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Estimation of the shape dissimilarity between 3D models is a very important problem in both computer vision and graphics for
3D surface reconstruction, modeling, matching, and compression. In this paper, we propose a novel method called surface roving
technique to estimate the shape dissimilarity between 3D models. Unlike conventional methods, our surface roving approach
exploits a virtual camera and Z-buffer, which is commonly used in 3D graphics. The corresponding points on different 3D models
can be easily identified, and also the distance between them is determined efficiently, regardless of the representation types of the
3D models. Moreover, by employing the viewpoint sampling technique, the overall computation can be greatly reduced so that
the dissimilarity is obtained rapidly without loss of accuracy. Experimental results show that the proposed algorithm achieves fast
and accurate measurement of shape dissimilarity for different types of 3D object models.
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1. INTRODUCTION

In 3D computer vision and graphics, shape recovery and
modeling have been one of the major research fields dur-
ing the last few years. For surface modeling, multiresolu-
tion surface representation, object recognition, and 3D data
compression, it is essential to estimate the geometric dis-
tortion or shape dissimilarity in object space, since the per-
formance of an algorithm cannot be evaluated quantita-
tively without it. In surface modeling [1], the shape dissim-
ilarity between the original data and the generated surface
model should be compared, and in polygonal mesh reduc-
tion [2, 3, 4, 5, 6, 7, 8, 9, 10, 11], the dissimilarity between the
original and the simplified mesh should also be determined
to guide the model simplification process. While, in 3D data
compression [12, 13], the dissimilarity is needed for analyz-
ing the rate-distortion property. Similarly, deformable model
management and range view registration which employs the

iterative closest point (ICP) algorithm also invoke a shape
dissimilarity measurement.

Consider a typical problem of finding the shape dis-
similarity between a simplified mesh to an original mesh.
Most existing methods use vertex-to-vertex [8, 14], vertex-
to-plane [3, 9], point-to-surface [2, 5, 15], and surface-to-
surface distances [4, 6, 7, 11]. However, most of them are
difficult to implement and require massive computation as
well. Note that although the vertex-to-vertex distance is easy
to implement, it does not provide any correct measurement.
An alternative method is to find the vertex-to-plane. How-
ever, a direct implementation of it is not trivial, since it usu-
ally requires a brute force search which is impractical when
the surface model is complex. Point-to-surface and surface-
to-surface distances provide more exact measurements, while
finding the corresponding point set is still a problem. Thus,
in most literature, by imposing additional assumptions and
constraints, the brute force search is replaced by a local search
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for practical use, and few methods can be found which deal
with the problem directly in general setting. A noticeable pre-
vious work is Metro [15]. Metro employs a surface sampling
approach and, in order to achieve fast search, 3D uniform
grid is used to index the mesh. Recently, Inagaki et al. [16]
proposed an algorithm for measuring error on 3D meshes
using pixel division method. An advantage of [16] is that it
can obtain the color difference as well as the geometric error.

In this paper, we propose an efficient method to evalu-
ate the shape dissimilarity between 3D models, even though
they are represented in different types, including point cloud,
polygonal mesh, parametric surface, and voxel model. The
reference and test model can be any of them. Only excep-
tional case is that point cloud cannot be used for the test
model. Unlike the conventional geometric methods, our ap-
proach utilizes a Z-buffer and virtual camera commonly used
in 3D graphics [17]. Using them, the distance between cor-
responding points on different models can be obtained effi-
ciently, which is then used to compute the shape difference
between the models. Since the operation is performed on
the geometry engine in graphic hardware, processing time
is greatly reduced using 3D graphics accelerator. More than
the shape difference, the proposed approach can be easily
extended to obtain the color difference, by utilizing frame
buffer instead of Z-buffer. Although, in this paper, we only
consider the geometric shape difference.

This paper is organized as follow. In Section 2, we de-
fine the shape dissimilarity measure between 3D shapes.
Section 3 describes the 3D graphics background which is
used in the proposed approach. In Section 4, the proposed
algorithm is described in detail. Experimental results are pre-
sented in Section 5, and the conclusion is drawn in Section 6.

2. DISTANCE MEASURE

The shape difference is defined as the average distance from
sample points on a reference model MR to their correspond-
ing points on a test model MC . Ideally, the sample points are
the whole surface S, yielding the difference in a surface inte-
gral on S using proper metric d(·, ·) as follows:

D
(

MR,MC

)
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1

A

∫∫

S

d
(

xR, xC
)

dS, (1)

where A is the surface area of MR, xR is a test point on
MR, and xC is its corresponding point on MC , as shown in
Figure 1.

A numerical approximation of (1) can be obtained by
sampling a finite set of point correspondences, {(xRi , x

C
i )}.

For example, each vertex of MR can be a sample point in a
mesh model. Let N denote the number of the point corre-
spondences, then (1) can be approximated by a discrete form
as
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Figure 1: Distance between corresponding points.

and xCk , we can simply select appropriate d(· , ·) among
many distance measures including the signed distance, the
absolute distance, and the squared distance.

Then, the only remaining problem is how to find the cor-
responding point xCk , that is, for each xRk , k = 0, . . . , N − 1.
Usually, the correspondence problem can be solved with rea-
sonable accuracy by simply determining the nearest point
from each other if the models consist of dense point cloud
or mesh. An improved method is to find xCk by the intersec-
tion of a perpendicular line through xRk and MC as shown
in Figure 1. Note that this provides more accurate result but
is computationally more difficult. In this paper, the distance
measure is defined as the latter case. Note that this distance
is not a metric, since it is not symmetric.

3. VIRTUAL CAMERA AND Z-BUFFER

In this section, related issues on 3D graphics are addressed,
especially on virtual camera and Z-buffer. They are used effi-
ciently in the proposed method for measuring shape dissim-
ilarity, which is described in detail in Section 4.

The most popular camera model used in computer vision
and graphics is a perspective projection model. A special case
of the perspective camera model is an orthographic camera,
in which the focal length is infinite. An example of both mod-
els is shown in Figures 2a and 2c, which is implemented using
OpenGL [18]. As will be described later, since we are consid-
ering just one point in the scene which is positioned on the
image center, both cameras can be used in our approach.

The Z-buffer, or depth buffer, is commonly used in 3D
graphics to remove hidden surfaces. It is a memory array, in
which each element contains the distance from camera to the
object surface drawn at a specific pixel position. The value
in Z-buffer is increasing monotonically as the distance in-
creases.

In OpenGL, there is an important difference in depth
buffering between the two camera models. In a perspective
camera, the value in Z-buffer is not linear. That is, the depth
value in the Z-buffer is not linearly increasing as the distance
from the camera to the object increases. This behavior is well
illustrated in Figure 2b, in which depth values are retrieved
and plotted while the distance from viewpoint to the target
object is increasing. On the other hand, it is linear in an or-
thographic camera, as shown in Figure 2d. Since the Z-buffer
value is going to be used for finding the actual depth in Z-
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Figure 2: Camera models and their property of depth evaluation in OpenGL. (a) A perspective camera. (b) Depth change in a perspective
camera. (c) An orthographic camera. (d) Depth change in an orthographic camera.

direction by simple scaling, we prefer the linear property in
depth buffer values according to the Z position. Therefore, in
this paper, the orthographic projection is adopted. Note that
the orthographic projection also simplifies the mathemati-
cal computation involved, yielding fast measuring process of
shape dissimilarity.

4. MEASURING SHAPE DISSIMILARITY

In this section, a novel method to evaluate the dissimilarity
in (2) using a virtual camera and Z-buffer called surface rov-
ing technique is presented. And then a fast and asymptotic
version of the surface roving method based on the view sam-
pling technique is described as well.

4.1. Surface roving method

Let Xs = {x
R
0 , x

R
1 , . . . , x

R
n−1} be a set of sample points on MR,

on which the approximation error is to be measured. In the
proposed approach, a virtual camera is set to observe xRk ,
moving around for k = 0, 1, . . . , n − 1 to observe the whole

surface. The optical axis of the camera is aligned with the op-
posite normal direction of each sample point. Based on this
configuration, it is obvious that xRk and the corresponding
point xCk are projected onto the same position in the image
coordinates. Note that our objective is to measure the dis-
tance from a sample point xRk to MC along the perpendicular
line through it as described in Section 2. Based on this obser-
vation, the distance from xRk to xCk can be evaluated without
explicitly finding xCk , because the distance from the camera
to xRk and to xCk is recorded in the Z-buffer when MR and MC

is drawn, respectively. We can retrieve those corresponding
depth values in the Z-buffer and simply compute the differ-
ence, yielding both signed and unsigned distance from xRk to
xCk . This procedure is called surface roving, since the virtual
camera visits all the test points over the reference model just
like a satellite roving above the earth, as shown in Figure 3.

4.2. Removing geometric ambiguity

Generally, surface roving method works well when MR is lo-
cally smooth enough and MC approximates MR to some ex-
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Figure 3: Surface roving method with a virtual camera.

tent. However, for the completion of the argument, a few
degenerate cases with geometric ambiguity should be ad-
dressed.

Consider the degenerate cases shown in Figures 4a, 4b,
and 4c, which are most likely in real applications. 2D curves
imply the intersection of a 3D surface and a normal plane.
Figure 4a shows self-occlusion case of MR, in which other
part of MR hides the test point P from the virtual camera.
Since the viewing parameters of the virtual camera can be
adjusted easily, the consequent view volume can also be con-
structed properly. Therefore, if we choose the view volume
of the virtual camera as a rectangular parallelepiped centered
at the test point and aligned with the optical axis, the depth
value D of the test point would be always 0.5, regardless of
the occlusion. We do not need to render the scene in order to
compute the depth and therefore occlusion does not influ-
ence the depth value at all. In our implementation, the view
volume of each virtual camera is built in the same way such
that the Z-buffer evaluation is necessary only for MC .

Other two cases occur when the approximation perfor-
mance is very poor. Note that, they seldom occur in our ap-
plication, since our concern is a guided multiresolution mod-
eling and minor shape distortion by geometry compression.
In case of no detection as shown in Figure 4b, we provide a
predetermined MAX ERROR value to the test point. A rea-
sonable value of MAX ERROR could be the half-height of
the view volume.

Figure 4c is the worst case. In this case, since the cor-
responding point is determined incorrectly, the measured
depth difference becomes small even though the actual dis-
similarity is large. Note that, any other distance measure can-
not determine the exact difference in this case. Therefore,
a high-level shape matching algorithm is required in order
to find the exact correspondence, which is another research
topic in computer vision.

4.3. Cooperative method: accelerating surface roving
by viewpoint sampling

Although the proposed surface roving method is quite ac-
curate, we have to observe tremendous number of sample
points where the difference is going to be measured. This
might cause redundant operations especially for those sam-

ple points with similar normal direction. However, note that
since an orthographic camera model assumes parallel rays,
by employing it, we do not need to visit all those sample
points individually. For example, for the Bunny model shown
in Figure 5a, most of the sample points at the bottom part
have similar surface orientations, which is marked as dark
region as shown in Figure 5b. In this case, surface roving for
those points can be replaced by only one orthographic pro-
jection from the viewpoint shown as an arrow in Figure 5b,
reducing the number of observations significantly compared
with the original surface roving.

The procedure of reducing the number of observations
can be interpreted with the extended Gaussian image (EGI).
Note that EGI is a mapping of surface normal onto a unit
sphere, on which weight is assigned to each point on the
sphere equal to the area of the surface having the given
normal. For example, the EGI of the Bunny model is il-
lustrated in Figure 5c, in which the weight is shown as the
length of spike. Based on the EGI of a given model, the vir-
tual cameras for surface elements mapped to an EGI point
with high weight are replaced with an orthographic projec-
tion in the surface normal direction. A few replacement re-
duces the number of observations significantly. This proce-
dure is called viewpoint sampling. Note that sampling EGI
points is equivalent to sampling viewpoints which are even-
tually viewing directions in orthographic projection. For the
convenience, in our implementation, we use uniform sam-
pling of EGI on either longitudinal and latitudinal direction.

One problem in using viewpoint sample is that there
could be self-occlusion when an object is seen from a view
sample. There may be unobservable part of the object, espe-
cially when the object is not convex. For example, the long
ears of the bunny model may occlude the main body. Thus,
for those sample points on the occluded region, the view-
point sampling method does not work. In order to solve this
problem, cooperative method is employed in our approach,
in which the surface roving is applied to the occluded region,
while the viewpoint sampling is used for the unoccluded re-
gion, respectively. Note that whether a sample point is oc-
cluded or not can be determined easily by comparing the
depth difference with prespecified threshold. In general, if
the shape of the object is not so complex, most of the sur-
face region is observable from one of the viewpoint samples.

Note that although the cooperative method is actually an
asymptotic implementation of the original surface roving us-
ing (2), it provides almost the same performance of the ex-
act measure. For instance, for the mesh models in Figures
5a and 8a, the shape distortions are measured using both
methods. The histograms of the measured errors are shown
in Figure 6, in which both distributions are almost similar,
while the number of observations required for the cooper-
ative method is reduced to only 5% of that of the original
surface roving.

The reference model can be any of point cloud, polygonal
mesh, parametric surface, and voxel model, as far as the nor-
mal direction at a specific test point can be determined. The
test model can also be polygonal mesh, parametric surface,
and voxel model. However, since point cloud has holes and
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Figure 4: 2D examples of degenerate case with geometric ambiguity. (a) Self-occlusion. (b) No detection (no hit in the view volume). (c)
False alarm (wrong hit in the view volume).

(a) (b) (c)

Figure 5: Viewpoint sampling method. (a) Bunny model. (b) View samples and a specific mapping. (c) Extended Gaussian image (EGI) of
the Bunny model.

does not record the depth on it, the proposed method is not
applicable in this case.

Especially, if the reference model is represented by voxel,
the number of view samples reduces to only six, since each
voxel is actually a cube with six faces. Thus, in this case, the
measurement process could be extremely fast.

5. EXPERIMENTAL RESULTS

In this section, we present the experimental results of mea-
suring the shape dissimilarity using the proposed coopera-
tive surface roving method. First, it is investigated how much
the viewpoint sampling reduces the number of observations.
For the reference models shown in Figure 7, the numbers of
observations required in both the original surface roving and
the cooperative methods are counted for a few different res-
olutions of viewpoint sampling. We summarize the result in
Table 1, for various horizontal and vertical resolution, H and
V, respectively. As shown in Table 1, the number of observa-
tions is reduced significantly compared with that of the orig-
inal surface roving method, ranging from 10% (Rocker Arm
model) to 0.65% (Venus model) of the original ones. View-
point sampling replaces the surface roving if the test point is

visible from a sample viewpoint in its normal orthographic
direction. In case of Rocker Arm model, since the interior
wall around the hole is not visible, surface roving should be
employed for those area. On the contrary, Venus model is
roughly sphere-like such that most of the surface region is
visible from appropriate view samples. Therefore, the num-
ber of observations can be reduced significantly for the Venus
model than for the Rocker Arm model.

In order to show the efficacy of the proposed technique,
experiments are carried out on four different representations
of the Bunny model. The reference model is a dense mesh
with 69.451 triangles shown in Figure 5a, and the test mod-
els are simplified meshes with different resolutions (800 and
10.459 triangles, respectively), rough voxel (32×32×32) and
fine voxel (128× 128× 128), as shown in Figure 8. The algo-
rithm is implemented on a 1.7 GHz Pentium IV CPU and
GeForce3 Ti200 GPU.

Distances from the reference to the test models are eval-
uated using the proposed method, and shown in Table 2.
The measurement returns signed average distance (SiAD),
unsigned average distance (USiAD), and standard deviation
(STD). Mesh simplification and voxelization are performed
using Garland’s algorithm [9] and thin discrete triangula-
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Figure 6: Histogram of the approximation error between the
Bunny mesh models. (a) Result of applying exact measure by sur-
face roving (original surface roving). (b) Result of applying asymp-
totic measure by viewpoint sampling plus surface roving (coopera-
tive method).

tion algorithm [19], respectively. Finer mesh and voxel show
much smaller average errors in both SiAD and USiAD than
rough ones, as is expected. Also, it is shown that average error
of simplified mesh is smaller than voxel models. This is be-
cause the quantization error of voxel model is accumulated
all over the surface while the vertex of simplified mesh is se-
lected according to the minimum quadric error criterion of
[9].

In Table 3, execution time is recorded to show the effi-
cacy in computational complexity. It can be seen that the
proposed approach is computationally efficient and mea-
sures the shape dissimilarity for several different types of

Table 1: The number of observations for surface roving and coop-
erative methods.

Model name Surface roving
Cooperative (H×V)

36× 18 24× 12 12× 6

Bunny 69.451 3.422 3.286 5.396

Teeth 116.602 3.705 3.412 4.619

Rocker Arm 60.264 7.962 7.193 6.307

Venus 134.342 978 868 2.265

Table 2: Measured shape dissimilarity. (SiAD: Signed average dis-
tance, USiAD: Unsigned average distance, STD: Standard devia-
tion.)

Model type
Shape dissimilarity

SiAD USiAD STD

Low-resolution mesh −0.2088 0.6800 0.8575

Middle-resolution mesh 0.0147 0.0541 0.2517

Sparse voxel 1.6307 1.6606 0.9971

Dense voxel 0.4431 0.4450 0.2237

3D models rapidly. Compared with naive implementation
of the vertex-to-vertex and vertex-to-plane measures, the co-
operative algorithm reduces the execution time significantly.
In this experiment, a total of 24 × 12 view samples are
used, spaced 15 degrees in both latitudinal and longitudinal
directions. Unlike the proposed method, neither conven-
tional vertex-to-vertex nor vertex-to-plane measure can be
used for voxel model. Note that the execution time can be
further decreased if the number of samples is reduced by
selecting larger spacing. However, in this case, the measure-
ment accuracy may decrease as well.

6. CONCLUSION

In this paper, we proposed an efficient method to evaluate the
shape dissimilarity for different types of 3D models. Unlike
the conventional geometric methods, our approach called
surface roving method utilizes the Z-buffer and virtual cam-
era commonly used in 3D graphics to obtain the distance be-
tween corresponding points on different 3D surface models.
In order to make the surface roving faster, an asymptotic im-
plementation of the surface roving method was developed, in
which viewpoint sampling and simultaneous orthographic
projection of virtual camera were used efficiently. Since the
operation is performed on the geometry engine, it can be
sped up by adopting a faster hardware accelerator. Experi-
mental result shows the efficacy of the proposed approach,
in which the shape dissimilarity is measured for two popular
types of 3D models, including mesh and voxel model, rapidly
and accurately.
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(a) (b) (c)

Figure 7: 3D reference models. (a) Teeth model with 69, 451 triangles. (b) Rocker Arm model with 116, 602 triangles. (c) Venus model with
134, 342 triangles.

(a) (b)

(c) (d)

Figure 8: Different representations of the Bunny model. (a) Simplified mesh at low resolution (1.2% of the original). (b) Simplified mesh at
middle resolution (15.1% of the original). (c) Rough voxel. (d) Fine voxel.

Table 3: Execution time on a 1.7 GHz Pentium IV CPU and GeForce3 Ti200 GPU.

Model type
Execution time (second)

Proposed (cooperative) Vertex-to-vertex Vertex-to-plane

Low-resolution mesh 14.3 72.8 104.8

Middle-resolution mesh 46.1 1152.6 1736.2

Sparse voxel 15.5 N/A N/A

Dense voxel 52.5 N/A N/A
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