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Abstract

Micro-Doppler (MD) shift caused by the micro-motion of a ballistic missile (BM) can be very useful to identify it. In this 

paper, the MD signatures of three scale-model BMs are investigated using a portable measurement system. �e measurement 

system consists of an X-band 2-by-2 phase comparison mono-pulse radar, and a mechanical device that can impart controlled 

spinning and coning motions simultaneously to a model to yield the MD signature that replicates the characteristic of each 

target and the corresponding micro-motion.  The coning motion determined the overall period of MD, and the spinning 

motion increased its amplitude. MD was also dependent on aspect angle. �e designed system is portable, and can implement 

many micro-motions; it will contribute to analysis of MD in various situations. 
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1. Introduction

Ballistic missiles (BM) are fast projectiles with small radar 

cross section (RCS) that follow a ballistic trajectory. Defending 

against BMs is a vital task in warfare. �e range estimated 

using the two-way time-delay between the radar and BM, 

and the Doppler shift caused by the velocity are widely 

used to intercept BMs [1, 2]. However, a BM warhead can be 

accompanied by decoys, so e�cient methods to distinguish 

the warhead from the decoys are required.

One e�cient way to distinguish the warhead from the 

decoys is to exploit the di�erences in their micro-motions. 

Representative micro-motion dynamics are spinning and 

coning, which form the micro-Doppler (MD) feature that 

facilitates warhead recognition [3, 4, 5]. A maneuvering 

warhead travels along the �ight trajectory with inherent 

micro-motion dynamics, which can be regarded as a unique 

signature of the warhead. 

Most previous research related to MD is based on 

simulation of a target composed of isotropic point scatterers; 

in this system, discrepancies between the real scattering 

mechanism and the point scatterer may lead to signi�cant 

errors in recognition. �us, MD analysis based on the 

measured data is required. Recent measurement systems 
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use stepped-frequency waveform (SFW) radar to measure 

targets in an anechoic chamber [6, 7]. However, SFW requires 

compensation for inter-pulse phase errors [8], and the �xed 

motion equipment [4, 9], and the target must be portable so 

that its MD can be analyzed in various clutter environments. 

Furthermore, the rotation velocity of the target for micro-

motion dynamics must also be increased to resemble that of 

a real target.

In this paper, we investigated the dynamic MD signatures 

of scale models of three missiles. We used an e�cient 

X-band measurement system that can measure MD in 

various cluttered environments. �e measurement system 

is composed of a dual-motor system for micro-motion 

dynamics, and an X-band 2-by-2 phase-comparison mono-

pulse (PCMP) radar to receive re�ected radar signals from 

four antennas. Measurement results conducted outside 

the anechoic chamber demonstrates the e�ciency of the 

devised system by clearly representing the MD signature of 

each target.

2.  Micro-Doppler Principle and Measure-
ment System

2.1 Micro-Doppler principle of BM 

Spinning and coning (Fig. 1) are rotations around an axis 

in a local coordinate (x, y, z). �e axis of spinning is inside the 

target and the axis of coning is outside it. 

We use the procedure introduced in [4, 10] to derive the 

principle of MD of BM because the procedure is very easy to 

understand and clearly explains MD of BM. �e monostatic 

chirp radar signal used for the measurement system at fast 

time t is
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where 0 is the start frequency,  is the bandwidth, τ is the pulse duration, and t(∙) = 1 over t-

/2 ≤  ≤ t+/2 and 0 otherwise.  

The reflected signal from a BM with a micro-motion is sampled at pulse repetition period s and is 

given by 
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where s is the slow time which is a multiple of s,  is the number of the scatterers that comprise the 

BM, k is the amplitude of scatterer , and  (ts) is the two-way fast-time delay at s between the radar 

and . Assuming that  located at ( k, k) is observed at (ts) in the -  plane, k(ts) is given by [10] 

 2( ) ( ) ( )cos ( ) ( )sin ( )     ,                  (3) 

where ( s) is the distance from the radar to the origin of the local coordinate, and  is the speed of the 

light.  

Then high-resolution range profiles (RPs) can be obtained by matched-filtering ( , s) by (1) in the 

 domain [11]. Because this operation is time-consuming, it is conducted in the fast-time frequency 

domain ; the resultant signal is  

(1)

where f0 is the start frequency, B is the bandwidth, τ is the 

pulse duration, and rect(∙) = 1 over t-τ/2 ≤ t ≤ t+τ/2 and 0 

otherwise. 

�e re�ected signal from a BM with a micro-motion is 

sampled at pulse repetition period Ts and is given by
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where ts is the slow time which is a multiple of Ts, K is the 

number of the scatterers that comprise the BM, Ak is the 

amplitude of scatterer k, and τk(ts) is the two-way fast-time 

delay at ts between the radar and k. Assuming that k located 

at (xk, yk) is observed at θ(ts) in the x-y plane, τk(ts) is given 

by [10]
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where R is the unit vector of the radar line of sight,  is the wavelength, and   is the inner-product 

operator. MD is the combination of the spinning and the coning frequencies due to the multiplication 

of the elements in the coning and the spinning matrices. 
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mm thickness to represent the perfect inducting characteristic of the missile while minimizing the 

weight (Fig. 4). In addition, each target has a unique size of warhead and body, and number of wings. 
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with radar-absorbing material to eliminate any effects of motor rotation (Fig. 5). 
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Fig. 1. Micro-motion dynamics of BM. 
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(b) Flanges for coning angle 
Fig. 2. Schematic of the micro-motion device. 
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Fig. 2. Schematic of the micro-motion device.
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Fig. 3. Manufactured micro-motion device. 
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radar-absorbing material to eliminate any e�ects of motor 

rotation (Fig. 5).

A portable X-band 2-by-2 radar system was designed to 

obtain the radar signal (Fig. 6, Table 1). �e transmitter emits 

an up-chirp signal in which the frequency increases linearly. 

�e re�ected electromagnetic signal is sequentially received 

by the four-channel antenna receivers (Fig. 6a). �e four 

signals are synchronized, then joined as a single complex 

signal by using a single-pole four-through (SP4T) switch. 

�e trigger signal for synchronization between analogue to 

digital converter (ADC) and arbitrary waveform generator 

(AWG) is generalized by an Atmega 128 micro-processor. 

�is processor also forms antenna selection signals for the 

control of the SP4T switch. �e micro-processor is controlled 

by a host computer and an RS-232 (Fig. 6b).

2.3 Signal processing procedure 

To demonstrate the operation of the designed 

measurement system, 4,096 pulses were received from a 

missile-shaped target with pulse repetition frequency = 1,000 

Hz, and 4096 RPs were obtained by performing matched-

 
(a) Model 1 

 
(b) Model 2 

 
(c) Model 3 

Fig. 4. Diagrams of the models used for micro-Doppler extraction and measurement. 
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Fig. 4. Diagrams of the models used for micro-Doppler extraction and measurement. 

 

 

 

 

  

(c) Model 3

Fig. 4.  Diagrams of the models used for micro-Doppler extraction and 

measurement.
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(b) Block diagram 

Fig. 6. Measurement radar and block diagram. 
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Fig. 5. Measurement setup. To eliminate the effect of micro-motion of the second motor, it is covered 

with radar-absorbing material. 
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filtering using the stored replica of the transmitted signal 

in (1). Then, the range bin containing the target, i.e., bt, 

was selected by finding the range bin with the maximum 

energy of the signal projected onto the fast time domain, 

and the signal st in this bin was obtained. Because 

the noise and clutter can distort the MD signal, st was 

digitally band-passed using a rectangular bandpass filter 

(BPF) in the frequency domain. Finally, (7) was used 

to transform the band-passed signal sbpf to the time-

frequency domain, and residual noise was removed by 

thresholding (Fig. 7). 

3. Experimental Results

3.1 Experimental result of system veri�cation

An experiment was performed to verify the overall 

operation of the designed system by using Model 2 engaged 

in micro-motion with arbitrary parameters in a wide-open 

hall of the LG building of Pohang University of Science 

Technology. After matched �ltering, 4096 RPs were obtained 

with the target located at range bin bt = 250 (Fig. 8a). �e 

radar signal st varied over time due to the micro-motion of 
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the target (Fig. 8b). �e one-dimensional (1D) frequency 

spectrum obtained by Fourier transformation shows that 

most of the MD signal falls in the frequency range -330 

≤ f ≤ 330 Hz with the largest energy at 0 Hz (Fig. 8c). �us, 

frequency components outside this range and the zero 

frequency were eliminated digitally (Fig. 8d). 

In forming the spectrogram of sbpf, for the sake of clarity the 

pixel with the largest value was set to 0 dB and those smaller 

than -10 dB were set to -10 dB. �e spectrogram (Fig. 9) of the 

MD signal after time-frequency transform clearly represents 

the micro-motion of the target. Due to the coning motion of 

the main body composed of a cylinder and a cone, sinusoidal 

MD motion occurred at -50 ≤ f ≤ 50 Hz. Because of the time-

varying nature of the radar cross-section (RCS) of the tilted 

cone and the cylinder, the amplitude of coning motion in 

spectrogram was time-varying. Furthermore, micro-motion 

caused by a combination of coning and spinning of the three 

wings clearly appeared at -200 ≤ f ≤  300 Hz and 200 ≤ f ≤ 300 

Hz. Close examination of these ranges shows that MD of the 

three wings are represented by two or three vertical lines that 

arise periodically due to the sharp variation in the RCS of a 

plate.

3.2 Analysis of MD spectrogram

E�ects of motion parameters were analyzed to 

demonstrate the accuracy of the designed system. �e 

angular velocity ωs of spinning was set to 10.5 rad/s = 100 

RPM or 15.7 rad/s = 150 RPM, and the angular velocity ωc of 

coning was set in the same manner. Two coning angles θc = 7 

and 15° were used to study the e�ect of coning angle. Aspect 

angle θa was varied between 0 and 90° to determine its e�ect 

on MD (Table 2).

MD images (Fig. 10) of Model 1 rotating at ωc = 15.7 rad/s 

with θc = 15° and observed at θa = 90° clearly represent the 

coning motion. MD of the body repeats every 0.4 s which 

corresponds to the coning frequency fc = 2.5 Hz. �e range 

of MD is di�erent from the ideal values due to the small RCS 

of the nose; the ideal maximum Doppler frequency fmax of the 

nose tip drawing a circle with a radius = 0.7tan(15°) = 0.19 

m is 196.4 Hz and this is not seen in the MD image, whereas  

fmax = 100 Hz that corresponds to a 0.36-cm cylinder is seen.

MD images (Fig. 11) of Model 2 rotating at ωc = ωs = 15.7 

rad/s with θc = 15° represents the addition of spinning and 

coning frequencies. As proved in (11), the spinning MD of 

the three wings at θa = 90° was added to and subtracted from 

the coning MD, yielding fmax = 426.3 Hz, which is very close to 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Fig. 9. MD image after BPF 

  Fig. 9.  MD image after BPF

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10. MD image of model 1 (  = 15.7 rad/s,   = 15°,   = 90°). 
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(a)   = 90° 

 

  
(b)   = 60° 

Fig. 11. MD image of model 2 (  =   = 15.7 rad/s,   = 15°). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) θa = 90°

 

 
 
 
 
 
 
 
 

 
(a)   = 90° 

 

  
(b)   = 60° 

Fig. 11. MD image of model 2 (  =   = 15.7 rad/s,   = 15°). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) θa = 60°

Fig. 11.  MD image of model 2 (ωs = ωc = 15.7 rad/s, θc = 15°).

Table 2. Motion and observation parameters

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table II. Motion and observation parameters 
Motion Value 

Spinning motion (rad/s) 10.5, 15.7 
Coning motion (rad/s) 10.5, 15.7 

Coning angle 7°, 15° 
Aspect angle 0° - 90° 
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the ideal value (Fig. 11a). In addition, four wings are clearly 

represented by four vertical lines that repeat at fc = 2.5 Hz. 

Comparison of MD images obtained at θa = 90° (Fig. 11a) 

and 60° (Fig. 11b) shows the angular dependency; ideal fmax = 

366.6 Hz because the velocity was scaled by cos(30°) = 0.86, 

but measured fmax = 230 Hz due to the small RCS of the wing 

tip. 

MD images (Fig. 12) of Model 3 obtained at θa = 90° and θc 

= 15° for four combinations of (ωs, ωc) demonstrate the e�ect 

of each component. Comparison of MD images for (10.5, 

10.5) Hz and (10.5, 15.7) Hz proves that fc determines the 

repetition of the MD image of the target (Figs. 12a, b); MD in 

Fig. 12a repeats at fc = 1.67 Hz whereas that in Fig. 12b repeats 

at fc = 2.5 Hz. Comparison of MD images for (10.5, 10.5) Hz 

and (15.7, 10.5) Hz shows that the spinning MD adds the 

additional frequency (Figs. 12a, c) of approximately 50 Hz 

due to the increased spinning frequency. Comparison of Fig. 

12b and d shows the same result.

Finally, the e�ect of the coning angle was studied by 

comparing MD images of Model 3 with θc = 7° and 15°, 

observed at ωs = ωc = 15.7 rad/s, θa = 90° (Fig. 13). Although 

the MD repeated with the same period, MD image was 

very dependent on θc; the amplitude of the main body was 

much larger at θc = 15° than at θc = 7° (Fig. 13). In addition, 

the location of the MD of each blade changed due to RCS 

variation of the three wings, yielding totally di�erent MD 

images. 

 

4. Conclusion

In this paper, the dynamic MD signatures of BM were 
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Fig. 12. MD image of model 3 for ( ,  ) (  = 15°,   = 85°). 
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Fig. 12. MD image of model 3 for ( ,  ) (  = 15°,   = 85°). 
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Fig. 12. MD image of model 3 for (ωs, ωc) (θc = 15°, θa = 85°).\

 

 

 

 

 

 

 

 
(a) 7.5° 

 

 
(b) 15.0° 

Fig. 13. MD image of model 3 for two   values (  =   = 15.7 rad/s,   = 90°). 
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Fig. 13. MD image of model 3 for two   values (  =   = 15.7 rad/s,   = 90°). 
 

                                                                                     
           (a) 7.5°                                                                    (b) 15.0°

Fig. 13. MD image of model 3 for two θc values (ωs = ωc = 15.7 rad/s, θa = 90°). 
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investigated using a portable micro-motion device, three 

scale models, and a portable X-band measurement system. 

�e micro-motion device implemented spinning and coning 

motions of the scale models, and the designed radar system 

composed of the dual motor system and the X-band 2-by-

2 PCMP radar successfully measured the MD signal. MD 

signals were represented as spectrograms after matched-

�ltering, selection of bt, and BPF. Analysis of MD signature 

showed that the coning motion determined the overall 

period of MD, and that the spinning motion increased its 

amplitude. MD was very dependent on the aspect angle 

because of the angular dependency of RCS of the models. 

MD can occur in various types of targets engaged in micro-

motion and these targets may exist in various environments 

that can produce various clutter signals. Because the 

designed system can be moved to any environments and 

many of such micro-motions can be implemented by the 

designed motion-device, it will contribute to successful 

analysis of the MD signal in various situations
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