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Abstract

Stimulus reconstruction or decoding methods provide an important tool for understanding
how sensory and motor information is represented in neural activity. We discuss Bayesian
decoding methods based on an encoding generalized linear model (GLM) that accurately
describes how stimuli are transformed into the spike trains of a group of neurons. The
form of the GLM likelihood ensures that the posterior distribution over the stimuli that
caused an observed set of spike trains is log-concave so long as the prior is. This allows the
maximum a posteriori (MAP) stimulus estimate to be obtained using efficient optimization
algorithms. Unfortunately, the MAP estimate can have a relatively large average error
when the posterior is highly non-Gaussian. Here we compare several Markov chain Monte
Carlo (MCMC) algorithms that allow for the calculation of general Bayesian estimators
involving posterior expectations (conditional on model parameters). An efficient version
of the hybrid Monte Carlo (HMC) algorithm was significantly superior to other MCMC
methods for Gaussian priors. When the prior distribution has sharp edges and corners, on
the other hand, the “hit-and-run” algorithm performed better than other MCMC methods.
Using these algorithms we show that for this latter class of priors the posterior mean estimate
can have a considerably lower average error than MAP, whereas for Gaussian priors the two
estimators have roughly equal efficiency. We also address the application of MCMC methods
for extracting non-marginal properties of the posterior distribution. For example, by using
MCMC to calculate the mutual information between the stimulus and response, we verify the
validity of a computationally efficient Laplace approximation to this quantity for Gaussian
priors in a wide range of model parameters; this makes direct model-based computation of
the mutual information tractable even in the case of large observed neural populations, where
methods based on binning the spike train fail. Finally, we consider the effect of uncertainty
in the GLM parameters on the posterior estimators.

1 Introduction

Understanding the exact nature of the neural code is a central goal of theoretical neuroscience.
Neural decoding provides an important method for comparing the fidelity and robustness of
different codes (Rieke et al., 1997). The decoding problem, in its general form, is the problem
of estimating the relevant stimulus, x, that elicited the observed spike trains, r, of a population
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of neurons over a course of time. Neural decoding is also of crucial importance in the design of
neural prosthetic devices (Donoghue, 2002).

A large literature exists on developing and applying different decoding methods to spike
train data, both in single cell and population decoding. Bayesian methods lie at the basis of
a major group of these decoding algorithms (Sanger, 1994; Zhang et al., 1998; Brown et al., 1998;
Maynard et al., 1999; Stanley and Boloori, 2001; Shoham et al., 2005; Barbieri et al., 2004; Wu et al.,
2004; Brockwell et al., 2004; Kelly and Lee, 2004; Karmeier et al., 2005; Truccolo et al., 2005;
Pillow et al., 2010; Jacobs et al., 2006; Yu et al., 2009; Gerwinn et al., 2009). In such methods
the a priori distribution of the sensory signal, p(x), is combined, via Bayes’ rule, with an encod-
ing model describing the probability, p(r|x), of different spike trains given the signal, to yield the
posterior distribution, p(x|r), that carries all the information contained in the observed spike
train responses about the stimulus. A Bayesian estimate is one that, given a definite cost func-
tion on the amount of error, minimizes the expected error cost under the posterior distribution.
Assuming the prior distribution and the encoding model are appropriately chosen, the Bayes
estimate is thus optimal by construction. Furthermore, since the Bayesian approach yields a
distribution over the possible stimuli that could lead to the observed response, Bayes estimates
naturally come equipped with measures of their reliability or posterior uncertainty.

In a fully Bayesian approach, one has to be able to evaluate any desired functional of the
high dimensional posterior distribution. Unfortunately, calculating these can be computation-
ally very expensive. For example, most Bayesian estimates involve integrations over the (often
very high-dimensional) space of possible signals. Accordingly, most work on Bayesian decod-
ing of spike trains has either focused on cases where the signal is low dimensional (Sanger,
1994; Maynard et al., 1999; Abbott and Dayan, 1999; Karmeier et al., 2005) or on situations
where the joint distribution, p(x, r), has a certain Markov tree decomposition, so that compu-
tationally efficient recursive techniques may be applied (Zhang et al., 1998; Brown et al., 1998;
Barbieri et al., 2004; Wu et al., 2004; Brockwell et al., 2004; Kelly and Lee, 2004; Shoham et al.,
2005; Eden et al., 2004; Truccolo et al., 2005; Ergun et al., 2007; Yu et al., 2009; Paninski et al.,
2010). The Markov setting is extremely useful; it lends itself naturally to many problems of in-
terest in neuroscience and has thus been fruitfully exploited. In particular, this setting is very
useful in an important class of decoding problems where stimulus estimation is performed online,
i.e., the stimulus at some time, t, is estimated conditioned on the observation of the spike trains
only up to that time, as opposed to the entire spike train.

However, some decoding problems can not be formulated in the online estimation framework.
In such cases quantities of interest should naturally be conditioned on the entire history of the
spike train. In this paper, we focus on this latter class of problems (although many of the
methods we discuss can potentially be adopted to the online case as well). Furthermore, it is
awkward to cast many decoding problems of interest in the Markov setting. A more general
method that does not require such tree decomposition properties is to calculate the maximum a
posteriori (MAP) estimate xMAP (Stanley and Boloori, 2001; Jacobs et al., 2006; Gerwinn et al.,
2009) – see the companion paper (Pillow et al., 2010) for further review and discussion. The
MAP estimate requires no integration, but only maximization of the posterior distribution, and
can remain computationally tractable even when the stimulus space is very high-dimensional.
This is the case for general log-concave posterior distributions; many problems in sensory and
motor coding fall in this class (it should be noted, however, that in many cases of interest where
this condition is not satisfied, e.g., when the distributions are inherently multi-modal, posterior
maximization can become highly intractable). The MAP is a good estimator when the posterior
is well-approximated by a Gaussian distribution centered at x

MAP
(Tierney and Kadane, 1986;
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Kass et al., 1991). As the mode and the mean of a Gaussian distribution are identical, in this case
the MAP is approximately equal to the posterior mean as well. This Gaussian approximation is
expected to be sufficiently accurate, e.g., when the prior distribution and the likelihood function
(i.e., p(r|x) as function of x) are not very far from Gaussian, or when the likelihood is sharply
concentrated around x

MAP
. However, in cases where the prior distribution has sharp boundaries

and corners and the likelihood function does not constrain the estimate away from such non-
Gaussian regions, the Gaussian approximation can fail, resulting in a large average error in the
MAP estimate. In such cases, one expects the MAP to be inferior to the posterior mean E(x|r),
which is the optimal estimate under squared error loss.

Accordingly, in Sec. 3 of this paper we develop efficient Markov chain Monte Carlo (MCMC)
techniques for sampling from general log-concave posterior distributions, and compare their per-
formance in situations relevant to our neural decoding setting (for comprehensive introductions
to MCMC methods, including their application in Bayesian problems, see, e.g., Robert and Casella
(2005) and Gelman (2004)). By providing a tool for approximating averages (integrals) over the
exact posterior distribution, p(x|r, θ) (where θ are the parameters of the encoding forward
model, in principle obtained by fitting to experimental data), these techniques allow us to cal-
culate general Bayesian estimates such as E(x|r, θ), and provide estimates of their uncertainty.
Although, in principle many of the MCMC methods we discuss in this paper are applicable even
to posterior distributions that are not log-concave, they may lose their efficiency in such cases,
and furthermore estimates based on them may not even converge to true posterior averages. In
Sec. 4 we compare the MAP and the posterior mean stimulus estimates based on the simulated
response of a population of retinal ganglion cells (RGC). In Sec. 5 we discuss the applications
of MCMC for calculating more complicated properties of p(x|r, θ) beyond marginal statistics,
such as the statistics of first-passage times. We also discuss an MCMC-based method known
as “bridge sampling” (Bennett, 1976; Meng and Wong, 1996) that provides a tool for a direct
calculation of the mutual information. Using this technique, we show that for Gaussian priors
the estimates of (Pillow et al., 2010) for this quantity based on the Laplace approximation are
robust and accurate. Finally, in Sec. 6 we discuss the effect of uncertainty in the parameters of
the forward model, θ, on the MAP and posterior mean estimate. We proceed by first introducing
the forward model used to calculate the likelihood p(r|x, θ), in the next section.

2 The encoding model, the MAP, and the stimulus ensembles

In this section we give an overview of neural encoding models based on generalized linear models
(GLM) (Brillinger, 1988; McCullagh and Nelder, 1989; Paninski, 2004; Truccolo et al., 2005),
and briefly review the treatment of (Pillow et al., 2010) for MAP based decoding. (Note that
much of the material in this section was previously covered in (Pillow et al., 2010), but we
include a brief review here to make this paper self-contained.) A neural encoding model is a
model that assigns a conditional probability to the neural response given the stimulus. We take
the stimulus to be an artificially discretized, possibly multi-component, function of time, x(t, n),
which will be represented as a d-dimensional vector x.1

In response to x, the i-th neuron emits a spike train response

ri(t) =
∑

α

δ(t − ti,α), (1)

1The dimension of x is thus d = NT , where T is the number of time steps, and N is the total number of
components at each time step.
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where ti,α is the time of the α-th spike of the i-th neuron. We represent this function by ri (we
will use bold face symbols for both continuous time and discretized, finite-dimensional vectors),
and the collection of response data of all cells by r.

The response, r, is not fully determined by x, and is subject to trial to trial variations. We
model r as a point process whose instantaneous firing rate is the output of a generalized linear
model (Brillinger, 1988; McCullagh and Nelder, 1989; Paninski, 2004). This class of models has
been extensively discussed in the literature. Briefly, it is a generalization of the popular Linear-
Nonlinear-Poisson model that includes feedback and interaction between neurons, with parame-
ters that have natural neurophysiological interpretations (Simoncelli et al., 2004) and has been
applied in a wide variety of experimental settings (Brillinger, 1992; Dayan and Abbott, 2001;
Chichilnisky, 2001; Theunissen et al., 2001; Brown et al., 2003; Paninski et al., 2004; Truccolo et al.,
2005; Pillow et al., 2008). The model gives the conditional (on the stimulus, as well as the history
of the observed spike train) instantaneous firing rate of the i-th observed cell as

λi(t) ≡ f



bi +
∑

τ,n

ki(t − τ, n)x(τ, n) +
∑

j

∑

β

hij(t − tj,β)



 , (2)

which we write more concisely as

λi = f



bi + Ki · x +
∑

j

Hij · rj



 . (3)

Here, the linear operators (filters) Ki, and Hij have causal,2 time translation invariant kernels
ki(t, n) and hij(t) (we note that the causality condition for ki(t, n) is only true for sensory
neurons). The kernel ki(t, n) represents the i-th cell’s linear ‘receptive field’, and hij(t) describe
possible excitatory or inhibitory post-spike effect of the j-th observed neuron on the i-th. The
diagonal components hii describe the post-spike feedback of the neuron to itself, and can account
for refractoriness, adaptation and burstiness depending on their shape (see (Paninski, 2004) for
details). The constant bi is the DC bias of the i-th cell, such that f(bi) may be considered as the
i-th cell’s constant “baseline” firing rate. Finally, f(·) is a nonlinear, nonnegative, increasing
function.3

Given the firing rate, Eq. (3), the forward probability, p(r|x, θ), can be written as (Snyder and Miller,
1991; Paninski, 2004; Truccolo et al., 2005)

log p(r|x, θ) =
∑

i

[

rT
i log λi −

∫ T

0
λi(t)dt

]

+ const.

=
∑

i,α

log λ(ti,α) −
∑

i

∫ T

0
λi(t)dt + const., (4)

where θ = {bi, ki, hij} is the set of GLM parameters. The constant term serves to normalize the
probability and does not depend on x or θ. We will restrict ourselves to f(u) that are convex
and log-concave (e.g., this is the case for f(u) = exp(u)). Then the log-likelihood function

2That is, the kernels ki(t, n) and hij(t) vanish for t < 0.
3We note that even though the nonlinearity, f(·), has to be an increasing function, with appropriately chosen

negative post-spike feedback filters, hii, the mean firing rate of the GLM modeled neurons will still exhibit
saturation as a function of the input strength, x.
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Figure 1: Illustration of Bayesian decoding paradigm. (A) Bayesian decoding performs inference
about the stimulus using the observed spike times and a specified encoding model. (B) Schematic
of the encoding model (“Generalized Linear Model”) used for the decoding examples shown in
this paper. The model parameters (ki and hij) can be easily fit using maximum likelihood. Once
fit, the model provides a description of the data likelihood, p(r|x), which is combined with the
prior p(x) to estimate x.

L(x, θ) is guaranteed to be a separately concave function of either the stimulus x or the model
parameters,4 irrespective of the observed spike data r. The log-concavity with respect to the
model parameters makes maximum likelihood fitting of this model very easy, as concave functions
on convex parameter spaces have no nonglobal local maxima. Therefore simple gradient ascent
algorithms can be used to find the maximum likelihood estimate.

The prior distribution describes the statistics of the stimulus in the natural world or that
of an artificial stimulus ensemble used by the experimentalist. In this paper we only consider
priors relevant for the latter case. Given a prior distribution, p(x), and having observed the
spike trains, r, the posterior probability distribution over the stimulus is given by Bayes’ rule

p(x|r, θ) =
p(r|x, θ)p(x)

p(r|θ)
, (5)

where

p(r|θ) =

∫

p(r|x, θ)p(x)dx. (6)

The MAP estimate is by definition

x
MAP

(r, θ) = arg max
x

p(x|r, θ) = arg max
x

[log p(r|x, θ) + log p(x)] , (7)

(Except for in Sec. 6, in the following sections we will drop θ from the arguments of x
MAP

or the distributions, it being understood that they are conditioned on the specific θ obtained
from the experimental fit). As discussed above, for the GLM nonlinearities that we consider,
the likelihood, p(r|x, θ), is log-concave in x. If the prior, p(x), is also log-concave, then the
posterior distribution is log-concave as a function of x, and its maximization (Eq. (7)) can also
be achieved using simple gradient ascent techniques. The class of log-concave prior distributions

4That is, for fixed θ is a concave function of x, and vice versa, but in general not a concave function of (x, θ)
jointly.
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is quite large, and it includes exponential, triangular, and general Gaussian distributions as well
as uniform distributions with convex support.5

The MAP is a good, low-error estimate when Laplace’s method provides a good approx-
imation for the posterior mean, which has the minimum mean square error. This method is
a general asymptotic method for approximating integrals when the integrand peaks sharply at
its global maximum and is exponentially suppressed away from it. In the Bayesian setting this
corresponds to posterior integrals of interest (e.g., posterior averages, and so-called Bayes fac-
tors) receiving their dominant contribution from the vicinity of the main mode of p(x|r, θ), i.e.,
xMAP – for a comprehensive review of Laplace’s method in Bayesian applications see Kass et al.
(1991), and books on Bayesian analysis, such as Berger (1993). In that case, we can Taylor ex-
pand the log-posterior to the first non-vanishing order around x

MAP
(i.e., the second order, since

the derivative vanishes at the maximum), obtaining the Gaussian approximation (hereinafter
also referred to as the Laplace approximation)

p(x|r, θ) ≈ e−
1
2(x−x

MAP)
T

J(x−x
MAP)+const.. (8)

Here the matrix J is the Hessian of the negative log-posterior at x
MAP

J ≡ Jab(r, θ) = −∂2 log p(x|r, θ)

∂xa∂xb

∣

∣

∣

∣

x=x
MAP

. (9)

Normally, in the statistical setting the Laplace approximation is formally justified in the
limit of large samples due to the central limit theorem, leading to a likelihood function with a
very sharp peak (in neural decoding the meaning of “large samples” depends, in general, on the
nature of the stimulus – we will discuss this point further in Sec. 4). However, this approximation
often proves adequate even for moderately strong likelihoods, as long as the posterior is not
grossly nonnormal. An obvious case where the approximation fails is for strongly multimodal
distributions where no particular mode dominates. Here, we restrict our attention to the class of
log-concave posteriors which as mentioned above are unimodal. For this class, and for a smooth
enough GLM nonlinearity, f(·), we expect Eq. (8) to hold for prior distributions that are close
to normal, even when the likelihood is not extremely sharp. However, for flatter priors with
sharp boundaries or “corners” we expect it to fail unless the likelihood is narrowly concentrated
away from such non-Gaussian regions.

In this paper, we set out to verify this intuition by studying two extreme cases within the
class of log-concave priors, namely Gaussian and flat distributions with convex support, given
by

p(x) =
1

√

(2π)d|C|
e−

1
2
x

TC−1
x, (10)

and
p(x) ∝ IS(x), (11)

respectively.6 Here, C is the d×d covariance matrix, and IS is the indicator function of a convex
region, S, of Rd. In particular, for the white-noise stimuli we consider in Sec. 4, C = c2Id×d in

5 Let us mention, however, that no first principle dictates that the posterior distribution over a biologically
or behaviorally relevant variable (e.g., an external variable that a part of the brain seeks to estimate) should be
log-concave. In fact, distributions which are not log-concave, such as multi-modal or very fat-tailed distributions,
can be highly relevant in biological settings.

6White or correlated Gaussian priors are often used in neural applications (e.g., Gaussian stimuli are widely
used in neurophysiological experiments). Flat priors with infinitely sharp boundaries, are less biologically moti-
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the Gaussian case, and S is the d-dimensional cube [−
√

3c,
√

3c]d, in the flat case (this choice for
S corresponds to a uniformly distributed white noise stimulus). Here, c is the standard deviation
of the stimulus on a subinterval, and in the case where x(t) is the normalized light intensity
(with the average luminosity removed), it is referred to as the contrast. We will compare the
performance of the MAP and posterior mean estimates in each case, in Sec. 4. In Sec. 5.2 we
will verify the adequacy of this approximation for the estimation of the mutual information in
the case of Gaussian priors.

3 Monte Carlo techniques for Bayesian estimates

For the sake of completeness, we start this section by reviewing the basics of the Markov chain
Monte Carlo (MCMC) method (for comprehensive textbooks on MCMC methods, see, e.g.,
Gelman (2004); Robert and Casella (2005)). However, the main point of this section is the
discussion of the applications of this method to the neural case and ways of making the method
more efficient, as well as a comparison of the efficiency of different MCMC algorithms, in this
specific setting. As noted in the introduction, the posterior distribution, Eq. (5), represents
the full information about the stimulus as encoded in the prior distribution and carried by the
observed spike trains, r. However, a much simpler (and therefore less complete) representation
of this information can be provided by a so-called Bayesian estimate for the stimulus, possibly
accompanied by a corresponding estimate of its error. A commonly used Bayesian estimate is
the posterior mean,

E(x|r) =

∫

x p(x|r)dx, (12)

which is the optimal estimator with respect to average square error. The uncertainty of this
estimator is in turn provided by the posterior covariance matrix. When the posterior distribution
can be reasonably approximated as Gaussian, the posterior mean can be approximated by its
mode, i.e. the MAP estimate, Eq. (7), and the inverse of the log-posterior Hessian, Eq. (9), can
represent its uncertainty. In this paper we adopt the posterior mean, E(x|r), as a benchmark
for comparing the performance of the two estimates, and we take the deviation of the MAP
from the latter as a measure of the validity of the Gaussian approximation for the posterior
distribution.

To calculate the posterior mean Eq. (12), we have to perform a high-dimensional integral over
x. Computationally, this is quite costly. The Monte Carlo method is based on the idea that if one
could generate N i.i.d. samples, xt (t = 1, . . . , N), from a probability distribution, π(x),7 then
one could approximate integrals involved in expectations such as Eq. (12) by sample averages.
This is because, by the law of large numbers, for any g(x) (such that

∫

|g(x)|π(x)dx < ∞)

ĝ
(π)
N ≡ 1

N

N
∑

t=1

g(xt) −→ Eπ(g)=

∫

g(x)π(x)dx, as N → ∞. (13)

vated. However, flat priors are the best log-concave approximation to binary priors, which are also quite common
in sensory physiology – both as binary white noise and M-sequences (Pillow et al., 2008; Reid et al., 1997). In
this paper, we consider the flat prior mainly as a limiting case of concave log-priors with sharp derivatives when
we check the accuracy of the Laplace approximation and compare the efficiency of various MCMC chains (see
Sec. 3.5) in different regimes.

7We are, of course, interested in calculating posterior expectations corresponding to the case π(x) = p(x|r),
but as the present discussion is general, we will use π(x) in the rest of this section for ease of notation.
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Also, to decide how many samples are sufficient, we may estimate

Var(ĝN ) =
1

N
Var[g(x)]; (14)

when N is large enough that this variance is sufficiently small, we may stop sampling. However,
it is often quite challenging to sample directly from a complex multi-dimensional distribution,
and the efficiency of methods yielding i.i.d. samples often decreases exponentially with the
number of dimensions.

Fortunately, Eq. (13) (the law of large numbers) still holds if the i.i.d. samples are replaced
by an ergodic Markov chain, xt, whose equilibrium distribution is π(x). This is the idea be-
hind the Markov chain Monte Carlo (MCMC) method based on the Metropolis-Hastings (MH)
algorithm (Metropolis et al., 1953; Hastings, 1970). In the general form of this algorithm, the
Markov transitions are constructed as follows. Starting at point x, we first sample a point y

from some “proposal” density q(y|x), and then accept this point as the next point in the chain,
with probability

α(y|x) ≡ min

(

1,
π(y)q(x|y)

π(x)q(y|x)

)

. (15)

If y is rejected, the chain stays at point x, so that the conditional Markov transition probability,
T (y|x), is given by

T (y|x) = α(y|x)q(y|x) + R(x)δ(y − x), (16)

where

R(x) = 1 −
∫

α(y|x)q(y|x)dy, (17)

is the rejection probability of proposals from x. The reason for accepting the proposals according
to Eq. (15) is that doing so guarantees that π(x) is invariant under the Markov evolution (see,
e.g., Robert and Casella (2005) for details). It is important to note that, from Eq. (15), to
execute this algorithm we only need to know π(x) up to a constant, which is an advantage
because often, particularly in Bayesian settings, normalizing the distribution itself requires the
difficult integration for which we are using MCMC (we will discuss a method of calculating the
normalization constant in Sec. 5.2).

The major drawback of the MCMC method is that the generated samples are dependent and
thus it is harder to estimate how long we need to run the chain to get an accurate estimate, and
in general we may need to run the chain much longer than the i.i.d. case. Thus, we would like to
choose a proposal density, q(y|x), which gives rise to a chain that explores the support of π(x)
(i.e., mixes) quickly, and has a small correlation time (roughly the number of steps separation
to yield i.i.d samples), to reduce the number of steps the chain has to be iterated and hence the
computational time (see Sec. 3.5 and (Gelman, 2004) and (Robert and Casella, 2005) for further
details). In general, a good proposal density q(y|x) should allow for large jumps with higher
probability for falling in regions of larger π(x) (so as to avoid a high MH rejection rate). A good
rule of thumb is for the proposals q(.|x) to resemble the true density π(.) as well as possible.
We review a few useful well-known proposals below, and explore different ways of boosting their
efficiency in the GLM-based neural decoding setting. We note here, that these algorithms can
be applied to general distributions, and do not require the log-concavity condition for π(x).
However, some of the enhancements that we consider can only be implemented, or are only
expected to boost up the performance of the chain, when the distribution π(x) is log-concave
– see the discussion of non-isotropic proposals in Sec. 3.1 and Sec. 3.2, and that of adaptive
rejection sampling in Sec. 3.4.
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3.1 Non-isotropic random-walk Metropolis (RWM)

Perhaps the most common proposal is of the random walk type: q(x|y) = q(x − y), for some
fixed density q(.). Centered isotropic Gaussian distributions are a simple choice, leading to
proposals

y ∼ x + σz, (18)

where z is Gaussian of zero mean and identity covariance, and σ determines the proposal jump
scale. (In this simple form, the RWM chain was used in a recent study to fit a hierarchical model
of tuning curves of neurons in the primary visual cortex to experimental data (Cronin et al.,
2009).) Of course, different choices of the proposal distribution will affect the mixing rate of
the chain. To increase this rate, it is generally a good idea to align the axes of q(.) with the
target density, if possible, so that the proposal jump scales in different directions are roughly
proportional to the width of π(x) along those directions. Such proposals will reduce the rejection
probability and increase the average jump size by biasing the chain to jump in more favorable
directions. For Gaussian proposals, we can thus choose the covariance matrix of q(.) to be
proportional to the covariance of π(x). Of course, calculating the latter covariance is often a
difficult problem (which the MCMC method is intended to solve!), but we can exploit the Laplace
approximation, Eq. (8), and take the inverse of the Hessian of the log-posterior at MAP, Eq. (9),
as a first approximation for the covariance. This is equivalent to modifying the proposal rule
(18) into

y ∼ x + σAz, (19)

where A is the Cholesky decomposition of J−1

AA
T

= J−1, (20)

and J was defined in Eq. (9). We refer to chains with such jump proposals as non-isotropic
Gaussian RWM. Figure 2 compares the isotropic and nonisotropic proposals. The modification
Eq. (19) is equivalent to running a chain with isotropic proposals Eq. (18), but for the auxiliary
distribution π̃(x̃) = |A|π(Ax̃) (whose corresponding Laplace approximation corresponds to a
standard Gaussian with identity covariance), and subsequently transforming the samples, x̃t,
by the matrix A to obtain samples xt = Ax̃t from π(x). Implementing non-isotropic sampling
using the transformed distribution π̃(x̃), instead of modifying the proposals as in Eq. (19), is
more readily extended to chains more complicated than RWM (see below) and therefore we used
this latter method in our simulations using different chains.

As we will see in the next section, in the flat prior case and for weak stimulus filters or
a small number of identical cells, the Laplace approximation can be poor. In particular, the
Hessian, Eq. (9), does not contain any information about the prior in the flat case, and therefore
the approximate distribution, Eq. (8), can be significantly broader than the extent of the prior
support in some directions. To take advantage of the Laplace approximation in this case, we
regularized the Hessian by adding to it the inverse covariance matrix of the flat prior, obtaining
a matrix that would be the Hessian if the flat prior was replaced by a Gaussian with the same
mean and covariance. Even though the Gaussian with this regularized Hessian is still not a very
good approximation for the posterior, we saw that in many cases it improved the mixing rate of
the chain.

In general, the multiplication of a vector of dimensionality d by a matrix involves O(d2),
and the inversion of a d×d matrix involves O(d3) basic operations. In the decoding examples we
consider, the dimension of x is most often proportional to the temporal duration of the stimulus.
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Thus, naively, the one-time inversion of J and calculation of A takes O(T 3) basic operations,
where T is the duration of the stimulus, while the multiplication of x by A in each step of
the MCMC algorithm takes O(T 2) operations. This would make the decoding of stimuli with
even moderate duration forbidding. Fortunately, the quasi-locality of the GLM model allows us
to overcome this limitation. Since the filters Ki in the GLM have a finite temporal duration,
Tk, the Hessian of the GLM log-likelihood Eqs. (4) is banded in time: the matrix element
JLL

t1n1,t2n2
≡ −∂2 log p(r|x)/∂x(t1, n1)∂x(t2, n2) vanishes when |t1 − t2| ≥ 2Tk − 1. The Hessian

of the log-posterior Eq. (9) is the sum of the Hessians of the log-prior and the log-likelihood,
which in the Gaussian case is

J = JLL + C−1, (21)

where C is the prior covariance (see Eq. (10)). Thus, if C−1 is also banded, J will be banded
in time as well. As an example, Gaussian autoregressive processes of any finite order form
a large class of priors which have banded C−1. In particular, for white-noise stimuli, C−1 is
diagonal, and therefore J will have the same bandwidth as J . Efficient algorithms can find
the Cholesky decomposition of a banded d × d matrix, with bandwidth nb, in a number of
computations ∝ n2

bd, instead of ∝ d3 (for example, the command chol in Matlab uses the O(d)
method automatically if J is banded and is encoded as a sparse matrix). Likewise, if B is a
banded matrix with bandwidth nb, the linear equation Bx = y can be solved for x in ∝ nbd
computations. Therefore, to calculate x = Ax̃ from x̃ in each step of the Markov chain, we
proceed as follows. Before starting the chain, we first calculate the Cholesky decomposition
of J , such that J = B

T
B and x = Ax̃ = B−1x̃. Then, at each step of the MCMC, given

x̃t, we find xt by solving the equation Bxt = x̃t. Since both of these procedures involve a
number of computations that only scale with d (and thus with T ), we can perform the whole
MCMC decoding in O(T ) computational time. This allows us to decode stimuli with durations
on the order of many seconds. Similar methods with O(T ) computational cost have been used
previously in applications of MCMC to inference and estimation problems involving state-space
models (Shephard and Pitt, 1997; Davis and Rodriguez-Yam, 2005; Jungbacker and Koopman,
2007), but these had not been generalized to non-state-space models (such as the GLM model
we consider here) where the Hessian has a banded structure nevertheless. For a review of
applications of state-space methods to neural data analysis see Paninski et al. (2010). That
review also elucidates the close relationship between methods based on state-space models,
and methods exploiting the bandedness of the Hessian matrix, as described here. Exploiting the
bandedness of the Hessian matrix in the optimization problem of finding the MAP was discussed
in Pillow et al. (2010).

3.2 Hybrid Monte Carlo and MALA

A more powerful method for constructing rapidly mixing chains is the so-called hybrid or Hamil-
tonian Monte Carlo (HMC) method. In a sense, HMC is at the opposite end of the spectrum
with respect to RWM, in that it is designed to suppress the random walk nature of the chain
by exploiting information about the local shape of π(x), via its gradient, to encourage steps
towards regions of higher probability. This method was originally inspired by the equations
of Hamiltonian dynamics for the molecules in a gas (Duane et al., 1987), but has since been
used extensively in Bayesian settings (for its use in sampling from posteriors based on GLM see
Ishwaran (1999); see also Neal (1996) for further applications and extensions).

This method starts with augmenting the vector x with an auxiliary vector of the same
dimension z. Let us define the “potential energy” as E(x) = − log π(x) up to a constant, and
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Isotropic Non−Isotropic

Figure 2: Comparison of isotropic and non-isotropic Markov jumps for the Gaussian RWM and
hit-and-run chains. In the RWM case, the circle and the ellipse are level sets of the Gaussian
proposal distributions for jumping from the dot at their center. In isotropic (non-isotropic) hit-
and-run, the jump direction n is generated by normalizing a vector sampled from an isotropic
(non-isotropic) Gaussian distribution centered at the origin. The non-isotropic distributions
were constructed using the Hessian, Eq. (9), in the Laplace approximation, so that the ellipse is

described by x
T
Jx = const. When the underlying distribution, π(x), is highly non-isotropic, it

is disadvantageous to jump isotropically, as it reduces the average jump size and slows down the
chain. In RWM, the proposal jump scale can not be much larger than the scale of the narrow
“waist” of the underlying distribution, lest the rejection rate gets large (as most proposals will
fall in the dark region of small π(x)) and the chain gets stuck. For hit-and-run, there is no jump
scale to be set by the user, and the jump size in a given direction, n, is set by the scale of the
“slice” distribution Eq. (25). Thus in the isotropic case the average jump size will effectively
be a uniform average over the scales of π(x) along its principal axes. In the non-isotropic case,
however, the jump size will be determined mainly by the scale of the “longer” dimensions, as
the non-isotropic distribution gives more weight to these.

a “Hamiltonian function” by H(x, z) = 1
2z

Tz + E(x). Instead of sampling points, {xt}, from
π(x), the HMC method constructs an MH chain that samples points, {(xt, zt)}, from the joint
distribution p(x, z) ∝ e−H(x,z) ∝ exp (−1

2z
Tz)π(x). But since this distribution is factorized into

the products of its marginals for x and z, the x-part of the obtained samples yield samples
from π(x). On the other hand, sampling from the marginal over z is trivial, since z is normally
distributed. In a generic step of the Markov chain, starting from (xt, zt), the HMC algorithm
performs the following steps to generate (xt+1, zt+1). First, to construct the MH proposal:

1. Set x0 := xt, and sample z0 from the isotropic Gaussian distribution Nd(0,1).

2. Set (x, z) := (x0 , z0), and evolve (x, z) according to the equations of Hamiltonian dy-
namics8 discretized based on the “leapfrog” method, by repeating the following steps, L

8The continuous Hamiltonian equations are

ż = −
∂H

∂x

= −∇E(x), ẋ =
∂H

∂z

= z, (22)

under which the Hamiltonian function is conserved.
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times

• z := z − σ
2∇E(x)

• x := x + σz

• z := z − σ
2∇E(x)

Finally, to implement the MH acceptance step, Eq. (15),

3. with probability min{1, exp (−∆H)}, where ∆H ≡ H(x, z) − H(x0 , z0), accept the pro-
posal x as xt+1. Otherwise reject it and set xt+1 = xt. (It can be shown that this is a bona
fide Metropolis-Hastings rejection rule, ensuring that the resulting MCMC chain indeed
has the desired equilibrium density (Duane et al., 1987).)

This chain has two parameters, L and σ, which can be chosen to maximize the mixing rate
of the chain while minimizing the number of evaluations of E(x) and its gradient. In practice,
even a small L, requiring fewer gradient evaluations, often yields a rapidly mixing chain, and
therefore in our simulations we used L ∈ {1, . . . , 5}. The special case of L = 1 corresponds to a
chain that has proposals of the form

y ∼ x− σ2

2
∇E(x) + σz, (23)

where z is normal with zero mean and identity covariance, and the proposal y is accepted
according to the MH rule Eq. (15). In the limit σ → 0, this chain becomes a continuous
Langevin process with the potential function E(x) = − log π(x), whose stationary distribution
is the Gibbs measure, π(x) = exp(−E(x)), without the Metropolis-Hastings rejection step. For
a finite σ, however, the Metropolis-Hastings acceptance step is necessary to guarantee that π(x)
is the invariant distribution. The chain is thus refered to as the “Metropolis-adjusted Langevin”
algorithm (MALA) (Roberts and Tweedie, 1996).

The scale parameter σ, which also needs to be adjusted for the RWM chain, sets the average
size of the proposal jumps: we must typically choose this scale to be small enough to avoid
jumping wildly into a region of low π(x), and therefore wasting the proposal, since it will be
rejected with high probability. At the same time, we want to make the jumps as large as possible,
on average, in order to improve the mixing time of the algorithm. See (Roberts and Rosenthal,
2001) and (Gelman, 2004) for some tips on how to find a good balance between these two
competing desiderata for the RWM and MALA chains. For the HMC chains with L > 1, we
chose σ, by trial and error, to obtain an MH acceptance rate of 60%-70%. We adopted this rule
of thumb, based on a qualitative extrapolation of the results of (Roberts and Rosenthal, 1998)
for the special cases of L = 0 and 1 (corresponding to the RWM and MALA chains, respectively),
and their suggestion to tune the acceptance rate in those cases to ∼25% and ∼55%, respectively,
for optimal mixing (for further discussion see Sec. 3.5; for a study on tuning the σ parameter
for HMC with general L, see, e.g., (Kennedy et al., 1996)).

For highly non-isotropic distributions, the HMC chains can also be enhanced by exploiting
the Laplace approximation (or its regularized version in the uniform prior case, as explained in
the RWM case) by modifying the HMC proposals. Equivalently, as noted after Eq. (20), we can
sample from the auxiliary distribution π̃(x̃) = |A|π(Ax̃) (where A is given in Eq. (20)) using
the unmodified HMC chain, described above, and subsequently transforming the samples by A.
As explained in the final paragraph of Sec. 3.1, we can perform this transformation efficiently
in O(T ) computational time, where T is the stimulus duration. Another practical advantage
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a)   Gibbs b)   ARS Hit−and−Run c)   Random Walk Metropolis

Figure 3: Comparison of different MCMC algorithms in sampling from a non-isotropic truncated
Gaussian distribution. This distribution can arise as a posterior distribution resulting from a
non-isotropic Gaussian likelihood and a uniform prior with square boundaries (at the frame
borders). Panels (a-c) show 50-sample chains for a Gibbs, isotropic hit-and-run, and isotropic
random walk Metropolis (RWM) samplers, respectively. The grayscale indicates the height of the
probability density. As seen in panel (a), the narrow, non-isotropic likelihood can significantly
hamper the mixing of the Gibbs chain as it chooses its jump directions unfavorably. The hit-and-
run chain, on the other hand, mixes much faster as it samples the direction randomly and hence
can move within the narrow high likelihood region with relative ease. The mixing of the RWM
chain is relatively slower due to its rejections (note that there are fewer than 50 distinct dots in
panel (c) due to rejections; the acceptance rate was about 0.4 here). For illustrative purposes,
the hit-and-run direction and the RWM proposal distributions were taken to be isotropic here,
which is disadvantageous, as explained in the text (also see Fig. 2).

of this transformation by A is that the process of finding the appropriate scale parameter σ
simplifies considerably, since π̃(x̃) may be approximated as a Gaussian distribution with identity
covariance irrespective of the scaling of different dimensions in the original distribution π(x).
To our knowledge, this O(T ) enhancement of the HMC chain using the Laplace approximation
is novel. This chain turned out to be the most efficient in most of the decoding examples we
explored – we will discuss this in more detail in Sec. 3.5.

It is worth noting that when sampling from high-dimensional distributions with sharp gradi-
ents, the MALA, HMC, and RWM chains have a tendency to be trapped in “corners” where the
log-posterior changes suddenly. This is because when the chain eventually ventures close to the
corner, a jump proposal will very likely fall on the exterior side of the sharp high-dimensional
corner (the probability of jumping to the interior side from the tip of a cone decreases exponen-
tially with increasing dimensionality). Thus most proposals will be rejected, and the chain will
effectively stop. As we will see below, the “hit-and-run” chain is known to have an advantage
in escaping from such sharp corners (Lovasz and Vempala, 2004). We will discuss this point
further in Sec. 3.4.

3.3 The Gibbs sampler

Gibbs sampling (Geman and Geman, 1984) is an important MCMC scheme. It is particularly
efficient when, despite the complexity of the distribution π(x) = p(x|r, θ), its one-dimensional
conditionals p(xm|x⊥m, r, θ) are easy to sample from. Here, xm is the m-th component of x, and
x⊥m denotes the other components, i.e., the projection of x on the subspace orthogonal to the

13



m-th axis. The Gibbs update is defined as follows: first choose the dimension m randomly or in
order. Then update x along this dimension, i.e., sample xm from π(xm|x⊥m) (while leaving the
other components fixed). This is equivalent to sampling a one-dimensional auxiliary variable, s,
from

s ∼ h(s|m,x) ∝ π(x + sem), −∞ < s < ∞, (24)

and setting y = x + sem, where em is the unit vector along the m-th axis (we will discuss
how to sample from this one-dimensional distribution in Sec. 3.4). It is well-known that the
Gibbs rule is indeed a special case of the MH algorithm where the proposals, Eq. (24), is always
accepted. For applications of the Gibbs algorithm for sampling from posterior distributions
involving GLM-like likelihoods see Chan and Ledolter (1995); Gamerman (1997, 1998); see also
Smith et al. (2007) for some related applications in neural data analysis (discussed further below
in section 5.1).

It is important to note that the Gibbs update rule can sometimes fail to lead to an ergodic
chain, i.e., the chain can get “stuck” and not sample from π(x) properly (Robert and Casella,
2005). An extreme case of this is when the conditional distributions pm(xm|x⊥m, r, θ) are
deterministic: then the Gibbs algorithm will never move, clearly breaking the ergodicity of the
chain. More generally, in cases where strong correlations between the components of x lead
to nearly deterministic conditionals, the mixing rate of the Gibbs method can be extremely
low (panel (a) of Fig. 3, shows this phenomenon for a 2-dimensional distribution with strong
correlation between the two components). Thus, it is a good idea to choose the parameterization
of the model carefully before blindly applying the Gibbs algorithm. For example, we can change
the basis, or more systematically, exploit the Laplace approximation, as described above, to
sample from the auxiliary distribution π̃(x̃) instead.

3.4 The hit-and-run algorithm

The hit-and-run algorithm (Boneh and Golan, 1979; Smith, 1980; Lovasz and Vempala, 2004)
can be thought of as “random-direction Gibbs”: in each step of the hit-and-run algorithm,
instead of updating x along one of the coordinate axes, we update it along a random general
direction not necessarily parallel to any coordinate axis. More precisely, the sampler is defined
in two steps: first, choose a direction n from some positive density ρ(n) (with respect to the
normalized Lebesgue measure) on the unit sphere nTn = 1. Then, similar to Gibbs, sample
the new point on the line defined by n and x, with a density proportional to the underlying
distribution. That is sample s from

s ∼ h(s|n,x) ∝ π(x + sn), −∞ < s < ∞, (25)

and set y = x+sn.9 Even though the hit-and-run chain is well known in the statistics literature,
it has not been used in neural decoding.

The main gain over RWM or HMC is that instead of taking small local steps (of size
proportional to σ, in eq. 18 or 23)), we may take very large jumps in the n direction; the jump
size is set by the underlying distribution itself, not an arbitrary scale, σ, which has to be tuned
by the user to achieve optimal efficiency. there is no jump scale to be set by the user, and the
jump size in a given direction, n, is set by the scale of the “slice” distribution Eq. (25).

9As with the Gibbs case, it can be shown again that this proposal leads to a MH acceptance probability of
one. Hence hit-and-run is also a special case of MH.
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This, together with the fact that all hit-and-run proposals are accepted, makes the chain
better at escaping from sharp high-dimensional corners (see (Lovasz and Vempala, 2004) and
the discussion at the end of Sec. 3.2 above). The advantage over Gibbs is in situations such
as depicted in Fig. 2, where jumps parallel to coordinates lead to small steps but there are
directions that allow long jumps to be made by hit-and-run. The price to pay for these possibly
long nonlocal jumps, however, is that now (as well as in the Gibbs case) we need to sample
from the one-dimensional density 1

Z π(x + sn), which is in general non-trivial. Fortunately, as
we mentioned above (see the discussion leading to Eqs. (5)–(7) and following it), in the case of
neurons modeled by the GLM, the posterior distribution and thus all its “slices” are log-concave,
and efficient methods such as adaptive rejection sampling (ARS) (Gilks, 1992; Gilks and Wild,
1992) can be used to sample from the one-dimensional slice in the hit-and-run step. Let us
emphasize, however, that the hit-and-run algorithm, by itself, does not require the distribution
π(x) to be log-concave. Given a method other than ARS for sampling from the one-dimensional
conditional distributions, π(x+sn), hit-and-run can be applied to general distributions that are
not log-concave, as well.

Regarding the direction density, ρ(n), the easiest choice is the isotropic ρ(n) = 1. More gen-
erally it is easy to sample from ellipses, by sampling from the appropriate Gaussian distribution
and normalizing. Thus, again, a reasonable approach is to exploit the Laplace approximation:
we sample n by sampling an auxiliary point x̃ from N (0, J−1), where J is the Hessian, Eq. (9),
and setting n = x̃/‖x̃‖ (see Fig. 2). This prescription is equivalent to sampling n from the
distribution ρ(n) =

√

detJ/(nTJn)d, which is referred to as the angular central Gaussian distri-
bution in the statistical literature (see e.g., (Tyler, 1987)). This adds to hit-and-run’s advantage
over Gibbs by giving more weight to directions that allow larger jumps to be made.

3.5 Comparison of different MCMC chains

Above, we pointed out some qualitative reasons behind the strengths and weaknesses of the
different MCMC algorithms, in terms of their mixing rates and computational costs. Here
we give a more quantitative account, and also compare the different methods based on their
performance in the neural decoding setting.

From a practical point of view, the most relevant notion of mixing is how fast the estimate

ĝ
(π)
N of Eq. (13) converges to the true expectation of the quantity of interest, f . As one always

has access to finitely many samples, N , even in the optimal case of i.i.d. samples from π, ĝ
(π)
N

has a finite random error, Eq. (14). For the correlated samples of the MCMC chain, and for
large N , the error is larger, and Eq. (14) generalizes to (see (Kipnis and Varadhan, 1986))

Var(ĝN ) =
τcorr

N
Var[g(x)] + o

(τcorr

N

)

, (26)

for N ≫ τcorr , independent of the starting point.10 Here, τcorr is the equilibrium autocorrelation
time of the scalar process g(xi), based on the chain xi. It is defined by

τcorr =

∞
∑

t=−∞
γt ≡

∞
∑

t=−∞
Corr (g(xi)g(xi+t)) , (27)

10Strictly speaking this independence is only true for Harris recurrent chains, but this is the case in most
practical examples (see e.g., (Geyer, 1992) and (Tierney, 1991)).
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Figure 4: The estimated autocorrelation function for the hit-and-run, Gaussian random-walk
metropolis, and HMC chains, based on 7 separate chains in each case. The chains were sampling
from a posterior distribution over a 50-dimensional stimulus (x) space with white noise Gaussian
(a) and uniform (b) priors with contrast c = 1 (see Eqs. (10)–(11)), and with GLM likelihood (see
Eqs. (3)–(4)) based on the response of two simulated ganglion cells. The GLM nonlinearity was
exponential and the stimulus filters ki(t) were taken to be weak “delta functions” with heights
±0.1. For the HMC, we used L = 5 leapfrog steps in the Gaussian prior case, and L = 1 steps
(corresponding to MALA) in the flat prior case. The autocorrelation was calculated for a certain
one-dimensional projection of x. In general, in the Gaussian prior case, HMC was superior by
an order of magnitude. For uniform priors, however, hit-and-run was seen to mix faster than the
other two chains over a wide range of parameters such as the stimulus filter strength (unless the
filter was strong enough so that the likelihood determined the shape of the posterior, confining
its effective support away from the edges of the flat prior). This is mainly because hit-and-run
is better in escaping from the sharp, high-dimensional corners of the prior support S. Here,
MALA need not be slower than RWM, and its larger autocorrelation in the plot is because its
jump size was chosen suboptimally, according to a rule (Roberts and Rosenthal, 1998) that is
optimal only for smooth distributions. For both priors, using non-isotropic proposal or direction
distributions improved the mixing of all three chains.

where we refer to γt as the lag-t autocorrelation for g(x). Thus the smaller the τcorr , the more
efficient is the MCMC algorithm, as one can run a shorter chain to achieve a desired estimated
error.

Another measure of mixing speed which has the merit of being more amenable to analytical
treatment is the mean squared jump size of the Markov chain

a2 = E
(

‖xt+1 − xt‖2
)

; (28)

this has been termed the first-order efficiency (FOE) by (Roberts and Rosenthal, 1998). Let us
define γm

t=1 to be the lag-1 autocorrelation of the m-th component of x, xm. From the definition
Eq. (3.5), it follows that the weighted average of γm

t=1 over all components (with weights Var[xm]),

is given by 1 − a2

2
P

m Var[xm] . Thus maximizing the FOE is roughly equivalent to minimizing

correlations. One analytical result concerning the mixing performance of different MCMC chains
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was obtained in (Roberts and Rosenthal, 1998) for the FOE of RWM and MALA when sampling
from the restricted class of product distributions π(x) =

∏d
m=1 g(xm), and asymptotically large

dimension d = dim(x) (often a relevant limit in neural decoding). Based on their results, the
authors also argue that in general, the jump scales of RWM and MALA proposals may be chosen
such that their acceptance rates are roughly 0.25 and 0.55, respectively. For the special case of
sampling from a d dimensional standard Gaussian distribution, π(x) ∝ exp (−‖x‖2/2), and for
optimally chosen proposal jump scales they show that the FOE of Gaussian MALA and RWM
are asymptotically equal to 1.6d2/3 and 1.33, respectively.

To enable a comparison with hit-and-run, we can calculate its FOE directly. Using y =
x + sn, with s sampled as in Eq. (25), we see that

a2 =

∫ ∫

E
(

s2|n,x
)

ρ(n)π(x)dndx. (29)

Now, from Eq. (25), h(s|n,x) ∝ e−
(‖x‖2+s2+2sn·x)2

2 ∝ e−
(s−n·x)2

2 , and using E
(

s2|n,x
)

= E (s|n,x)2+
Var (s|n,x), we obtain E

(

s2|n,x
)

= (n · x)2 + 1. Thus

a2 =

∫

Eπ

(

(n · x)2 + 1
)

ρ(n)dn, (30)

=

∫

(n · n + 1) ρ(n)dn = 2, (31)

where we used Eπ(xnxm) = δnm for the standard Gaussian distribution Nd(0,1), and n · n = 1.
Therefore, while hit-and-run has higher FOE than RWM in this case, we see that for unimodal,
nearly Gaussian distributions, MALA will mix much faster (by a factor ∝ d2/3) than both RWM
and hit-and-run in large dimensions. Although we know of no such result for general HMC chains
with higher-order leapfrog steps than the one-step MALA algorithm, we expect their mixing
speed to increase even further for higher leapfrog steps. The superiority of HMC over the other
chains is clearly visible in panel (a) of Fig. 4, which shows a plot of the estimated autocorrelation
function γt for the sampling of the three chains from the GLM posterior with standard Gaussian
priors, and a weak stimulus filter leading to a weak likelihood. More generally, in our simulations
with Gaussian priors and smooth GLM nonlinearities, HMC (including MALA) had an order of
magnitude advantage over the other chains for most of the relevant parameter ranges. Thus we
used this chain in Sec. 5.2 for evaluating the mutual information with Gaussian priors.

The situation can be very different, however, for highly non-Gaussian (but still log-concave)
distributions, such as those with sharp boundaries. In our GLM setting this can be the case
with flat priors on convex sets, Eq. (11), when the likelihood is broad and does not restrict the
posterior support away from the boundaries and corners of the prior support S. In this case,
HMC and MALA lose their advantage because they do not take advantage of the information
in the prior distribution, which has zero gradient within its support. Furthermore, as men-
tioned in Secs. 3.2 and 3.4, when the convex body S has sharp corners, hit-and-run will have
an advantage over both RWM and HMC in avoiding getting trapped in those corners, which
can otherwise considerably slow down the chain in large dimensionality (see the arguments in
(Lovasz and Vempala, 2004)). Finally, we mention that the MALA or HMC proposals can in
principle be inefficient in regions of sharp gradient changes; for example, in the GLM setting, if
the nonlinearity f(.) is very sharp, then the log-likelihood might vary much more quickly than
quadratic. In such cases the HMC proposal jumps can be too large, falling in regions where
π(x) is very low and leading to high rejection rates. This can potentially reduce HMC’s ad-
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vantage significantly even in case that the prior is Gaussian. However, in our experience, with
f(.) = exp(.), this did not occur.

Figure 4, panel (b), shows the estimated autocorrelation function for different chains in
sampling from the posterior distribution in GLM-based decoding with a flat stimulus prior
distribution, Eq. (11), with cubic support11. For this prior, the correlation time of the hit-and-
run chain was consistently lower than those of the RWM, MALA, and Gibbs (not shown in the
figure) chains, unless the likelihood was sharp and concentrated away from the boundaries of
the prior cube. As we mentioned above (also see the next section), the Laplace approximation
is adequate in this latter case. Thus we see that hit-and-run is the faster chain when this
approximation fails, which is also the case where MCMC is more indispensable. We thus used
the hit-and-run algorithm in our decoding examples for the flat prior case presented in the next
section.

Finally, we note that other methods of diagnosing mixing and convergence, such as the
so-called r-hat (R̂) statistic (Brooks and Gelman, 1998) gave consistent results with those based
on the autocorrelation time, τcorr, presented here.

4 Comparison of MAP and Monte Carlo decoding

In this section we compare Bayesian stimulus decoding using the MAP and the posterior mean
estimates, Eqs. (7) and (12), based on the response of a population of neurons modeled via the
GLM introduced in section 2. We will show that in the flat prior case, Eq. (11), the MAP esti-
mate, in terms of its mean squared error, is much less efficient than the posterior mean estimate.
We contrast this with the Gaussian prior case, where the Laplace approximation is accurate in
a large range of model parameters, and thus the two estimates are close. Furthermore, for both
kinds of priors, in the limit of strong likelihoods (e.g., due to a strong stimulus filter or a large
number of neurons) the posterior distribution will be sharply concentrated, the Laplace approx-
imation becomes asymptotically more and more accurate, and both estimates will eventually
converge to the true stimulus (more precisely the part of the stimulus that is not outside the
receptive field of all the neurons; see footnote 13, below).

In the first two examples (Figs. 5–6), the stimulus estimates were computed given the
simulated spike trains of a population of pairs of ON and OFF retinal ganglion cells (RGC),
in response to a spatially uniform, full-field fluctuating light intensity signal. The stimuli were
discretized white-noise with Gaussian and flat distributions (see the paragraph after Eq. (11)).
Spike responses were generated by simulating the GLM point process encoding model, described
by Eqs. (3)–(4), with exponential nonlinearity, f(u) = exp (u). The coupling between different
cells (Hij of Eq. (3) for i 6= j) were set equal to zero, but the diagonal kernels, Hii, representing
the spike history feedback of each cell to itself were closely matched to those found with fits to
macaque ON and OFF RGC’s reported in Pillow et al. (2008), and so were the DC biases, bi; the
value of the DC biases were such that the baseline firing rate, exp (bi), in the absence of stimulus
was approximately 7 Hz (see the appendix of Pillow et al. (2010) for a more detailed description
of the fits for stimulus and spike history filters). However, for demonstration purposes, the
stimulus filters, Ki, were set to positive and negative delta functions (for ON and OFF cells,
respectively), resulting in Ki ·x being proportional to the light stimulus, x(t), so that band-pass

11Although this prior belongs to the class of product densities considered in (Roberts and Rosenthal, 1998),
it does not satisfy the stringent smoothness conditions crucial for the part of their theorem regarding the (fast)
mixing of MALA.
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Figure 5: Comparison of MAP and posterior mean estimates, for a pair of ON and OFF RGC’s
(see the main text), for different values of the stimulus filter amplitude (‖k‖ = 0.5, 1, and 2.4
from left to right) and contrast c = 1 (defined after Eq. (11) – the product c‖k‖ represents the
scale of the filtered stimulus input term to the GLM nonlinearity (see the main text for the
full description of the GLM parameters used in this simulation). The stimulus (the black trace
shown on all panels) consists of a 500 ms interval of uniformly distributed white noise, refreshed
every 10 ms. Thus the stimulus space is 50 dimensional. The cyan horizontal lines mark the
boundaries of the flat prior distribution of the stimulus intensity on each 10 ms subinterval.
They are set at ±

√
3, corresponding to intensity variance of 1 and zero mean. Dots on the top

row show the spikes of the ON (gray) and the OFF (black) cell. The red traces in the middle
row are the MAP estimates, and the blue traces in the bottom rows show the posterior means
estimated from 10000 samples of a hit-and-run chain (after burning 2500 samples). The shaded
regions in the second and third rows are error bars showing the estimated marginal posterior
uncertainties about the stimulus value. For the MAP (second rows), these are calculated as
the square root of the diagonal of the inverse Hessian, J−1, but they have been cut-off where
they would have encroached on the zero prior region beyond the horizontal cyan lines. For the
posterior mean (third rows), the error bars represent one standard deviation about the mean,
and are calculated as the square root of the diagonal of the covariance matrix, which is itself
estimated from the MCMC chain (the standard error of the posterior mean estimate due to the
finite sample size of the MCMC were much smaller than these error bars, and are not shown).
Note that the errorbars of the mean are in general smaller than those for the MAP, and that all
estimate uncertainties decrease as the stimulus filter amplitude grows.

filtering of the stimulus did not result in information loss, and convergence of the estimates to
the true stimulus could be observed more easily. For a fixed number of cells, the parameter
of relevance here, which determines the signal to noise ratio of the RGCs’ spike trains, is the
strength of the filtered stimulus input, Ki · x, to the GLM nonlinearity. The magnitude of this
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Figure 6: Comparison of MAP and posterior mean estimates, for 10 identical and independent
pairs of ON and OFF RGC’s, for different values of the stimulus filter. The stimulus and all
GLM parameters are the same as in Fig. 5, except for the number of pairs of RGC. The increase
in the number of cells leads to the sharpening of the likelihood, leading to smaller error bars
on the estimates, and a more accurate Laplace approximate and smaller disparity between the
two estimates. Here a 20000 sample long MALA chain (after burning 5000 samples) was used
to estimate the posterior mean.

input is proportional to c‖k‖, where c is the stimulus contrast, and ‖k‖ is the norm of the
receptive field filter (which we have taken to be the same for all cells in this example). Figure
5 shows the stimulus, the spike trains, and the two estimates for three different magnitudes of
c‖k‖, based on the response of one pair of ON and OFF cells. Figure 6 shows the same based
on the response of ten identical pairs of RGCs.

Because the prior distribution here is flat on the 50-dimensional cube centered at the origin,
the Laplace approximation, Eq. (8), will be justified only when the likelihood is sharp and
supported away from the edges of the cube12. Moreover, since the flat prior is only “felt” on the
boundaries of the cube (the cyan lines in Figs. 5–6), the MAP will lie in the interior of the cube
only if the likelihood has a maximum there. For filtered stimulus inputs with small magnitude,
c‖k‖, the log-likelihood, Eqs. (3)–(4), becomes approximately linear in the components of x.
With a flat prior, the almost linear log-posterior will very likely be maximized only on the
boundaries of the cube (since linear functions on convex domains attain their maxima at the
“corners” of the domain). Thus in the absence of a strong, confining likelihood, the MAP has a
tendency to stick to the boundaries, as seen in the first two columns of Fig. 5; in other words,

12More precisely, “sharp” here means that the curvature of the log-posterior is large enough so that the Taylor
expansion of the log-posterior involved in the Laplace approximation, Eq. (8), is accurate for deviations from
x

MAP
on a scale determined by the inverse square root of the smallest eigenvalue of the Hessian matrix, Eq. (9).
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Figure 7: Comparison of mean squared error (
〈

‖x̂ − x‖2
〉

/d) of MAP and posterior mean esti-
mates for uniform (left panel) and Gaussian (right panel) white-noise stimulus distributions as
a function of the stimulus filter strength times contrast. In the left panel, the data points at
‖k‖ = 0 were obtained for very small but non-zero ‖k‖. As seen here, for flat priors, MAP has
a higher average squared error than the posterior mean, except for large values of the stimulus
filter where both estimates converge to the true value. For Gaussian priors, on the other hand,
the Laplace approximation is accurate and therefore the posterior mean and MAP are very
close. Thus their efficiency (e.g., as measured by the inverse of their mean squared error) is very
similar even for small values of the stimulus filter, and the fact that the computational cost of
calculating MAP is much lower makes it the preferable estimate here.

the MAP falls on a corner of the cube, where the Laplace approximation is worst and where
MALA and RWM are least efficient. We note that the likelihood will be further weakened in
fact, if we replace the delta function stimulus filters with more realistic filters, as the band-pass
filtering will remove the dependence of the likelihood on the features of the stimulus that were
filtered out – c.f. a similar discussion in our companion paper on MAP decoding (Pillow et al.,
2010).

On the other hand, a sharp likelihood confines the posterior away from the boundaries
of the prior support, and solely determines the position of both the MAP and the posterior
mean. In this case the Gaussian approximation for the posterior distribution is valid and the
two estimates will in fact be very close (as the mean and the mode of a Gaussian are one and
the same). This can be seen in the right column of Fig. 5, where the large value of the stimulus
filter has sharpened the likelihood. Also, as is generally true in statistical parameter estimation,
when the number of data points becomes large the likelihood term gets very sharp, leading to
accurate estimates.13 In our case this corresponds to increasing the number of cells with similar
receptive fields, leading to the smaller error bars in Fig. 6 and the more accurate and closer
MAP and mean estimates.

To compare the performance of the two estimates more quantitatively, in Fig. 7, we have
plotted the average squared errors of the two estimates under the full stimulus-response dis-
tribution, p(x, r) (for the same type of stimulus and cell pair as in the Fig. 5 simulations), as
function of the magnitude of the filtered stimulus input, c‖k‖. This was done by generating 5

13This is obviously not the case, however, for parameter directions along which the data is non-informative, and
the likelihood function does not vary much. In the RGC case, these correspond to stimulus features (directions
in the stimulus space) that fall orthogonal to the cells’ spatiotemporal filters Ki.
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Figure 8: The top six panels show the MAP (red traces) and posterior mean (blue traces)
estimates of the stimulus input to 3 pairs of ON and OFF RGC’s given their spike trains from
multi-electrode array recordings. The GLM parameters used in this example were fit to data from
the same recordings – see Pillow et al. (2008) for the full description of the fit GLM parameters.
The jagged black traces are the actual inputs. The bottom panel shows the recorded spike
trains. The posterior means were estimated using an HMC chain with 15000 samples (after an
initial 3750 samples were burnt). The gray error-bars around the blue curve are represent its
marginal standard deviations which were estimated using the MCMC itself (the error-bars for
the MAP, e.g. based on the Hessian, would not be distinguishable in this figure, and are not
shown). The closeness of the posterior mean to the MAP is an indication of the accuracy of the
Laplace approximation. (This decoding example also appeared briefly in Paninski et al. (2010);
see also Pillow et al. (2010))

samples of the stimulus in each case, and then simulating the GLM to generate the spike train
response of the pair of ON and OFF cells to each stimulus, leading to sample pairs (xi, ri) for
i = 1, · · · , 5. For each of the responses, ri, the MAP and MCMC mean were computed based
on the posteriors p(x|ri). The average (over p(x, r)) square error,

〈

‖x̂(r) − x‖2
〉

, was then

approximated by its sample mean,
∑5

i=1 ‖x̂(ri) − xi‖2/5. The left and right panels in Fig. 7
show plots of the squared error per dimension, for MAP and mean estimates, as a function of
the stimulus filter strength for the case of the flat and Gassian white-noise stimulus ensembles,
respectively. As is evident from the plots, in the former ensemble, the MAP is inferior to the
mean, due to its higher mean squared error, unless the filter strength is large. For the Gaussian
ensemble, the plot shows that the error of the MAP and posterior mean estimates are very close,
throughout the range of stimulus filter strength. Thus, due to its much lower computational
cost, the MAP-based decoding method of (Pillow et al., 2010) is superior for this prior. Let us
mention that the magnitude of the filtered stimulus, c‖k‖, in the experimental data reported in
Pillow et al. (2008) (which is also the basis of the final example in this section – see Fig.8) was
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in the range 3± 1, depending on the cell; smaller values of c‖k‖ can be achieved experimentally
by lowering the contrast of the visual stimulus as needed. Thus the values of this parameter
used in Fig. 7, as well as in Figs. 5–6, are on the same order of magnitude as those used in that
experiment, and cover a range of values that is experimentally and biologically relevant.

Finally, we compared the MAP and posterior mean estimates in decoding of experimentally
recorded spike trains. The spike trains were recorded from a group of 11 ON and 16 OFF
RGCs (whose receptive fields fully cover a patch of the visual field) in response to the light
signal of the optically reduced image of a cathode ray display which refreshes at 120 Hz, and is
projected on the retina (Litke et al., 2004; Shlens et al., 2006). The stimlulus, x, in this case,
is a spatiotemporally fluctuating binary white-noise, with x(t, n) representing the contrast of
the pixel n at time t. In Pillow et al. (2008), 20 minutes of this data were used to fit the GLM
model parameters including cross-couplings, hij , to these cells – see that reference for details
about the recording and the fitting method, and a full description of the fit GLM parameters.
Here, we took a 500 ms portion of the recorded spike trains of 6 neighboring RGCs (3 ON and
3 OFF), and using the fit GLM parameters for them, decoded the filtered inputs,

yi ≡ Ki · x, (32)

to these cells using the MAP and posterior mean (calculated using an HMC chain). The inputs
are a priori correlated due to the overlaps between the cell’s receptive fields, and the covariance
matrix of the yi is given by Cij

y = KiCxK
T

i , where Cx = c21 is the covariance of the white-noise
visual stimulus. More explicitly

Cy(i, t1; j, t2) ≡ Cov[yi(t1), yj(t2)] = c2
∑

t,n

ki(t1 − t, n)kj(t2 − t, n). (33)

Notice that with the experimentally fit ki, which have a finite temporal duration Tk, the covari-
ance matrix, Cy is banded: it vanishes when |t1 − t2| ≥ 2Tk − 1. Since x is binary, yi is not
a Gaussian vector. However, because the filters Ki(t, n) have a relatively large spatiotemporal
dimension, yi(t) are weighted sums of many independent identically distributed binary random
variables, and their prior marginal distributions can be well approximated by Gaussian distribu-
tions. For this reason, and because the likelihood was relatively strong for this data (and hence
the dependence on the prior relatively weak), we replaced the true (highly non-Gaussian) joint
prior distribution of yi with a Gaussian distribution with zero mean and covariance Eq. (33).
This allowed us to implement the efficient non-isotropic HMC chain, described above, so that its
computational cost scales only linearly with the stimulus duration T , allowing us to decode very
long stimuli. However, in this case the details of the procedure explained in the final paragraph
of Sec. 3.1 have to be modified as follows. The Hessian for y is given by

Jy = C−1
y + JLL

y , (34)

where the Hessian of the negative log-likelihood term, JLL
y , is now diagonal, because yi(t) affects

the conditional firing rate instantaneously (see Eq. (3)). Let AA
T

= J−1
y , similar to Eq. (20).

The non-isotropic chain requires the calculation of Aỹ for some vector ỹ at each step of the
MCMC. In order to carry this out in O(T ) computational time, we proceed as follows. First we

calculate the Cholesky decomposition, L, of Cy, satisfying LL
T

= Cy. As mentioned in Sec. 3.1,
since Cy is banded this can be performed in O(T ) operations. Then we can rewrite Eq. (34) as

Jy = L−1T
QL−1, Q ≡ I + L

T
JLL

y L. (35)
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Since L is banded (due to the bandedness of Cy) and JLL
y is diagonal, it follows that Q is also

banded. Therefore its Cholesky decomposition, B, satisfying B
T
B = Q, can be calculated

in O(T ) time, and is also banded. Using this definition and inverting Eq. (35), we obtain

AA
T

= J−1
y = LB−1

(

LB−1
)T

, from which we deduce A = LB−1, or

Aỹ = LB−1ỹ. (36)

The calculation of L and B can be performed before running the HMC chain. Then at each
step we need to perform Eq. (36). As described in the final paragraph of Sec. 3.1, calculating
B−1ỹ and the multiplication of the resulting vector by L, both require only O(T ) elementary
operations due to the bandedness of B and L.

Figure 8 shows the spike trains, as well as the corresponding true inputs and MAP and
posterior mean estimates. The closeness of the posterior mean to the MAP (the L2 norm of
their difference is only about 9% of the L2 norm of the MAP) is an indication of the accuracy
of the Laplace approximation in this case.

5 Other applications: estimation of non-marginal quantitites

So far we focused on using the MCMC samples to estimate E(x|r) or the posterior covariance.
Both of these quantities involve separate averaging over the marginal distribution of single
components or pairs of components of x. However, since MCMC provides samples from the
joint distribution p(x|r), we can also calculate quantities that cannot be reduced to averages
over one or two dimensional marginal distributions, and involve the whole joint distribution
p(x|r). We consider two examples below.

5.1 Posterior statistics of crossing times

One important example of these non-marginal computations involves the statistics (e.g., mean
and variance) of some crossing time for the time series x, e.g., the time that xt first crosses
some threshold value. (First-passage time computations are especially important, for example,
in the context of integrate-and-fire-based neural encoding models Paninski et al. (2008).) In
Smith et al. (2004), the authors proposed a hidden state-space model that provides a dynamical
description for the learning process of an animal in a task learning experiment (with binary
responses), and yields suitable statistical indicators for establishing the occurrence of learning or
determining the “learning trial.” In the proposed model, the state variable, xt, evolves according
to a Gaussian random walk from trial to trial (labeled by t), and the probability of a correct
response on every trial, qt, is given by a logistic function of the corresponding state variable, xt.
Given the observation of the responses in all trials, the hidden state variable trajectory can be
inferred. In Smith et al. (2007), the authors carried out this inference in Bayesian fashion by
using Gibbs sampling from the posterior distribution over the state variable time-series and the
model parameters conditioned on the observed responses. There, the learning trial was defined
as the first trial after which the ideal (Bayesian) observer can state with 95% confidence that the
animal will perform better than chance. More mathematically, using the MCMC samples (using
the winBUGS package), they obtained the sequence of the lower 95% confidence bounds for qt

for all t’s (for each t, this bound depends only on the one-dimensional marginal distribution of
qt). The authors defined the learning trial as the t for which the value of this lower confidence
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Figure 9: Estimation of threshold crossing times using MCMC sampling. The spike trains are
generated by an inhomogenous Poisson process with a rate λ(t) = exp(xt + b) that depends on
a changing hidden variable xt (times are in arbitrary units). Having observed a particular spike
train (bottom row of the top panel), the goal is to estimate the first or the last time that xt

crosses a threshold from below. The top and the middle plots show the true xt (black jagged
lines) and the threshold (the dashed horizontal lines). The top plot also shows the posterior
marginal median for xt (red curve) given the observed spike train, and its corresponding posterior
marginal 90% confidence interval (gray area). In Smith et al. (2007), these marginal statistics
were used to estimate the crossing times. However, a more systematic way of estimating these
times is to directly use their (non-marginal) posterior statistics. The middle plot also shows
three posterior samples of xt (blue curves) obtained using an HMC Markov chain. The first and
last crossing times are well-defined for these three curves, and are marked by red and green dots,
respectively. For each MCMC sample curve, we calculated these crossing times, and then we
tabulated the statistics of these times across all samples. The bottom panel shows the MCMC-
based posterior histograms of these crossing times thus obtained. The two separated peaks
corresponds to the first and the last crossing times. The posterior mean and variance of the
crossing times can then be calculated from these histograms.

bound crosses the probability value corresponding to chance performance, and stays above it in
all the following trials.

However, it is reasonable to consider several alternative definitions of the “learning trial”
in this setting. One plausible approach is to define the learning trial, tL, in terms of certain
passage times of qt, e.g., the trial in which qt first exceeds the chance level and does not become
smaller than this value at later trials. In this definition, tL is a random variable whose value is
not known by the ideal observer with certainty, and its statistics is determined by the full joint
posterior distribution and can not be obtained from its marginals. The posterior mean of tL
provides an estimate for this quantity, and its posterior variance, an estimate of its uncertainty.
These quantities involve nonlinear expectations over the full joint posterior distribution of {xt},
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and can be estimated by the MCMC samples from that distribution.

Figure 9 shows a simulated example in which we used our MCMC methods to decode the
crossing times of the input to a Poisson neuron, based on the observation of its spike train.
The neuron’s rate was given by λ(t) = exp(xt + b) and the threshold corresponded to a value
xt = x0. The hidden process xt was assumed to evolve according to a Gaussian AR(1) process,
as in Smith et al. (2007). Having observed a spike train, samples from the posterior distribution
of xt were obtained by an HMC chain. To estimate the first and the last times that xt crosses
x0 from below, we calculate these times for each MCMC sample, obtaining samples from the
posterior distribution of these times. Then we calculate their sample mean to estimate when
learning occurs. Fig. 9 shows the full histograms of these passage times, emphasizing that these
statistics are not fully determined by a single observation of the spike train.

As a side note, to obtain a comparison between the performance of the Gibbs-based win-
BUGS package employed in Smith et al. (2007) versus the HMC chain used here, we simulated
a Gibbs chain for y(t) on the same posterior distribution. The estimated correlation time of
the Gibbs chain was ≈ 130 — i.e., Gibbs mixes a hundred times slower than the HMC chain
here, due to the nonnegligible temporal correlations in xt (Fig. 9); recall Fig. 3. In addition,
due to the state-space nature of the prior on xt here, the Hessian of the log-posterior on x is
tridiagonal, and therefore the HMC update requires just O(T ) time, just like a full Gibbs sweep.

5.2 Mutual Information

Our second example is the calculation of the mutual information. Estimates of information
transfer rates of neural systems, and the mutual information between the stimulus and response
of some neural population, are essential in the study of the neural encoding and decoding prob-
lems (Bialek et al., 1991; Warland et al., 1997; Barbieri et al., 2004). Estimating this quantity is
known to be often computationally quite difficult, particularly for high-dimensional stimuli and
responses (Paninski, 2003). In (Pillow et al., 2010), the authors presented an easy and efficient
method for calculating the mutual information for neurons modeled by the GLM, Eqs. (3)–(4),
based on the Laplace approximation Eq. (8). As discussed above, this approximation is expected
to hold in the case of Gaussian priors, in a broad region of the GLM parameter space. Our goal
here is to verify this intuition, by comparing the Laplace approximation for the mutual informa-
tion with an exact direct estimation using MCMC integration. As we will see, the main difficulty
in using MCMC to estimate the mutual information lies in the fact that we can only calculate
p(x|r) up to an unknown normalization constant. Estimating this unknown constant turns out
to be tricky, in that naive methods for calculating it lead to large sampling errors. Below, we
use an efficient, low error method, known as bridge sampling, for estimating this constant.

The mutual information is by definition equal to the average reduction in the uncertainty
regarding the stimulus (i.e., the entropy, H, of the distribution over the stimulus) of an ideal
observer having access to the spike trains of the RGC, from its prior state of knowledge about
the stimulus:

I[x; r] = H [x] − E(H[x|r])

≡ −
∫

p(x) log p(x)dx +

〈∫

p(x|r) log p(x|r)dx

〉

p(r)

. (37)

Here, p(r) is given by Eq. (6), and the posterior probability p(x|r) is given by Bayes’ rule
Eq. (5). The logarithms are assumed to be in base 2, so that information is measured in bits.

26



We consider Gaussian priors given by Eq. (10), for which we can compute the entropy H[x]
explicitly,

H[x] =
d

2
log 2πe +

1

2
log |C|. (38)

Thus the real problem is to evaluate the second term in Eq. (37). The integral involved in the
definition of H[x|r] is in general hard to evaluate. One approach which is computationally very
fast, is to use the Laplace approximation, Eq. (8), if it is justified – we took this approach in
Pillow et al. (2010). In that case, from Eq. (8), we obtain

I[x; r] ≈
〈

1

2
log |C · J(r)|

〉

p(r)

≡ 〈IL(r)〉p(r) = IL, (39)

where J(r) is the Hessian Eq. (9).

More generally, we can use the MCMC method developed in Sec. 3 to estimate H[x|r]
directly. The integral involved in H[x|r], Eq. (37), (before averaging over p(r)) has the form

E (g(x)|r) =

∫

g(x)p(x|r)dx, (40)

i.e., one representing the posterior expectation of a function g(x). If we could evaluate g(x)
for arbitrary x, we could evaluate this expectation by the MCMC method, via Eq. (13). As
we mentioned above, however, the difficulty lies in that in general we can only evaluate an
unnormalized version of the posterior distribution, and thus g(x) = − log p(x|r), only up to an
additive constant. Suppose we can evaluate

q(x|r) ≡ Z(r)p(x|r), (41)

for some Z(r) at any arbitrary x. Then H[x|r] can be rewritten as

H[x|r] = log Z(r) − 〈log q(x|r)〉p(x|r) . (42)

From the normalization condition for p(x|r), Z(r) is given by

Z(r) =

∫

q(x|r)dx. (43)

The main difficulty in calculating the mutual information lies in estimating Z(r); for a discussion
of the difficulties involved in estimating normalization constants and marginal probabilities, see
Meng and Wong (1996), the discussion of the paper by Newton and Raftery (1994), and Neal
(2008). By contrast, the first term in Eq. (42) already has the form Eq. (40) (with q(x|r)
replacing g(x)) and can be estimated using Eq. (13). In the following we introduce an efficient
method for estimating Z(r) and I(r).

As noted above, if in Eqs. (42)–(43), we replace q(x|r) with the Laplace approximation

q
L
(x|r) ≡ e−

1
2
(x−x

MAP
)TJ(x−x

MAP
)−L0 ≡ Z

L
(r)p

L
(x|r), (44)

we obtain the result Eq. (39), as a first approximation to the mutual information. Here we
defined

L0 ≡ − ln q(x
MAP

|r), (45)
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Figure 10: Comparison of Laplace approximation to Mutual Information per stimulus dimension
IL/d, and the correction, δI/d (see Eq. (47)), based on the MCMC estimate of the true value,
for a pair of ON and OFF RGCs, as a function of the magnitude of the filtered stimulus input
c‖k‖, where c is the contrast, and ‖k‖ is the norm of the stimulus filter. The computationally
inexpensive Laplace approximation for the mutual information is accurate for moderately strong
stimulus filters which give rise to sharp likelihoods. Furthermore, at c‖k‖ = 0, the likelihood
has no dependence on x and the posterior is equal to the Gaussian prior, for which the Laplace
approximation is exact. Thus for very small |k| also, IL becomes exact and the error, δI, has a
maximum around c‖k‖ ≈ 2.5.

and from the normalization condition for p
L
(x|r) we must have

Z
L
(r) =

∫

q
L
(x|r)dx =

√

(2π)d|J(r)|−1e−L0 . (46)

We included the constant L0 in the exponent in Eq. (44) so that when the Laplace approximation
is accurate we have log q

L
(x|r) ≈ log q(x|r), and log Z(r) ≈ log Z

L
(r).

We now write the exact mutual information as I[x; r] = 〈I(r)〉p(r), and write I(r) ≡ H[x]−
H[x|r] as the Laplace approximation for it plus a difference

I(r) = IL(r) + δI(r) =
1

2
log |C · J(r)| + δI(r), (47)

where
δI(r) ≡ −(H[x|r] − HL[x|r]). (48)

Using the general formula (42) both for the true distribution, Eq. (41), and its Gaussian ap-
proximation, Eq. (44), we obtain

δI(r) = −(H[x|r] − HL[x|r]) ≡ 〈log q(x|r)〉p(x|r) − 〈log q
L
(x|r)〉p

L
(x|r) − log Z(r) + log Z

L
(r)

= 〈log q(x|r)〉p(x|r) − 〈log q
L
(x|r)〉p

L
(x|r) − log η, (49)

with η ≡ Z(r)/Z
L
(r). Thus, after averaging over p(r), δI(r), calculated using Eq. (49), gives the

correction to the Laplace approximation to the mutual information, Eq. (39). When the Laplace
approximation is justified, this correction will be small (even before averaging over p(r)). Also,
note that in that case η ≈ 1, and the last term in Eq. (49) is small on its own.
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The second term in Eq. (49) is readily evaluated:

− 〈log q
L
(x|r)〉p

L
(x|r) =

d

2 ln 2
+

L0

ln 2
, (50)

and the first term can be evaluated using the MCMC, via Eq. (13). To evaluate the third term,
we use the following trick. For any well-behaved function α(x), we have

η =
Z(r)

ZL(r)
=

Z(r)

ZL(r)

∫

p(x|r)α(x)p
L
(x|r)dx

∫

p
L
(x|r)α(x)p(x|r)dx

=
〈q(x|r)α(x)〉p

L
(x|r)

〈q
L
(x|r)α(x)〉p(x|r)

. (51)

Using this formula we can estimate η by estimating the numerator and denominator on the right
hand side according to Eq. (13) with samples drawn from p(x|r) and p

L
(x|r), respectively, e.g.,

by MCMC. However, as we only have access to finitely many samples from each distribution
care must be taken in the choice of the function α to avoid large estimation errors. For example,
if the support of p(x|r) and p

L
(x|r) have a small overlap, α(x) has to be chosen such that

it amplifies the contribution from the region of overlap of the two distributions, thus acting
like a bridge connecting the two supports. Otherwise (e.g., if α(x) is a constant), both the
numerator and denominators in Eq. (51) can be very small in such a case, leading to an almost
indeterminate ratio with large random error.14 A method of evaluating η using Eq. (51) by
employing an optimal α(x), was originally developed by (Bennett, 1976) and was further refined
by (Meng and Wong, 1996), and is referred to as “bridge sampling” for the above reason. These
authors have shown that the asymptotically optimal (for large number of samples from each
distribution) choice of α(x) is

α(x) ∝ 1

s1p(x|r) + s2pL(x|r)
∝ 1

s1q(x|r) + ηs2qL(x|r)
, (52)

where si = Ni/(N1 + N2) (i = 1, 2), and N1,2 are the number of samples drawn from p(x|r)
and pL(x|r), respectively. As this choice for α(x) itself depends on η, it suggests an iterative
solution, namely

η̂(t+1) =

1
N2

∑N2
j=1

q(x2j |r)

s1q(x2j |r)+η̂(t)s2qL(x2j |r)

1
N1

∑N1
j=1

q
L

(x1j |r)

s1q(x1j |r)+η̂(t)s2qL(x1j |r)

=

1
N2

∑N2
j=1

l2j

s1l2j+η̂(t)s2

1
N1

∑N1
j=1

1
s1l1j+η̂(t)s2

, (53)

where xij (i = 1, 2) are samples drawn from p(x|r) and pL(x|r) respectively, and lij ≡ q(xij |r)/q
L
(xij |r).

Since we expect Z ≈ Z
L
, we take η̂(0) = 1. In our calculations, we stopped the bridge sampling

iterations when log η̂(t+1)

η̂(t) < 0.001d, where d is the stimulus dimension.

Figure 10 shows a plot of I
L

and δI per stimulus dimension, calculated as described above,15

as a function of the standard deviation of the filtered stimulus input (which, for the white noise
stimulus, is the contrast, c, times the magnitude of ki(t)). It is seen that I

L
grows as c‖ki‖ grows,

but δI does not change significantly, and remains small. Thus the Laplace approximation for

14For a similar reason a “brute force” method for computing Z, such as a simple Monte Carlo integration
of the high-dimensional distribution q(x|r), gives rise to an estimate with slow convergence and a large error
(Meng and Wong, 1996).

15In principle, according to Eqs. (37)–(39), one has to average IL(r) and δI(r) over the marginal response
distribution p(r). But due to the intensive nature of I

L
(r)/d and δI(r)/d, and the large d, they depended on the

specific realization of r only weakly, and were to a good degree self-averaging, so that averaging over p(r) would
not considerably alter the plot of Fig. 10. A similar argument appeared in Strong et al. (1998).
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the mutual information is very accurate for moderately large c‖ki‖. Furthermore, for vanishing
c‖ki‖, the posterior is equal to the Gaussian prior in this case, and this approximation is exact.
Therefore the error δI has a maximum at a finite value of the stimulus filter, away from which the
Laplace approximation is accurate. For comparison with our real spike data example presented
in Sec. 4 and Fig. 8, we note that in that case the standard deviation of the filtered stimulus to
different cells was in the range c‖k‖ ∼ 3±1, depending on the cell, and the Laplace approximation
did indeed provide an accurate approximation for the mutual information, with δI/IL = 0.09.

6 Effect of uncertainty in the model parameters

In the previous sections we assumed the values of the parameters involved in the GLM likelihood,
Eqs. (3)–(4), were known exactly. Of course, in reality these parameters themselves are obtained
by fitting the GLM to experimental data, and are thus only known with a finite accuracy. In
this section we investigate the effect of uncertainty in the GLM parameters θ (see Sec. 2), on
the posterior mean estimate for the stimulus. We represent this uncertainty by a probability
distribution, p(θ). In the presence of parameter uncertainty, the posterior mean of the stimulus,
x, is modified to

E(x|r) =

∫

E(x|r, θ)p(θ)dθ =

∫

x p(x|r, θ)p(θ)dxdθ, (54)

(in this section, unlike in sections 3–5, we write θ explicitly when a distribution is conditioned on
it – when there is no θ in the argument of the distribution, it means it has been marginalized).
We assume the uncertainty in the parameters is small enough that a Laplace approximation
for p(θ) applies, i.e., it can be taken to be Gaussian with mean θML, and a small covariance
I−1(θML). Here, θML is the maximum likelihood fit to data, and I−1(θML) is the Hessian of the
negative log-likelihood (as a function of GLM parameters, given the experimental data) at θML.
For simplicity we assume the GLM nonlinearity (see Eq. (3)) is exponential: f(u) = exp (u). We
also assume that the prior stimulus ensemble is Gaussian, with probability distribution described
by Eq. (10).

We would like to understand how the uncertainty in θ will affect the posterior estimate.
This uncertainty broadens the likelihood (as a function of x) and therefore, we expect that as
it increases the posterior estimate E(x|r) will move towards the prior mean (in our case zero).
Intuitively, this is because as the Bayesian decoder’s knowledge of the encoding mechanism
(represented by the parameters θ) decreases, it discounts the information that the observed spike
train, r, carries about the stimulus and instead relies more strongly on its prior information.
To verify this intuition analytically, we consider the case where E(x|r, θ) ≈ x

MAP
(r, θ) (e.g.,

as we saw in the last section, the Laplace approximation is often quite adequate in the case of
Gaussian priors, and this approximation therefore holds in that case). Assuming this, we can
replace E(x|r, θ) with x

MAP
(r, θ) in Eq. (6), and obtain

E(x|r) ≈
∫

x
MAP

(r, θ)p(θ)dθ. (55)

In the following we will drop r from the arguments of x
MAP

when it is understood. We will
denote the average over p(θ) in Eq. (55) by 〈x

MAP
〉

θ
.

Using the Bayes rule in the form log p(x|r) = log p(x) + log p(r|x) + const., with Eq. (10),
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and Eqs. (3)-(4) with exponential nonlinearity, we obtain

− log p(x|r, θ) =
1

2
x

TC−1x+
∑

i

[

−rT
i · (Ki · x + bi + Hij · rj) +

∫

eKi·x+bi+
P

j Hij ·rjdt

]

, (56)

up to an additive constant. Here, C is the covariance of the Gaussian prior, Eq. (10), and
θ = {bi,Ki,Hij} are the GLM parameters introduced in Sec. 2. The MAP satisfies

∂ log p(x
MAP

|r)

∂x
= 0, (57)

which yields the equation

C−1x
MAP

(θ) =
∑

i

K
T

i ·
[

ri − eKi·xMAP
(θ)+bi+

P

j Hij ·rj

]

. (58)

When the contrast or the stimulus filter are small (corresponding to the regime of low signal
to noise ratio), the exponential can be expanded to first order in x

MAP
(θ), yielding the linear

equation (a similar expansion also appeared in (Pillow et al., 2010))

A(θ)x
MAP

(θ) = B(θ), (59)

where we defined

A(θ) ≡ C−1 +
∑

i

K
T

i SiKi, (60)

B(θ) =
∑

i

K
T

i · (ri − Si) , (61)

and

Si ≡ ebi+
P

j Hijrj , (62)

Si(t1, t2) ≡ Si(t1)δ(t1 − t2). (63)

Notice that A(θ) is the Hessian of the negative log-posterior Eq. (56) at x = 0. Assuming the
matrix A(θ) is invertible,16 we then obtain

x
MAP

(θ) = A(θ)−1B(θ). (64)

We write θ = θML + δθ, where δθ has zero mean, and expand Eq. (64) in δθ up to second order,
to obtain

x
MAP

(θ) = x(0)
MAP

+ x(1)
MAP

+ x(2)
MAP

+ O(δθ3), (65)

where
x(0)

MAP
= A−1

0 B0, (66)

and

x(1)
MAP

= A−1
0 dB −A−1

0 dA · x(0)
MAP

, (67)

x(2)
MAP

= A−1
0

[

d2B − dAA−1
0 dB −

(

d2A− dAA−1
0 dA

)

x(0)
MAP

]

. (68)

such that x(n)
MAP

is homogeneously of order n in δθ. Here, we defined A0 ≡ A(θML), B0 ≡ B(θML),
and dA and dB (d2A and d2B) are the random first (second) order variations of A(θ) and B(θ)
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Figure 11: Effect of parameter uncertainty on the posterior estimate for Gaussian white-noise
stimuli. Panel (a) is a plot of ‖〈x

MAP
〉

θ
‖2/

√
d (where d = 50 is the stimulus dimension) vs.

relative uncertainty, α, in the stimulus filter ki(t). α is defined through ki(t) = (1+αǫ(t))kML
i (t),

where ε(t) is a standard Gaussian white-noise. Unlike in Sec. 4, kML
i (t) (the maximum likelihood

fit for ki(t)) was taken to have a time width spreading over a few stimulus frames. Furthermore,
its magnitude was taken to be large enough to give rise to a sharp posterior, satisfying Eq. (8)
and thus E(x|r, θ) ≈ x

MAP
(r, θ). For each value of α, 100 samples of ε(t) were generated, and

the MAP was decoded for each using the corresponding ki(t) and the fixed spike train. The
sample average of those MAPs was taken as the estimate for 〈x

MAP
〉

θ
≈ E(x|r). Panel (b) shows

〈x
MAP

〉
θ

(red trace) for α = 0 (top plot) and α = 1 (bottom plot). It is seen that the main effect
of the finite uncertainty is a shrinkage of the estimate towards zero, i.e., the mean of the prior
Gaussian distribution.

in δθ. The first order variations, dA and dB, are thus Gaussian with zero mean and a covariance
determined by the covariance of θ. After averaging over θ, x(1)

MAP
will vanish, and we have

〈x
MAP

〉
θ

= x(0)
MAP

+ 〈x(2)
MAP

〉
θ
. (69)

To gain some intuition, we now set out to evaluate x(2)
MAP

in the regime of small baseline
firing rates, so that S0

i ≡ Si(θML) are small, and we also assume we can neglect the uncertainty
of the baseline firing rates and the post-spike feedback filters (i.e., we set δbi = δHij = 0). In
this case, d2B = 0, and ignoring terms beyond the leading order in S0

i , we take A−1
0 ≈ C, and

obtain

x(2)
MAP

≈ −A−1
0

(

dAA−1
0 dB + d2AA−1

0 B0

)

, (70)

≈ −C
∑

ij

[

K
T

i Si
0δKiCδK

T

j + δK
T

i S0
i KiCδK

T

j + δK
T

i S0
i δKiCK

T

j

]

·
(

rj − S0
j

)

= −C2
∑

ij

[

K
T

i S0
i δKiδK

T

j + δK
T

i S0
i KiδK

T

j + δK
T

i S0
i δKiK

T

j

]

·
(

rj − S0
j

)

. (71)

16This is true, at least when when Si are not too large.
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Here, we denoted the maximum likelihood fit for the stimulus filters by Ki, and in deriving

the second line, we used dA =
∑

i δK
T

i S0
i Ki + K

T

i S0
i δKi, d2A =

∑

i δK
T

i S0
i δKi, and dB =

∑

j δKj

(

rj − S0
j

)

, and in the last line we assumed the stimulus is white, i.e., C ∝ 1. Equation

(6) is not very enlightening, so we look at the special case where δKi = αKi, and α is a noisy
Gaussian scalar with zero mean (this arises for example in the case of delta function kernels, as in
the example of the last section – or more generally when only the over all scale of Ki is uncertain).

Replacing for δKi, and using Eq. (66) with A−1
0 ≈ C = c21 to write c2

∑

j K
T

j

(

rj − S0
j

)

= x(0)
MAP

,

for this case we obtain
〈x(2)

MAP
〉

θ
≈ −3〈α2〉

θ
c2

∑

i

K
T

i S0
i Kix

(0)
MAP

. (72)

Therefore, to the first non-vanishing order, the change in the L2 norm of the estimate is

‖E(x|r)‖2
2 − ‖E(x|r, θML)‖2

2 ≈ ‖〈x
MAP

〉
θ
‖2
2 − ‖x(0)

MAP
‖2
2

≈ 2x(0)T

MAP
· 〈x(2)

MAP
〉

θ
= −6〈α2〉

θ
c2x(0)T

MAP
Lx(0)

MAP
≤ 0, (73)

where the inequality followed from the fact that S0
i , and therefore L ≡ ∑

i K
T

i S0
i Ki are positive

definite operators. Thus we see that, at least in the special regime that we considered, parameter
uncertainty will shrink the norm of the posterior mean estimate sending it towards the prior
mean at the origin. This result is in agreement with the intuition stated above, and was further
corroborated by our numerical results in more general parameter regimes.

Figure 11 shows a numerical plot of the norm of the posterior estimate as a function of the
size of the uncertainty in Ki. Here, δKi was not constrained to be proportional to Ki. However,
again, as uncertainty in model parameters increases, leading to broadening of the likelihood, the
posterior mean moves towards the prior mean.

7 Discussion

Markov chain Monte Carlo allows for the calculation of general, fully Bayesian posterior esti-
mates. The main goal of this paper was to survey the performance of a number of efficient
MCMC algorithms in the context of model-based neural decoding of spike trains. Using these
methods, we also verified and extended the results of (Pillow et al., 2010) on MAP based de-
coding and information estimation via Laplace approximation, in GLM based neural decoding
problems. Although MCMC integration is more general in this sense, it is at the same time
significantly more computationally expensive than the optimization algorithms used to find the
MAP. As we explained in Sec. 2, the MAP is in general a good estimator when the Laplace
approximation is accurate. The MAP also comes with natural error bars estimated through the
Hessian matrix of the log-posterior at MAP, Eq. (9). Furthermore, when it is valid, this approx-
imation provides a very efficient way of estimating the mutual information through Eq. (39).
Thus it is important to have a clear knowledge of when this approximation holds, since when it
does, it can be exploited to dramatically reduce the computational cost of stimulus decoding or
information estimation.

In Sec. 3, we introduced the RWM, HMC, Gibbs, and hit-and-run Markov chains, all spe-
cial cases of the Metropolis-Hastings algorithm. Although these methods allow for sampling
from general posterior distributions, regardless of the forward model, we also took advantage
of the specific properties of the distributions involved in our GLM-based decoding to increase
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the efficiency of these chains. The ARS algorithm, which exploits the log-concavity property
of the GLM likelihood and the prior distribution, was used to significantly reduce the compu-
tational cost of the one-dimensional sampling in each hit-and-run step. We took advantage of
the Laplace approximation (or a regularized version of it in the flat prior case), to shape the
proposal distributions to roughly match the covariance structure of the underlying distribution.
Furthermore, we were able to carry this out in O(T ) computational time (i.e., scaling only lin-
early with the stimulus duration, T ), by exploiting the bandedness of the log-posterior Hessian
in these settings. To the best of our knowledge, the use of O(T ), Laplace-enhanced HMC in
neural applications is novel. Similarly, even though the hit-and-run algorithm is well-known
in the statistics literature, we are unaware of any previous application of it in the context of
high-dimensional neural decoding.

We mention that these chains with O(T ), Laplace-based enhancement can also be im-
plemented in decoding posterior distributions based on state-space models with Markovian
structure; an example of such an application was presented in Fig. 9, based on the state-
space model used in Smith et al. (2007). However, in cases where the posterior distribu-
tion turns out to be non-concave, obtaining the Laplace approximation may be unfeasible
or it may not improve the chain’s mixing. Even though MCMC without this enhancement
is still applicable in such cases, other methods such as sequential Monte Carlo (“particle-
filtering”) (Doucet et al., 2001; Brockwell et al., 2004; Kelly and Lee, 2004; Godsill et al., 2004;
Shoham et al., 2005; Ergun et al., 2007; Vogelstein et al., 2008; Huys and Paninski, 2009) which
are solely applicable in models with Markovian structure may prove to be more efficient.

It is worth noting a connection between this O(T ) non-isotropic MCMC sampling and the
Bayesian adaptive regression splines (BARS) method (DiMatteo et al., 2001; Wallstrom et al.,
2007), which has become a popular tool in neursocientific applications. The BARS algorithm is
a powerful non-parametric regression method designed to infer the shape of a smooth underlying
curve that has produced noisy observations. This method assumes the curve can be approx-
imated by a spline, and outputs samples from the posterior distribution of the spline knots
and coefficients. Specifically, in the case of neural spike trains, it is assumed that the observed
spikes, r(t), are produced by an inhomogeneous Poisson process with a rate λ(t) = exp (B(t)Tβ)
where Bi(t) is a cubic B-spline basis, and βi are the spline coefficients. Here, i runs from 1 to
k + 2, where k is the number of spline knots with positions τi; the spline basis functions, Bi(t),
implicitly depend on k and τi. Conditioned on fixed τi and k, the prior distribution of the spline
coefficients β is taken to be Gaussian with zero mean and inverse covariance C−1

ij ∝ ∑

t Bi(t)Bj(t)
(a unit information prior). Thus conditioned on fixed spline knots, the BARS model involves
Poisson observations from a Gaussian latent variable β; this is directly analogous to our GLM
model with Gaussian stimuli, x, with β and B(t) replacing x and K in the analogy, respectively.
In particular, sampling from the posterior distribution of the a priori Gaussian β (given τi and
k) is very similar to sampling from the posterior over the Gaussian stimulus, x, in our examples
in this paper. Furthermore, to obtain conditional samples of β, the BARS code uses an RWM
chain (Wallstrom et al., 2007), which as in Eq. (19)–(20), employs the Hessian at the MAP
point for the spline coefficients to produce non-isotropic proposals. Using the form of the prior
covariance, mentioned above, and the standard likelihood expression for a Poisson process, the
Hessian of the negative log-posterior for β (given r(t), τi and k) is given by

Hij = a
∑

t

Bi(t)Bj(t) +
∑

t

Bi(t)λ(t)Bj(t), (74)

where the first term is the inverse prior covariance, and a is some positive constant. Since, by
definition, Bi(t) is non-zero only when t ∈ [τi, τi+4], we see that Hij vanishes when |i−j| > 3, and
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hence, is banded. Again, the bandedness of the Hessian is exploited (Wallstrom et al., 2007) to
obtain the RWM proposals in O(T ) computational time, by the method described after Eq. (21).
We note that the BARS package could potentially be improved by using a faster-mixing chain
such as HMC, which can out-perform RWM by orders of magnitude (Fig. 4).

We compared the mixing rates of the mentioned MCMC chains, in sampling from the
posterior stimulus distributions for GLM modeled neurons. In this setting, when the posterior
is smooth throughout its support, the HMC algorithm outperforms the other chains by an order
of magnitude. On the other hand, when sampling from posteriors based on flat priors with sharp
corners, the hit-and-run chain mixed consistently faster than the others.

In Sec. 4, we compared the performance of the MAP and the posterior mean, calculated
using MCMC, in different settings. In one example, we decoded simulated spike trains (generated
in response to Gaussian and flat white-noise stimuli), in a range of stimulus input strengths and
for different numbers of identical cells. We also decoded the filtered stimulus input into six
retinal ganglion cells, based on their experimentally recorded spike trains. The average squared
error of the MAP and mean estimates were in general quite close in the case of Gaussian stimuli,
justifying MAP decoding in this case. In the flat prior case, however, the posterior mean can
often have a much smaller average squared error than the MAP.

In Sec. 5, we applied MCMC to the problem of estimating properties of the joint distri-
bution p(x|r) which cannot be obtained form its low dimensional marginals. In particular, we
investigated the reliability of the Laplace approximation for the mutual information between the
stimulus and spike trains (model-based calculations of the mutual information with Gaussian
priors have been previously presented in Barbieri et al. (2004)). We found that the Laplace
approximation for the mutual information was adequate in the case of Gaussian priors, except
in a small range of moderate stimulus input strengths.

In the last section we dealt with the effect of uncertainty in GLM parameters (e.g., based
on fits to experimental data) on the decoding. Intuitively, it is expected that when the forward
model parameters become uncertain, information coming from the spike train and hence the
likelihood becomes less reliable, and therefore the estimate will rely more heavily on the prior
information. Thus the posterior mean is expected to revert towards the prior mean as parameter
uncertainty increases. We verified this intuition analytically in the special case of localized
stimulus filters (with no band-pass filtering) and small baseline firing rates. Our numerics
showed that indeed the main systematic effect of increasing parameter uncertainty on the mean
estimate, E(x|r) is to shrink its magnitude (thus sending to the origin which was the prior mean
in our case) in a wide range of parameter values.

The methods developed in this paper and in (Pillow et al., 2010) can be used for a variety
of applications. In future work we plan to further apply these techniques to other experimental
data, and to compare different “codebooks” (as mentioned in the introduction) based on different
reductions of the full spike trains, according to their robustness and fidelity.
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