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Abstract In a wide variety of emerging data-intensive

applications, such as social network analysis,Web document

clustering, entity resolution, and detection of consistently co-

expressed genes in systems biology, the detection of dense

subgraphs (cliques) is an essential component. Unfortu-

nately, this problem is NP-Complete and thus computa-

tionally intensive at scale—hence there is a need for efficient

processing, as well as the techniques for distributing the

computation across multiple machines such that the com-

putation, which is too time-consuming on a single machine,

can be efficiently performed on a machine cluster given that

it is large enough. In this paper, we propose a new algorithm

(called GP) for maximal clique enumeration. It identifies

cliques by the operation of binary graph partitioning, which

iteratively divides a graph until each task is sufficiently small

to be processed in parallel. Given a connected graph

G ¼ ðV;EÞ, the GP algorithm has a space complexity of

O(|E|) and a time complexity of OðjEjlðGÞÞ, where lðGÞ
represents the number of different cliques existing in G. We

also present a hybrid algorithm, which can effectively

leverage the advantages of both the GP algorithm and the

classical Bron-and-Kerbosch (BK) algorithm. Then, we

develop corresponding parallel solutions based on the GP

and hybrid algorithms. Finally, we evaluate the performance

of the proposed solutions on real and synthetic graph data.

Our extensive experiments show that in both centralized and

parallel setting, our proposed GP and hybrid approaches

achieve considerably better performance than the state-of-

the-art BK approach. Our parallel solutions are implemented

and evaluated on MapReduce, a popular shared-nothing

parallel framework, but can easily generalize to other shared-

nothing or shared-memory parallel frameworks.

Keywords Maximal clique enumeration � Parallel graph
processing � Iterative graph partitioning � MapReduce

1 Introduction

A variety of emerging applications are focused on com-

putations over data modeled as a graph: examples include

finding groups of actors or communities in social networks

[18, 22], Web mining [19], entity resolution [26], graph

mining [37, 41], and detection of consistently co-expressed

gene groups in systems biology [27]. For the problems just

cited, as well as a number of others, a critical component of

the analysis is the detection of cliques (fully connected

components) in the structure of the network graph.

Maximal clique enumeration is NP-Complete. Hence, a

great deal of effort has been spent on efficient search
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algorithms [1, 4, 6, 14, 33, 34]. Most of existing algorithms

for maximal clique enumeration are based on the classical

BK algorithm proposed by Bron and Kerbosch [4], which

uses a backtracking technique to explore search space and

limits the size of its search space by remembering the

search paths it has already visited. A variant [34] of the BK

algorithm also provides a worst-case optimal solution. In

practice, the BK algorithm has been widely reported as

being faster than its alternatives [5, 15].

Data-intensive applications usually require clique

detection to be operated over large graphs. We observe that

the existing algorithms were optimized for centralized

implementation, but not for parallel implementation. Their

performance has not been adequately evaluated on real big

graphs either, especially the natural graphs with the skewed

power-law degree distributions commonly found in real

world. In fact, as we show in experimental evaluation of

Sect. 5, their performance is quite sensitive to particular

graph characteristics. We also note that there have been a

variety of proposals that divide the graph into smaller

subcomponents and exploit parallelism to improve perfor-

mance [10, 23, 32, 38, 40]. They have been empirically

shown to speed computation in massive networks. How-

ever, built on the BK algorithm, their performance may be

limited by the efficiency of BK search and how evenly a

graph is partitioned.

In this paper, we present a new approach for maximal

clique enumeration. Versus prior work in this area, its key

insight is to exploit iterative binary decomposition during

the computation. It iteratively divides a graph until each

task is sufficiently small to be processed in parallel. As a

result, a computation, which may be too time-consuming

on a single machine, can be effectively parallelized across

a cluster. In this paper, we choose MapReduce for parallel

evaluation due to the maturity and wide availability of its

implementations. However, the implementation can easily

generalize to other shared-nothing or shared-memory par-

allel architectures. The major contributions of this paper

are summarized as follows:

1. We present a novel algorithm (GP) for maximal clique

enumeration based on iterative binary graph partition-

ing. Given a connected graph G ¼ ðV;EÞ, it has the

space complexity of O(|E|) and the time complexity of

OðjEjlðGÞÞ, where lðGÞ represents the number of

different cliques existing in G.

2. We propose a hybrid algorithm for maximal clique

enumeration, which can effectively leverage the

advantages of both GP and BK algorithms.

3. We develop parallel solutions to maximal clique

enumeration based on the GP and hybrid algorithms

and implement them on MapReduce. By using binary

graph partitioning to divide the tasks, the proposed

solutions can effectively parallelize maximal clique

computation with improved load balancing.

4. We experimentally evaluate the performance of our

proposed solutions over a wide variety of graph data

available in open source. Our extensive experiments

show that in both centralized and parallel settings, our

proposed GP approach achieves considerably better

performance than the state-of-the-art BK approach and

the hybrid approach performs better than both of them.

Note that this paper is an extension of our preliminary work

published in [7]. Themajor new contribution of this extended

work is the hybrid approach that can achieve better perfor-

mance than both BK and GP. The rest of this paper is orga-

nized as follows: Sect. 2 provides the background

information and briefly describes the existing techniques.

Section 3 presents the GP and hybrid algorithms. Section 4

presents our parallel solutions and their MapReduce imple-

mentation. Section 5 empirically evaluates the performance

of the proposed solutions. Section 6 discusses related work.

Finally, Sect. 7 concludes this paper.

2 Preliminaries

2.1 Definition: Clique and Maximal Clique

A clique is a subgraph in which every pair of vertices is

connected by an edge. The definition of a maximal clique is

as follows:

Definition 1 A maximal clique in a graph G is a clique

not contained by any other clique in G.

The problem of maximal clique enumeration refers to

identifying all the maximal cliques in a given graph

G. Since each connected component in G can be processed

independently, we assume that G is a connected graph in

this paper.

2.2 Background: MapReduce

The MapReduce model processes distributed data across

many nodes via three basic phases. In theMap phase, it takes

an input and produces a list of intermediate key/value pairs

without communication between nodes. Next, the Shuffle

phase repartitions these intermediate pairs according to their

keys across nodes. Finally, the Reduce phase aggregates the

intermediate pairs it receives to produce final results. This

process can be repeated by invoking an arbitrary number of

additional Map-Shuffle–Reduce cycles as necessary.

In this paper, we use Hadoop for parallel evaluation and

develop corresponding MapReduce solutions, in which

graph partitioning is programmed in the Reduce phase.
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2.3 Classical Sequential Algorithms

For maximal clique enumeration, the BK algorithm [4]

has been widely reported as being faster in practice than its

alternatives [15, 32]. It is in essence a depth-first search,

augmented with pruning tricks. Given a current vertex

v and a set of candidate vertices S, it iteratively chooses a

vertex u in S such that N(u) has the biggest intersection set

with S, in which N(u) represents the set of u’s neighboring

vertices in S. When the candidate set S becomes empty, the

algorithm outputs corresponding cliques and backtracks. It

recursively traverses a search tree, performing the opera-

tions of vertex selection, set update, clique generation and

backtracking.

The BK algorithm can be sketched by Algorithm 1. It

uses three vertex sets to represent a search subtree: the set

anchor records the list of vertices in the current search

path, the set cand records the list of candidate vertices that

are not in anchor but connected to every vertex in an-

chor, and the set not records the list of vertices that are

connected to every vertex in anchor but could not produce

new maximal cliques if combined with the vertices in the

anchor set.

2.4 Existing Parallel Solutions

In this subsection, we describe the idea behind the typical

parallel approach [23, 32, 38] for maximal clique enu-

meration based on MapReduce. It enumerates maximal

cliques for different vertices in a graph in parallel.

Given a graph G and a vertex v in G, the maximal

cliques of the vertex v refer to the maximal cliques con-

taining v in G. Note that a vertex v’s maximal cliques are

the induced subgraphs consisting of v and its neighboring

vertices in G. The parallel search consists of two steps. In

the first one, the parallel approach retrieves each vertex’s

neighboring information relevant to its clique computation.

In the second step, it searches for each vertex’s maximal

cliques in parallel. For the computation on an individual

vertex, it simply adopts the classical sequential algorithms

(e.g., the BK algorithm).

In the typical approach, enumerating the maximal cliques

of a vertex is supposed to be performed on a single machine.

In case that the computation on an individual vertex is

extremely time-consuming due to the large number of

maximal cliques, it may become a parallel performance

bottleneck. The method proposed in [32] can parallelize

maximal clique enumeration on an individual vertex. It uses

candidate path data structures to record the search progress

such that any search subtree can be traversed independently.

It achieves better load balancing by allowing a computing

node to steal some tasks from others when becoming almost

idle. The proposed load balancing technique was imple-

mented by MPI, but can easily generalize to other shared-

nothing parallel frameworks such as MapReduce. However,

as we will show in Sect. 5, its parallel performance depends

on the performance of the BK algorithm, and may be limited

by size unevenness among search subtrees.

3 Sequential Algorithms

3.1 Idea: Graph Partitioning

We illustrate the idea behind the new sequential algorithms

by an example. As shown in Fig. 1a, the graph G consists

of the vertices, {v1, v2, v3, v4, v5}. We randomly choose a

vertex in G (e.g., v1) as the partitioning anchor and parti-

tion G into two subgraphs Gþ
1 and G�

1 . G
þ
1 denotes the

induced subgraph consisting of v1 and its neighboring

vertices in G, {v1, v2, v3}. G
�
1 denotes the induced sub-

graph of G consisting of all the vertices not in Gþ
1 , {v4, v5},

and their neighboring vertices in G, {v2, v3}. The sub-

graphs Gþ
1 and G�

1 are shown in Fig. 1b, c, respectively.

We observe that any maximal clique of G is an induced

subgraph of either Gþ
1 or G�

1 .

Fig. 1 A graph partitioning example
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Generally, we have the following theorem:

Theorem 1 Given a graph G, we partition G into two

subgraphs, Gþ
v and G�

v , in which v denotes a partitioning

anchor, Gþ
v denotes the induced subgraph consisting of

vertex v and its neighboring vertices in G, and G�
v denotes

the induced subgraph consisting of all the vertices not in

Gþ
v and their neighboring vertices in G. Then, any maximal

clique of G is an induced subgraph of either Gþ
v or G�

v .

Proof If a maximal clique contains the vertex v, it should

be an induced subgraph of Gþ
v . Otherwise, it should contain

at least one vertex not in Gþ
v . Suppose that it is the vertex u.

As a result, the maximal clique is an induced subgraph of

Gu, which consists of vertex u and its neighboring vertices.

According to the definition of G�
v , Gu is obviously an

induced subgraph of G�
v . Therefore, the maximal clique is

an induced subgraph of G�
v . h

According to Theorem 1, maximal clique detection in G

can be performed by searching for the maximal cliques in

Gþ
v and G�

v independently. The partitioning operation can

be iteratively invoked until all the resulting subgraphs

become cliques. Obviously, all the maximal cliques in

G are contained in the set of the resulting cliques. Unfor-

tunately, a resulting clique generated by the above process

cannot be guaranteed to be maximal. Therefore, enumer-

ation algorithms should filter out the non-maximal cliques

among them.

3.2 GP Algorithm

The algorithm iteratively partitions a graph until it

becomes cliques. To reduce search space, it always chooses

the vertex v with the smallest degree in a graph as the

partitioning anchor. It can be observed that this strategy

would usually result in a relatively small graph and a larger

one. Generally, the small graph would be partitioned into

cliques after only a few iterations, while the size of the

larger one could be effectively reduced. Unlike the BK

algorithm, which recursively extracts the induced subgraph

consisting of the vertex with the largest degree and its

neighbors, our approach instead recursively performs bin-

ary partitioning by choosing the partitioning anchor with

the smallest degree.

The algorithm is sketched in Algorithm 2. Similar to the

BK algorithm as shown in Algorithm 1, it employs three

sets of vertices (anchor, cand and not) to record the

partitioning progress and prune the subtrees that cannot

generate maximal cliques. The recursive function first

checks whether the resulting subgraph is a clique (Line 1).

If yes, it simply outputs the subgraph. Otherwise, it chooses

a partitioning anchor v with the smallest degree in cand

and partitions GðcandÞ into GðcandþÞ and Gðcand�Þ.
GðcandþÞ consists of v and its neighboring vertices in

GðcandÞ (Lines 6–8). Gðcand�Þ consists of all the vertices
in GðcandÞ except v (Lines 11–12). The algorithm recur-

sively processes the subgraph GðcandþÞ (Lines 9–10).

Note that before the recursive function is invoked, the

algorithm prunes the search space by inspecting whether

there exists a vertex in the notþ set that is connected to all

the vertices in the cand
þ set (Line 9). Updating GðcandÞ

with Gðcand�Þ (Lines 11–12), it then iteratively invokes

the partition operation to search for the maximal cliques in

Gðcand�Þ until Gðcand�Þ becomes a clique (Lines 4–12).

After Gðcand�Þ becomes a clique, the algorithm checks

whether it is maximal (Lines 13–14).

Given an input graphG ¼ ðV ;EÞ, the algorithm can be set

in motion by setting anchor ¼ ;, not ¼ ; and cand

¼ V . Suppose that we are running Algorithm 2 on the

example graph as shown in Fig. 1. Originally,anchor ¼ ;,
not ¼ ; and cand ¼ fv1; v2; v3; v4; v5g. The vertex v1 has
the smallest degree of 2, is thus chosen as the partitioning

anchor.G is then partitioned intoGþ
1 andG�

1 .G
þ
1 consists of

v1 and its neighboring vertices, {v1, v2, v3}. G
�
1 consists of

the vertices, {v2, v3, v4, v5}. For Gþ
1 , anchor = {v1},

not=; and cand={v2, v3}. ForG
�
1 , anchor=;, not={v1}

andcand={v2, v3, v4, v5}. It can be observed thatG
�
1 is not a

clique and v3 has the smallest degree of 2 in G�
1 . G

�
1 would

then be partitioned into two subgraphs consisting of {v2, v3,

v5} and {v2, v4, v5}, respectively, which are both clique.

Therefore, the maximal cliques of G can be computed with

two partitioning operations.

In practical implementation, the algorithm iteratively

partitions an input graph in a depth-first manner. After

partitioning G into Gðcand�Þ and GðcandþÞ, it always

processes the Gðcand�Þ subgraph before GðcandþÞ, and
pushes the resulting GðcandþÞ into a stack for later pro-

cessing. Whenever a Gðcand�Þ subgraph becomes a
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clique, it pops a GðcandþÞ subgraph from the stack and

repeats the iterative partitioning operation.

We have Theorems 2 and 3, whose proofs are presented

in ‘‘Appendices 1 and 2’’, respectively. Note that in The-

orem 3, different cliques include both maximal and non-

maximal cliques.

Theorem 2 Algorithm 2 exactly returns all the maximal

cliques in G.

Theorem 3 Given a connected graph G ¼ ðV ;EÞ, Algo-
rithm 2 has the space complexity of O(|E|) and the time

complexity of OðjEjlðGÞÞ, in which lðGÞ represents the

number of different cliques in G.

3.3 Hybrid Algorithm

We observe that the performance of Algorithm 2 largely

depends on the number of the generated GðcandþÞ

subgraphs, on which the partition operation is iteratively

executed. To reduce the number of invoked partition

operations, the hybrid algorithm considers multi-way par-

titioning as well as binary partitioning. The operation of

multi-way partitioning selects a vertex v with the largest

degree in GðcandÞ, and partitions GðcandÞ into

{Gv(cand), Gu1(cand), . . ., Guk (cand)}, in which

{u1; . . .; uk} represent the set of vertices not connected to v

in GðcandÞ and GvðcandÞ denotes the induced subgraph

consisting of the vertex v and all its neighbors in GðcandÞ.
It is worthy to point out that the multi-way partition

operation is essentially the core search operation used by

the classical BK algorithm. As proved in the BK algorithm,

it can be shown that all the maximal cliques in GðcandÞ
can be searched in the induced subgraphs of {GvðcandÞ,
Gu1ðcandÞ, . . ., GukðcandÞ} independently. Since this

algorithm uses both binary and multi-way partitioning

operations, which are the key characteristics of the GP and

BK algorithms, respectively, it is called Hybrid.

The hybrid algorithm invokes the operation of multi-

way partitioning if and only if the largest vertex degree of

GðcandÞ is large enough. We define the largeness of a

vertex degree in a graph by p ¼ d
n
, in which n represents the

total number of vertices in the graph and d represents a

vertex degree. Specifically, if the largest degree of the

vertices in GðcandÞ, compared with the total number ver-

tices in the graph, exceeds a predefined threshold h (e.g.,

h ¼ 0:8), the hybrid algorithm would execute the multi-

way partitioning operation; otherwise, it would execute the

binary partitioning operation. As shown in Sect. 5.3, the

value of the threshold h has only marginal influence on the

performance of the hybrid algorithm if it is set between 0.6

and 0.8. We suggest that it is set to be 0.8 in practical

implementation.

The hybrid algorithm is sketched in Algorithm 3. Lines

5–19 specify the multi-way partitioning operation and

Lines 22–28 specify the binary partitioning operation. The

operation of multi-way partitioning is similar to the core

search operation used by the BK algorithm. The difference

is that it uses the not set to filter out unnecessary search

subtrees (Line 12). Once GðcandÞ meets the condition

specified at Line 5, it is partitioned into multiple subgraphs,

each of which invokes a new recursive function (Line 13).

After that, the current function terminates its execution

(Line 20). Otherwise, GðcandÞ is partitioned into

GðcandþÞ and Gðcand�Þ. A new recursive function is

invoked to process GðcandþÞ (Line 27). The subgraph

Gðcand�Þ is instead iteratively partitioned until it becomes

clique (Line 4 and Lines 29–30).

Based on the correctness proofs of the BK and GP

algorithms, it can be easily shown that Algorithm 3 exactly

returns all the maximal cliques in G. On the space and time
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complexity of Algorithm 3, we have Theorem 4, whose

proof is presented in ‘‘Appendix 3’’.

Theorem 4 Given a connected graph G ¼ ðV ;EÞ, Algo-
rithm 3 has the space complexity of O(|E|) and the time

complexity of OðjEjlðGÞÞ, in which lðGÞ represents the

number of different cliques in G.

3.4 Notes on Implementation

The program reads a graph G into memory, and then

iteratively computes the maximal cliques of every vertex in

G. We store the vertices in the original graph G in an array

and their adjacency lists as hash sets. Similarly, all the

cand sets are maintained by hash sets. As a result, the

intersection of two vertex sets can be performed by hash

look-ups. Clique verification is achieved by checking ver-

tex degrees.

For the Hybrid algorithm, vertex degrees in each sub-

graph resulting from a multi-way BK partitioning opera-

tion are computed by intersecting two adjacency sets. For

the GP algorithm, the degree of a vertex vi in cand
þ of

Gþ
v is computed by intersecting the adjacency set of vi

with the cand
þ set. For the vertices in the cand

� set of

G�
v , only those connected to v needs to decrease their

degrees by 1. Selecting a partitioning anchor with the

minimal degree in cand however requires OðjcandjÞ time

because it has to sequentially scan all the vertices in the

hash set. To enable more efficient anchor selection, we

also maintain a degree map, in which the vertex degrees

of cand are stored as a sorted linked list and each entry

in the degree list has a corresponding vertex list consisting

of all the vertices with the specified degree. The degree

map of the G�
v subgraph is inherited from that of its

parent with corresponding updates while the degree map

of Gþ
v is constructed from scratch. With the degree map,

selecting a partitioning anchor in cand only involves

picking up a vertex in the vertex list of the first entry in

the degree list. It takes only constant time.

4 Parallel Solutions

4.1 General Procedure

The parallel solution consists of two steps. In the first step,

for every vertex v in the graph G, it retrieves an induced

subgraph of G whose vertices are relevant to the compu-

tation of v’s maximal cliques. In the second step, it

performs iterative graph partitioning on every vertex. Both

subgraph retrieval and clique computation on individual

vertices are distributed across multiple computing nodes.

We observe that the computational workload on the

vertices may be unbalanced: the computation on a vertex

may be more expensive than on another because it has a

larger search space. In case that the computation on a

vertex is too time-consuming, it becomes a parallel per-

formance bottleneck. A good property of the GP approach

is that it enables easy and effective load balancing. Since

GP iteratively partitions a large Gv into a series of small

graphs, whose computations are independent, the compu-

tation on a vertex can be easily parallelized. In practice,

recursive function usually takes only a few iterations (no

more than 3–4 iterations in our experiments in Sect. 5.2) to

transform a big Gv into many sufficiently small subgraphs.

With sufficiently small tasks, effective load balancing can

be achieved by sending some tasks on a computing node

with heavy workload to another with lighter workload.

To achieve workload balance, the procedure iteratively

invokes the Compute–Shuffle cycle. In the Compute phase,

every computing node performs the partitioning operation

on the subgraphs it has received; in the Shuffle phase, all

the intermediate subgraphs on the nodes are reshuffled so

that every node receives roughly the same number of them.

The workload limit of each Compute phase can be quan-

tified by the consumed CPU time.

In general, the parallel procedure consists of the fol-

lowing two steps:

1. Subgraph retrieval For every vertex v in the graph G,

retrieve the induced graph Gv consisting of v and its

neighboring vertices in G;

2. Iterative computation

• Compute phase For each computing node, sequen-

tially compute the maximal cliques of its assigned

subgraphs by the GP or hybrid algorithm;

• Shuffle phase Evenly reshuffle all the intermediate

subgraphs across the nodes;

4.2 MapReduce Solutions

This subsection describes the MapReduce solutions based

on the GP and hybrid sequential algorithms. Based on the

observation that non-trivial cliques consist of triangles, we

uses the technique of triangle enumeration proposed in

[12], which is more efficient than 2-hop retrieval, to

implement the process of subgraph retrieval.
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The program of iterative computation consists of a series

of MapReduce cycles. In the Map phase, the mappers reads

the unfinished subgraphs and randomly map them to

reducers such that each reducer receives roughly the same

number of subgraphs. In the Reduce phase, the reducers

enumerate the maximal cliques of their assigned subgraphs

by sequential algorithms. The MapReduce cycle is itera-

tively invoked until no unfinished subgraph is left.

The computation at a reducer based on the GP algorithm

is sketched in Algorithm 4. Maintaining the subgraphs by a

queue Q, it iteratively dequeues a subgraph Gu from the

queue for graph partitioning. If the resulting Gþ
w has a small

size, which means that its maximal clique computation can

be finished in short time, it is iteratively partitioned to the

end (Lines 7–10). Otherwise, it is temporarily enqueued

into Q if it is not a clique (Line 12). It then iteratively

partitions G�
w in the same manner as Gu (Line 13). The

operations of subgraph dequeue and graph partitioning are

iteratively performed until the queue becomes empty or a

predefined workload limit is reached.

The computation at a reducer based on the Hybrid

algorithm, as sketched in Algorithm 6, is similar. If the

largest vertex degree of a dequeued subgraph Gu exceeds

the threshold of h, it executes the operation of multi-way

partitioning (Lines 5–16); otherwise, it executes the oper-

ation of binary partitioning (Lines 18–27). To ensure that

Gu can be divided into many small subgraphs in a single

reduce phase, the algorithm iteratively processes Gv

resulting from the multi-way partitioning operation until it

becomes a clique (Line 3) or it can be pruned (Lines

15–16).
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5 Experimental Evaluation

This section empirically evaluates the performance of our

proposed approaches by a comparative study. Since the BK

algorithm has been widely reported to be faster than its

alternatives, we compare our approach with the state-of-

the-art implementation of the BK algorithm [28]. The

typical parallel approach based on BK confines the com-

putation on a vertex to a computing node. We enhance the

parallel BK approach with the dynamic load balancing

proposed in [32]. It was originally implemented by MPI in

[32]. We have instead implemented a MapReduce version.

Each reducer is set to have a predefined workload limit.

After every reducer reaches its workload limit, the unfin-

ished subgraphs are evenly redistributed across computing

nodes. All our implementations have been made open

source. They can be downloaded at [16].

Our experiments are conducted on both real and syn-

thetic graph datasets. The evaluation on real datasets can

show the efficiency of the proposed algorithms in real

applications, while the evaluation on synthetic datasets can

easily demonstrate their sensitivity to varying graph char-

acteristics. Two synthetic datasets are generated by the

SSCA#2 generator [2] and the power-law generator

R-MAT [3] respectively. A SSCA#2 graph is directed, and

made up of random-sized cliques, with a hierarchical inter-

clique distribution of edges based on a distance metric. We

vary the values of the TotVertices and MaxCliqueSize

parameters, which specify the number of vertices and the

size of the maximum clique respectively. The R-MAT

generator applies the Recursive Matrix (R-MAT) graph

model to produce the graphs with power-law degree dis-

tributions and small-world characteristics, which are

common in many real life graphs. We vary two parameter

values, the number of vertices and the number of edges.

The real graphs, which are selected from [29], are in var-

ious domains including communication networks, social

networks, web graphs and protein networks. The details of

test datasets are summarized in Table 1.

For the hybrid algorithm, we set the largest degree

threshold h in Algorithm 3 to 0.8 in the comparative study

of Sects. 5.1 and 5.2. Our evaluation in Sect. 5.3 shows

that if set between 0.0 and 0.8, the value of the threshold h

has only marginal influence on the performance of the

hybrid algorithm.

Sequential algorithms are evaluated on a desktop with

memory size of 16G and 6 Intel Core i7 CPU with the

frequency of 3.3GHz. Parallel evaluation are conducted

on a 13-machine cluster. Each machine runs the Ubuntu

Linux (version 10.04) and has memory size of 16G, disk

storage of 160G and 16 Intel Xeon E5502 CPUs with the

frequency of 1.87GHz. The parallel solutions based on

MapReduce are implemented on Hadoop (version 0.20.2)

[17]. Each experiment is run three times and its running

time averaged. We observe that time difference between

different runnings does not exceed 10% of the total con-

sumed time.

5.1 Evaluation of Sequential Algorithms

In this subsection, we evaluate the performance of the

sequential algorithms on both real and synthetic graphs.

Performance is evaluated on the metric of runtime.

5.1.1 On Real Datasets

The evaluation results on the real graphs are presented in

Table 2. Note that running the Twitter dataset is beyond

Table 1 Details of the real and synthetic graph datasets

Dataset Data description Number of vertexes Number of edges

EuAll Email network from a EU Research Institution 265,214 364,481

WebGoogle Web graph from Google 875,713 4,322,051

BerkStan Web graph of Berkeley and Stanford 685,230 7,600,595

WikiComm Wikipedia communication network 1,928,669 3,494,674

Pokec Pokec online social network 1,632,803 30,622,564

Protein-1 A protein network 5816 313,628

Protein-2 A protein network 8176 457,991

WikiTalk A social network 2,394,385 4,659,565

Skitter Autonomous systems graphs 1,696,415 11,095,298

Twitter Social circles from Twitter 11,316,811 85,331,846

R-MAT Synthetic graphs with power-law degree distributions

and small-world characteristics

Two parameters used: the number of vertices

and the ratio of edges to vertices

SSCA#2 Synthetic graphs with a hierarchical inter-clique

distribution of edges based on a distance metric

Two parameters used: the number of vertices

and the size of maximum clique
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the capability of a single machine. Therefore, they will be

used later for parallel evaluation.

It can be observed that GP achieves overall better perfor-

mance than BK. On some datasets (e.g., WikiComm and

WikiTalk), GP runs roughly 10 times faster than BK. On the

datasets where GP performs worse than BK (e.g., Berkstan

and Protein-1), their performance difference is much smaller.

It can also be clearly observed that the hybrid algorithm

achieves the best performance among them. On most test

datasets, Hybrid consumes the least runtime. It is worthy to

point out that the outperformancemargins achievedbyHybrid

are considerable on many test datasets. For instance, on the

Skitter dataset, GP takes around40%of the runtime consumed

by BK and Hybrid further cuts runtime by around 50%.

Our experiment show that the BK algorithm is very

sensitive to particular graph characteristics. Its perfor-

mance is usually very volatile. In comparison, GP’s per-

formance is more stable. The Hybrid algorithm achieves

the best and most stable performance by effectively

leveraging the advantages of the BK and GP algorithms.

5.1.2 On Synthetic Datasets

On synthetic datasets, we aim to investigate the compara-

tive performance of different algorithms and how their

performance varies with graph characteristics. On R-MAT

graphs, the number of vertices is set to be 5000 and the

edge-to-vertex ratio varies from 40 to 140. On SSCA

graphs, the number of vertices is set to be 220 and the size

of the maximum clique varies from 100 to 200.

The evaluation results are presented in Fig. 2. On

R-MAT, GP performs better than BK and Hybrid performs

better than GP. On SSCA, Hybrid and GP achieve similar

performance and both of them perform better than BK. It is

interesting to note that the outperformance margins of GP

and Hybrid over BK steadily increase with graph density.

Similar to what were observed in the evaluation on real

graphs, our results on synthetic datasets demonstrate that

compared with GP and Hybrid, BK is much more sensitive

to particular graph characteristics (e.g., graph density and

sizes of maximal cliques).

5.2 Evaluation of Parallel Solutions

In this subsection, we evaluate the performance of different

approaches, comparing GP and Hybrid against BK, on the

Twitter dataset. Since all the parallel solutions use the same

method of subgraph retrieval, we exclude its cost from per-

formance evaluation in our study. We specify the parameter

k in Algorithms 4 and 6 by the number of vertices contained

by a graph. It is set to be 80. The maximal execution time per

reduce phase is set to be 300 s. The workload limit of reduce

phase is similarly set for the BK approach.

On the synthetic RMAT and SSCA graphs, the parallel

performance of different approaches is similar to what are

observed in sequential evaluation. Their detailed evaluation

results are thus omitted here. We present the evaluation

results on the largest real graph, Twitter. Note that process-

ing the entire Twitter graph takes too long even on our

machine cluster. We therefore generate 5 random test tasks,

Table 2 Evaluation of sequential algorithms on real graphs

Runtime(s) EuAll WebGoogle BerkStan WikiComm Pokec Protein-1 Protein-2 WikiTalk Skitter

BK 1.56 8.94 28.79 388.70 55.73 115.76 216.53 9247.08 1720.48

GP 1.00 8.78 17.57 42.41 105.86 221.16 660.73 898.01 686.79

Hybrid 0.97 9.04 32.35 35.19 103.05 103.06 154.27 554.64 359.26

The bold values represent the minimal runtime consumed by the three approaches
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Fig. 2 Evaluation of sequential

algorithms on R-MAT and

SSCA datasets
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denoted byD1
T ; . . .;D5

T , by choosing some vertices with large

degrees in the graph for evaluation purpose. The maximal

cliques of the chosen vertices are computed over the entire

graph. The maximal vertex degree in the Twitter graph is

more than one million. We randomly choose 5 vertices with

degrees of more than 500,000 for each test task.

The comparative results on Twitter are presented in

Table 3. Similar to what were observed in sequential

evaluation, the performance of BK is very volatile. On

some test tasks (e.g., D2
T ), the performance of BK is similar

to that of GP. On other test tasks (e.g., D4
T and D5

T ), it

performs significantly worse than GP. GP achieves overall

better performance than BK. It can also be observed that

Hybrid performs better than both BK and GP. On some test

tasks (e.g., D2
T and D3

T ), its outperformance margins over

GP are considerable.

5.3 Hybrid: Varying the Threshold h

Our experiment evaluates the performance variation of the

hybrid algorithm with the value of h. We set the value of h

to be 0.6, 0.7 and 0.8. The detailed results on some of the

real graphs listed in Table 1 are presented in Table 4. The

results on other datasets are similar, thus omitted here. It

can be observed that in the range of [0.6,0.8], the value of h

can only marginally influence the performance of the

hybrid algorithm. This observation bodes well for the

efficacy of the hybrid algorithm in real applications.

6 Related Work

Maximal clique enumeration have been studied extensively

in the literature [4, 8–10, 25, 33, 34]. Due to its NP-

Completeness, existing work focused on efficient search.

Most of the proposed approaches were based on the clas-

sical BK algorithm [4], which has been widely reported as

being faster than its alternatives [5, 15]. Authors of [10]

proposed an efficient algorithm, which was also based on

BK search, for maximal clique enumeration with limited

memory. Authors of [8, 9] proposed to speed up clique

detection by indexing the core structures of a special type

of graph called H*-graph. Instead of BK, another approach

[11, 24, 36] uses the strategy of reverse search. The key

feature of this approach is that it is possible to define an

upper bound on their runtime as a polynomial with respect

to the number of maximal cliques in a graph. Note that

focusing on centralized search, the efficient implementa-

tions of existing algorithms usually rely on global state and

cannot be easily parallelized. There are also some work

[30, 31] studying the closely related problem of detecting

maximum clique. The algorithms they used are, however,

variants of the BK algorithm.

Due to the increasing popularity of the MapReduce

framework, the solutions have been proposed to parallelize

maximal clique detection on MapReduce [13, 23, 38]. They

proposed to distribute the vertices across workers and com-

pute every vertex’s maximal cliques in parallel. On the core

algorithm for efficient search, they, however, used the BK

algorithm or its variants. Authors of [39] proposed a fault-

tolerant parallel solution for maximum clique detection based

on MapReduce. It also used the BK algorithm for efficient

search. A parallel solution for maximal clique enumeration

based on MPI has been proposed in [32]. It proposed a

dynamic load balancing technique that enabled an idleworker

to ‘‘steal’’ workload from another busyworker. Aswe showed

in Sect. 5.2, limited by the efficiency of BK search, its per-

formance was still quite sensitive to graph characteristics.

Orthogonal to our work, many works extended the

definition of clique to other dense subgraph structures (e.g.,

maximal cliques in an uncertain graph [42], cross-graph

quasi-cliques [21], k-truss [20], and densest-subgraph

[35]), and studied their applications. The existing algo-

rithms for these problem are centralized. The search pro-

cess of these dense structures is usually NP-Complete, thus

computationally expensive over massive real graphs.

However, efficient parallelization of their search processes

over a machine cluster remains an open question.

7 Conclusion

In this paper, we propose a novel approach based on binary

graph partitioning for maximal clique enumeration over

graph data. Compared with the state-of-the-art BK

Table 3 Parallel evaluation based on Hadoop on Twitter

MapReduce cycles Runtime (s)

BK GP Hybrid BK GP Hybrid

D1
T

3 2 2 775 441 423

D2
T

3 3 3 944 917 728

D3
T

4 3 2 1278 707 486

D4
T

16 3 3 5455 711 772

D5
T

18 4 3 5760 1111 1054

The bold values represent the minimal runtime consumed by the three

approaches

Table 4 Influence of the parameter h on hybrid

Runtime(s) EuAll WebGoogle Berkstan WikiComm Pokec

p ¼ 0:8 0.97 9.04 32.35 35.19 103.05

p ¼ 0:7 0.97 9.14 32.95 34.48 105.48

p ¼ 0:6 0.99 9.24 32.65 35.98 103.85
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approach, it can effectively divide a graph into many small

tasks with less iterations. We also present a hybrid

approach that can effectively leverage the advantages of

both BK and GP approaches. We develop efficient

sequential algorithms as well as corresponding parallel

solutions. Finally, our extensive experiments on real and

synthetic graph data demonstrate the performance advan-

tage of our proposed solutions over the state-of-the-art

ones.
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Appendix 1: Proof of Theorem 2

Proof Firstly, if without the pruning operations specified in

Lines 9 and 13 of Algorithm 2, all the maximal cliques in

G are contained in the set of cliques returned by

Algorithm 2.

Secondly, if there exists a vertex in the current not set

that is connected to all the vertices in the current cand set,

the recursive function cannot generate any new maximal

clique. Consider a clique Ci in the graph

Gðanchor [ candÞ. Suppose that the vertex u in the not

set is connected to all the vertices in the cand set. Note

that Algorithm 2 ensures that every vertex in not is

connected to all the vertices in the anchor set. As a result,

u is connected to all the vertices of Ci. Therefore, the clique

C is not maximal.

Finally, any clique returned by Algorithm 2 is maximal.

Assume that it returns two cliques, C1 and C2, and C1 is

contained by C2. Suppose that C1 consists of k vertices,

{v1; v2; . . .; vk}, and C2 has an additional vertex u. Also

suppose that C1 is generated by combining the anchor1 set

and the cand1 set. Since the vertex u is not in anchor1 but

connected to all the vertices in anchor1, its exclusion from

cand1 should be a result of a previous graph partitioning

operation with u as the partitioning anchor. Therefore, the

vertex u should be included in the not set of the

corresponding partitioned graph Gðanchor� [ cand
�Þ,

whose recursive partitioning later generates the clique C1.

Since u is connected to all the vertices in anchor1,

Algorithm 2 ensures that it is in the not set of the

partitioned graph Gðanchor1[ cand1). With u being

connected to all the vertices in cand1, Algorithm 2 should

have filtered C1 out. Contradiction. h

Appendix 2: Proof of Theorem 3

Proof We first analyze its space complexity. It iteratively

partitions the Gðcand�Þ branch until Gðcand�Þ becomes a

clique. Besides the Gðcand�Þ graph, it also has to store the

resulting GðcandþÞ subgraphs in a stack S. Each GðcandþÞ
results from a partitioning operation with a vertex vi as

anchor. Note that the first-in-last-out operation order of

stack ensures that each GðcandþÞ subgraph in the stack S

has a distinct partitioning anchor. Since each vertex in the

anchor
þ, candþ and not

þ sets of GðcandþÞ (except the

vertex vi itself) should be connected to vi, the required

space to store GðcandþÞ is bound by OðjEijÞ, in which Ei

represents the set of edges with vi as one of its end points.

As a result, the required space to store all GðcandþÞ
branches is bound by O(|E|). It follows that the space

complexity of Algorithm 2 is O(|E|).

Secondly, we analyze its time complexity. Consider a

variant of Algorithm 2 without the pruning operation

specified on Line 9. Obviously, its time complexity is an

upper bound on the time complexity of Algorithm 2. The

traversal tree generated by the recursive function without

pruning is a binary tree, in which each internal node has

exactly two children. Since the cliques generated by the

GðcandþÞ branch are guaranteed to be different from those

generated by the Gðcand�Þ branch, each leaf node

corresponds to a different clique (maximal or non-maxi-

mal). Therefore, the size of the binary tree is bounded by

OðlðGÞÞ. Accordingly, the total number of invoked graph

partitioning operations is bounded by OðlðGÞÞ. Since each
invocation of graph partitioning requires O(|E|) time, the

time complexity of the recursive function is OðjEjlðGÞÞ. h

Appendix 3: Proof of Theorem 4

Proof The space complexity analysis of Algorithm 3 is

similar to that of Algorithm 2. Each subgraph recorded for

later processing can be considered to correspond to a dif-

ferent anchor. Therefore, its required space is bounded by

O(|E|).

Secondly, we analyze its time complexity. Consider a

variant of Algorithm 3 without the pruning operation by

the not set. Obviously, its time complexity is an upper

bound on the time complexity of Algorithm 3. It would

generate different cliques (maximal or non-maximal). Also

note that in its traversal tree, each leaf corresponds to a

different clique and each internal node has at least two

children. The size of its traversal tree is thus bounded by

OðlðGÞÞ. Therefore, the time complexity of Algorithm 3 is

bounded by OðjEjlðGÞÞ. h
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