
Efficient Manifold Ranking for Image Retrieval

Bin Xu1, Jiajun Bu1, Chun Chen1, Deng Cai2, Xiaofei He2, Wei Liu3, Jiebo Luo4

1Zhejiang Provincial Key Laboratory of Service Robot
College of Computer Science, Zhejiang University, Hangzhou, China

{xbzju,bjj,chenc,hezhanying}@zju.edu.cn
2State Key Lab of CAD&CG, College of Computer Science, Zhejiang University, Hangzhou, China

{dengcai,xiaofeihe}@cad.zju.edu.cn
3Columbia University, New York, NY, USA, wliu@ee.columbia.edu

4Kodak Research Laboratories, Eastman Kodak Company, Rochester, NY, USA, jiebo.luo@kodak.com

ABSTRACT

Manifold Ranking (MR), a graph-based ranking algorithm,
has been widely applied in information retrieval and shown
to have excellent performance and feasibility on a variety
of data types. Particularly, it has been successfully applied
to content-based image retrieval, because of its outstanding
ability to discover underlying geometrical structure of the
given image database. However, manifold ranking is com-
putationally very expensive, both in graph construction and
ranking computation stages, which significantly limits its ap-
plicability to very large data sets. In this paper, we extend
the original manifold ranking algorithm and propose a new
framework named Efficient Manifold Ranking (EMR). We
aim to address the shortcomings of MR from two perspec-
tives: scalable graph construction and efficient computation.
Specifically, we build an anchor graph on the data set instead
of the traditional k-nearest neighbor graph, and design a new
form of adjacency matrix utilized to speed up the ranking
computation. The experimental results on a real world im-
age database demonstrate the effectiveness and efficiency of
our proposed method. With a comparable performance to
the original manifold ranking, our method significantly re-
duces the computational time, makes it a promising method
to large scale real world retrieval problems.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
models; H.2.8 [Database Applications]: Image databases

General Terms

Algorithm, Performance

Keywords

Efficient manifold ranking, image retrieval, graph-based al-
gorithm, out-of-sample

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’11 July 24–28, 2011, Beijing, China
Copyright 2011 ACM 978-1-4503-0757-4/11/07 ...$10.00.

1. INTRODUCTION
Traditional image retrieval systems are based on keyword

search, such as Google and Yahoo image search. In these
systems, user keyword is matched with the context around
an image including the title, manual annotation, web doc-
ument, etc. These systems don’t utilize information from
images. However these systems suffer many problems, such
as shortage of the text information and inconsistency of the
meaning of the text and image.

Content-based image retrieval (CBIR) is a considerable
choice to overcome these difficulties. CBIR has drawed a
great attention in the past two decades [5, 19, 27]. Differ-
ent from traditional keyword search systems, CBIR systems
utilize the low-level features (color, texture, shape, etc.),
automatically extracted from images. This is a vital char-
acter for efficient management and search in a large image
database. But the low-level features used in CBIR systems
are often visually characterized, and with no direct connec-
tion with semantic concepts of the images. How to narrow
the semantic gap has been the main challenge for CBIR.

Many data sets have underlying cluster or manifold struc-
ture. Under such circumstances, the assumption of label con-
sistency is reasonable [23, 36]. It means that those nearby
data points, or points belong to the same cluster or mani-
fold, are very likely to share the same semantic label. This
phenomenon is extremely important to explore the seman-
tic relevance when the label information is unknown. Thus,
a good CBIR method should consider low-level features as
well as intrinsic structure of the data.

Manifold Ranking (MR) [36,37], a semi-supervised graph-
based ranking algorithm, has been widely applied in infor-
mation retrieval, and shown to have excellent performance
and feasibility on a variety of data types, such as the text
[28], image [9], and video [34]. The core idea of manifold
ranking is to rank the data with respect to the intrinsic
structure collectively revealed by a large number of data.
By taking the underlying structure into account, manifold
ranking assigns each data point a relative ranking score, in-
stead of an absolute pairwise similarity as traditional ways.
The score is treated as a distance metric defined on the man-
ifold, which is more meaningful to capturing the semantic
relevance degree. He et al. [9] firstly applied manifold rank-
ing to CBIR, and significantly improved image retrieval per-
formance compared with state-of-the-art algorithms.

However, manifold ranking has its own drawbacks to han-
dle large scale data sets – it has expensive computational

525

cost, both in graph construction and ranking computation
stages. Particularly, it is costly to handle an out-of-sample
query (a new sample). That means original manifold rank-
ing is inadequate for a real world CBIR system, in which
the user provided query is always an out-of-sample. It’s in-
tolerable for a user to wait a long time to get returns.

In this paper, we extend the original manifold ranking and
propose a novel framework named Efficient Manifold Rank-
ing (EMR). We try to address the shortcomings of manifold
ranking from two perspectives: the first is scalable graph
construction; and the second is efficient computation, espe-
cially for out-of-sample retrieval. The main contributions of
this paper are as follows. (1) Based on the anchor graph
construction [18,35], we design a new form of adjacency ma-
trix and give it an intuitive explanation. (2) By the new
form, our method EMR achieves a comparable performance
to original manifold ranking but significantly reduces the
computational time.

The rest of this paper is organized as follows. In section
2, we briefly discuss some related works and in section 3, we
review the manifold ranking algorithm and make a detailed
analysis. The proposed approach EMR is described in sec-
tion 4. In section 5, we present the experiment results on a
real world image database. Finally we provide an extension
analysis in section 6 and conclusions in section 7.

2. RELATED WORK
In this section, we discuss two most relevant topics to our

work: ranking model and content-based image retrieval.
The problem of ranking has recently gained great atten-

tions in both information retrieval and machine learning
areas. Conventional ranking models can be content based
models, like the Vector Space Model, BM25, and the lan-
guage modeling [22]; or link structure based models, like the
famous PageRank [2] and HITS [15]; or cross media mod-
els [13]. Another important category is the learning to rank
model, which aims to optimize a ranking function that incor-
porates relevance features and avoids tuning a large number
of parameters empirically [7, 26]. However, many conven-
tional models ignore the important issue of efficiency, which
is crucial for a real-time systems, such as a web application.
In [29], the authors present a unified framework for jointly
optimizing effectiveness and efficiency.

2.1 Graph-based Ranking
In this paper, we focus on a particular kind of ranking

model – graph-based ranking. It has been successfully ap-
plied in link-structure analysis of the web [2, 15] and social
networks research [3, 8, 17]. Generally, a graph can be de-
noted as G = (V,E,W), where V is a set of vertices in which
each vertex represents a data point, E ⊆ V × V is a set of
edges connecting related vertices, and W is a adjacency ma-
trix recording the pairwise weights between vertices. The
object of a graph-based ranking model is to decide the im-
portance of a vertex in a graph, based on local or global
information draw from the graph.

Agarwal [1] proposed to model the data by a weighted
graph, and incorporated this graph structure into the rank-
ing function as a regularizer. Guan et al. [8] proposed a
graph-based ranking algorithm for interrelated multi-type
resources to generate personalized tag recommendation. Liu
et al. [17] proposed an automatically tag ranking scheme by
performing a random walk over a tag similarity graph. In [3],

the authors made the music recommendation by ranking on
a unified hypergraph, combining with rich social information
and music content. Recently, there have been some papers
on speeding up manifold ranking. In [11], the authors parti-
tioned the data into several parts and computed the ranking
function by a block-wise way.

2.2 Content-based Image Retrieval
In many cases, we have no more information than the data

itself. Without label information, capturing semantic rela-
tionship between images is quite difficult. A great amount of
researches have been performed for designing more informa-
tive low-level features (e.g., SIFT features [20]) to represent
images, or better metrics (e.g., DPF [16]) to measure the
perceptual similarity, but their performance is restricted by
many conditions and is sensitive to the data. Relevance
feedback [24] is a powerful tool for interactive CBIR. User’s
high level perception is captured by dynamically updated
weights based on the user’s feedback.

Many traditional image retrieval methods focus on the
data features too much, and they ignore the underlying
structure information, which is of great importance for se-
mantic discovery, especially when the label information is
unknown. A good CBIR method should consider the image
features as well as the intrinsic structure of the data, in our
opinion. Manifold ranking [36,37] ranks data with respect to
the intrinsic geometrical structure, which is exactly in line
with our consideration.

3. MANIFOLD RANKING REVIEW
In this section, we briefly review the manifold ranking

algorithm and make a detailed analysis about its drawbacks.
We start form the description of notations.

3.1 Notations and Formulations
Given a set of data χ = {x1, x2, . . . , xn} ⊂ Rm and build

a graph on the data (e.g., kNN graph). W ∈ Rn×n denotes
the adjacency matrix with element wij saving the weight of
the edge between point i and j. Normally the weight can
be defined by the heat kernel wij = exp[−d2(xi, xj)/2σ

2)] if
there is an edge linking xi and xj , otherwise wij = 0. Func-
tion d(xi, xj) is a distance metric of xi and xj defined on χ,
such as the Euclidean distance. Let r : χ → R be a rank-
ing function which assigns to each point xi a ranking score
ri. Finally, we define an initial vector y = [y1, . . . , yn]

T , in
which yi = 1 if xi is a query and yi = 0 otherwise.

The cost function associated with r is defined to be

O(r) =
1

2
(

n∑

i,j=1

wij‖ 1√
Dii

ri − 1√
Djj

rj‖2 +µ

n∑

i=1

‖ri − yi‖2),

(1)
where µ > 0 is the regularization parameter and D is a
diagonal matrix with Dii =

∑n
j=1 wij .

The first term in the cost function is a smoothness con-
straint, which makes the nearby points in the space have
close ranking scores. The second term is a fitting constraint,
which means the ranking result should fit to the initial label
assignment. If we have more prior knowledge about the rel-
evance or confidence of each query, we can assign different
initial scores to the queries. Minimizing the cost function

526

O(r), we get the optimal r by the following closed form

r∗ = (In − αS)−1y, (2)

where α = 1
1+µ

, In is an identity matrix with n× n, and S

is the symmetrical normalization of W , S = D−1/2WD−1/2.
In large scale problems, we prefer to use the iteration scheme:

r(t+ 1) = αSr(t) + (1− α)y. (3)

During each iteration, each point receives information from
its neighbors (first term), and retains its initial informa-
tion (second term). The iteration process is repeated until
convergence. When manifold ranking is applied to retrieval
(such as image retrieval), after specifying a query by the
user, we can use the closed form or iteration scheme to com-
pute the ranking score of each point. The ranking score can
be viewed as a metric of the manifold distance which is more
meaningful to measure the semantic relevance.

3.2 Analysis
Although manifold ranking has been widely used in many

applications and proved effective for multiple resources, it
has its own drawbacks to handle large scale data sets, which
significantly limits its applicability.

The first is its graph construction method. The kNN
graph is quite appropriate for manifold ranking because of its
good ability to capture local structure of the data. But the
construction cost for kNN graph is O(kn2), which is expen-
sive in large scale situations. Moreover, manifold ranking, as
well as many other graph-based algorithms directly use the
adjacency matrix W in their computation. In some cases, it
is impossible to keep matrix W as large as n×n in memory,
especially for very large data sets or memory-short environ-
ment applications. Thus, we need to find a way to build a
graph in both low construction cost and small storage space,
as well as good ability to capture underlying structure of the
given data set.

The second, manifold ranking has very expensive compu-
tational cost because of the matrix inversion operation in
equation (2). This has been the main bottleneck to apply
manifold ranking in large scale applications. Although we
can use the iteration algorithm in equation (3), it is still
inefficient in large scale cases and may arrive at a local con-
vergence. Thus, original manifold ranking is inadequate for
a real-time retrieval system.

4. EFFICIENT MANIFOLD RANKING
We try to address the shortcomings of original manifold

ranking from two main perspectives: scalable graph con-
struction and efficient ranking computation. Particularly,
our method can handle the out-of-sample retrieval problem,
which is crucial for a real world retrieval system.

4.1 Scalable Graph Construction
To handle scalable data sets, we want the graph construc-

tion cost to be linear or near linear with the graph size.
That means, for each data point, we can’t search the whole
graph, like kNN strategy does. To achieve this requirement,
we construct an anchor graph [18, 35] and propose a new
design of adjacency matrix W .

The definitions of anchor points and anchor graph have
appeared in some other works. For instance, in [33], the au-
thors proposed that each data point on the manifold can be

locally approximated by a linear combination of its nearby
anchor points, and the linear weights become its local co-
ordinate coding. Liu et al. [18] designed the adjacency ma-
trix in a probabilistic measure and used it for scalable semi-
supervised learning. This work inspires us much.

4.1.1 Anchor Graph Construction

Now we introduce how to use anchor graph to model the
data [18,35]. Suppose we have a data set χ = {x1, . . . , xn} ⊂
Rm with n samples inm dimensions, and U = {u1, . . . , ud} ⊂
Rm denotes a set of anchors sharing the same space with the
data set. Let f : χ → R be a real value function which as-
signs each data point in χ a semantic label. We aim to find
a weight matrix Z ∈ Rd×n that measures the potential rela-
tionships between data points in χ and anchors in U . Then
we estimate f(x) for each data point as a weighted average
of the labels on anchors

f̂(xi) =

d∑

k=1

zkif(uk), i = 1, . . . , n, (4)

with constraints
∑d

k=1 zki = 1 and zki ≥ 0. Element zki rep-
resents the weight between data point xi and anchor uk. We
adopt the well known Nadaraya-Watson kernel regression to
assign weights smoothly

zki =
K(|xi−uk|

λ
)

∑d
l=1 K(|xi−ul|

λ
)
, (5)

with the Epanechnikov quadratic kernel

Kλ(t) =

{
3
4
(1− t2) if |t| ≤ 1;

0 otherwise.
(6)

The smoothing parameter λ determines the size of the
local region in which anchors can affect the target point. It
is reasonable to consider that one data point has the same
semantic label with its nearby anchors in a high probability.
There are many ways to determine the parameter λ. For
example, it can be a constant selected by cross-validation
from a set of training data. In this paper we use a more
robust way to get λ, which uses the nearest neighborhood
size s to replace λ, that is

λ(xi) = |xi − u[s]|, (7)

where u[s] is the sth closest anchor of xi.
Specifically, to build the anchor graph, we connect each

data point to its s nearest anchors and then assign weights to
each connection by the kernel function. So the construction
has a total computational complexity O(sdn), where d is the
number of anchors. Thus, the number of anchors determines
the efficiency of the anchor graph construction. If d ≪ n,
the construction is very fast.

How can we get the anchors? Active learning [25, 32] or
clustering methods are considerable choices. For example,
we use k-means algorithm and select the centers as anchors.
Some fast k-means algorithms [14] can speed up the compu-
tation. Random selection is a competitive method which has
extremely low selection cost and acceptable performance.
Later in our experiments, we compare the performance of
using random anchors, fast k-means anchors and normal k-
means anchors.

The main feature, also the main advantage of building
an anchor graph is separating the graph construction into

527

two stages – an off-line anchor selection stage and an on-
line graph construction stage. That means, we can adopt
any useful method to select or build the anchors with little
concern for their time complexity, while the graph construc-
tion is always efficient since it has linear complexity to the
date size. Note that we don’t have to update the anchors
frequently, because informative anchors for a large data set
are relatively stable (e.g., the cluster centers), even if a few
new samples are added.

4.1.2 Design of Adjacency Matrix

We present a new approach to design the adjacency ma-
trix W and make an intuitive explanation for it. The weight
matrix Z ∈ Rd×n can be seen as a d dimensional represen-
tation of the data X ∈ Rm×n, d is the number of anchor
points. That is to say, data points can be represented in the
new space, no matter what the original features are. This
is a big advantage to handle some high dimensional data.
Then, with the inner product as the metric to measure the
adjacent weight between data points, we design the adja-
cency matrix to be a low-rank form

W = ZTZ, (8)

which means that if two data points are correlative (Wij >
0), they share at least one common anchor point, other-
wise Wij = 0. By sharing the same anchors, data points
have similar semantic concepts in a high probability as our
consideration. Thus, our design is helpful to explore the
semantic relationships in the data.

This formula naturally preserves some good properties of
W : sparseness and nonnegativeness. The highly sparse ma-
trix Z makes W sparse, which is consistent with the ob-
servation that most of the points in a graph have only a
small amount of edges with other points. The nonnega-
tive property makes the adjacent weight more meaningful:
in real world data, the relationship between two items is
always positive or zero, but not negative. Moreover, non-
negative W guarantees the positive semidefinite property of
the graph Laplacian in many graph-based algorithms [18].

In large scale cases, it is expensive to keep the matrix W
as large as n × n in memory, while in our construction, we
just need to save the d × n matrix Z. If d ≪ n, we can
dramatically reduce the memory cost.

4.2 Efficient Computation
After graph construction, the main computational cost

for manifold ranking is the matrix inversion in equation (2),
whose complexity is O(n3). So the data size n can not be
too large. Although we can use the iteration algorithm, it is
still inefficient for large scale cases.

One may argue that the matrix inversion can be done off-
line, then it is not a problem for on-line search. However,
off-line calculation can only handle the case when the query
is already in the graph (an in-sample). If the query is not in
the graph (an out-of-sample), for exact graph structure, we
have to update the whole graph to add the new query and
compute the matrix inversion in equation (2) again. Thus,
the off-line computation doesn’t work for an out-of-sample
query. Actually, for a real CBIR system, user’s query is
always an out-of-sample.

With the form of W = ZTZ , we can rewrite the equa-
tion (2), the main step of manifold ranking, by Woodbury

formula as follows. Let H = ZD− 1

2 , and S = HTH , then
the final ranking function r can be directly computed by

r∗ = (In−αHTH)−1y = (In−HT (HHT− 1

α
Id)

−1H)y. (9)

Proof. Just check that (In−αHTH) times (In−HT (HHT−
1
α
Id)

−1H) gives the identity matrix:

(In − αHTH)(In −HT (HHT − 1
α
Id)

−1H)
= In − αHTH − (HT − αHTHHT)(HHT − 1

α
Id)

−1H
= In − αHTH + αHT (− 1

α
Id +HHT)(HHT − 1

α
Id)

−1H
= In − αHTH + αHTH
= In

By equation (9), the inversion part (taking the most com-
putational cost) changes from a n × n matrix to a d × d
matrix. If d ≪ n, this change can significantly speed up
the calculation of manifold ranking. Thus, applying our
proposed method to a real-time retrieval system is viable,
which is a big shortage for original manifold ranking.

During the computation process, we never use the adja-
cency matrix W . So we don’t save the matrix W in memory,
but save matrix Z instead. In equation (9), D is a diagonal
matrix with Dii =

∑n
j=1 wij . When W = ZTZ,

Dii =

n∑

j=1

zTi zj = zTi v, (10)

where zi is the ith column of Z and v =
∑n

j=1 zj . Thus we
get the matrix D without using W .

A useful trick for computing r∗ in equation (9) is running
it from right to left. So every time we multiply a matrix
by a vector, avoiding the matrix - matrix multiplication.
As a result, to compute the ranking function, EMR has a
complexity O(dn+ d3).

4.3 EMR for Content-Based Image Retrieval
In this part, we make a brief summary of EMR applied to

pure content-based image retrieval. To add more informa-
tion, we just extend the data features.

First of all, we extract the low-level features of images in
the database, and use them as coordinates of data points
in the graph. We will further discuss the low-level features
in section 5. Secondly, we select representative points as
anchors and construct the weight matrix Z by kernel regres-
sion with a small neighborhood size s. Anchors are selected
off-line and does not affect the on-line process. For a stable
data set, we don’t frequently update the anchors. At last,
after the user specifying or uploading an image as a query,
we get or extract its low-level features, update the weight
matrix Z, and directly compute the ranking scores by equa-
tion (9). Images with highest ranking scores are considered
as the most relevant and return to the user.

5. EXPERIMENTAL STUDY
In this section, we show several experimental results and

comparisons to evaluate the effectiveness and efficiency of
our proposed method EMR on a real world image database.
All algorithms in our experiments are implemented in MAT-
LAB 9.0 and run on a computer with 2.0 GHZ(×2) CPU,
8GB RAM.

528

5.1 Experiments Setup
The image database consisting of 7,700 images from COREL

image database. COREL is widely used in many CBIR
works [12, 19, 31]. All of the images are from 77 different
categories, with 100 images per category. Images in the
same category belong to the same semantic concept, such
as beach, bird, elephant and so on. That is to say, images
from the same category are judged relevant and otherwise
irrelevant. In Figure 1, we randomly select and show nine
image samples from three different categories.

Figure 1: COREL image samples randomly selected
from semantic concept beach, bird and elephant.

5.1.1 Evaluation Metric Discussion

There are many measures to evaluate the retrieval results
such as precision, recall, F measure, MAP and NDCG
[21]. But for a real CBIR application, especially for a web
application, not all the measures are meaningful.

Generally, the image retrieval engine present at most 20
images in a screen without scrolling. Too many images in
a screen will confuse the user and drop the experience evi-
dently. Images in the top pages attract the most interests
and attentions from the user. So the precision at K metric
is significant to evaluate the image retrieval performance.

MAP (Mean Average Precision) provides a single-figure
measure of quality across recall levels. Among evaluation
measures, MAP has been shown to have especially good dis-
crimination and stability. For a single query, Average Pre-
cision is the average of the precision value obtained for the
set of top k items existing after each relevant item is re-
trieved, and this value is then averaged over all queries [21].
That is, if the set of relevant items for a query qj ∈ Q is
{d1, . . . , dmj

} and Rjk is the set of ranked retrieval results
from the top result until you get to item dk, then

MAP (Q) =
1

|Q|

|Q|∑

j=1

1

mj

mj∑

k=1

Precision(Rjk). (11)

NDCG is designed for situations of non-binary notions of
relevance. It is not suitable here.

5.1.2 Baseline Algorithm

To show EMR’s effectiveness, several methods are com-
pared: MR, FMR [11] and SVM for image retrieval (base-
line) [25]. Given that the goal of our paper is to improve
MR, so the main comparative method is the original MR.

FMR firstly partitions the data into several parts (clus-
tering) and computes the matrix inversion by a block-wise
way. It uses the SVD technique which is time consuming. So
its computational bottleneck is transformed to SVD. When
SVD is accurately solved, FMR equals MR. But FMR uses
the approximate solution to speed up the computation. We
use 10 clusters and calculate the approximation of SVD with
10 singular values. Higher accuracy requires much more
computational time.

SVM can be easily transformed to a query-based ranking
algorithm, and has been successfully applied in image re-
trieval. With the specified relevant/irrelevant (to the query)
information, a maximal margin hyperplane is build to sepa-
rate the relevant from irrelevant images, and then the most
relevant images are the ones farthest from the SVM bound-
ary. We use the well known LIBSVM toolbox [4] and select
the RBF kernel. The parameters C and g in LIBSVM are
50 and 0.5 respectively.

5.2 Implementation Issues
Here we discuss some important implementation issues

for our experiments: low-level features of images and out-
of-sample retrieval.

5.2.1 Low-Level Features of Images

Low-level features representation of images is crucial for
CBIR. If the low-level features can accurately measure the
semantic distance between images, there is no need to design
any new retrieval method. Unfortunately, low-level features
always fail to capture the high-level semantic concepts. In
our opinion, more than the low-level features, a good CBIR
method should take the underlying structure of the data into
account. In our experiments, we use a 64-dimensional color
histogram and a 64-dimensional Color Texture Moment [12,
31] to represent the images.

5.2.2 Out-of-Sample Retrieval

For in-sample data retrieval, we can construct the graph
and compute the matrix inversion part of equation (2) off-
line. But for out-of-sample data, the situation is totally
different. In [10], the authors solve the out-of-sample prob-
lem by finding the nearest neighbors of the query and using
the neighbors as query points. They don’t add the query
into the graph, therefore their database is static. Moreover,
their method may change the query’s initial semantic mean-
ing. In contrast, we efficiently update the graph structure
and use the new sample as a query for retrieval. The image
database can be dynamically updated.

For one instant retrieval, it is unwise to update the whole
graph or rebuild the anchors, especially on a large data set.
We can adopt fast updating strategies as follows.

Figure 2: Extend matrix W (MR and FMR) and Z
(EMR) in the gray regions for an out-of-sample.

529

A fast but inexact strategy for MR and FMR is leaving
the original graph unchanged and adding a new row and a
new column toW . But k nearest neighbor relationship is not
symmetric, therefore the query’s neighbors would lose some
local information – its original neighbors’ weights decrease
relatively and they may have k+1 nearest neighbors. While
for EMR, each data point is independently computed. We
just assign weights between the new query and its nearby
anchors. That forms a new column of Z. One point has
little effect to the stable anchors in a large data set (e.g.,
cluster centers). Figure 2 shows the updating strategies.

5.3 Performance
We firstly compare our proposed method EMR with MR,

FMR and baseline on COREL database without relevance
feedback. Relevance feedback asks users to label some re-
trieved samples, making the retrieval procedure inconve-
nient. So if possible, we prefer an algorithm having good
performance without relevance feedback. For our method
EMR, 1000 k-means anchors are used. Later in the model se-
lection part, we find that using 800 or fewer anchors achieves
a close performance.

An important issue needs to be emphasized: although we
have the image labels (categories), we don’t use them in
our algorithm, since in real world applications, labeling is
very expensive. The label information can only be used to
evaluation and relevance feedback.

At the beginning of the retrieval, we don’t have the user
specified relevant/irrelevant information. To apply SVM,
the pseudo relevance feedback [21] strategy, also known as
blind relevance feedback is adopted. We rank the images in
the database according to their euclidean distances to the
query, and then the nearest ten images are considered as
relevant and the farthest ten are irrelevant. With such an
approach, we run SVM as normal at the beginning, and the
user gets images without any additional interaction.

5.3.1 Average Accuracy

Each image is used as a query and the retrieval perfor-
mance is averaged. Figure 3 prints the average precision (at
10 to 80) of each method and Table 1 records the average
values of recall, F1 score (at 10 to 80), and the values of
MAP with all relevant images. It is easy to find that the
performance of MR and EMR are very close, while FMR
lose a little precision. All the three algorithms are better
than the baseline method in the whole range.

Figure 3: Retrieval precision at top 10 to 80 returns
of MR (left), EMR, FMR and Baseline.

Table 1: The average values of Recall, F1 on top 10
to 80, and MAP.

MR EMR FMR SVM
R@10 0.039 0.037 0.037 0.030
F1@10 0.071 0.068 0.067 0.054
R@20 0.068 0.066 0.064 0.054
F1@20 0.113 0.110 0.106 0.090
R@40 0.115 0.115 0.107 0.092
F1@40 0.163 0.164 0.153 0.130
R@60 0.154 0.155 0.142 0.122
F1@60 0.191 0.193 0.177 0.152
R@80 0.186 0.187 0.172 0.146
F1@80 0.206 0.207 0.190 0.161

MAP 0.190 0.191 0.174 0.143

The anchor points are computed off-line and do not affect
the current on-line retrieval system. To speed up the selec-
tion, we can use fast k-means strategy or just select random
anchors. The fast k-means strategy we used is very simple
and effective: setting the number of maximum iterations of
k-means to 10 (default 100). Experiments results in Fig-
ure 4 show that the performance of fast k-means or random
anchors is close to normal k-means anchors. Using random
anchors dramatically decreases the anchor points selection
cost when the data size is extremely large. Thus, cost and
performance are trade-offs in many situations.

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Scope

P
re

c
is

io
n

Kmeans
Fast Kmeans
Random
Baseline

Figure 4: Performance of EMR with random an-
chors vs. k-means (fast and normal) anchors. Note
that using random anchors achieves a close perfor-
mance to k-means anchors.

To see the performance distribution in the whole data set
more concretely, we plot the retrieval precision at top 10
returns for all 77 categories in Figure 5 without relevance
feedback. As can be seen, the performance of each algo-
rithm varies with different categories. We find that EMR
is fairly close to MR in almost every category, and on some
categories, EMR is better than MR. But for FMR, the dis-
tribution is totally different.

5.3.2 Response Time for Out-of-Sample

In this section, we compare the response time of MR,
FMR and EMR when handling a new sample. We use a
serial number of COREL samples, from 1,500 to 7,500, to
build the graph and test 100 out-of-samples. The response
time (in seconds) for each sample is averaged and showed in
Table 2. To test EMR’s efficiency in very large data sets,

530

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Category

P
re

c
is

io
n

 a
t

1
0

MR

EMR

FMR

Figure 5: Precision at the top 10 returns of the three algorithms on each category.

we use 50,000 to 200,000 synthetic data in 128 dimensions.
Since EMR has a closed form solution, so the response time
is reliable and comparable – no matter the data is real or
synthetic.

Table 2: Response time in seconds, MR (closed form
in MRc and iteration scheme in MRit), FMR, and
EMR (1000 anchors in EMR1k and 800 anchors in
EMR800) with different graph size. The last three
lines use synthetic data.

Size MRc MRit FMR EMR1k EMR800

1500 1.283 1.685 0.821 0.462 0.264
2500 5.416 5.463 3.014 0.517 0.308
3500 14.233 12.437 7.507 0.576 0.358
4500 29.712 23.355 15.169 0.638 0.402
5500 53.854 39.559 26.866 0.710 0.447
6500 85.319 59.296 42.944 0.769 0.495
7500 129.715 85.916 65.124 0.833 0.542

50k - - - 3.869 2.700
100k - - - 7.375 5.201
200k - - - 14.534 10.183

When the data size is large, it is extremely costly to save
matrix W ∈ Rn×n in memory for MR and FMR. Even if we
could saveW in memory, the computational time is too long.
But for EMR, we just save the smaller matrix Z ∈ Rd×n,
and the time is acceptable.

With different graph size, we fix the number of anchors to
1000 and 800 for convenience. Actually we could use fewer
anchors to achieve a good performance in many cases. For
MR, we use both the closed form and the iteration scheme.
We record the response time of MR by closed form in MRc

and by iteration scheme in MRit. The stop condition for
MRit is defined as ‖rt+1 − rt‖ < ǫ, where t is the iteration
step and ǫ is a threshold. We use a very loose threshold
10−4. With smaller threshold, MRit needs more time to
converge. We find that, the computational time of MR or
FMR increases very fast, while our method increases slowly.
Note that the time of extracting low-level features from the
query image is not included in the response time, since it is
not the focus of our ranking method.

5.3.3 Model Selection

Model selection plays a key role to many machine learning
methods. In some cases, the performance of an algorithm
may drastically vary by different choices of the parameters,
thus we have to estimate the quality of the parameters. In

this subsection, we evaluate the performance of our method
EMR with different values of the parameters. For each single
value, EMR is run independently 10 times and the results
are averaged.

There are three parameters in our method EMR: s, α,
and N . Parameter s is the neighborhood size in the anchor
graph. Small value of s makes the weight matrix Z very
sparse. Parameter α is the tradeoff parameter in EMR and
MR. Parameter N is the number of anchor points. For con-
venience, the parameter α is fixed at 0.99, consistent with
the experiments performed in [9,36,37]

Figure 6 shows the performance of EMR (Precision at 10)
by k-means anchors at different values of s. We find that
the performance of EMR is not sensitive to the selection of
s when s > 3. With small s, we can guarantee the matrix Z
highly sparse, which is helpful to efficient computation. In
our experiments, we just select s = 5.

2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of s

P
re

c
is

io
n

 a
t

1
0

EMR
Baseline

Figure 6: Retrieval precision versus different values
of parameter s. The dotted line represents the base-
line.

Figure 7(a) shows the performance of EMR (Precision at
10) versus different number of anchors in the whole data set.
From the figure, we find that the performance increases very
slowly when the number of anchors is larger than 400 (ap-
proximately). In previous experiments, we fix the number of
anchors to 1000. Actually, a smaller number of anchors, like
800 or 600 anchors, can achieve a close performance. With
fewer anchors, the graph construction and out-of-sample re-
trieval cost will be further reduced. To further investigate
how many anchors are required, we evaluate EMR on half
of the data set (77 categories, 50 images per category, 3850
images in total) in Figure 7(b). The number of categories
is the same and the data size is reduced by half. However

531

200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of anchors

P
re

c
is

io
n

 a
t

1
0

EMR
Baseline

(a) 7700 images

200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of anchors

P
re

c
is

io
n

 a
t

1
0

EMR
Baseline

(b) 3850 images

Figure 7: Retrieval precision versus different num-
ber of anchor points in (a) 7700 images and (b) 3850
images. The dotted lines represent baseline perfor-
mance in each case.

the result is similar – the performance increases very slowly
when the number of anchors is larger than 400. This demon-
strates that the number of required anchors is affected by
the underlying structure, but not easily proportional to the
size of the data set.

5.3.4 Performance with Relevance Feedback

Relevance Feedback [24] is a powerful interactive tech-
nique used to improve the performance of image retrieval
systems. With user provided relevant/irrelevant informa-
tion on the retrieved images, The system can capture the
semantic concept of the query more correctly and gradually
improve the retrieval precision.

Applying relevance feedback to EMR is extremely sim-
ple. We update the initial vector y and recompute the rank-
ing scores. We use an automatic labeling strategy to simu-
late relevance feedback: for each query, the top 20 returns’
ground truth labels (relevant or irrelevant to the query) are
used as relevance feedbacks. It is performed for two rounds,
since the users have no patience to do more. Images have
been labeled in the first round are excluded in the second
round. The retrieval performance are plotted in Figure 8.
To avoid changing the original query’s semantic meaning,
the initial scores of the query and the feedbacks are 10 and
±1 respectively.

By relevance feedback, original MR receives higher im-
provement than any other methods. But, relevance feed-

back is designed for real interactive systems in which the
data size is always large. Original MR is too slow for these
systems. See Table 2, when the data size is 7500, for one
out-of-sample retrieval, MRc needs more than 100 seconds.
The meaning of applying relevance feedback to original MR
is limited. Our method is a little worse than MR, but it
is much faster than MR and better than the rest two. We
leave the question of how to make further efforts to EMR’s
performance by relevance feedback in our future works. In
this paper, our focus is to speed up manifold ranking, but
not the relevance feedback.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Scope

P
re

c
is

io
n

MR RF2
EMR RF2
FMR RF2
SVM RF2

Figure 8: Average precision-scope curves for each
methods after two relevance feedbacks.

5.3.5 Case Study

We show two real image retrieval cases in this part to see
the performance of EMR intuitively. The first case in Fig-
ure 9 succeeds to retrieve relevant images by EMR without
relevance feedback. The second case in Figure 10(a) is failed
to capture the query’s concept at first, but improved greatly
after two feedback rounds in Figure 10(b).

An interesting thing is that the distance metric defined by
EMR (we name it manifold distance) is very different with
traditional metrics (e.g., Euclidean distance) used in many
other retrieval methods. Euclidean distance only considers
the data similarity, but manifold distance tries to capture
the semantic relevance by the underlying structure of the
data set. For example, the first retrieved image in the first
case is the 34th image retrieved by Euclidean distance.

In the second case, the query is confused with many other
concepts, including the oil painting and the elephant. The
similar color and texture features make images in those con-
cepts receiving higher ranking scores. At the same time,
this case indicates that EMR is confused by the low-level
features and misses the dominant concept antelope of the
query, when there is no manual help. Fortunately, EMR is
easy to integrate the label information – after two relevance
feedbacks, the concept is captured successfully by EMR.

6. EXTENSION
Many real world applications have highly complex graph

structure, like a social network or a web link graph. In such
circumstances, the graph is existing and has very large size.
If we have rich information about each node, we use EMR
for efficient retrieval. But if we have no more information
except the graph, how can we accelerate manifold ranking?

532

Figure 9: A successful content-based image retrieval case by EMR without relevance feedback. The first
image with red box is the query, and the rest are the top 10 returns.

(a) Top 10 returns without relevance feedback. The image with green box is the only one correct.

(b) Top 10 returns after two feedback rounds. All images belong to the same category.

Figure 10: A failed case by EMR without relevance feedback, but improved greatly by two feedback rounds.
The first image with red box is the query.

Adjacency matrix W is symmetric. Its SVD decomposi-
tion is W = UΣUT , where U ∈ Rn×k and Σ ∈ Rk×k. Let

H = D− 1

2U , we can rewrite equation (2) to be

r∗ = (In −H(HTH − 1

α
Σ−1)−1HT)y, (12)

which is very efficient if k ≪ n. But computing SVD of ma-
trix W requires O(n3) operations, which is the same with
the original matrix inversion. If we can fast decompose W ,
we save the computational time. Fortunately, W is highly
sparse and may have a very low rank. Thus, some fast low-
rank matrix approximation methods may help. We can ar-
range matrix W to be

W =

(
G W T

21

W21 W22

)
and C =

(
G

W21

)

where G is a l × l symmetric matrix from W , l ≪ n. The
Nyström method [30] computes SVD of G (G = UGΣGU

T
G)

and approximates singular values and singular vectors of W

by Σ = (n
l
)ΣG and U =

√
l
n
CUGΣ

−1
G . When k singular

vectors are used, the cost of this algorithm is O(l3 + nlk).
Another alternative method is the Column-sampling method
[6]. It approximates the spectral decomposition of W by
using the SVD of C directly (C = UCΣCV

T
C). That is,

Σ =
√

n
l
ΣC and U = UC . Its cost is O(nl2). These two

methods both can be used to speed up the computation.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose the Efficient Manifold Rank-

ing algorithm which extends the original manifold ranking
to handle scalable data sets. We apply EMR to a content-
based image retrieval application based on a real world im-
age database. EMR tries to address the shortcomings of
original manifold ranking from two perspectives: the first
is scalable graph construction; and the second is efficient
computation, especially for out-of-sample retrieval. Exper-
imental results demonstrate that EMR is feasible to large
scale real world image retrieval systems – it significantly re-
duces the computational time, as well as the storage space.
Actually, our new design of the adjacency matrix can be

used to many other graph-based algorithms, and EMR is
also feasible to other types of information resources.

In our future work, we will test more visual features and
evaluate our method on other databases. Moreover, many
social network sites like Flickr allow users to annotate im-
ages with free tags, which significantly help us to under-
stand semantic concepts of images. Thus, for images having
tag information, we can combine the image features and
tag information to improve retrieval performance. Another
extension of our work is the distributed computation, an
enterprise solution for web scale retrieval systems.

8. ACKNOWLEDGEMENT
This work is supported by Program for New Century Ex-

cellent Talents in University (NCET-09-0685).

9. REFERENCES
[1] S. Agarwal. Ranking on graph data. In Proceedings of

the 23rd International Conference on Machine
Learning, pages 25–32, 2006.

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer networks
and ISDN systems, 30(1-7):107–117, 1998.

[3] J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, L. Zhang,
and X. He. Music recommendation by unified
hypergraph: combining social media information and
music content. In Proceedings of the 18th annual ACM
international conference on Multimedia, pages
391–400, 2010.

[4] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[5] R. Datta, D. Joshi, J. Li, and J. Wang. Image
retrieval: Ideas, influences, and trends of the new age.
ACM Computing Surveys (CSUR), 40(2):1–60, 2008.

[6] A. Frieze, R. Kannan, and S. Vempala. Fast Monte
Carlo algorithms for finding low-rank approximations.
Journal of the ACM (JACM), 51(6):1025–1041, 2004.

[7] W. Gao, P. Cai, K. Wong, and A. Zhou. Learning to
rank only using training data from related domain. In

533

Proceeding of the 33rd international ACM SIGIR
conference on Research and development in
information retrieval, pages 162–169. ACM, 2010.

[8] Z. Guan, J. Bu, Q. Mei, C. Chen, and C. Wang.
Personalized tag recommendation using graph-based
ranking on multi-type interrelated objects. In
Proceedings of the 32nd international ACM SIGIR
conference on Research and development in
information retrieval, pages 540–547, 2009.

[9] J. He, M. Li, H. Zhang, H. Tong, and C. Zhang.
Manifold-ranking based image retrieval. In Proceedings
of the 12th annual ACM international conference on
Multimedia, pages 9–16, 2004.

[10] J. He, M. Li, H. Zhang, H. Tong, and C. Zhang.
Generalized manifold-ranking-based image retrieval.
IEEE Transactions on Image Processing,
15(10):3170–3177, 2006.

[11] R. He, Y. Zhu, and W. Zhan. Fast Manifold-Ranking
for Content-Based Image Retrieval. In ISECS
International Colloquium on Computing,
Communication, Control, and Management.

[12] X. He, D. Cai, and J. Han. Learning a maximum
margin subspace for image retrieval. IEEE
Transactions on Knowledge and Data Engineering,
pages 189–201, 2007.

[13] J. Jeon, V. Lavrenko, and R. Manmatha. Automatic
image annotation and retrieval using cross-media
relevance models. In Proceedings of the 26th annual
international ACM SIGIR conference on Research and
development in informaion retrieval, pages 119–126,
2003.

[14] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko,
R. Silverman, and A. Wu. An efficient k-means
clustering algorithm: Analysis and implementation.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 24(7):881–892, 2002.

[15] J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM (JACM),
46(5):604–632, 1999.

[16] B. Li, E. Chang, and C. Wu. DPF-a perceptual
distance function for image retrieval. In International
Conference on Image Processing, volume 2, pages
597–600, 2002.

[17] D. Liu, X. Hua, L. Yang, M. Wang, and H. Zhang.
Tag ranking. In Proceedings of the 18th international
conference on World wide web, pages 351–360, 2009.

[18] W. Liu, J. He, and S. Chang. Large graph
construction for scalable semi-supervised learning. In
Proceedings of the 27th International Conference on
Machine Learning, pages 679–686, 2010.

[19] Y. Liu, D. Zhang, G. Lu, and W. Ma. A survey of
content-based image retrieval with high-level
semantics. Pattern Recognition, 40(1):262–282, 2007.

[20] D. Lowe. Object recognition from local scale-invariant
features. In International Conference on Computer
Vision, page 1150, 1999.

[21] C. Manning, P. Raghavan, and H. Schütze.
Introduction to information retrieval. Cambridge
University Press, 2008.

[22] J. Ponte and W. Croft. A language modeling approach
to information retrieval. In Proceedings of the 21st
annual international ACM SIGIR conference on

Research and development in information retrieval,
pages 275–281. ACM, 1998.

[23] S. Roweis and L. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science,
290(5500):2323, 2000.

[24] Y. Rui, T. Huang, M. Ortega, and S. Mehrotra.
Relevance feedback: A power tool for interactive
content-based image retrieval. Circuits and Systems
for Video Technology, IEEE Transactions on,
8(5):644–655, 2002.

[25] S. Tong and E. Chang. Support vector machine active
learning for image retrieval. In Proceedings of the 9th
ACM international conference on Multimedia, pages
107–118, 2001.

[26] M. Tsai, T. Liu, T. Qin, H. Chen, and W. Ma. FRank:
a ranking method with fidelity loss. In Proceedings of
the 30th annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 383–390. ACM, 2007.

[27] R. Veltkamp and M. Tanase. Content-Based Image
Retrieval Systems: A Survey. 2002.

[28] X. Wan, J. Yang, and J. Xiao. Manifold-ranking based
topic-focused multi-document summarization. In
Proceedings of the 20th International Joint Conference
on Artifical Intelligence, pages 2903–2908, 2007.

[29] L. Wang, J. Lin, and D. Metzler. Learning to
efficiently rank. In Proceeding of the 33rd international
ACM SIGIR conference on Research and development
in information retrieval, pages 138–145, 2010.

[30] C. Williams and M. Seeger. Using the Nyström
method to speed up kernel machines. In Advances in
Neural Information Processing Systems 13, 2001.

[31] H. Yu, M. Li, H. Zhang, and J. Feng. Color texture
moments for content-based image retrieval. In
International Conference on Image Processing,
volume 3, pages 929–932, 2002.

[32] K. Yu, J. Bi, and V. Tresp. Active learning via
transductive experimental design. In Proceedings of
the 23rd international conference on Machine learning,
pages 1081–1088, 2006.

[33] K. Yu, T. Zhang, and Y. Gong. Nonlinear learning
using local coordinate coding. In Advances in Neural
Information Processing Systems, 2009.

[34] X. Yuan, X. Hua, M. Wang, and X. Wu.
Manifold-ranking based video concept detection on
large database and feature pool. In Proceedings of the
14th annual ACM International Conference on
Multimedia, pages 623–626, 2006.

[35] K. Zhang, J. Kwok, and B. Parvin. Prototype vector
machine for large scale semi-supervised learning. In
Proceedings of the 26th Annual International
Conference on Machine Learning, pages 1233–1240,
2009.

[36] D. Zhou, O. Bousquet, T. Lal, J. Weston, and
B. Schölkopf. Learning with local and global
consistency. In Advances in Neural Information
Processing Systems, pages 595–602, 2004.

[37] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and
B. Schölkopf. Ranking on data manifolds. In Advances
in Neural Information Processing Systems, page 169,
2004.

534

