
Efficient Management of Backtracking
in AND-Parallelism

M. V. Hermenegildo1

R. I. Nasr 2

Abst rac t

A b a c k t r a c k i n g a lgor i thm for AND-Para l l e l i sm and its imp lemen ta t i on at the Abstract

Mach ine level are presen ted : first, a class of AND-Para l l e l i sm models based on goal

independence is defined, and a generalized version of Res t r ic ted AND-Para l l e l i sm (R A P)

in t roduced as cha rac te r i s t i c of th is class. A s imple and efficient b a c k t r a c k i n g algor i thm for

R A P is then discussed. An imp lemen ta t i on scheme is presented for th is a lgor i thm which

offers m i n i m u m overhead , while re ta in ing the per formance and s torage economy of sequent ial

i m p l e m e n t a t i o n s and t ak ing a d v a n t a g e of goal independence to avoid unnecessary

b a c k t r a c k i n g (" res t r i c t ed intel l igent b a c k t r a c k i n g ") . Final ly, the implementa t ion of

b a c k t r a c k i n g in sequent ia l and AND-Para l l c l sys t ems is explained through a number of

examples .

K E Y W O R D S : LOGIC PROGRAMMING, PARALLEL PROCESSING, INTELLIGENT

BACKTRACKING, AND-PARALLELISM, PROLOG.

1 In t roduct ion

T h e execut ion of logic p r o g r a m s [9] in parallel is a subjec t of g rea t in teres t because of the dual

re la t ionsh ip be tween logic and paral le l ism: parallel execut ion seems to be a promising way of increasing

the execut ion speed of logic p r o g r a m s ; logic p r o g r a m s in t u rn offer mul t ip le sources of parallel ism T so

t h a t concur rency can (ideally) be uncovered au toma t i ca l l y (or expressed cleanly) and mapped on to

paral lel a r ch i t ec tu re s .

Of the several t ypes of paral le l ism present in logic p rog rams , we are specially interested in

A N D - P a r a l l e l i s m , because it offers the a d v a n t a g e t h a t , in general , all work done by a collection of

AND-Para l l e l processes is "useful" for finding a pa r t i cu la r solut ion to a query. If OR-Para l l e l i sm is

suppo r t ed in add i t ion t o AND-Para l l e l i sm, b a c k t r a c k i n g is not needed; a set of " so lu t ions" is

ma in t a ined ins tead for each goal invocat ion . Whi le the re la t ive simplici ty of this solut ion and the

add i t iona l source of paral le l ism m a k e it a t t r a c t i v e in principle, keeping mult iple solut ions around

s imul t aneous ly obviously t e n d s to compl ica te d a t a s to rage m a n a g e m e n t and use up excessive a m o u n t s of

it. Moreover , the add i t iona l paral le l ism often leads to combina to r ia l explosion of the search space.

Department of Electrical and Computer Engineering, The University of Texas at. Austin; Austin, TX 78712.

2
"Digital Equipment Corporation, Assigned Representative, Microelectronics and Computer Technology

Corporation, Artificial Intelligence Program: 9430 Research Boulevard, Austin, TX 78759.

As an alternative, we have presented a parallel abstract machine [7] [8] capable of implementing AND-
1'arallelism with very similar storage efficiencies and sequential-mode speed to that of the best
sequential implementations. This is achieved in part by using backtracking rather than OR-Parallelism
in the management of alternative paths in the search tree, and by implementing a stacking strategy
with full space recovery on backtracking, as in sequential systems. In this paper we will deal with the
problem of finding a suitable backtracking algorithm for this very general model of AND-Parallel
execution, which can be implemented with minimum overhead, is compatible with the storage
management strategy, and still takes advantage of the information available at run-time regarding goal
independence in order to avoid unnecessary backtracking.

The organization of the paper is as follows: first, we will introduce "goal independence" models of
AND-Parallelism and present a generalized version of Restricted AND-Parallelism (RAP) as a typical
representative of this class. An efficient backtracking algorithm will then be elaborated for R A P . We
will also study a suitable implementation strategy for this scheme capable of retaining most of the
efficiency of sequential systems. Finally, some conclusions will be presented.

2 A General Model for AND-Paral lel ism: Goal Independence

Conery !5j showed how "brute force" exploitation of AND-Parallelism (i.e. the automatic scheduling of
a process for every goal in the body of a clause) leads to binding conflicts if the goals involved have
variables in common. This can occur even in cases where the goals appear not to share variables at all.
Consider the following clause:

crew(X,Y):- pilot(X), radio_operator(Y).

During the resolution of a query of the form " ? - crew(X.X) . " (looking for a person who is a pilot
and can also operate a radio) X and Y in the clause above are coerced to be the same through
unification. Thus, we cannot go ahead and evaluate " p i l o t (X) " and " r a d l o _ o p e r a t o r (Y) " in
parallel (AND-Parallelism) because of the potential of conflicting instantiations for the identical
variables X ami Y.

Many approaches have been proposed in order to detect and deal with these variable binding conflicts
either at compile-time or at run-time. Some of them, attempt to solve these conflicts without variable
annotations and with minimal (or no) information from the user [5] [1] [6]. In other approaches, the
user is required to annotate some variables or goals in the program in order to identify goals as
"readers" or "writers" for each variable. This and other techniques are used in Concurrent Prolog [11],
Pai-log [2], IC-Prolog [3], Delta-Prolog [10] etc.

Although an interesting issue, we will not be concerned in this paper with the origin of these
annotations. Instead, we will concentrate on dealing with how execution proceeds once a set of goals
has been determined as being (variable-wise) independent, (i.e. after determining that they can be run in
parallel with no conflicts) and, in particular, on how backtracking can still be efficiently supported in
such an environment . Consequently, rather than analyzing a particular source-level language, we will
focus on an intermediate code level useful for a variety of programming languages, and we will pursue
development of an efficient execution model for it. This level, which will be discussed in the next
section, can be best described as horn clauses augmented with literal-level conditional control
expressions. Such control expressions can, for example, be generated when a static analysis uncovers
parallel execution potential. Alternatively, the source language could provide the user with the
syntactic tools to explicitly trigger their generation.

This is in contrast, with other approaches [11]]2] where "don't know" non-determinism has been given up in
order to improve efficiency or simplify the implementation.

Concerning the character of these expressions, note that in logic programs, the same clause can be
used in various ways, depending on the run-time polarity (instantiation state) of interceding variables.
Ideally, these expressions should be capable of dealing with the different cases involved, with a minimum
of run-time overhead. Restricted AND-Parallelism (RAP) [6] is a technique which provides this
capability by making it possible to choose at run-time between parallel and sequential execution (i.e. to
generate several possible execution graphs) based on variable dependency checks. Such run-time
determinations are embodied in what has been referred to as Conditional Graph Expressions (CGE's).
In the next section we will present a generalized version of such a computation model which subsumes
DeGroot's original definition of R A P and C G E ' s . It will be the backtracking behavior of this
generalized model that we will study in the subsequent sections.

3 F o r w a r d Execution

As explained above, CGE's can be used for reducing run-time data dependency analysis overhead for
AND-Parallel logic programming systems to a number of simple checks. Herein, a CGE is (informally)
defined as a series of conditions followed by a conjunction of goals, i.e.:

(<CONDITIONS> I goall & goal2 & ... & goalN)

where " < C O N D I T I O N S > " represents any number of conjunctions or disjunctions of checks on a
< variable list > . A < v a r i a b l e _ l i s t > is a collection of variable names which have their first
occurrence before (i.e. "to the left of", in Prolog) the <CONDITIONS> field of the current graph
expression . In this definition CGE's can appear in the body of a clause in any place a conventional
goal may be placed. Therefore they can also appear in a goal position inside a CGE (nested CGE's) .
Types of checks which can appear inside <CONDITIONS> are:

• ground(< variable _ list >): evaluates to true if and only if all variables in
< v a r i a b l e _ l i s t > are ground, i.e. they are instantiated to a term with no uninstantiated
variables.

• independent^ < v a r i a b l e l i s t >): We associate with each variable its "set of contained
variables" (SCV), defined as follows: If the variable is instantiated to a fully ground term,
the S C V is empty. If the variable is uninstantiated, the SCV is the singleton containing
the variable itself. If the variable is instantiated to a term, and some of its arguments are
variables, the S C V is recursively defined as the union of the SCV's for each of those
variables. The independent(• < v a r i a b l e _ l i s t >) check succeeds if and only if the
intersection of all the SCV's associated with each variable in < variable list > is
empty

• The logical values true and false.

Since each of the checks inside < C O N D I T I O N S > will evaluate to true or false,
< C O N D I T I O N S > , being constructed as conjunctions and/or disjunctions of these checks, will also
eventually evaluate to true or false. The forward semantics of C G E ' s dictates that:

if <CONDITIONS> evaluates to true, then all expressions inside the CGE can execute
in parallel. Otherwise, they must be executed sequentially and in the order in which they
appear within the expression.

i.e. only those variables in the head or in goals to the left of the current CGE (including those in a CGE the
current expression may be nested in) can be checked.

Much more economical independence algorithms (such as DeGroot's [6]) can be used in practice, as long as
they are conservative, i.e. they never declare a set of dependent variables as independent (although they may
"give up" and declare some variables as dependent rather than traversing very complex terms).

An example will clarify this further. Suppose we have the following clause:

f(X,Y) : - g(X.Y), h(X), k(Y).

In general, the three goals in the body of f (g, h and k) cannot run in parallel because they have
variables in common. Nevertheless, if both X and Y are ground when f is called, all goals can then run
in parallel. This fact can be expressed by using the following CGE:

f(X,Y) : - (ground(X,Y) I g(X,Y) ft h(X) ft k(Y))

According to the forward execution semantics above, this means that X and Y should be checked and,
if they are both ground, then g, h, and k can be executed in parallel and execution will proceed to the
right of the expression only after all goals inside succeed. Note that this also means that if X and Y are
ground but for some reason (for example, lack of free processors) g, h, and k are executed sequentially,
this can be done in any order. Otherwise, if X and Y are not both ground, g, h, and k will run
sequentially and in the order in which they appear inside the CGE. Selection between one mode of
execution and the other is done by a simple run-time check. Of course the expression above only takes
care of a rather trivial case. A more interesting execution behavior can be extracted from the following
expression:

f(X,Y) : - (ground(X.Y) I g(X,Y) ft (indep(X.Y) I h(X) ft k(Y))) .

Now, if X and Y are not ground upon entry to the graph expression, g will be executed first. As soon
as g succeeds, indep(X,Y) is checked in the hope that X and Y will be independent (either because one
of them was ground by g or because they are still uninstantiated and do not "share" —as they would if
g had matched against "g(X,X)."). If they are still independent then h and k can run in parallel. Note
that if X and Y are ground upon entry of f then all goals will run in parallel as in the previous
expression.

Sometimes it is necessary to express the fact that a number of goals can run in parallel, independently
of any other consideration (perhaps because the programmer knows how a procedure is going to be
used). This can be easily accomplished by writing true in place of < conditions > or eliminating the
< conditions > field altogether. Thus, in the following expressions, g, h, and k can always run in
parallel:

f(X,Y) : - (t r u e I g(X) ft h(Y) ft k(Z)) .

f(X,Y) : - (g(X) ft h(Y) ft k(Z)) .

This illustrates how C G E ' s are a superset of other control annotation schemes such as the parallel
connective of Delta-Prolog (" /") [10].

4 Backward Execution

We refer to backward execution as the series of actions that follow failure in the head or body of a
clause. In normal (i.e. sequential) Prolog execution this involves going back to the most recent point at
which alternatives were still unexplored (most recent choice point). This definition is not directly
applicable any more if some of the goals in the body of a clause have been executed in parallel: since
execution of these goals was concurrent, there is no chronological notion of "most recent" to apply to
the different choice points available. Although several sophisticated approaches have been proposed in
order to solve this problem [5] [lj they are either not applicable to the semantics of C G E ' s (and other
Goal Independence models) or they involve too much bookkeeping overhead at run-time. In this section
we will analyze the different cases involved in the backtracking of C G E ' s and we will propose a general
backtracking algorithm that will handle these cases efficiently, while taking advantage in some cases of
goal independence in order to achieve limited intelligent backtracking.

Throughout this analysis we will consider the following annotated clause:

f (. .) : - a (. .) , b (. .) , (< conditions > | c(..) & d(. .) & e(. .)) , g (. •) , h (. .) .

Figure 1: Backtracking cases for a C G E

In the trivial case when < c o n d i t i o n s > is evaluated to false, execution defaults to sequential, and
normal (Prolog) backtracking semantics can obviously be applied. We will therefore shift our attention
to the cases where < c o n d i t i o n s > evaluates to true. We illustrate in figure 1 the different
backtracking situations through back arrows annotated by case numbers, where the cases arc the subject
of the following text.

Conventional Backtracking:

• Case 1- This is the trivial case in which backtracking still remains the same as for
sequential execution. For example, if b fails and a still has alternatives, or if h fails and g
still has alternatives.

• Case 2- This is also a trivial case: if a fails, the next alternative of f will be executed next.
If there are no more alternatives for f, then f will fail in its parent and we recursively deal
with the failure at that level.

Conjunctive failure; "inside " backtracking:

• Case 3- This is the case if c, d, or e fail while the body of the C G E is being executed the
first time through (i.e. we are still "inside" the CGE).

Suppose d fails. Since we are running in parallel, we know that < c o n d i t i o n s > evaluated
to true. This means that c, d, and e do not share any uninstantiated variables. Thus, the
variable binding that caused the failure of d could not have been generated by c or e.
Therefore it would be useless to ask c and/or e for alternatives and it is safe to kill the
processes running c, d, and e, and to backtrack to the most recent choice point before the
C G E (for example, b here). In this way this scheme very simply incorporates a restricted
version of intelligent backtracking with only the overhead of remembering that we are
"inside" the C G E when failure occurs.

"Outside" backtracking:

• Case 4- This is the most interesting case: we have already finished executing all goals inside
the C G E -we are "outside" the CGE- and we fail, having to backtrack into the expression.
This is the case if g fails.

First, since this information will prove very useful, we will assume that processors not only
report eventual goal resolution success, but also whether unexplored alternatives still remain
for this goal. It will be shown how such information can be used in our context to simply
extend the conventional backtracking algorithm to one that deals with CGE' s :

o If g fails and none of the C G E goais has unexplored alternatives, we will backtrack to
b just as we would in the sequential execution model.

o If g fails and one or more CGE goals still has unexplored alternatives, our object will
be to establish a methodology whereby all the combinations of those alternatives will
have a chance to be explored, if needed, before we give up on the whole C G E and
backtrack to alternatives prior to it. The methodology we chose is one that will
generate those alternatives in the same order as that produced by naive sequential
backtracking. The idea is then to reinvoke the process which corresponds to the first
goal with alternatives found when scanning the CGE in reverse order (i.e. reinvoking
the "rightmost" goal with alternatives). This process will then, in turn, report either
success (with or without pending alternatives) or failure.

• If failure is reported, we simply perform the next invocation in the order
described above. Of course when a failure is reported by the leftmost goal with
alternatives in the CGE, we give up on the whole expression and backtrack as in
Case 1 above.

• If success is reported, then we shift into forward AND-Parallel execution mode
and trigger the parallel evaluation of all the goals, if any exist, to the right of
the succeeding one in the C G E . Note that, if such goals do exist, they will be
started from scratch since the last thing they would have reported would have
been a failure, which we will assume here would have caused the termination of
the corresponding process.

Note how the approach described above extends the "most recent choice point" backtracking model to
a parallel execution model, preserving the generation of all "tuples" and offering parallel forward
execution after backtracking. Also, goal ordering information provided by the user or by the compiler is
preserved, and used in tuple generation. Alternatively, sometimes we might not be interested in
generating all possible tuples for a conjunction of independent goals. Instead we might be interested in
generating only one and "committing" to it. This can be easily annotated by including a "cut" after the
CGE or by substituting the " |" in the C G E by "!".

In the above, we presented the AND-Parallel model backtracking algorithm through the use of a
specific example. The general algorithm can be described as follows:

• Forward Execution: During forward execution leave a choice point marker ('CPMJ at
each choice point (traditional sequential mode) and a parallel call marker (PCWL) at
each CGE which evaluates to true (i.e. each CGE which can actually be executed in
parallel). Mark each P C M as "inside" when it is created, trigger the parallel
resolution of the CGE goals, and change the P C M mode to "outside" when all
those goals report success.

• Backward Execution: When failure occurs, find the most recently created marker
(PCM or CPMj. Then:

o If the marker is a CPM, •backtrack normally (i.e. as in sequential execution) to
that point.

o / / the marker is a P C M and its value is "inside", cancel ("kill") all goals
inside the C G E , fail (i.e. recursively perform the Backward execution).

o If it is a P C M and its value is "outside", find the first goal, going right to
left in the C G E , with pending alternatives which succeeds after a "redo", and
then "restart" all goals in the C G E "to its right" in parallel. If no C G E goal
is found to succeed in this manner, fail (i.e. recursively perform the Backward
execution).

We have not mentioned nested C G E ' s until now in order to make the discussion clearer. However,
the algorithm works just as nicely with nested CGE ' s , if it is applied recursively. A simple way of
proving this intuitively is to "unravel" the recursive treatment of a nested CGE into treatment of a
"dummy" goal whose corresponding clause simply embodies the nested CGE. The algorithm also turns
out to be very simple to implement at the abstract machine level. This will be clear when we present
the implementation scheme in the following section. Other special cases will be covered then. In
particular we will see how backtracking in the case where some of the goals which could have been
executed in parallel are executed locally in a sequential way (e.g. due to a lack of resources) fits trivially

7 within the same scheme .

5 Eff ic ient I m p l e m e n t a t i o n of t h e A l g o r i t h m

Although logic programs can present considerable opportunities for AND-Parallelism, there are always
(determinate) code segments requiring sequential execution. A system which can support parallelism
while still incorporating the performance optimizations and storage efficiency of current sequential
systems is thus highly desirable. This is the approach taken in our design: to provide the mechanism for
supporting forward and backward execution models for AND-Parallelism as extensions to the ones used
in a high performance Prolog implementation. This has two clear advantages'. first, sequential
execution is still as fast and space efficient as in the high performance Prolog implementation (modulo
some minimal run-time checks); second, the model is offered in the form of extensions, which are fairly
independent, in spirit, of the peculiarities of that implementation. Therefore, the approach described
here is applicable to a variety of compilation/stack based sequential models.

5.1 Implementing Backtracking in Sequential Sys t ems

The Warren Abstract Machine (WAM) [12] is an execution model coupled with a host of compilation
techniques leading to one of the most efficient implementations of Prolog today. Before we present our
strategies for implementing CGE based AND-Parallelism with the associated backward execution
mechanism, we will review here summarily the backtracking mechanism of the WAM since that will
constitute our starting point.

In the WAM, backtracking is accomplished through the use of choice point frames. A choice point is
created when the first of a sequence of alternative clauses is entered. It contains all the necessary
information needed to restore the state of the machine and pick up the next alternative clause when it
becomes necessary to do so. This is the case when we have a failure (e.g. when an invoking goal does
not find a matching clause head). Backtracking at that point is accomplished by simply locating the
most recent choice point (pointed to by register B), restoring the machine state from its content, and
restarting from there with the next alternative. This can be seen in figure 2 where the following data
areas are shown:

• The Stack: where choice points and environments are created, updated and discarded as
needed. Only choice points will be shown and discussed here since we want to concentrate
on the backward execution model.

• The Heap: where data structures and long-lived global variables are created, updated, and
discarded (upon backtracking).

• The Trail: where variables getting instantiated, but potentially needing undoing such
instantiations, are remembered (one entry per such variable).

We call the approach described in this section "point backtracking". In "streak backtracking" literals to the
right of the one being reinvoked are restarted in pa.rallel with this reinvocation. Due to space limitation we will
have to avoid discussing here streak backtracking or possible optimizations for these approaches.

Figure 2 corresponds to the execution of the clauses in the following example (labels have been given
to the different clauses involved):

p r o c
a l :
a 2 :
a 3 ^

p r o c
c :

e d u r t
a
a
a

edur«
c :-

p r o c e d u r e
d: d :-

> a :
- b ,
- b .
- b .

> c :

d:

c ,
c .
c .

,

d.
d .
d,

• • i

e .
e .
e .

p r o c e d u r e b :
b l :
b 2 :
b 3 :

p r o c e
e l :
e 2 :
e 3 :

b
b
b

- .
- .
- .

d u r e e :
e
e
e

- .
- .
- .

©

a l ^ ' V
B

alV

H

TR
bl v

al

-J Lq
b2

V

B

b l V

al

TR

Heap Stack Trail Heap Stack

©
Trail

H

b2 v

al

b3

a2

B

b2 V

al

TO H

b3 ' "

al r a 2

B V

b3
al

TR

Heap Stack

©
T-ail Heap

TR

Stack

©
Trail

'd V
. c

b3

al a2

B

f d > v 1
c

b3

al
H

a2 v ~ V
B

a 2 V

Heap Stack Trail Heap Stack

TR

Trail
F i g u r e 2: Choice Point Based Backtracking in Sequential Systems

Upon entering procedure a:, since a has alternatives, we create the corresponding choice point needed in
the event of backtracking back to this point. Execution of a then starts with the first alternative al:.
This situation is depicted in figure 2-A. We show here only the following information included in the
choice point (other information will be skipped for the sake of brevity):

• A pointer to the next unexplored alternative clause aS:.

• The value of the Heap pointer in register H at the time this choice point was created.

• The value of the Trail pointer in register T R at the time this choice point was created.

When the head of al: unifies successfully with the invoking goal, procedure b: is entered. Again a
choice point is created, since b also has alternatives (figure 2-B). Suppose now that some goal fails in
the body of bl:, and that no more choice points have been created. The following sequence of actions
takes place resulting in backward execution (this is illustrated in figure 2-C):

• The most recent choice point is fetched through register B's content.

• The top of the Heap pointer (register H) is reset to the value saved in the fetched choice
point. This will discard all the data just made obsolete by the failure that caused the
backtracking.

• The variables remembered through entries located between the current top of the Trail stack
and the Trail pointer saved in the fetched choice point are reset to uninstantiated. This is
done because the instantiations being reset were made obsolete by the failure that caused the
backtracking. Of course the top of the Trail pointer (register T R) is also reset
appropriately.

• Finally, the next alternative bS: indicated in the choice point is picked up and execution
proceeds from there. We also want at this point to indicate that the next alternative clause
is bS: by updating the choice point appropriately.

If b should fail again, we would repeat the above sequence of actions, and start execution of bS:.
However this time there are no more alternatives for procedure b:. This means that the choice point
associated with procedure b: should be discarded and register B should be reset to the most recent one
prior to the one being discarded. This is only possible if the choice points are chained together (This is
one of the information items that we are not showing in the choice point frames illustrated in figure 2).

In figure 2-E we depict the situation after bS: and c: have succeeded, and we are executing d:. Note
that since neither c: nor d: have alternatives, no more choice points have been created on the Stack.
Therefore, if d: should fail at this point, the general backward execution model using the current most
recent choice point (fetched through register B) would correctly take us to alternative clause a8:. This is
shown in figure 2-F. Some interesting points to be noted are:

• This implementation achieves efficient garbage collection of Heap space upon backtracking:
all data created there during forward execution are discarded automatically by appropriately
resetting register H.

• Identifying the most recent choice point is immediate, since it is always pointed to by
register B.

• Choice points are only created when they are needed (i.e., when the clauses have
alternatives) and they are discarded efficiently when they are not needed any more.

5.2 Implementing Backtracking in AND-Paral le l Systems

As stated before, our objective is to implement an AND-Parallel system with the associated backward
execution mechanism presented earlier in section 4, while still preserving the efficiency present in
sequential implementations similar to the WAM reviewed above. Our conceptual starting point is that
a parallel execution of AND-siblings is going to correspond to a parent process controlling children
processes handling independently the execution of the parallel siblings. Also processes have their own
execution environments (Slack, Heap, Trail, as well as a machine state). The allocation of processes to
processors is of course subject to the availability of such parallel system resources. One of the natural
extensions to such a general model is that the parent process could execute one or more children
processes instead of just idling while waiting for other children processes' responses: this will be
discussed in more detail in section 5.3 on local execution of parallel goals, showing how the existing data
areas (Stack, Heap, and Trail, etc.) can be shared for this purpose.

The control structure that the parent uses for its supervisory task will be referred to as a "parallel
call" frame (Parcall frame in short) and will be located in the parent process's Stack (therefore three
types of frames can now be found there: Environments, Choice Points, and now, Parcall Frames). The
most recent Parcall Frame is pointed to by register P F . Parcall Frames are created when a C G E
evaluates to true, hence clearing the way for the parallel execution of the C G E ' s sibling literals. The
Parcall frame, among other information, contains the following items important for our discussion here :

'See [8] or [7] for other details on this subject.

• One slot for each of the sibling literals inside the C G E , consisting of the following fields:

o the Id of the child process corresponding to this literal

o completion status of the process (i.e. processing, succeeded with pending alternatives,
succeeded with no alternatives, or failed).

• A flag indicating whether we have just entered the C G E or whether we are backtracking
into it after the initial entry and at least one successful exit. This is a materialization of the
"inside"/"outside" indication discussed in the backtracking algorithm in section 4.

In addition to these slots, a Parcall Frame contains other information needed for process
synchronization, as well as in the event of backtracking out of a C G E to a preceding literal.

We will now show how the introduction of Parcall Frames, their relationship to Choice Points, and
the manipulation of both types of frames will materialize the algorithms introduced in section 4 and
make it possible to manage both forward and backward execution as a natural extension to the WAM
model. First we will define two types of failure:

• Local Failure-, the local processor fails while executing a goal, and

• Remote Failure: a "Failure" message is received from a child process.

Now our extended backward execution mechanism is based on recognizing, when either type of failure
occurs, whether a Choice Point or a Parcall Frame is more recent (comparing registers B and P F) .
The algorithm then follows:

• If Local Failure, then:

o If B > P F then perform the normal Choice Point backtracking.

o If P F > B then find the first Parcall Frame child process slot with pending
alternatives to respond successfully to a "redo" message. When such a process is
found, invoke the parallel execution of all the literals that correspond to the
following slots, getting us back in (parallel) forward execution again. If none
succeeds, fail by recursively performing this backward execution algorithm in a
"local failure" mode.

• If Remote Failure, then, knowing definitely that P F > B and that we are in the
"inside backtracking" case (that is until we introduce next section's optimization):

o "Kill" all goals in the Parcall Frame, fail by recursively performing this
backward execution algorithm in a "local failure" mode.

The following example will illustrate the above algorithm. Suppose the clauses for "a" in the example
in the previous section were annotated in the following way (with embedded CGE's) :

Slots should always be scanned in the same order, e.g. from the higher addressed ones (hopefully corresponding
to rightmos'v ones in the CGE) to the lower addressed ones. If parallel goals are allowed to execute locally (next
section's optimization), then the order of scanning has to be from most recently executed goals (by remote
processors) to less recent ones (see section 5.3).

procedure a:

a l : a : - (condl I b & c St. d) , e.

a2: a : - (cond2 I b a c & d) , e.

a3 : i
(cond3 I b & c ft d) , e

0

al

Heap

B7M.I . .NA
P l M _ ' A
3 (outside) c

a2

B H

a2 a3

Stack Heap Stack

el " '

a2

Q
J el L
.p7M _: NA i
-P3IC1_I NA
. p 2 i b i . ; , . A . . .
5 (outside) c

a3

B
PF

©

e3

a2

ilcl.I.
NA
NA

:P2I6I : ; , .A .
D (outside) c

a3

PF

Heap Stack Heap Stack
F i g u r e 3: CP/Parcall Frame Based Backtracking in AND-Parallel Systems

Figure 3 illustrates the execution of this example in parallel. Execution of a in the "parent" process
starts exactly as in the sequential case (figure 2-A vs. figure 3-A). If condl failed, execution would
proceed just as in figure 2. On the other hand, if condl succeeds, a Parcall Frame, initialized to
"inside" is created, with slots for b, c, and d. This is illustrated in figure 3-B where these goals have
been "picked up" by p i , p7, and p5 respectively (the Trail is omitted in both the diagrams and the
discussions for the sake of clarity). At this point the parent process simply waits for all goals to update
their slot's completion status field . With the Parcall Frame still flagged as "inside", if one of the goals
returns failure (Remote Failure)) we can backtrack "intelligently" to the last Choice Point before the
Parcall Frame. In figure 3-C, p5 returned failure for d (p i and p7 returned with success, with p i ' s
success qualified as with pending alternatives, i.e. there is a Choice Point in p i ' s Stack). Since the
corresponding Parcall Frame is still flagged as "inside", an "unwind" message is sent to p7 and p i
(thus disregarding the alternatives in b), and execution is continued with the next alternative of a
(figure 3-D).

The next two parts of figure 3 illustrate "outside" backtracking. In figure 3-E we have a situation
similar to that in figure 3-B. Processors p2, p3 , and p7 "picked up" the goals but this time they all
returned successfully (b still having alternatives). At this point we succeed the whole CGE by changing

All goals in the parallel call are pushed on to a special stack as soon as the parallel call is entered (the checks
succeed). From there they can be picked up by other processors or, as we will consider in the next section, by the
local one.

the status of the Parcall Frame to "outside", and move on to goal e, pushing a choice point (since e has
alternatives), and finally entering clause el:. If el: fails, we will then use the available choice point to
try e'2: [Local Failure; B > P F) . Figure 3-F illustrates the situation if e2: also fails: the Choice Point
has been deallocated and we are executing eS:.

Note that in the event of a local failure now, the last Parcall Frame is more recent than the last
Choice Point (PF > B) and, since its status is "outside", the corresponding backtracking algorithm will
be run on it: select the first goal with alternatives (b), send a "redo" to it (to p2, which will execute it
by making use of the Choice Point on top of its local Stack, just as if a local failure had occurred). If p2
now returns failure, since there are no more slots with alternatives in the Parcall Frame, we will
deallocate it (after sending "unwind" messages to the child processes corresponding to all the slots, so
that their Heaps will be deallocated and their Trails unwound) and use the next entry on the Stack (a's
choice point) to backtrack to aS:. If, on the other hand, p2 had returned success, we would invoke the
parallel execution of all the goals corresponding to the following slots, hence "shifting gears" to
"Forward Execution". Note that we can safely assume that the C G E will be successfully exited at this
point since those goals are being redone from scratch and we know that they have succeeded in the past!

5.3 Local Execution of Parallel Goals

One obvious optimization to the scheme above is to let the local processor pick up some of the goals in
the Parcall Frame and work on them itself, instead of just idling while waiting for children processes
responses. This is very important in that it allows the generalization of the architecture to any number
of processors (including a single one). Such scalable systems could then run parallel code with
"graceful" performance improvement or degradation depending on the available resources. Also, a single
processor would run the parallel code at comparable speed to equivalent sequential code, while still
taking advantage of the opportunity for "intelligent backtracking" present in "inside" backtracking.

In a multiprocessing system, local execution of parallel goals can be accomplished by creating a new
process which will pick up the goal. Figure 4 shows a more efficient way of handling the execution of
parallel goals locally, by stacking them on the local stack much in the same way as they would be in a
sequential implementation. In figure 4-A, bl: has been immediately "picked up" by the local processor
(and the corresponding slot has been marked accordingly — " = * = ") while c and d have been "picked
up" by p7 and p5, as in figure 3-B. Execution of the goal taken locally proceeds as normal (figure 4-B),
but note that the Parcall Frame is still marked as "inside". In this figure p 5 has returned (with no
alternatives) and p7 is still working on its goal. In the event of either a local or a remote failure now,
"inside" (i.e. "intelligent") backtracking would occur (as in figure 3-D). However, this would only be
triggered locally if b runs out of alternatives. A first failure in bl: in figure 4-B would use the Choice
Point and continue with b2:, just as if it were being executed remotely.

If all goals succeed, we will continue with e, data structures and Choice Points being again simply
pushed on top of their respective areas (Heap and Stack, figure 4-C). "Outside" backtracking will work
in a similar way as before, but with the difference that goals executed locally will always be backtracked
first: in figure 4-C, if e runs out of alternatives, we will try all the alternatives of b before using the
Parcall Frame. This is perfectly valid, as long as it is used consistently, since the order of execution is
immaterial inside a parallel call. The Stack status of figure 4-C is therefore equivalent to the one found
while executing the following clause using the scheme described in the previous section:

a : - (c a d) , b , e .
Figure 4-D depicts "outside" backtracking after all goals executed locally have run out of alternatives.

We are executing eS: after bS: (both choice points have been discarded). If failure occurs in eS:, we will
find the Parcall Frame above any choice points, and execute the "outside" algorithm. In this case,
since no goals in the Parcall Frame have alternatives, we will simply discard the Parcall Frame itself
(sending "unwind" messages to p5 and p7) and try the next alternative of a (aS:) as in figure 3-D.

An interesting situation occurs if external failure arrives while the local processor is executing a goal

©
PF

al r

,p5M ;
.p7M.I

D (inside)
J

a2

C
L

"

Heap

el

Stack

^

bl

al

e2
b2

. p S M . j . . NA_

.P7M.I..M.
- 3 " (outside)

a2

PF

Heap

e3

Stack

©

b3

al

. E S M ; _NA_

.E7M.I . .NA.
- 3 (outside)

a2

PF

C B

Heap
Figure 4:

Stack Heap Stack
CP/Parcall Frame Based Backtracking With "Local Goals"

from the parallel call, and this goal in turn has generated other Parcall Frames. Suppose that in figure
4-B execution of bl: has pushed other choice points and Parcall Frames on the Stack. If p7 (c) returns
at this point with failure, all those entries, and their corresponding data structures (in the Heap) have to
be deallocated. This turns out to be simple if p7 provides the value of the PF pointer for the Parcall
Frame containing the goal failing (it can be "picked up" with the goal). Then we only need to use the
backtracking information in that Frame to recover all space (i.e. just above al: for the Heap in figure
4-B). Of course, all processes started by the execution of b need to be cancelled. This is also easily
accomplished by following the chain of Parcall Frames, from the one on top to the one given by p7.
sending "kill", "unwind" etc. messages to all slots that are not marked local ("--*- = "). This is very
similar to what a processor has to do when it receives a "kill" message.

In summary, an algorithm along the same lines as the one presented in the previous section can be
used when C G E goals are executed locally, provided it is adapted to handle the extra special cases
involved:

• If Local Failure, then:

o If B > P F then perform the normal Choice Point backtracking.

o If P F > B and the status of the Parcall Frame is "inside", "kill" all goals in
the Parcall Frame (by sending "ki l l" /" unwind" messages to all non-local slots in
this Frame; local goals will be deallocated automatically by the local trimming of
the stacks) and fail by recursively executing this algorithm in a Local Failure
mode.

o If P F > B and the status of the Parcall Frame is "outside", then find the
first parcall frame child process slot with pending alternatives to respond
successfully to a "redo" message. When such a process is found, invoke the
parallel execution of all the literals that correspond to the following slots, and of
all those literals which were executed locally " . If none succeeds, fail by
recursively executing this algorithm in a Local Failure mode.

The correct scanning order now is opposite to that in which the goals were picked up by remote processors.
A simple way of following this order by making use of an extra field in the child process slot is shown in [8].

12 Note that all local goals have been completely backtracked before we arrive at this point.

o If there are no choice points or Parcall Frames available, report failure to
parent.

• If ~emote failure, then:

o If the P F value received is the same as the current one: we are in a similar case
to the second one above.

o If the P F value received is lower than the current one: follow chain of Parcall
Frames "killing" dependent processes up to and including referred Frame; fail by
recursively executing this algorithm in a Local Failure mode.

Note that although the description is lengti.y because of the many cases involved, the abstract
machine can select the appropriate case using extremely simple arithmetic checks (B > P F or B < P F ;
Status 1 or 0) and the actions are in any case very simple and determinate. Backward execution can
be performed in parallel (i.e. unwinding of Trails, killing of descendants etc.) with very little overhead.
Then forward execution is resumed also in parallel. Also note that, since in this model local goals are
backtracked first, and there is no a priory knowledge of which goals will be executed locally, the order in
which solutions are produced depends on run-time factors, even though all solutions will still be
produced. We are also considering a slightly different model where any compile-time established order
can be preserved. A description of such a model will be reported elsewhere.

6 C o n c l u s i o n s

In the previous sections we have presented an app,oach to AND-Parallel execution of logic programs,
goal independence, which characterizes models such as our generalized version of restricted AND-
Parallelism. We have then proposed a series of algorithms for management of backtracking in this class
of AND-Parallel execution models, offering an efficient implementation scheme and some examples to
illustrate its operation. We argue that this solution cleanly integrates one form of AND-Parallelism
with the implementation technologies of high performance Prolog systems with efficient data storage
management similar to the Warren Abstract Machine. Also, a form of restricted intelligent
backtracking is provided with virtually no additional overhead. "Soft" degradation of performance with
resource exhaustion is attained: even a single processor will run any parallel program while still
supporting restricted intelligent backtracking when goals are independent.

The discussions in this paper concentrated on the backtracking algorithms. We have also covered
other areas of the design of an AND-Parallel implementation, such as an instruction set and Abstract
Machine 18], goal scheduling and memory management issues, and a more detailed system architecture.
The reader can find more detailed information regarding some of these subjects in [7].

References

[I] J.-H. Chang, A. M. Despain, and D. DeGroot.
AND-parallelism of Logic Programs Based on Static Data Dependency Analysis.
In Digest of Papers of COMPCON Spring '85, pages 218-225. 1985.

[2] K. Clark and S. Gregory.
PARLOG: A Parallel Logic Programming Language.
Research Report DOC 83/5, Dept. of Computing, Imperial College of Science and Technology,

May, 1983.
University of London.

[3] Clark, K.L. and G. McCabe.
The Control Facilities of IC-Prolog.
Expert Systems in the Micro Electronic Age.
Edinburgh University Press, 1979.

(4] J.S. Conery and D.F. Kibler.
Parallel Interpretation of Logic Programs.
In Proc. of the ACM Conference on Functional Programming Languages and Computer

Architecture., pages 163-170. October, 1981.

[5] J.S. Conery.
The AND/OR Process Model for Parallel Interpretation of Logic Programs.
PhD thesis, The University of California at Irvine, 1983.
Technical Report 204.

[6] Doug DeGroot.
Restricted And-Parallelism.
Int'l Conf. on Fifth Generation Computer Systems , November, 1984.

[7] Manuel V. Hermenegildo.
A Restricted AND-parallel Execution Model and Abstract Machine for Prolog Programs.
Technical Report PP-104-85, Microelectronics and Computer Technology Corporation (MCC),

Austin, TX 78759, 1985.

[8] Manuel V. Hermenegildo.
An Abstract Machine for Restricted AND-parallel Execution of Logic Programs.
In Proceedings of the 3rd. Int'l. Conf. on Logic Programming. Springer-Verlag, 1986.

[9] Kowalski, R.A.
Predicate Logic as a Programming Language.
Proc. IFIPS 74 , 1974.

[10] Luis M. Pereira and Roger I. Nasr.
Delta-Prolog: A Distributed Logic Programming Language.
In Proceedings of the Intl. Conf. on 5th. Gen. Computer Systems. 1984.
Japan.

[II] E. Y. Shapiro.
A subset of Concurrent Prolog and its interpreter.
Technical Report TR-003, ICOT, January, 1983.
Tokyo.

[12] David H. D. Warren.
An Abstract Prolog Instruction Set.
Technical Note 309, SRI International, AI Center, Computer Science and Technology Division,

1983.

