
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2006-35

2006-01-01

Efficient Mapping of Virtual Networks onto a Shared Substrate Efficient Mapping of Virtual Networks onto a Shared Substrate

Jing Lu and Jonathan Turner

Virtualization has been proposed as a vehicle for overcoming the growing problem of internet

ossification [1]. This paper studies the problem of mapping diverse virtual networks onto a

common physical substrate. In particular, we develop a method for mapping a virtual network

onto a substrate network in a cost-efficient way, while allocating sufficient capacity to virtual

network links to ensure that the virtual network can handle any traffic pattern allowed by a

general set of traffic constraints. Our approach attempts to find the best topology in a family of

backbone-star topologies, in which a subset of nodes constitute the... Read complete abstract Read complete abstract

on page 2. on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation

Lu, Jing and Turner, Jonathan, "Efficient Mapping of Virtual Networks onto a Shared Substrate" Report

Number: WUCSE-2006-35 (2006). All Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/186

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/186?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/186

Efficient Mapping of Virtual Networks onto a Shared Substrate Efficient Mapping of Virtual Networks onto a Shared Substrate

Jing Lu and Jonathan Turner

Complete Abstract: Complete Abstract:

Virtualization has been proposed as a vehicle for overcoming the growing problem of internet ossification
[1]. This paper studies the problem of mapping diverse virtual networks onto a common physical
substrate. In particular, we develop a method for mapping a virtual network onto a substrate network in a
cost-efficient way, while allocating sufficient capacity to virtual network links to ensure that the virtual
network can handle any traffic pattern allowed by a general set of traffic constraints. Our approach
attempts to find the best topology in a family of backbone-star topologies, in which a subset of nodes
constitute the backbone, and the remaining nodes each connect to the nearest backbone node. We
investigate the relative cost-effectiveness of different backbone topologies on different substrate
networks, under a wide range of traffic conditions. Specifically, we study how the most cost-effective
topology changes as the tightness of pairwise traffic constraints and the constraints on traffic locality are
varied. In general, we find that as pairwise traffic constraints are relaxed, the least-cost backbone
topology becomes increasingly "tree-like". We also find that the cost of the constructed virtual networks is
usually no more than 1.5 times a computed lower bound on the network cost and that the quality of
solutions improves as the traffic locality gets weaker.

https://openscholarship.wustl.edu/cse_research/186?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/186?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-35

Efficient Mapping of Virtual Networks onto a Shared Substrate

Authors: Jing Lu, Jonathan Turner

Corresponding Author: jl1@arl.wustl.edu

Web Page: http://www.arl.wustl.edu/~jl1

Abstract: Virtualization has been proposed as a vehicle for overcoming the growing problem of internet
ossification [1]. This
paper studies the problem of mapping diverse virtual networks onto a common physical substrate. In particular,
we develop a method for mapping a virtual network onto a substrate network in a cost-efficient way, while
allocating sufficient capacity to virtual network links to ensure that the virtual network can handle any traffic
pattern allowed by a general set of traffic constraints. Our approach attempts to find the best topology in a family
of backbone-star topologies, in which a subset of nodes constitute the backbone, and the remaining nodes each
connect to the nearest backbone node. We investigate the relative cost-effectiveness of different backbone
topologies on different substrate networks, under a wide range of traffic conditions. Specifically, we study how
the most cost-effective topology changes as the tightness of pairwise traffic constraints and the constraints on
traffic locality are varied. In general, we find that as pairwise traffic constraints are relaxed, the least-cost
backbone topology becomes increasingly "tree-like". We also find that the cost of the constructed virtual
networks is usually no more than 1.5 times a computed lower bound on the network cost and that the quality of
solutions improves as the traffic locality gets weaker.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Efficient Mapping of Virtual Networks onto a

Shared Substrate

Jing Lu and Jonathan Turner

Department of Computer Science and Engineering

Washington University in St. Louis

St. Louis, MO 63130

Email: {jl1, jst}@arl.wustl.edu

Abstract— Virtualization has been proposed as a vehicle for
overcoming the growing problem of internet ossification [1]. This
paper studies the problem of mapping diverse virtual networks
onto a common physical substrate. In particular, we develop a
method for mapping a virtual network onto a substrate network
in a cost-efficient way, while allocating sufficient capacity to
virtual network links to ensure that the virtual network can
handle any traffic pattern allowed by a general set of traffic
constraints. Our approach attempts to find the best topology
in a family of backbone-star topologies, in which a subset
of nodes constitute the backbone, and the remaining nodes
each connect to the nearest backbone node. We investigate
the relative cost-effectiveness of different backbone topologies
on different substrate networks, under a wide range of traffic
conditions. Specifically, we study how the most cost-effective
topology changes as the tightness of pairwise traffic constraints
and the constraints on traffic locality are varied. In general, we
find that as pairwise traffic constraints are relaxed, the least-cost
backbone topology becomes increasingly “tree-like”. We also find
that the cost of the constructed virtual networks is usually no
more than 1.5 times a computed lower bound on the network cost
and that the quality of solutions improves as the traffic locality
gets weaker.

I. INTRODUCTION

In recent years there has been a growing recognition that the

protocols at the heart of the Internet have become so resistant

to change that practical progress in networking has become

stalled. Virtualization is widely viewed as offering a way to

overcome the current impasse [1]. In a virtualized network

infrastructure, diverse virtual networks share a common phys-

ical substrate consisting of both links and flexible network

platforms capable of hosting multiple virtual routers [2], [3].

A diversified Internet can lower the barriers to entry and make

it easy to deploy new network architectures and technologies,

stimulating innovation and higher value services.

This paper addresses the problem of how to map virtual

networks onto a common substrate in a way that enables the

network to support any traffic pattern allowed by a general

set of constraints, while minimizing the network cost. The

problem of mapping multiple virtual networks onto a common

physical infrastructure has been addressed in several different

contexts. PlanetLab [4] is an overlay network testbed that is

similar in spirit to the virtualized network environment that

we are interested in here [2]. However, resource allocation

in PlanetLab is handled in a very loose fashion. The basic

operation of PlanetLab can be best characterized as “fair,

best-effort.” Since users can place computational demands

on any node in the PlanetLab system as they choose, there

is no systematic way to reserve resources for any particular

purpose. In addition, PlanetLab operates purely in an overlay

mode without the use of dedicated links between nodes. These

factors make the nature of the resource allocation problem in

PlanetLab fundamentally different from the problem we focus

on here.

PlanetLab supports the use of multiple resource allocation

services, which seek to balance the load across PlanetLab

nodes, while satisfying objectives provided by users. One such

service is assign, a resource discovery and allocation tool

initially designed for the Emulab testbed [5]. Assign Char-

acterizes resources and groups them into equivalence classes

to dramatically reduce the search space. Using simulated

annealing, it then seeks a good match between the user’s

stated resource needs and the available resources. Focusing on

load balance issues on substrate networks, Zhu et al. proposed

a set of heuristic algorithms for assigning substrate network

resources to virtual networks [6]. Their main idea is to identify

the cool spot in the substrate (i.e. an area with relatively low

stress in terms of available resources) and allocate resources

to the virtual networks from there.

In this paper, we focus on system contexts in which re-

sources can be reserved for use by different virtual networks,

and where resource requirements are defined in terms of a set

of general traffic constraints. This is built on prior work on

constraint-based network design [7]–[11], in which traffic is

defined by a set of constraints on the traffic between designated

sets of network nodes. In general, a constraint can be stated

informally as “the traffic from node set Ssub1 to node set

Ssub2 is at most B.” The classical form of network design

in which network traffic is specified as a matrix defining the

traffic flows between each pair of nodes, can be viewed as a

special case of constraint-based network design. The so-called

hose model, popularized by Duffield [12] can also be viewed

as a special case. The hose model specifies the total traffic

entering and leaving each node without placing constraints

on pairwise traffic flows. In this paper, we specify traffic

using a combination of pairwise constraints and termination

constraints similar to those in the hose model. We also make

use of distance-based constraints that bound the amount of

traffic between each node and its more distant peers.

Given a set of traffic constraints, the objective of constraint-

based virtual network design is to find a network configuration

that can handle any traffic pattern allowed by the constraints.

This involves selecting a network topology comprising virtual

links and virtual routers, where the links are provisioned

with sufficient capacity to accommodate any traffic pattern

permitted by the given constraints. In this paper, alternate

network designs are evaluated using a cost metric in which

the cost of a virtual link is proportional to the product of

its capacity and its physical length. Virtual links are typically

provisioned under the assumption that traffic is routed along

the least-cost path in the selected virtual network topology,

although other routing policies can also be handled. (It should

be noted that the routes used for network dimensioning are

best viewed as the “default paths” rather than the only paths

that may be used in the operational network.)

Our experiments show that the system of traffic constraints

has a profound influence on the least-cost network structure. In

particular, tight pairwise constraints favor network topologies

in which all pairs of nodes are directly connected by links

with just the right capacity. While constraints get looser,

“tree-like” topologies are advantageous in reducing network

costs. With constraints provided by the pure hose model, the

most cost-effective network topologies turn to have all nodes

connected through a single, centrally located intermediate

node. In addition, we find the least-cost network structure is

also affected by the underlying substrate network topology.

The paper proceeds as follows: Section II describes the

constraint-based virtual network design and mapping onto sub-

strate networks and our iterative design method. In particular,

II-A discusses the traffic constraints used for describing traffic

flows in networks. Link dimensioning using maximum flow

computations is presented in II-B, followed by a mixed integer

quadratic programming formulation of the mapping problem

in II-C. Section III shows how to compute a general lower

bound on the configuration cost. The iterative virtual network

design and mapping tool is described in Section IV. Using this

tool, virtual networks with different backbone topologies under

various conditions are mapped to three substrate networks. The

results are discussed in Section V. Finally, we conclude our

paper in Section VI.

II. CONSTRAINT-BASED VIRTUAL NETWORK DESIGN

The virtual network design problem starts with a substrate

network that is represented by an undirected graph H =
(W,F), in which each edge e has an associated length, and

these lengths are used to define shortest path distances d(u, v)
between each pair of nodes u and v. For a particular virtual

network we also have a set of access nodes A ⊆ W that

represents the locations in the substrate at which traffic enters

or exits that virtual network. Finally, we have a specification

of the expected traffic for the virtual network, which is given

in the form of a set of general traffic constraints. Each of the

constraints is simply an upper bound on the allowed traffic

from some set A1 ⊆ A to a disjoint set A2 ⊆ A.

The objective of the virtual network design problem is

to select a virtual network that has sufficient capacity to

handle any specific traffic pattern allowed by the given traffic

constraints, while minimizing the overall use of substrate

resources. A virtual network is a directed graph, defined on

a subset of the substrate nodes that includes all of the access

nodes, and possibly some others. Each directed edge (u, v)
of the virtual network is mapped to a shortest path in the

substrate and is assigned a length equal to the path length

d(u, v) in the substrate. Each edge (u, v) in the virtual network

is also assigned a capacity c(u, v), which must be sufficient to

ensure that the virtual network can handle any allowed traffic

pattern. To account for the use of substrate resources by a

virtual network, we “charge” the virtual network an amount

proportional to c(u, v)d(u, v) for each virtual network link.

Virtual network link capacities can be determined using lin-

ear programming [9], for any fixed routing policy. In particular,

if shortest path routing is used, one can determine for each

link, the traffic pattern allowed by the given constraints that

maximizes the traffic sent through the link. Thus, the key issue

in virtual network design is to determine which substrate nodes

to include in the virtual network and which pairs of nodes to

connect with virtual links.

Since the problem of finding an optimal virtual network

design is NP-hard, we seek to develop methods that produce

cost-effective, if not optimal designs. One approach to this

involves a direct search over the space of virtual network

topologies. A given solution can be incrementally modified

by adding/removing links and/or nodes, then the links of the

modified topology re-dimensioned, so that the cost can be

evaluated. This can be done using simulated annealing, or

some similar local search technique. This approach has two

drawbacks. First, to evaluate any candidate modification to the

current topology, we must recompute all the link dimensions.

Second, the overall huge space of candidate topologies makes

it difficult to determine which of the large number of possible

local modifications to choose from.

For these reasons, we explore a more structured approach

that reduces the per step overhead associated with exploring

alternate topologies, and effectively reduces the size of the

search space that must be explored. To do this, we constrain

the virtual network topologies to what we call backbone-star

topologies. In a backbone-star topology, some of the nodes

are designated as backbone nodes, while the remainder are

referred to as access nodes. Each access node has a single edge

connecting it to a backbone node, meaning that each backbone

node is at the center of a “star” formed by its neighboring

access nodes. The subset consisting of the backbone nodes can

be connected together in an arbitrary fashion, but in this paper

we further constrain the search space by specifying a particular

backbone topology, such as a complete graph, a ring or a star.

The restrictions we impose on the topology make the virtual

network design problem primarily a problem of mapping the

virtual network onto the substrate in the most efficient way.

Fig. 1 illustrates a virtual network in a backbone-star topology,

where the four backbone nodes are connected into a complete

backbone
node

access node

Fig. 1. Example of a virtual network in a backbone-star topology, where the
four backbone nodes are connected into a complete graph

graph.

Note that if we have a fixed virtual network with dimen-

sioned links, we can quickly evaluate alternative mappings of

the backbone nodes to the substrate. However, as we change

the backbone mapping, we also change the shortest paths in the

virtual network, which changes the required link dimensions.

These inter-dependencies have led us to adopt the iterative

method outlined below.

1) Select an initial mapping of backbone nodes onto the

substrate. This initial mapping can be arbitrary, and sim-

ply provides a starting point for the iterative refinement

procedure.

2) Connect access nodes to backbone nodes. To provide

flexibility in the virtual network topology, we do not

make a rigid connection between access nodes and

backbone nodes. Instead, during each iteration of the

algorithm, we connect each access node to the backbone

node that is closest to it in the substrate.

3) Compute shortest paths. Given the specified topology

connecting the backbone nodes, the mapping of back-

bone nodes onto the substrate, and the connection of

access nodes to backbone nodes, we have a complete

virtual network topology with defined link lengths that

we can use to compute shortest paths in the virtual

network.

4) Determine link capacities. This can be done using linear

programming as in [9] or for restricted classes of traffic

constraints using maximum flow computations. This will

be discussed further in II-B.

5) Find best backbone node mapping. The previous steps

result in a complete virtual network topology with

defined link capacities. We now explore alternative

mappings of backbone nodes onto the substrate, while

maintaining the same virtual network topology and link

capacities. The best mapping found in this step is

then used in the next iteration of the algorithm, which

continues from step 2, above.

The computations required in steps 2 and 3 are straight-

forward and won’t be discussed further. The computations

required in steps 4 and 5 are discussed in more detail in II-

B and II-C, below. The iterative procedure terminates either

when there no further improvement in the quality of the

solution obtained, or a pre-specified upper bound on the

number of iterations is reached.

A. Defining Traffic Constraints

In general, traffic constraints can be expressed as upper

bounds on the traffic between arbitrary subsets of the virtual

network nodes. Although our approach can be applied to

virtual networks described by arbitrary constraints, there are

certain types of constraints that are particularly appropriate

for describing network traffic. By imposing some structure on

the system of constraints, we can make it easier for network

planners to define appropriate constraints, while also reducing

the computational effort required for link dimensioning.

For these reasons, we focus here on three classes of

constraints that are suitable for describing traffic flows in

networks. Termination constraints describe the total traffic

terminating at the virtual network’s access nodes and are

described by two functions α and ω, where α(u) is an upper

bound on the outgoing traffic from an access node u and

ω(u) is an upper bound on the incoming traffic to an access

node u. α and ω are also called the egress traffic and ingress

traffic, respectively. When termination constraints are the only

constraints specified, we have an instance of the so-called hose

model [12].

Pairwise traffic constraints are specified by a function

µ(u, v) which gives an upper bound on the traffic from an

access node u to another access node v. We allow
∑

v µ(u, v)
to exceed α(u) and

∑

u µ(u, v) to exceed ω(v). When
∑

v µ(u, v) is close to α(u) for all u and
∑

u µ(u, v) is close

ω(v) for all v, we say that the pairwise constraints are tight,

otherwise they are loose.

For each access node u, we define γ(u) to be the local

neighborhood of u. To limit the total amount of traffic at u that

is permitted to leave its neighborhood, we specify the distance

constraints by the functions αF and ωF , where αF (u) is an

upper bound on the total traffic from node u to nodes outside

of γ(u) and ωF (u) is an upper bound on the total traffic going

to node u from nodes outside of γ(u).

Distance constraints complicate the derivation of the pair-

wise constraints somewhat. We now describe the precise

method used to compute the pairwise constraints.

For any two nodes u and v, let















f1(u, v) = ω(v)
∑

t∈γ(u)

ω(t)
· (α(u) − αF (u)) if v ∈ γ(u)

f2(u, v) = ω(v)
∑

t/∈γ(u),t 6=u

ω(t)
·αF (u) if v /∈ γ(u)

When v ∈ γ(u), f1(u, v) represents v’s fair share of u’s

local egress traffic among all nodes within u’s neighborhood

γ(u). When v /∈ γ(u), f2(u, v) is v’s fair share of u’s non-

local egress traffic among u’s non-neighbors outside of γ(u).
f1 and f2 are the traffic constraints from u to v from u’s

perspective.

We also let















g1(u, v) = α(u)
∑

t∈γ(v)

α(t)
· (ω(v) − ωF (v)) if u ∈ γ(v)

g2(u, v) = α(u)
∑

t/∈γ(v),t 6=v

α(t)
·ωF (v) if u /∈ γ(v)

When u ∈ γ(v), g1(u, v) represents u’s fair share of v’s

local ingress traffic among all nodes within v’s neighborhood

γ(v). When u /∈ γ(v), g2(u, v) is u’s fair share of v’s non-

local ingress traffic among v’s non-neighbors outside of γ(v).
g1 and g2 are the traffic constraints from u to v from v’s

perspective.

Depending on whether or not u and v are neighbors, traffic

from u to v is bounded by the following four cases:

µ(u, v) =

δ·















max(f1(u, v), g1(u, v)) if v ∈ γ(u), u ∈ γ(v)
max(f1(u, v), g2(u, v)) if v ∈ γ(u), u /∈ γ(v)
max(f2(u, v), g1(u, v)) if v /∈ γ(u), u ∈ γ(v)
max(f2(u, v), g2(u, v)) if v /∈ γ(u), u /∈ γ(v)

where δ is called the relaxation factor. By setting δ = 1
we tightly constrain the pairwise traffic. By allowing δ to

grow larger than 1, more flexibility is allowed in the traffic

distribution.

B. Determining Link Capacities

In this section, we describe the procedure for dimensioning

each link, to ensure that it has sufficient capacity to handle

any traffic pattern allowed by the traffic constraints.

Given: A virtual network, represented as a directed graph

G = (V, E), a link ℓ ∈ E, a deterministic routing func-

tion R(u, v) specifying the path used by traffic from u to

v and a set of traffic constraints defined by the functions

[α, ω, γ, αF , ωF , µ]. We are also given A ⊆ V as a collection

of access nodes.

Find: a set of traffic flows f(u, v) that maximizes

∑

u,v∈A,ℓ∈R(u,v)

f(u, v)

subject to the following inequalities:

f(u, v) ≤ µ(u, v) ∀u, v ∈ A
∑

v∈A

f(u, v) ≤ α(u) ∀u ∈ A

∑

v∈A,v/∈γ(u)

f(u, v) ≤ αF (u) ∀u ∈ A

∑

u∈A

f(u, v) ≤ ω(v) ∀v ∈ A

∑

u∈A,u/∈γ(v)

f(u, v) ≤ ωF (v) ∀v ∈ A

The value of the objective function is the capacity needed at

link ℓ to ensure that ℓ has enough capacity to handle any traffic

s

a1

a2

b1

b2

c1

c2

d1

d2

t

a3

a4

b3

b4

c3

c4

d3

d4

α(d)

α(a)

α(b)

α(c)

αF(a)

αF(b)

αF(c)

αF(d) ω(d)

ω(a)

ω(b)

ω(c)

ωF(a)

ωF(b)

ωF(c)

ωF(d)

µ(a,c)

µ(b,c)

µ(d,c)

Fig. 2. Example maximum flow problem for dimensioning link ℓ

pattern allowed by the constraints. While we could solve this

problem using linear programming, it can also be formulated

as a maximum flow problem, allowing for a much faster

solution. Since link dimensions must be computed repeatedly

for every link during each iteration of the design procedure, the

use of maximum flow computations can significantly reduce

the overall running time.

The equivalent maximum flow problem is defined on a flow

graph N = (U,M) where U = {s, t}∪{ui|u ∈ A, 1 ≤ i ≤ 4}.

The edge set M includes edges of the form (s, u1) with

capacity α(u), edges (u1, u2) with capacity αF (u), edges

(u3, u4) with capacity ωF (u), and edges (u4, t) with capacity

ω(u) for all u ∈ A. For all pairs of vertices (u, v) with

ℓ ∈ R(u, v), we include an edge of the form (ui, vj) for

1 ≤ i ≤ 2 and 3 ≤ j ≤ 4 with capacity µ(u, v). Specifically,

if u ∈ γ(v) and v ∈ γ(u) an edge (u1, v4) is included. If

u 6∈ γ(v) and v 6∈ γ(u) an edge (u2, v3) is included. If

u ∈ γ(v) and v 6∈ γ(u) we include an edge (u1, v3). If

u 6∈ γ(v) and v ∈ γ(u) we include an edge (u2, v4). A

maximum flow from s to t corresponds to a worst-case traffic

configuration for link ℓ. The capacity limits on the edges of the

form (s, u1) and (u4, t) ensure that the termination constraints

are satisfied. The placement of the edges of the form (u2, vj)
and (vi, u3) together with the capacity limits on the edges

of the from (u1, u2) and (u3, u4) ensure that the distance

constraints are satisfied. Finally, the capacities of the edges

of the form (ui, vj) ensure that the pairwise constraints are

satisfied. An example of one such flow graph for a virtual

network with access node set A = {a, b, c, d} is shown in

Figure 2. Three pairs of nodes, (a, c), (b, c) and (d, c) have

their traffic go through link ℓ.

C. Backbone Node Mapping

In this section, we describe how we map backbone nodes

onto the substrate. We formulate the backbone mapping prob-

lem as a mixed integer quadratic program. We are given

a substrate network H = (W,F) and a virtual network

G = (V,E). For each vertex u ∈ V , we are also given a

set of substrate vertices t(u) ⊆ W that defines the set of

locations that u may be mapped to. For access nodes in the

virtual network, t(u) will be a single substrate node, while

for backbone nodes, t(u) will be a subset of W . For each pair

of substrate nodes (p, q), we are also given a distance d(p, q)
representing the shortest path length between nodes p and q
in the substrate. Finally, for link (u, v) in the virtual network,

we are given a capacity c(u, v). In particular, the unit link

capacity cost is set equal to the physical length of the link,

reflecting the higher costs associated with longer links.

Given all of the above, we want to construct a least-cost

mapping of virtual nodes onto substrate nodes. We represent

the mapping using a collection of indicator variables xu,p.

xu,p = 1 indicates that u ∈ V is mapped to p ∈ W .

Otherwise, xu,p = 0. With this definition, we can define the

objective function for our mixed integer quadratic program as

∑

(u,v)∈E

∑

p,q∈W

xu,pxv,qc(u, v)d(p, q)

To minimize the quadratic objective function, we need to

specify certain constraints on the indicator variables. Specifi-

cally,

xu,p ∈ {0, 1} ∀u ∈ V, p ∈ W
∑

p∈W

xu,p = 1 ∀u ∈ V

xu,p = 0 ∀u ∈ V, p ∈ W,p /∈ t(u)

We solve the problem using a general solver called

MIQPBB, developed by Fletcher and Leyffer [13]. MIQPBB

uses depth-first tree search and maximal fractional branching.

III. LOWER BOUND ON VIRTUAL NETWORK

CONFIGURATION COST

We evaluate virtual network designs by comparing their

costs to a general lower bound that is independent of the virtual

network topology.

The input to the lower bound computations includes

the substrate network, specified by an undirected graph

H = (W,F), with edge lengths and resulting shortest path

distances d(u, v). The input also includes a set A of access

nodes, and a set of traffic constraints defined by the functions

[α, ω, γ, αF , ωF , µ]. Given these inputs, we seek a set of

traffic flows f(u, v) that maximizes

∑

u,v∈A

d(u, v)f(u, v)

subject to the following inequalities:

f(u, v) ≤ µ(u, v) ∀u, v ∈ A
∑

v∈A

f(u, v) ≤ α(u) ∀u ∈ A

∑

v∈A,v/∈γ(u)

f(u, v) ≤ αF (u) ∀u ∈ A

∑

u∈A

f(u, v) ≤ ω(v) ∀u ∈ A

∑

u∈A,u/∈γ(v)

f(u, v) ≤ ωF (v) ∀u ∈ A

Fig. 3. GUI for viewing configuration results

This problem can be solved using linear programming.

Alternatively, it can be formulated as a maximum cost flow

problem, defined on a flow graph similar to the one used for

the link dimensioning problem. As before, we have a network

N = (U,M) where U = {s, t} ∪ {ui|u ∈ A, 1 ≤ i ≤ 4}.

The edge set includes edges of the form (s, u1) with capacity

α(u), edges (u1, u2) with capacity αF (u), edges (u3, u4) with

capacity ωF (u), and edges (u4, t) with capacity ω(u) for all

u ∈ A. These edges all have zero cost. For all pairs of vertices

(u, v), we include an edge of the form (ui, vj) for 1 ≤ i ≤ 2
and 3 ≤ j ≤ 4 with capacity µ(u, v) and cost d(u, v). If

u ∈ γ(v) and v ∈ γ(u) an edge (u1, v4) is included. If

u 6∈ γ(v) and v 6∈ γ(u) an edge (u2, v3) is included. If

u ∈ γ(v) and v 6∈ γ(u) we include an edge (u1, v3). If

u 6∈ γ(v) and v ∈ γ(u) we include an edge (u2, v4). A

maximum cost flow from s to t corresponds to a worst-case

traffic configuration for any virtual network defined on this

substrate with the given constraints.

IV. A TOOL FOR VIRTUAL NETWORK CONFIGURATIONS

IN DIVERSIFIED NETWORKS

A tool has been implemented to automate the iterative

virtual network design and mapping process. To use the tool,

one specifies a virtual network backbone topology, a substrate

network, a set of access nodes, and a set of traffic parameters.

After an initial mapping of backbone nodes to substrate nodes

is selected, the tool carries out the iterative design procedure

discussed in Section II.

The tool also includes a graphical user interface that vi-

sualizes the computed virtual network configurations. For

example, Fig. 3 shows the least-cost configuration of a virtual

network on a substrate network consisting of the 50 largest

metropolitan areas in the United States. The area of the circles

shown for each node are proportional to the total population of

the city represented by that node. This virtual network has 6

backbone nodes connected in a star topology with the central

backbone node (shown in green) located in Indianapolis. The

other 5 backbone nodes (shown in red) are in Salt Lake City,

Dallas, Atlanta, Columbus, and Philadelphia. Backbone links

are highlighted in red, and access links shown as dashed blue

(b) us_metro_50

(a) us_metro_20

(c) eu_metro_20

Fig. 4. Substrate networks

lines connect metro areas to their nearby routers. If a link

is used both as a backbone link and an access link, it is

shown in pink. On the left hand side of the window, some

useful statistics associated are displayed, including the values

of the traffic parameters, the cost of the configuration, the

lower bound and the ratio of the configuration cost to the

lower bound.

V. EVALUATION

A. Experiment Setup

In this section, we describe a set of experiments carried

out using the virtual network design tool described above. We

consider three substrate network topologies taken from [11].

• Us metro 20: this substrate network spans the 20 largest

metropolitan areas in the United States.

• Us metro 50: this substrate is a larger version of

us metro 20, which spans the 50 largest metropolitan

areas in the United States.

• Eu metro 20: this substrate spans the 20 largest

metropolitan areas in western Europe.

The substrate network topologies are shown in Fig. 4. We

assume substrate links have sufficient capacities to handle

the traffic for the virtual network being mapped. We also

assume that all substrate nodes are access nodes for each

virtual network. We use the population of each access node

to define the total traffic terminating at that node. That is, we

define the values of the functions α and ω to be proportional

to the populations of the associated metropolitan areas. For

simplicity, we let α(u) = ω(u) for all access nodes u. To

define the distance constraints, we let the neighborhood of

each node be the set of three nodes that are closest to it

in the substrate. We then limit the total traffic leaving the

neighborhood to be a fixed percentage of the total traffic at a

node. That is, we let αF (u) ≤ θ·α(u) and ωF (u) ≤ θ·ω(u),
for some constant θ. In our experiments, we let θ take on

values 0.25, 0.5, 0.5 and 1.0. We refer to the constant θ as the

distance factor. Note when θ = 1, all traffic at a node may

be non-local, in which case, we set the local neighborhood of

each access node to be empty. For the relaxation factor δ, we

allow it to vary from 1.0 to 1.6.

We have studied five different virtual network backbone

topologies in our experiments: star, ring, star-ring, complete

graph, and minimum spanning tree (MST). The star-ring

topology combines a star topology with a ring, connecting

the leaves of the star. For the MST topology, the set of

links included in the backbone is recomputed at the start of

each iteration. For each backbone topology, we also vary the

number of backbone nodes. In particular, for us metro 20 and

eu metro 20, the number of backbone nodes ranges from 3

to 10, and for us metro 50, the number ranges from 3 to 16.

In order to see the impact of the number of backbone nodes

on the configuration cost, we add constraints in the mapping

formulation to allow only one virtual network backbone node

to be mapped to a substrate node.

The different parameter combinations generate a total of

4200 virtual network configuration problems. To help under-

stand the analysis, we define the following terms:

• Run: it is a complete virtual network configuration pro-

cess, which starts with a randomly selected backbone

router placement, and iterates until there is no further

change in placement in two consecutive iterations or a

pre-set 10 iteration limit is reached. In our experiments,

av
er

ag
e

co
st

av
er

ag
e

co
st

av
er

ag
e

co
st

av
er

ag
e

co
st

number of routers

number of routers

number of routers

number of routers

(a) δ = 1.0

(c) δ = 1.4

(b) δ = 1.2

(d) δ = 1.6

star

complete

star

complete

complete star star

complete

Fig. 5. Average configuration cost and error of star and complete topologies
on us metro 50 when distance factor θ = 0.75

for each virtual network configuration problem, 20 inde-

pendent runs are performed, each with a different random

starting point.

• Configuration cost of a run: a run may take multiple

iterations, which are valid configurations each associated

with a configuration cost. The configuration cost of a run

is defined to be the cost of the least-cost configuration in

that run.

• Average configuration cost: this is the mean value of the

20 configuration costs in 20 runs on the same virtual

network.

B. Evaluation Results

Fig. 5 has four subgraphs that show the average config-

uration cost for the star and complete backbone topologies

mapped onto us metro 50 with a distance factor equal to

0.75. Note that each subgraph has a different relaxation factor.

The x axis is the number of routers in each topology. The

average costs shown are averaged over 20 runs. To evaluate

the variation among these runs, we also show, for each data

point, the minimum and maximum cost among the 20 runs.

In addition, we compute the standard deviation and show it as

a rectangle around the average cost. The standard deviation is

typically within 4% to 8% of the average cost, which indicates

that the randomly-chosen backbone node placement has fairly

small impact on the configuration results found by the tool.

In most cases as shown in the four subgraphs, the average

configuration cost decreases as the number of backbone nodes

increases. However, the benefit of having more backbone

nodes becomes negligible when the number of backbone nodes

is sufficiently large. In some cases, increasing the number of

backbone nodes even causes the configuration cost to go up.

complete
MST

star

di
st

an
ce

 fa
ct

or

complete

MST

star

di
st

an
ce

 fa
ct

or

relaxation factor relaxation factor

(a) us_metro_20 (b) us_metro_50

relaxation factor

(c) eu_metro_20

complete

MST

star

di
st

an
ce

 fa
ct

or

Fig. 6. Least-cost configurations on us metro 20, us metro 50 and
eu metro 20 under different conditions

As the relaxation factor increases, so are the configuration

costs of both topologies. However, the cost of the star topology

grows much slower than the cost of the complete topology. In

subgraph 5a where relaxation factor δ = 1.0, the complete

topology is clearly better than the star. As δ increases, pair-

wise traffic constraints are further relaxed and the difference

between the complete topology and the star gets smaller. In

subgraph 5d where δ is 1.6, reflecting very loose pairwise

traffic constraints, the star outperforms the complete topology.

In Fig. 6, we show the least-cost backbone topologies found

under different conditions for all three substrate networks. The

x and y axes are the relaxation factor and distance factor,

respectively. The best backbone topology for each combination

of relaxation factor and distance factor is identified by the

character that precedes the number at each point in the chart.

Points for which the star backbone topology is best are marked

by “∗”, points for which the complete backbone topology

is best are marked by “×” and points for which the MST

topology is best are marked by “·”. The number at each

point represents the number of backbone nodes in the most

cost-effective configuration. Note that the ring and star-ring

backbone topologies were never the most cost-effective and so

do not show up in these charts. The charts reveal both some

interesting similarities and some significant differences. In

general, we see that the complete graph is preferred when the

pairwise constraints are tightest (small relaxation factor) while

the star and MST do best when the relaxation factor is large.

The MST outperforms the star when the locality constraints are

stronger. In spite of these general observations, the regions of

best performance for the different backbone topologies varies

fairly widely. We believe this is due to the differences inherent

in the underlying substrate network topologies. Here, we see

co
st

lo
w

er
 b

ou
nd

relaxation factor relaxation factor

(a) (b)

relaxation factor

(c)

ra
tio

θ = 0.25

θ = 0.5

θ = 0.75

θ = 1

θ = 0.25

θ = 0.5

θ = 0.75

θ = 1

θ = 0.25

θ = 0.5 θ = 0.75

θ = 1

Fig. 7. Lower bound, cost of the least-cost configurations in Fig. 6, and the
ratio of cost to lower bound on us metro 50 under different conditions

our iterative design tool is very sensitive to the changes in

traffic conditions and substrate network topologies.

In the conventional network design context, it has been

shown, when traffic between pairs of end points is tightly

constrained (small relaxation factor), the complete topology

is optimal, and the best star is close to the optimal topology

while there is only egress and ingress constraints (infinite large

relaxation factor) [11]. Even though our study focuses on the

backbone topology of a virtual network and is restricted by

the underlying substrate topology, our results, in these cases,

still conform to the observations in the conventional network

design.

Fig. 7a shows how the lower bound varies as a function of

the relaxation factor and distance factor for us metro 50. We

observe that cost grows as either factor increases, since the

looser constraints on the traffic allow higher cost traffic config-

urations. Fig. 7b shows how the cost of the best virtual network

configuration found varies as a function of the relaxation factor

and distance factor for us metro 50. We see that the costs vary

in a similar fashion to the lower bound. Fig. 7c shows the ratio

of the cost of the best configuration to the lower bound. Here

we find, that the most cost-effective configurations come close

to the lower bound when the locality constraints are loosest.

Overall, the cost of the best virtual network configuration is

no more than 1.5 times the lower bound. Also note in Fig. 7c,

the two curves for θ = 0.5 and θ = 0.75 have peak points

at relaxation factor = 1.4, which corresponds to the topology

transitions indicated in Fig. 6b. The lower bound and the cost

of the best virtual network configuration as a function of the

two factors are not shown for us metro 20 and eu metro 20

because they have very similar characteristics as what we see

in Fig. 7.

Fig. 8 compares the costs of the least-cost configurations

distance factor

co
st

complete

star

Fig. 8. Cost of the least-cost configurations for star and complete topology
with 8 routers on us metro 50 when relaxation factor = 1.6

for virtual networks with 8 routers in the complete and star

backbone topologies. The relaxation factor is 1.6 and the

substrate network is us metro 50. When the distance factor

is 0.25 or 1.0, the costs of the star and complete topology

are about the same. When the distance factor is 0.5 or 0.75,

the star is less expensive than the complete topology. To

explain this phenomenon, we show the best configurations

of the corresponding complete and star topologies in Fig. 9

and Fig. 10. We vary the distance factor while keeping the

relaxation factor fixed at 1.6. When distance factor θ is 0.25,

75% of the total traffic is confined within each node’s local

neighborhood, which means heavy traffic on access links and

light traffic on backbone links. To lower the cost on the access

links, routers in both topologies are spread out in the substrate

network to make access links short. When nodes within the

same local neighborhood have to access the virtual network

through different routers, the traffic has to pass through some

backbone links. We call such traffic the detoured local traffic.

To handle the detoured local traffic, direct backbone links

between every pair of routers in the complete topology helps

to lower the cost. As to the star topology, such traffic has to

take a much longer route through the star center (highlighted

in green), which contributes to a higher cost on backbone

links in star topology. Even though star is more suitable than

complete topology in handling the rest 25% non-local traffic,

the detoured local traffic kills this advantage. When distance

factor gets larger, increased non-local traffic starts to play a

more important role in the configuration cost. To handle the

increased non-local traffic, the capacities of backbone links

must increase accordingly. In Fig. 9 and Fig. 10, we see the

routers in both topologies retreat towards the center of the

substrate network in order to lower the cost through shortening

the backbone links. This is done at the expense of longer

access links and hence higher costs for access links. Because

the routers move towards the network center, more nodes can

share a router, which largely reduces the negative impact of

the detoured local traffic on the star topology. Due to this

reason, we see star costs less than the complete topology.

When θ equals 1.0 with all traffic being non-local, the routers

are clustered at the network center. At this point, there is no

noticeable difference in cost between the star and complete

topology. The “shrinking” phenomenon is quite interesting,

(a) θ = 0.25 (b) θ = 0.5 (c) θ = 0.75 (d) θ = 1.0

Fig. 9. Best configurations for virtual network with 8 routers in complete topology on us metro 50 when relaxation factor δ = 1.6

(a) θ = 0.25 (b) θ = 0.5 (c) θ = 0.75 (d) θ = 1.0

Fig. 10. Best configurations for virtual network with 8 routers in star topology on us metro 50 when relaxation factor δ = 1.6

m
ap

pi
ng

 ti
m

e
(s

ec
)

m
ap

pi
ng

 ti
m

e
(s

ec
)

number of routersnumber of routers

(a) us_metro_20 (b) us_metro_50

Fig. 11. Average mapping time on us metro 20 and us metro 50

which suggests, if we reduce the number of routers, we should

get lower cost. This is actually proven to be true in Fig. 6b,

where the complete topology with 4 routers is shown to be

the least-cost one.

The running time of an iteration is dominated by the

mapping time of the MIQPBB solver. Fig. 11 shows the

average CPU time for mapping virtual networks in different

topologies on us metro 20 and us metro 50. Mapping time

is a function of the substrate network topology, the virtual

backbone topology and the number of routers in the virtual

networks. Specifically in our experiments, mapping a virtual

network with 16 routers on us metro 50 takes 1.7 seconds for

the ring topology and less than 0.4 second for the star and

complete topology. On us metro 20, mapping takes less than

0.1 second. The mapping time on eu metro 20 is very similar

number of iterations

C
D

F eu_metro_20

us_metro_20

us_metro_50

Fig. 12. CDF for the number of iterations per run on us metro 20,
us metro 50 and eu metro 20

to the mapping time on us metro 20. Although the mapping

time increases exponentially as the number of virtual routers

increases, mapping a good-sized virtual network on a large

substrate network can still be done in reasonable time.

In all experiments, a run is cut off if it doesn’t converge

within 10 iterations. Fig. 12 shows the Cumulative Distribution

Function (CDF) for the actual number of iterations performed

in each run on the three substrate networks. On us metro 20

and eu metro 20, nearly all runs end within 6 iterations. On

us metro 50, more than 96% of the runs finish within 9

iterations. Overall, we can see that the tool is very efficient in

finding a good configuration in just a few iterations.

VI. CLOSING REMARKS

In this paper, we have developed an effective method

for computing high quality mappings of virtual networks

onto substrate networks. The computed virtual networks are

constructed to have sufficient capacity to accommodate any

traffic pattern allowed by user-specified traffic constraints. Our

computational method produces high quality results that are

demonstrably close to a lower bound and is fast enough to

handle networks of practical size.

There are several ways in which this work can be extended.

One important direction is to incorporate additional elements

into the network design procedure. In particular, we currently

assume that substrate links have sufficient capacity not to

constrain the mapping of virtual networks. Because substrate

networks are typically designed to have enough resources for

accommodating multiple virtual networks, this assumption is

legitimate when the number of virtual networks on the sub-

strate isn’t very large. However, adding substrate link capacity

constraints is a natural and useful extension. We also do not

currently account for costs associated with mapping backbone

nodes to different locations. Since the location of a backbone

node affects the amount of traffic passing through it, some

locations will naturally require more processing resources to

be allocated to a backbone node, contributing to a higher cost.

There are also other algorithmic possibilities that we have

not explored. In particular, there are other alternatives that

can be used for the backbone mapping procedure that may be

worth exploring. Given that we need to use multiple iterations

in our search for the best overall solution, it is not clear that we

need to devote so much effort to finding the best mapping in

each iteration. A simple local improvement algorithm (perhaps

based on simulated annealing) might produce equally good

results with less overall computational effort. This would allow

us to handle both larger substrates and larger virtual networks.

Load balancing on substrate networks and partial reconfig-

uration of virtual networks are also future research directions

we plan to pursue.

ACKNOWLEDGMENT

We would like to thank Dr. Fletcher and Dr. Leyffer for

their generous help with the MIQPBB solver [13].

REFERENCES

[1] L. Peterson, S. Shenker, and J. Turner, “Overcoming the Internet impasse
through virtualization,” in ACM Workshop on Hot Topics in Networks

(HotNets), 2004.
[2] J. Turner and D. Taylor, “Diversifying the Internet,” 2004.
[3] D. Taylor and J. Turner, “Towards a diversified Internet,” Nov. 2004.
[4] Chun, “PlanetLab: An Overlay Testbed for Broad-Coverage Services,”

ACM Computer Communications Review, vol. 33, no. 3, 2003.
[5] R. Ricci, C. Alfeld, and J. Lepreau, “A Solver for the Network Testbed

Mapping Problem,” SIGCOMM Computer Communications Review,
vol. 33, no. 2, pp. 65–81, 2003.

[6] Y. Zhu and M. Ammar, “Algorithms for Assigning Substrate Network
Resources to Virtual Network Components,” in IEEE Infocom, 2006.

[7] A. Fingerhut, S. Suri, and J. Turner, “Designing Least-Cost Nonblocking
Broadband Networks,” Journal of Algorithms, pp. 287–309, 1997.

[8] ——, “Designing Minimum Cost Nonblocking Communication Net-
works,” in 5th International Conference on Telecommunication Systems

Modelling and Analysis, Mar. 1997.

[9] A. Fingerhut, “Approximation Algorithms for Configuring Nonblocking
Communication Networks,” Doctoral Dissertation, Washington Univer-

sity in St. Louis, May 1994.
[10] H. Ma, I. Singh, and J. Turner, “Constraint Based Design of ATM

Networks, an Experimental Study,” Technical Report, Washington Uni-

versity, Apr. 1997.
[11] S. Y. Choi, “Resource Configuration and Network Design in Extensible

Networks,” Doctorial Dessertation, Washington University in St. Louis,
Dec. 2003.

[12] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
and J. E. van der Merive, “A flexible model for resource management
in virtual private networks,” in ACM SIGCOMM, 1998, pp. 95–108.

[13] R. Fletcher and S. Leyffer, “A Mixed Integer Quadratic Programming
Package,” 1998.

	Efficient Mapping of Virtual Networks onto a Shared Substrate
	Recommended Citation
	Efficient Mapping of Virtual Networks onto a Shared Substrate

	tmp.1418149444.pdf.XbNiu

