈v〉 → X〈ℓ(v)〉X〈r(v)〉) ∈ T , then, itv(ℓ(v)) = [bv : bv+|X〈ℓ(v)〉|−1]
and itv(r(v)) = [bv + |X〈ℓ(v)〉| : ev], where [bv : ev] = itv(v). Let vOcc(Xi)
denote the number of times a variable Xi occurs in the derivation tree, i.e.,
vOcc(Xi) = |{v | X〈v〉 = Xi}|.

For any interval [b : e] of T (1 ≤ b < e ≤ |T |), let ξT (b, e) denote the deepest
node v in the derivation tree, which derives an interval containing [b : e], that
is, itv(v) ⊇ [b : e], and no proper descendant of v satisfies this condition. We say
that node v stabs interval [b : e], and X〈v〉 is called the variable that stabs the
interval. We have (X〈v〉 → X〈ℓ(v)〉X〈r(v)〉) ∈ T , b ∈ itv(ℓ(v)), and e ∈ itv(r(v)).
When it is not confusing, we will sometimes use ξT (b, e) to denote the variable
X〈ξT (b,e)〉.

SLPs can be efficiently pre-processed to hold various information. |Xi| and
vOcc(Xi) can be computed for all variables Xi (1 ≤ i ≤ n) in a total of O(n)
time by a simple dynamic programming algorithm.

3

X1 X2

a ba a ab a b a b a a b

X1 X3

X1 X2

X3

X1 X2

X3

X4

X1

X5X4

X6

X1 X2

X3

X1 X2

X3

X4

X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13

Fig. 1. The derivation tree of SLP T = {X1 → a, X2 → b, X3 → X1X2, X4 → X1X3,
X5 → X3X4, X6 → X4X5, X7 → X6X5}. T = val(X7) = aababaababaab.

2.3 LZ78 Encoding

Definition 1 (LZ78 factorization). The LZ78-factorization of a string S is
the factorization f1 · · · fm of S, where each LZ78-factor fi ∈ Σ+ (1 ≤ i ≤ m) is
the longest prefix of fi · · · fm, such that fi ∈ {fjc | 1 ≤ j < i, c ∈ Σ} ∪Σ.

a b

a

b

b

a

a

$

Fig. 2. The LZ78 dic-
tionary for the string
aaabaabbbaaaaaaaba$.
Each node numbered i
represents the factor fi
of the LZ78 factorization,
where fi is the path label
from the root to the node,
e.g.: f2 = aa, f4 = aab.

For a given string S, let m denote the number of
factors in its LZ78 factorization. The LZ78 factor-
ization of the string can be encoded by a sequence of
pairs, where the pair for factor fi consists of the ID
j of the previous factor fj (j = 0 and f0 = ε when
there is none) and the new character S[|f1 · · · fi|].
Regarding this pair as a parent and edge label, the
factors can also be represented as a trie. (See Fig. 2.)

By using this trie, the LZ78 factorization of
a string of length N can be easily computed in-
crementally in O(N log σ) time and O(m) space;
Start from an empty tree with only the root. For
1 ≤ i ≤ m, to calculate fi, let v be the node of
the trie reached by traversing the tree with S[p : q],
where p = |f0 · · · fi−1| + 1, and q ≥ p is the small-
est position after p such that v does not have an
outgoing edge labeled with S[q + 1]. Naturally, v
represents the longest previously used LZ78-factor
that is a prefix of S[p : |S|]. Then, we can insert an edge labeled with S[q+1] to
a new node representing factor fi, branching from v. The update for each factor
fi can be done in O(|fi| log σ) time for the traversal and in O(log σ) time for
the insertion, with a total of O(N log σ) time for all the factors. Since each node
of the trie except the root corresponds to an LZ78 factor, the size of the trie is
O(m).

4

Example 1. The LZ78 factorization of string aaabaabbbaaaaaaaba$ is a, aa, b,
aab, bb, aaa, aaaa, ba, $, and can be represented as (0, a), (1, a), (0, b), (2, b),
(3, b), (2, a), (6, a), (3, a), (0, $).

2.4 Suffix Trees

We give the definition of a very important and well known string index structure,
the suffix tree. To assure property 3 for the sake of presentation, we assume that
the string ends with a unique symbol that does not occur elsewhere in the string.

Definition 2 (Suffix Trees [26]). For any string S, its suffix tree, denoted
ST (S), is a labeled rooted tree which satisfies the following:

1. each edge is labeled with an element in Σ+;

2. there exist exactly n leaves, where n = |S|;
3. for each string s ∈ Suffix(S), there is a unique path from the root to a leaf

which spells out s;

4. each internal node has at least two children;

5. the labels x and y of any two distinct out-going edges from the same node
begin with different symbols in Σ

Since any substring of S is a prefix of some suffix of S, positions in the suffix
tree of S correspond to a substring of S that is represented by the string spelled
out on the path from the root to the position. We can also define a generalized
suffix tree of a set of strings, which is simply the suffix tree that contains all
suffixes of all the strings in the set.

It is well known that suffix trees can be represented and constructed in linear
time [26,21,25], even independently of the alphabet size for integer alphabets [8].
Generalized suffix trees for a set of strings S = {S1, . . . , Sk}, can be constructed
in linear time in the total length of the strings, by simply constructing the suffix
tree of the string S1$1 · · ·Sk$k, and pruning the tree below the first occurrence
of any $i, where $i (1 ≤ i ≤ k) are unique characters that do not occur elsewhere
in strings of S.

3 Algorithm

We describe our algorithm for computing the LZ78 factorization of a string
given as an SLP in two steps. The basic structure of the algorithm follows the
simple LZ78 factorization algorithm for uncompressed strings that uses a trie
as mentioned in Section 2.3. Although the space complexity of the trie is only
O(m), we need some way to accelerate the traversal of the trie in order to achieve
the desired time bounds.

5

3.1 Partial Decompression

We use the following property of LZ78 factors which is straightforward from its
definition.

Lemma 1. For any string S of length N and its LZ78-factorization f1 · · · fm,
m ≥ cN and |fi| ≤ cN for all 1 ≤ i ≤ m, where cN =

√

2N + 1/4− 1/2.

Proof. Since a factor can be at most 1 character longer than a previously used
factor, |fi| ≤ i. Therefore, N =

∑m
i=1 |fi| ≤

∑m
i=1 i, and thus m ≥

√

2N + 1/4−
1/2. For any factor of length x = |fix |, there exist distinct factors fi1 , . . . , fix−1

whose lengths are respectively 1, . . . , x− 1. Therefore, N =
∑m

i=1 |fi| ≥
∑x

i=1 i,

and x ≤
√

2N + 1/4− 1/2. ⊓⊔

The lemma states that the length of an LZ78-factor is bounded by cN .
To utilize this property, we use ideas similar to those developed in [12,13] for
counting the frequencies of all substrings of a certain length in a string rep-
resented by an SLP; For simplicity, assume cN ≥ 2. For each variable Xi →
Xℓ(i)Xr(i), any length cN substring that is stabbed by Xi is a substring of
ti = suf (val (Xℓ(i)), cN − 1)pre(val (Xr(i)), cN − 1). On the other hand, all length
cN substrings are stabbed by some variable. This means that if we consider the
set of strings consisting of ti for all variables such that |Xi| ≥ cN , any length
cN substring of S is a substring of at least one of the strings. We can com-
pute all such strings TS = {ti | |Xi| ≥ cN} where (Xi → Xℓ(i)Xr(i)) ∈ T in
time linear in the total length, i.e. O(ncN) time by a straightforward dynamic
programming [12].

All length cN substrings of S occur as substrings of strings in TS , and by
Lemma 1, it follows that TS contains all LZ78-factors of S as substrings.

3.2 Finding the Next Factor

In the previous subsection, we described how to partially decompress a given
SLP of size n representing a string S of length N , to obtain a set of strings TS

with total length O(n
√
N), such that any LZ78-factor of S is a substring of at

least one of the strings in TS. We next describe how to identify these substrings.
We make the following key observation: since the LZ78-trie of a string S is

a trie composed by substrings of S, it can be superimposed on a suffix tree of
S, and be completely contained in it, with the exception that some nodes of the
trie may correspond to implicit nodes of the suffix tree (in the middle of an edge
of the suffix tree). Furthermore, this superimposition can also be done to the
generalized suffix tree constructed for TS . (See Fig. 3.)

Suppose we have computed the LZ78 factorization f1 · · · fi−1, up to position
p − 1 = |f1 · · · fi−1|, and wish to calculate the next LZ78-factor starting at
position p. Let v = ξT (p, p + cN − 1), let Xj = X〈v〉 be the variable that stabs
the interval [p : p+ cN − 1], let q be the offset of p in tj , and let w be the leaf of
the generalized suffix tree that corresponds to the suffix tj[q : |tj |]. The longest
previously used factor that is a prefix of S[p : |S|] is the longest common prefix

6

a

b

a

b

a

a

b

b

a

ab

b

a

b
a

b

a

a

$5

$6 $7

$6

$7 $5

$6

$7

$5

$5

$5

$5

$6

$6

$6

$6

$7

$7

$7

$7

Fig. 3. The LZ78-trie of string S = aababaababaab, superimposed on the generalized
suffix tree of TS = {t5, t6, t7} = {abaab$5 , aababa$6, aababa$7} for the SLP of Fig. 1.
Here, $5, $6, $7 are end markers of each string in TS, introduced so that each position
in a string of Ts corresponds to a leaf of the suffix tree. The subtree consisting of the
dark nodes is the LZ78-trie, derived from the LZ78-factorization: a, ab, aba, abab, aa, b,
of S. Since any length ⌊cN⌋ = 4 substring of S is a substring of at least one string in
TS, any LZ78-factor of S is a substring of some string of TS, and the generalized suffix
tree of TS completely includes the LZ78-trie.

between tj [q : |tj |] and all possible paths on the LZ78-trie built so far. If we
consider the suffix tree as a semi-dynamic tree, where nodes corresponding to
the superimposed LZ78-trie are dynamically added and marked, the node x we
seek is the nearest marked ancestor of w.

The generalized suffix tree for TS can be computed in O(n
√
N) time. We

next describe how to obtain the values v, q (and therefore w), and x as well as
the computational complexities involved.

A näıve algorithm for obtaining v and q would be to traverse down the
derivation tree of the SLP from the root, checking the decompressed lengths of
the left and right child of each variable to determine which child to go down, in
order to find the variables that correspond to positions p and p+cN−1. By doing
the search in parallel, we can find v as the node at which the search for each
position diverges, i.e., the lowest common ancestor of leaves in the derivation
tree corresponding to positions p and p + cN − 1. This traversal requires O(h)
time, where h is the height of the SLP, which can be as large as O(n). To do this
more efficiently, we can apply the algorithm of [5], which allows random access
to arbitrary positions of the SLP in O(logN) time, with O(n) time and space of
preprocessing.

7

Theorem 1 ([5]). For an SLP of size n representing a string of length N ,
random access can be supported in time O(logN) after O(n) preprocessing time
and space in the RAM model.

Their algorithm basically constructs data structures in order to simulate the
traversal of the SLP from the root, but reduces the time complexity from O(h)
to O(logN). Therefore, by running two random access operations for positions
p and p+ cN − 1 in parallel until they first diverge, we can obtain v in O(logN)
time. We note that this technique is the same as the first part of their algorithm
for decompressing a substring S[i : j] of length m = j − i + 1 in O(m + logN)
time. The offset of p from the beginning of X〈v〉 can be obtained as a byproduct
of the search for position p, and therefore, q can also be computed in O(logN)
time.

For obtaining x, we use a data structure that maintains a rooted dynamic
tree with marked/unmarked nodes such that the nearest marked ancestor in the
path from a given node to the root can be found very efficiently. The following
result allows us to find x – the nearest marked ancestor of w – in amortized
constant time.

Lemma 2 ([27,1]). A semi-dynamic rooted tree can be maintained in linear
space so that the following operations are supported in amortized O(1) time: 1)
find the nearest marked ancestor of any node; 2) insert an unmarked node; 3)
mark an unmarked node.

For inserting the new node for the new LZ78-factor, we simply move down the
edge of the suffix tree if x was an implicit node and has only one child. When
x is branching, we can move down the correct suffix tree using level ancestor
queries of the leaf w, therefore not requiring an O(log σ) factor.

Lemma 3 (Level ancestor query [3,2]). Given a static rooted tree, we can
preprocess the tree in linear time and space so that the ℓth node in the path from
any node to the root can be found in O(1) time for any integer ℓ ≥ 0, if such
exists.

Technically, our suffix tree is semi-dynamic in that new nodes are created since
the LZ78-trie is superimposed. However, since we are only interested in level
ancestor queries at branching nodes, we only need to answer them for the original
suffix tree. Therefore, we can preprocess the tree in O(n

√
N) time and space to

answer the level ancestor queries in O(1) time.

The main result of this section follows:

Theorem 2. Given an SLP of size n representing a string S of length N , we can
compute the LZ78 factorization of S in O(n

√
N +m logN) time and O(n

√
N +

m) space, where m is the size of the LZ78 factorization.

A better bound can be obtained by employing a simple doubling search on the
length of partial decompressions.

8

Corollary 1. Given an SLP of size n representing a string S of length N , we
can compute the LZ78 factorization of S in O(nL+m logN) time and O(nL+m)
space, where m is the size of the LZ78 factorization, and L is the length of the
longest LZ78 factor.

Proof. Instead of using cN for the length of partial decompressions, we start
from length 2. For some length 2i−1, if the LZ78 trie outgrows the suffix tree
and reaches a leaf, we rebuild the suffix tree and the embedded LZ78 trie for
length 2i and continue with the factorization. This takes O(n2i) time, and the
total asymptotic complexity becomes n(2+ · · ·+2⌈log2 L⌉) = O(nL). Notice that
the m logN term does not increase, since the factorization itself is not restarted,
and also since the data structure of [5] is reused and only constructed once. ⊓⊔

3.3 Reducing Partial Decompression

By using the same techniques of [13], we can reduce the partial decompression
conducted on the SLP, and reduce the complexities of our algorithm. Let I =
{i | |Xi| ≥ cN} ⊆ [1 : n]. The technique exploits the overlapping portions of
each of the strings in TS. The algorithm of [13] shows how to construct, in time
linear of its size, a trie of size (cN − 1) +

∑

i∈I(|ti| − (cN − 1)) = N − α = Nα

such that there is a one to one correspondence between a length cN path on the
trie and a length cN substring of a string in TS. Here,

α =
∑

i∈I

((vOcc(Xi)− 1) · (|ti| − (cN − 1))) ≥ 0 (1)

can be seen as a quantity which depends on the amount of redundancy that the
SLP captures with respect to length cN substrings.

Furthermore, a suffix tree of a trie can be constructed in linear time:

Lemma 4 ([24]). Given a trie, the suffix tree for the trie can be constructed in
linear time and space.

The generalized suffix tree for TS used in our algorithm can be replaced with the
suffix tree of the trie, and we can reduce the O(n

√
N) term in the complexity to

O(Nα), thus obtaining anO(Nα+m logN) time and O(Nα+m) space algorithm.
Since Nα is also bounded by O(n

√
N), we obtain the following result:

Theorem 3. Given an SLP of size n representing a string S of length N , we can
compute the LZ78 factorization of S in O(Nα +m logN) time and O(Nα +m)
space, where m is the size of the LZ78 factorization, Nα = O(min{N−α, n

√
N}),

and α ≥ 0 is defined as in Equation (1).

Since m = O(N/ logσ N) [29], our algorithms are asymptotically at least as
fast as a linear time algorithm which runs on the uncompressed string when
the alphabet size is constant. On the other hand, Nα can be much smaller than
O(n

√
N) when vOcc(Xi) > 1 for many of the variables. Thus our algorithms

can be faster when the text is compressible, i.e., n and m are small.

9

3.4 Conversion from LZ77 Factorization to LZ78 Factorization

As a byproduct of the algorithm proposed above, we obtain an efficient algorithm
that converts a given LZ77 factorization [28] of a string to the corresponding
LZ78 factorization, without explicit decompression.

Definition 3 (LZ77 factorization). The LZ77-factorization of a string S is
the factorization f1, . . . , fr of S such that for every i = 1, . . . , r, factor fi is the
longest prefix of fi · · · fr with fi ∈ Fi, where Fi = Substr(f1 · · · fi−1) ∪Σ.

It is known that the LZ77-factorization of string S can be efficiently trans-
formed into an SLP representing S.

Theorem 4 ([23]). Given the LZ77 factorization of size r for a string S of
length N , we can compute in O(r logN) time an SLP representing S, of size
O(r logN) and of height O(logN).

The following theorem is immediate from Corollary 1 and Theorem 4.

Theorem 5. Given the LZ77 factorization of size r for a string S of length N ,
we can compute the LZ78 factorization for S in O(rL logN+m logN) time and
O(rL logN +m) space, where m is the size of the LZ78 factorization for S, and
L is the length of the longest LZ78 factor.

It is also possible to improve the complexities of the above theorem using
Theorem 3, so that the conversion from LZ77 to LZ78 can be conducted in
O(Nα + m logN) time and O(Nα + m) space, where Nα here is defined for
the SLP generated from the input LZ77 factorization. This is significant since
the resulting algorithm is at least as efficient as a näıve approach which requires
decompression of the input LZ77 factorization, and can be faster when the string
is compressible.

4 Discussion

We showed an efficient algorithm for calculating the LZ78 factorization of a
string S, from an arbitrary SLP of size n which represents S. The algorithm is
guaranteed to be asymptotically at least as fast as a linear time algorithm that
runs on the uncompressed text, and can be much faster when n and m are small,
i.e., the text is compressible.

It is easy to construct an SLP of size O(m) that represents string S, given
its LZ78 factorization whose size is m [16]. Thus, although it was not our pri-
mary focus in this paper, the algorithms we have developed can be regarded
as a re-compression by LZ78, of strings represented as SLPs. The concept of
re-compression was recently used to speed up fully compressed pattern match-
ing [15]. We mention two other interesting potential applications of re-compression,
for which our algorithm provides solutions:

10

Maintaining Dynamic SLP Compressed Texts

Modification to the SLP corresponding to edit operations on the string that it
represents, e.g.: character substitutions, insertions, deletions can be conducted
in O(h) time, where h is the height of the SLP. However, these modifications
are ad-hoc, and there are no guarantees as to how compressed the resulting
SLP is, and repeated edit operations will inevitably cause degradation on the
compression ratio. By periodically re-compressing the SLP, we can maintain the
compressed size (w.r.t. LZ78) of the representation, without having to explicitly
decompress the entire string during the maintenance process.

Computing the NCD w.r.t. LZ78 without explicit decompression

The Normalized Compression Distance (NCD) [6] measures the distance be-
tween two data strings, based on a specific compression algorithm. It has been
shown to be effective for various clustering and classification tasks, while not
requiring in-depth prior knowledge of the data. NCD between two strings S and
T w.r.t. compression algorithm A is determined by the values CA(ST), CA(S),
and CA(T), which respectively denote the sizes of the compressed representation
of strings ST , S, and T when compressed by algorithm A.

When S and T are represented as SLPs, we can compute CLZ78(S) and
CLZ78(T) without explicitly decompressing all of S and T , using the algorithms
in this paper. Furthermore, the SLP for the concatenation ST can be obtained
by simply considering a new single variable and production rule XST → XSXT ,
where XS and XT are respectively the roots of the SLP which derive S and
T . Thus, by applying our algorithm on this SLP, we can compute CLZ78(ST)
without explicit decompression as well. Therefore it is possible to compute NCD
w.r.t. LZ78 between strings represented as SLPs, and therefore even cluster or
classify them, without explicit decompression.

Acknowledgements

We thank the anonymous reviewers for helpful comments to improve the paper.

References

1. Amir, A., Farach, M., Idury, R.M., Poutré, J.A.L., Schäffer, A.A.: Improved dy-
namic dictionary matching. Information and Computation 119(2), 258–282 (1995)

2. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor.
Comput. Sci. 321(1), 5–12 (2004)

3. Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. System Sci.
48(2), 214–230 (1994)

4. Bille, P., Fagerberg, R., Gørtz, I.L.: Improved approximate string matching and
regular expression matching on Ziv-Lempel compressed texts. ACM Transactions
on Algorithms 6(1) (2009)

11

5. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings. In: Proc. SODA 2011. pp. 373–389
(2011)

6. Cilibrasi, R., Vitányi, P.M.: Clustering by compression. IEEE Transactions on
Information Theory 51(4), 1523–1545 (2005)

7. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic sequence align-
ment algorithm for unrestricted scoring matrices. SIAM J. Comput. 32(6), 1654–
1673 (2003)

8. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proc. FOCS
1997. pp. 137–143 (1997)

9. Freschi, V., Bogliolo, A.: A faster algorithm for the computation of string convo-
lutions using LZ78 parsing. Information Processing Letters 110(14–15), 609–613
(2010)

10. Gawrychowski, P.: Optimal pattern matching in LZW compressed strings. In: Proc.
SODA 2011. pp. 362–372 (2011)

11. Gawrychowski, P.: Tying up the loose ends in fully LZW-compressed pattern
matching. In: Proc. STACS 2012. pp. 624–635 (2012)

12. Goto, K., Bannai, H., Inenaga, S., Takeda, M.: Fast q-gram mining on SLP com-
pressed strings. In: Proc. SPIRE 2011. pp. 289–289 (2011)

13. Goto, K., Bannai, H., Inenaga, S., Takeda, M.: Speeding up q-gram mining on
grammar-based compressed texts. In: Proc. CPM 2012. pp. 220–231 (2012)

14. Jansson, J., Sadakane, K., Sung, W.K.: Compressed dynamic tries with applica-
tions to LZ-compression in sublinear time and space. In: Proc. FSTTCS 2007. pp.
424–435 (2007)

15. Jeż, A.: Faster fully compressed pattern matching by recompression. In: Proc.
ICALP 2012 (2012), (preprint: arXiv:1111.3244v2)

16. Kida, T., Shibata, Y., Takeda, M., Shinohara, A., Arikawa, S.: Collage system: A
unifying framework for compressed pattern matching. Theor. Comput. Sci. 298(1),
253–272 (2003)

17. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Proc. DCC
1999. pp. 296–305. IEEE Computer Society (1999)

18. Li, M., Sleep, R.: Genre classification via an LZ78-based string kernel. In: Proc.
ISMIR 2005. pp. 252–259 (2005)

19. Li, M., Sleep, R.: An LZ78 based string kernel. In: Proc. ADMA 2005. pp. 678–689
(2005)

20. Li, M., Zhu, Y.: Image classification via LZ78 based string kernel: A comparative
study. In: Proc. PAKDD 2006. pp. 704–712 (2006)

21. McCreight, E.M.: A space-economical suffix tree construction algorithm. Journal
of ACM 23(2), 262–272 (1976)

22. Nevill-Manning, C.G., Witten, I.H., Maulsby, D.L.: Compression by induction of
hierarchical grammars. In: Proc. DCC 1994. pp. 244–253 (1994)

23. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1-3), 211–222 (2003)

24. Shibuya, T.: Constructing the suffix tree of a tree with a large alphabet. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences E86-A(5), 1061–1066 (2003)

25. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

26. Weiner, P.: Linear pattern-matching algorithms. In: Proc. of 14th IEEE Ann.
Symp. on Switching and Automata Theory. pp. 1–11. Institute of Electrical Elec-
tronics Engineers, New York (1973)

12

27. Westbrook, J.: Fast incremental planarity testing. In: Proc. ICALP 1992. pp. 342–
353 (1992)

28. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory IT-23(3), 337–349 (1977)

29. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

13

	 Efficient LZ78 factorization of grammar compressed text

