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Abstract

We consider the truthful implementation of an efficient decision policy when
agents have dynamic type and are periodically-inaccessible, with agents unable
to report information or make payments while inaccessible. This concept of
inaccessibility includes a model of arrival-departure dynamics as a special case.
We generalize the dynamic VCG mechanism [Bergemann and Välimäki, 2008]

to this environment, achieving within-period ex post incentive compatibility for
agents with the same communication constraints as the center. In doing so, we
offer a new proof of the correctness of the dynamic VCG mechanism, emphasiz-
ing its position within a family of dynamic Groves mechanisms. In considering
the special case of an arrival-departure model with dynamic type, we obtain a
mechanism that is efficient and within-period ex post incentive compatible for
arrival processes in which future arrivals are conditionally independent of past
arrivals given the actions of the center. The mechanism is shown to be payoff
equivalent at arrival for agents with static types to the online VCG mecha-
nism [Parkes and Singh, 2003], which satisfies a stronger ex post participation
constraint than the dynamic VCG mechanism in such domains. In closing,
we highlight a structural difficulty in extending the dynamic VCG mechanism
to achieve an ex post no deficit, efficient mechanism in an environment with
dynamic types and interdependent type transitions.

∗This paper subsumes a previous version entitled “Efficient Online Mechanisms for Persistent,
Periodically Inaccessible Self-Interested Agents”, dating from June, 2007. Thanks to seminar par-
ticipants at Dagstuhl, Stonybrook, GAMES, Cornell, Yale, EPFL, NYU Stern, Aarhus, and Stan-
ford for useful feedback. Thanks also to Sven Seuken for comments on an earlier version.
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1 Introduction

Mechanism design addresses social choice problems involving multiple self-interested
agents, each with private information relevant to the decision and a utility function
on outcomes. The problem is to design a communication game such that there is
a non-cooperative equilibrium in which the outcome satisfies a desired set of prop-
erties. Mechanism design has mainly focused on static problems with a fixed pop-
ulation of agents, each with fixed private information, and a fixed set of outcomes.
But many problems of interest are dynamic; e.g., a repeated allocation problem in
which agents are learning their value for a resource, or selling a time-sensitive good
such as a theater ticket to impatient buyers arriving that arrive at different times.

In extending mechanism design to dynamic and uncertain environments, most mod-
els consider either a dynamic population with static, private information [Lavi and
Nisan, 2004; Parkes and Singh, 2003] or a persistent population of agents with dy-
namic, privately revealed information [Athey and Segal, 2007; Cavallo et al., 2006;
Bergemann and Välimäki, 2008]. The former problems have been described as those
of online auctions or online mechanism design (emphasizing the analog to online al-
gorithm problems of computer science and operations research), while the latter
have been described as problems of dynamic mechanism design.

In this paper, we unify these models and allow for both dynamic populations and
dynamic types by considering the possibility that agents can transition between
accessible and inaccessible local states. While inaccessible, an agent is unable to
communicate with a central planner or receive payments but remains important
because it continues to have values for decisions, both now and in the future. In
addition to modeling domains in which agents become disconnected from a mecha-
nism because of faulty technology or reasons of limited attention, the generalization
to periodically-inaccessible agents is helpful because it provides insight into the de-
sign of an efficient mechanisms for arrival-departure models. Models of dynamic
arrival and departure are captured by restricting inaccessibility to a single cycle,
so that an agent is first inaccessible, then “arrives” and is accessible according to
a probabilistic model known to the center, and then “departs” and is permanently
inaccessible. Upon departure, an agent has no value for any further actions and
thus will no longer be pivotal to the decisions of an efficient policy.

The focus in this paper is on the truthful implementation of the efficient policy in
such domains, and we consider a private values model and, for the most part, in-
dependent type transitions. We show that this independent transition requirement
translates into an independence requirement on the arrival process in a domain
with arrival-departure dynamics. We first review the case of persistent agents with
dynamic type, and offer an independent proof of the incentive-compatibility of the
dynamic VCG mechanism [Bergemann and Välimäki, 2008] (referred to as the “dy-
namic pivot” mechanism in their paper), that emphasizes its position within a family
of dynamic Groves mechanisms. We then present our general model, in which agents
may also become periodically inaccessible, and extend the dynamic VCG mecha-
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nism by maintaining beliefs about the type of inaccessible agents. We obtain the
dynamic VCG# mechanism, which retains the same within-period ex post incentive
compatibility property of the dynamic VCG mechanism when the information that
accessible agents have about inaccessible agents is restricted in the same way as the
center through failure of communication. An additional requirement is that agents
may not be inaccessible forever, in order to allow for transfers to reflect decisions
made while an agent is inaccessible.

In restricting to an arrival-departure model, but still retaining dynamic types, we
recover the dynamic VCG mechanism, suitably modified to select the actions of a
policy that is efficient given that the center has a correct probabilistic model of the
arrival process. The dynamic VCG mechanism is within-period ex post incentive
compatible and efficient, for an arrival process in which the types of new agents are
conditionally independent of past arrivals, given the actions of the mechanism. Un-
der a further restriction to static types, so that an agent gains no additional private
information subsequent to its arrival, we establish the payoff equivalence upon ar-
rival between the dynamic VCG mechanism and the online VCG mechanism [Parkes
and Singh, 2003]. In doing so, we unify within a single model these separate threads
in the recent literature on dynamic mechanism design. The online VCG mechanism
may be preferred over the dynamic VCG mechanism in this dynamic population,
static type environment because it satisfies ex post participation where the dynamic
VCG mechanism satisfies only within-period ex post participation.

In closing, we return to a domain with persistent and accessible agents and dynamic
type, allowing here for interdependent type transitions. As in Mezzetti [2004] (for
a static problem) and Athey and Segal [2007] (for the dynamic problem), we em-
phasize the importance of private value when conditioned on state transitions and
also that the information externality present in another agent’s type is subsumed by
private information realized to an agent subsequent to an action by the center. Both
requirements are easily modeled as a simple generalization to our framework, where
the state transition of an agent can depend on the private state of other agents and
an agent’s value for an action depends on its current state and its next state. Our
contribution is to highlight a structural difficulty in extending the construction of
the dynamic VCG mechanism to achieve a mechanism with transfers that are ex
post no deficit.

1.1 Related work

We cateogorize the related work by the kind of environment considered. First, we
review related work for an environment with a persistent population and dynamic
type. This includes the efficient mechanisms of Athey and Segal [2007], Bergemann
and Välimäki [2008] and Cavallo et al. [2006], along with some mechanisms that have
been developed for special cases. Then we review related work for an environment
with a dymamic population but static type. This includes the efficient mechanism
of Parkes and Singh [2003], as well as a number of mechanisms for special cases
including both revenue-maximizing mechanisms and prior-free mechanisms that are

3



analyzed within a worst-case framework. Finally, we mention a recent algorithmic
development inspired by an extension to the model in this paper, in which agents
can take local actions while inaccessible.

Persistent population, dynamic type. Athey and Segal [2007] obtain a
Bayes-Nash incentive compatible, efficient and budget-balanced mechanism for a
persistent-population, dynamic type environment with private values and indepen-
dent type transitions. The mechanism extends the expected externality mecha-
nism [Arrow, 1979; d’Aspermont and Gérard-Varet, 1979] to a dynamic environ-
ment. The main limitation is that it is only able to provide for ex ante participation
constraints, although the authors also characterize a sufficient conditions for interim
participation in an infinite horizon setting with sufficiently patient agents. Athey
and Segal [2007] also present the team mechanism (or dynamic Groves) mechanism
for interdependent type transitions, but do not present a dynamic VCG (or pivot)
mechanism.

Bergemann and Välimäki [2008] obtain the dynamic VCG mechanism for the same
environment, with a persistent population, independent type transitions, and pri-
vate values. The dynamic VCG mechanism truthfully implements an efficient policy,
and provides within-period ex post incentive compatibility and within-period ex post
individual-rationality. The dynamic VCG mechanism is also ex post no deficit in
economic environments without positive externalities (e.g., one-sided auctions or
social-choice problems.) The authors establish that the mechanism is the unique
mechanism with these properties amongst those that additionally satisfy an efficient
exit property, which requires that no transfers should occur once an agent’s reports
are no longer pivotal.1 Applications are given to a scheduling problem, and also
to a problem with Bayesian learning by agents, modeled as a multi-armed bandits
auction.

Cavallo et al. [2006] independently develop a different variation on a dynamic VCG
mechanism for the same environment, with a persistent population, independent
type transitions, and private values. The mechanism modifies the team mechanism
with a single ex ante charge-back term whose flow value can be smoothed over the
course of the mechanism. As such, it is a dynamic Groves mechanism and within-
period ex post incentive compatible. The main limitation is that it provides only
ex ante participation, while the dynamic VCG mechanism developed in Bergemann
and Välimäki [2008] provides within-period ex post participation. The authors also
provide an application to a multi-armed bandits auction, which provides a simple
model of learning by doing and has a tractable planning problem via an index
policy.2

1The uniqueness result holds for persistent population, dynamic type environments but not for
dynamic population, static type environments, in which incentive-compatibility constraints only
need to bind upon arrival. For example, the online VCG mechanism [Parkes and Singh, 2003] also
satisfies these properties in such an environment but has different flow payoffs forward from states
other than an agent’s arrival.

2Bapna and Weber [2005] also study this multi-armed bandits auction but are unable to identify
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Cremer et al. [2009] independently develop a special case of the Bergemann and
Välimäki [2008] dynamic VCG mechanism for an application with one-time type
transitions, modeling costly information acquisition by agents. In an application in
which each agent has instead a general, sequential process for costly value refine-
ment, Cavallo and Parkes [2008] apply the dynamic VCG mechanism (subsequent
to its development in Bergemann and Välimäki [2008]), obtaining a reduction to a
multi-armed bandits auction problem. In handling Larson and Sandholm’s problem
of “strategic deliberation,” in which an agent also has technology for costly delib-
eration about the value of another agent, these authors also extend the dynamic
VCG mechanism in order to retain incentive compatibility despite the limited in-
terdependence that this introduces into agent type transitions.

Pavan et al. [Pavan et al., 2009] develop necessary and sufficient conditions for
Bayes-Nash incentive compatibility for a persistent population, dynamic type envi-
ronment with independent type transitions and interdependent valuations. In ad-
dition to obtaining a general revenue-equivalence result for dynamic environments,
the analysis is applied to develop optimal dynamic mechanisms for environments in
which agent type transitions are modeled as an auto-regressive process. The main
limitation is that the characterization only provides ex ante participation.

Cavallo [2008] characterizes conditions under which dynamic Groves mechanisms are
unique amongst efficient, within-period ex post incentive-compatible mechanisms,
and for which the dynamic VCG mechanism is revenue maximizing amongst this
class. A redistribution mechanism is also introduced for a multi-armed bandits
auction, redistributing payment streams in the dynamic VCG mechanism to reduce
the budget surplus without running at a deficit or losing incentive compatibility.
This adapts to dynamic environments the framework of the redistribution for Groves
mechanisms in static environments [Bailey, 1997; Cavallo, 2006].

An earlier literature develops dynamic mechanisms for persistent agents with time-
separable types. For example, Atkeson and Lucas [1992] consider a continuum
population in which agents receive new i.i.d. types each period, and character-
ize incentive-compatible distribution policies for a time-sensitive good. Athey et
al. [2004] also adopt a dynamic mechanism design approach in analyzing the equi-
librium behavior of two competing firms, each with a private cost sampled i.i.d. in
each period. In a single agent, non time-separable problem, Courty and Li [2000]

consider a problem with two periods and one persistent agent, designing an optimal
mechanism in which an agent learns a distribution about its value for a good in
period one and before its value is realized in period two.3

a first-best mechanism, instead providing bounds on the equilibrium behavior in a non incentive-
compatible mechanism.

3Also related is the literature on dynamic contracting models, where the focus is on the role
of commitment in limiting what a principal can achieve in problems with moral hazard. Freixas
et al. [1985] obtain a characterization of the second-best due to lack of commitment for an agent
with static type. For an agent with a dynamic but time-separable type, Wang [1995] studies the
dynamic allocation of a perishable good between two firms and Levin [2003] considers contracting
under incomplete information without the ability to commit even to payments based on observable

5



Dynamic population, static type. Parkes and Singh [2003] obtain the online
VCG mechanism for an environment with a dynamic population and static type,
with a known probabilistic model of the arrival process and agents with private
values on sequences of decisions.4 An agent’s valuation function completely realized
upon its arrival and can misreport its arrival period and type. The online VCG
mechanism is within-period ex post incentive compatible and efficient, collecting
a single payment from an agent in its commitment period, which is the first pe-
riod in which all decisions with respect to the agent’s value are determined.5 The
mechanism is ex post individual-rational and ex ante no deficit. The mechanism
is developed in the context of a finite time horizon, but it is a simple matter to
generalize the mechanism to an environment with an infinite time horizon and dis-
counting, as we do in this paper.6 Mierendorff [2008] specializes the online VCG
mechanism to an application with a single item to sell to buyers that arrive with a
value schedule for receiving the item in different time periods, obtaining a mecha-
nism that is efficient and both ex post no deficit and ex post individual-rational by
reconfiguring the payment flows.

In an early contribution, Dolan [1978] develops an online VCG mechanism for a
scheduling domain with Poisson arrivals and agents with different delay costs. No
consideration is giving to temporal strategies, and agents are only able to misreport
their cost of delay. On the other hand, the author is able to characterize the effi-
cient policy and anticipates the recent developments in the literature, by proposing
to charge an agent the expected externality it imposes on the system upon its ar-
rival. Dolan [1978] also observes that the dynamic mechanism will not be dominant
strategy incentive compatible because it requires agreement about the probabilistic
model of the arrival process.

Looking at recent applications, Gershkov and Moldovanu [2008a; 2008b] study ef-
ficient and revenue-optimal mechanisms for a problem with commonly ranked, dis-
tinct items to allocate by a deadline to buyers that arrive with unit demand. Sub-
sequent to this, these authors also consider a model in which the center is learning

outcomes. Battaglini [2005] considers an agent with a Markovian type dynamic (and thus non time-
separable) and shows that commitment is no longer necessary to implement a first-best contract.

4The phrasing “online” VCG comes from the analogy to online algorithms in computer science,
in which decisions are made sequentially as new parts of the input are revealed.

5The authors establish that the mechanism is Bayes-Nash incentive compatibility. In this paper
we emphasize that the online VCG mechanism achieves this stronger, ex post incentive-compatibility
property. We also emphasize the requirement that the arrival process satisfy a independence prop-
erty, with new arrivals conditionally independent of past arrivals given decisions by the mechanism.

6Earlier, Friedman and Parkes [2003] had developed a Bayes-Nash incentive-compatible, online
VCG mechanism in which all payments are delayed until the final time period. The proof technique
of Parkes and Singh [2003] establishes that the flow payoff to an agent in the online VCG mechanism
is the same as in this delayed VCG mechanism. Parkes et al. [2004] slightly generalize the incentive
analysis of the online VCG mechanism to allow for an ǫ-efficient policy, obtaining an ǫ-Bayes Nash
incentive compatible and ǫ-efficient mechanism, and present simulation results for an application
to a scheduling problem, in which the mechanism is coupled with a sparse-sampling algorithm
to compute approximately-efficient decisions in each period and estimate the expected marginal
product of an agent in order to determine payments.
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about the arrival process, identifying a way in which interdependence is introduced
into the problem [Gershkov and Moldovanu, 2008c] and developing sufficient condi-
tions on the environment that allows for first-best policies, under Bayesian and non-
Bayesian learning paradigms [Gershkov and Moldovanu, 2009].7 Dizdar et al. [2009]

study a dynamic knapsack auction, with a finite number of items to allocate by some
deadline to impatient agents that each demand some number of items. The authors
develop conditions under which the first-best is possible for efficiency and revenue
optimality. Constantin and Parkes [2009] study a generalization in which buyers
are patient, with an arrival time and departure time (or deadline), and address
the computational difficulty of computing efficient allocation decisions by adopt-
ing an online stochastic combinatorial optimization algorithm that is automatically
modified to make it dominant-strategy implementable.

There is also by now a rich literature on revenue-optimal, dynamic mechanisms. Vul-
cano et al. [2002] develop revenue-optimal auctions in a standard unit-demand model
with i.i.d. agent values, impatient agents and a finite time horizon. In models with
discounting and infinite time horizons, Gallien [2003] develops a revenue-optimal
auction for a continuous time model, while Said [2009] establishes the revenue-
optimality of a dynamic VCG mechanism defined on virtual valuations for a setting
with discrete time periods and an expiring good, one unit of which must be allo-
cated in each period. One of the few developments of an indirect mechanism is also
provided by Said [2009], via a sequence of ascending-price auctions. In a finite-time
horizon model with patient agents that arrive with a deadline and are indifferent
between receiving an item in any period between arrival and departure, Pai and
Vohra [2008] obtain sufficient conditions under which the revenue-optimal auction
is implementable and Mierendorff [2009] studies the irregular case for allocating a
single item over two time periods, developing the revenue-optimal mechanism.8

A sequence of papers adopt worst-case rather than Bayesian analysis for the design
of online mechanisms. The objective is to develop mechanisms that can do well
relative to what would be possible in a static problem with all type information
available in the first period, and whatever the actual (dynamic) realization of agent
types. Initiating this line of research, Lavi and Nisan [2004] provide a worst-case
analysis for an online auction in which a number of identical goods are sold by some
deadline to agents with marginal-decreasing values for each additional good. Ng
et al. [2003] develop a strategyproof online auction for a model of patient agents
in application to non-preemptive scheduling, in which agents need an allocation of

7Riley and Zeckhauser [1983] had earlier considered the special case of selling one item to a
sequence of buyers that arrive, one per period, in which the seller seeks to maximize revenue while
learning about the buyer type distribution.

8Also related is a literature that studies the problem of a monopolist selling multiple items of a
durable good via posted price mechanisms to dynamic arrivals of impatient, unit-demand agents.
For continuous time models, revenue-optimal price schedules are developed in a series of papers by
Kincaid and Darling [1963], Gallego and Van Ryzin [1994] for an exponential demand model, and
McAfee and te Velde [2008] for a Pareto demand model. Board [2008] develops revenue-optimal
pricing schedules with buyers that arrive over time and discount the future, in a discrete time
setting with time-varying demand.
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resources by some period in time. Porter [2004] provides a worst-case analysis with
respect to efficiency in a related, preemptive scheduling problem. Hajiaghayi et
al. [2005] improve these results for the special case of agents with unit-length jobs.
All of these mechanisms are dominant-strategy incentive compatible for restricted
type misreports, in which agents that cannot report early arrivals and the result
of scheduling a job can be held until an agent’s reported departure. Hajiaghayi
et al. [2005] also develop a characterization of dominant-strategy implementable
policies under different assumptions on available misreports.910

For durable goods, Hajiaghayi et al. [2004] consider patient unit-demand buyers and
develop an adaptive, dominant-strategy incentive compatible online mechanism as
a variation on the classical secretary problem for the problem of allocating a single
item by a deadline. Juda and Parkes [2009] develop a dominant-strategy incentive-
compatible auction for allocating an uncertain supply of distinct items to a dynamic
population of buyers with deadlines and general (combinatorial) valuations, and
provide an empirical analysis of its efficiency and revenue in application to a market
on eBay for LCD monitors. Bredin and Parkes [2007] develop a dominant-strategy
incentive-compatible double auction for dynamic allocation between arriving buyers
and sellers with deadlines, providing a dynamic generalization of the McAfee [1992]

trade-reduction auction rule.

Dynamic population, Dynamic type. Subsequent to this present paper,
Seuken et al. [2008] extend the partially-inaccessible model to allow for agents with
private actions. In such an environment, the planner should provide agents with
emergency polices, to be used by an agent to select local actions while inaccessi-
ble. The authors provide a team mechanism but are unable to develop a dynamic
VCG mechanism, and focus instead on computational issues in computing these
emergency policies, making connections with the established literature within AI
on decentralized Markov decision processes.

2 A Fixed Population with Dynamic Types

Consider an environment with a fixed set I = {1, . . . , n} of agents able to com-
municate with a central decision-maker (“the center”). Actions are selected by a

9The condition in Theorem 6 in Hajiaghayi et al. [2005] was subsequently shown to be sufficient
but not necessary; see Theorem 1.25 in Parkes [2007] for a clarification.

10A number of variations on these scheduling problems have been considered: e.g., Cole et
al. [2008] require “prompt payments” that are collected immediately upon an allocation of resources;
Lavi and Nisan [2005] adopt a set-Nash analysis of a sequence of ascending-price auctions in a
problem in which late misreports of departure are possible; and Lavi and Segev [2008] adopt an
analysis in undominated strategies for a variation in which agents are patient until the final time
period upon arrival. Mahdian and Saberi [2006] study a variation in which the buyer population
is fixed but the supply of expiring items is online and uncertain. Babaioff et al. [2009] add the
additional requirement of prompt payments and provide a hybrid analysis, that is worst-case with
respect to agent valuations but average-case with respect to a probabilistic model of supply and
requires dominant-strategy incentive compatibility with regard to any possible supply realization,
precluding the use of an online VCG mechanism.
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center in each of a sequence of discrete time periods, perhaps infinite. The center
chooses an action a ∈ A from the set of possible actions A in each period. Each
agent i ∈ I has a private type that consists of state, si ∈ Si in state space Si, a
stochastic transition function

τi : Si × A → Si, (1)

such that for all si ∈ Si and a ∈ A,
∑

s′i∈Si
Pr(τi(si, a) = s′i) = 1 (for probability

function Pr), and a reward function

ri : Si × A → R, (2)

which defines the reward ri(si, a) to an agent when the center takes action a given
state si. This is a private-values environment, because an agent’s reward ri(si, a)
depends only on its own state. Moreover, type transitions are independent because
τi(si, a) is conditionally independent of other agents’ types, when conditioned on
the actions taken by the center.11 Collectively, we refer to an agent’s type, ti =
(si, τi, ri) ∈ Ti, as a dynamic type when the transition function is stochastic, and
thus new information is privately revealed to an agent over time. For a deterministic
transition function this is equivalent to a standard (static) type, describing a value
for any possible sequence of actions, and an agent can completely describe its value
for any sequence of actions in a single report.

We associate the center with state, s0 ∈ S0 and stochastic transition function τ0 :
S0 × A → S0 to model the feasible actions available in each period. In an auction
problem, this state can include information about which items are already allocated,
for example, with A(s0) ⊆ A to denote the feasible allocations in the current period.
To keep our presentation simple we shall simply adopt fixed action set A in what
follows, but A(s0) can be easily substituted.12

Let t0 ∈ T0 define (s0, τ0), and T = T0×T1× . . .× . . . Tn denote the type space with
t ∈ T a joint type profile. Similarly, let S = S0×S1×. . .×Sn denote the state space.
Let τ(s, a) = (τ0(s0, a), τ1(s1, a), . . . , τn(sn, a)) ∈ S, and define τ(t, a) analogously.
Let t−i = (t0, . . . , ti−1, ti+1, . . . , tn) denote the type profile without agent i, and s−i

the state profile without agent i.

We assume discount factor 0 < γ ≤ 1, that is common to all agents, and let K denote

11Without inaccessibility, and thus precluding a setting with agent arrivals and departures, there
are no additional technical difficulties in also allowing for serially correlated types, wherein the
transitions τi(s

k
i , a, zk) ∈ Si and rewards ri(s

k
i , a, zk) also depend on an exogenous random process

z0, z1, . . . observable to all agents. Serially correlated types are considered, for example, in, Athey
and Segal [2007] and Cavallo [2008]. But this presents a problem with inaccessible agents (e.g., dy-
namic arrival-departures) because it presents an information externality [Gershkov and Moldovanu,
2008c].

12The center may also have reward r0(s0, a) for action a, for example to model the value of leaving
a resource unallocated or to indicate through a large negative reward that action a is infeasible
given s0 (e.g., perhaps all resources have been allocated). This presents no additional technical
difficulty.
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a time horizon, perhaps infinite so that the decision periods are ℓ ∈ {0, 1, . . . ,K}.13

A decision policy, π : T → A defines an action in every type profile t ∈ T . Fixing τ

and reward functions r1, . . . , rn, then value function,

Vi(t
ℓ, π) = Etk

[
K∑

k=ℓ

γk−ℓ rk
i (tki , π(sk)) | tℓ, π

]
, (3)

denotes the expected discounted reward to agent i, or flow value, given policy π and
type profile tℓ, with tk = τ(tk−1, π(tk−1)) for k > ℓ. Let r(tℓ, a) denote

∑
i∈I ri(s

ℓ
i , a),

with V (tℓ, π) =
∑

i∈I Vi(t
ℓ, π). An efficient decision policy, π∗, solves,

π∗ ∈ arg max
π∈Π

V (t, π), ∀t ∈ T, (4)

where Π is the space of feasible policies. Let V−i(t
ℓ, π) =

∑
j 6=i Vj(t

ℓ, π), with
π∗
−i to denote a decision policy that is efficient for the other agents, i.e., π∗

−i ∈
arg maxπ∈Π V−i(t, π),∀t ∈ T .

From a modeling perspective, we have defined a loosely-coupled multi-agent Markov
Decision Process (MDP), in which each agent has a local state, stochastic transition
function that is independent of that of other agents (conditioned on actions), and
reward function; see Cavallo et al. [2006]. Note that the only dynamic component
of type is the state, the reward and transition functions remain invariant. The
joint MDP is coupled through the single action that is taken in each period, which
depends in turn on the state of the center and thus can depend on past actions.

An incentive-compatible mechanism will implement the efficient joint policy even
though each agent can choose to misreport its state, transition function, and reward
function.

2.1 A Dynamic Mechanism

A dynamic mechanism, M = (π, T ), is defined by a decision policy π : T → A,
and a transfer policy x = {x1, . . . , xn}, with xi : T → R, for all i ∈ I.14 Given
type profile tℓ in period ℓ, the mechanism selects action aℓ = π(tℓ) ∈ A and makes
transfer xi(t

ℓ) ∈ R to each agent.

Each agent can make a report about its type in each period. An agent’s strategy
can depend on prior reports by itself and by other agents. Let hℓ ∈ Hℓ denote a

13All the results in this paper can be developed with simple modification for a finite time horizon
problem without discounting.

14Myerson [1986] gives a general revelation principle for dynamic communication games; see
also Athey and Segal [2007]. The revelation principle does not hold directly in environments with
communication constraints such as those studied here; e.g., an indirect mechanism can have more
implementation power because it can prevent agents making incredible claims via a direct report
in some earlier period that they will still be accessible in a later period (see Parkes [2007] for an
example). But given that we obtain the truthful implementation of efficient policies with direct
mechanisms we will not consider indirect mechanisms further in this paper.
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sequence of type reports sent to the center up to and including period ℓ, from the
set of possible reports Hℓ. A strategy

σℓ
i : Hℓ−1 × Ti → Ti, (5)

defines the report made by agent i given this history and given its current state.
Let σℓ(hℓ−1, t) = (t0, σ

ℓ
1(h

ℓ−1, t1), . . . , σn(hℓ−1, tn)) ∈ T , denote the reported type
profile in period ℓ when the true type is t, given history hℓ−1 ∈ Hℓ−1 and strategy
profile σ = (σ1, . . . , σn). We write the (true) expected discounted value (or flow
value) to agent i given strategy σi when agents 6= i are truthful, as

Vi(h
ℓ−1, tℓ, π, σi) = Esk

σ, ak
σ

[
K∑

k=ℓ

γk−ℓ rk
i (sk

σ,i, a
k
σ) |hℓ−1, tℓ, π, σi

]
, (6)

where sk
σ denotes the (true) state profile in period k and ak

σ the action taken by mech-
anism policy π, both induced by agent i’s strategy σi. Letting tkσ denote the state
profile in period k, then we have sk+1

σ = τ(sk
σ, ak

σ), ak+1
σ = π(σk

i (hk−1, tkσ,i), t
k
σ,−i),

and hk = (hk−1, (σk
i (hk−1, tkσ,i), t

k
σ,−i)). We similarly define the expected discounted

sum of transfers, or flow transfer, to agent i forward from period ℓ, given that it
adopts strategy σi and other agents are truthful, as

Xi(h
ℓ−1, tℓ, π, σi) = Etkσ

[
K∑

k=ℓ

γk−ℓxi(σ
k
i (hk−1, tkσ,i), t

k
σ,−i) |h

ℓ−1, tℓ, π, σi

]
, (7)

where tkσ is the type profile induced in period k by strategy σi.

Agents have quasi-linear utility functions, so that an agent’s expected discounted
utility (or flow payoff), given joint type tℓ and strategy σi is just

Vi(h
ℓ−1, tℓ, π, σi) + Xi(h

ℓ−1, tℓ, π, σi). (8)

Let σ∗
i denote a truthful strategy, with σ∗

i (h
ℓ−1, tℓi) = tℓi for all ℓ, all hℓ−1 and all tℓi .

Following Bergemann and Välimäki [2008] and Athey and Segal [2007], we define a
within-period ex post incentive-compatible mechanism:

Definition 1 (within-period ex post incentive compatible). A dynamic mechanism,
M = (π, x), is within-period ex post incentive-compatible if, for all times ℓ, for any
agent i ∈ I, for any type profile tℓ ∈ T , for any history hℓ−1, and for all σ′

i 6= σ∗
i ,

Vi(h
ℓ−1, tℓ, π, σ∗

i )+Xi(h
ℓ−1, tℓ, π, σ∗

i ) ≥ Vi(h
ℓ−1, tℓ, π, σ′

i) + Xi(h
ℓ−1, tℓ, π, σ′

i), (9)

so that agent i maximizes its expected discounted payoff from truthful strategy σi

when other agents are truthful.

In a within-period ex post incentive-compatible (w.p. EPIC) mechanism, truthful
revelation of state, transition and reward function is the best-response of an agent,
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regardless of the current types, so long as all agents follow the equilibrium strategy
in current and future play.15

For the total expected value to agent j (or flow value), given agent i’s strategy σi

and that other agents are truthful, we have,

Vj(h
ℓ−1, tℓ, π, σi) = Esk

σ, ak
σ

[
K∑

k=ℓ

γk−ℓ rk
j (sk

σ,j , a
k
σ) |hℓ−1, tℓ, π, σi

]

, (10)

where sk
σ and ak

σ are the state profiles and actions induced in period k when agent i

adopts strategy σi. Let V−i(h
ℓ−1, tℓ, π, σi) =

∑
j 6=i Vj(h

ℓ−1, tℓ, π, σi) denote the total

flow value to agents 6= i. We have V (hℓ−1, tℓ, π∗, σ∗
i ) =

∑
j∈I Vj(h

ℓ−1, tℓ, π∗, σ∗
i ) =

V (tℓ, π∗) when agent i is truthful.

Lemma 1. A dynamic mechanism (π, x) in an environment with a fixed, accessible
population and dynamic type is efficient and w.p. EPIC, if it is a dynamic Groves
mechanism, which requires that:

i) policy π is efficient with respect to the reported type profile,

ii) each agent i’s expected discounted transfer given type profile tℓ, strategy σi,
history hℓ−1, and given that agents 6= i follow a truthful strategy in period ℓ

and forward, is V−i(h
ℓ−1, tℓ, π, σi) − Ci(t

ℓ
−i), where Ci(t

ℓ
−i) is a quantity that

is independent of agent i’s own strategy in this period and forward.

Proof. Let π∗ denote the efficient policy associated with the (true) social planner’s
problem. Fix period ℓ, and agent i, and suppose agents 6= i are truthful in this
period and forward. Assume for contradiction that w.p. EPIC fails. Then by
properties (i) and (ii), there must be some strategy σi 6= σ∗

i , history hℓ−1, and type
profile tℓ for which,

Vi(h
ℓ−1, tℓ, π, σi) + [V−i(h

ℓ−1, tℓ,π, σi) − Ci(t
ℓ
−i)] >

Vi(t
ℓ, π∗) + [V−i(t

ℓ, π∗) − Ci(t
ℓ
−i)], (11)

where the terms on the RHS follow from the efficiency of the policy when agent i

is truthful. By the principle of one deviation, it is sufficient to consider a strategy
σi in which agent i submits a misreport in only the current type profile tℓ. Let
t̂ℓi = σi(h

ℓ−1, tℓi) denote this type report. But now, we can construct policy π′

from π∗ by setting π′ equal to π∗ in every type profile except for tℓ, where we
define π′(tℓ) = π(t̂ℓi , t

ℓ
−i). We have V (tℓ, π′) = V (hℓ−1, tℓ, π, σi) > V (tℓ, π∗), and a

contradiction.

15Truthful revelation in a within-period EPIC mechanism is also a Markov-perfect Bayesian
equilibrium, since it is also a best-response for any beliefs an agent may have over the types of
other agents.
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In a dynamic Groves mechanism, each agent’s payoff is aligned with the total flow
value to all agents, and w.p. EPIC is achieved because the policy will be efficient
when agent i is truthful, given that all other agents are truthful. The second term
in the flow transfer, Ci(t

ℓ
−i), can depend on the current type of other agents, and

thus on an agent’s strategy in previous periods, but must be independent of agent
i’s strategy in this period and forward.

2.2 The Dynamic-VCG Mechanism

The dynamic VCG mechanism [Bergemann and Välimäki, 2008] is w.p. EPIC and
efficient, and also ex post no deficit in economic environments without positive
externalities, such as social choice and one-sided auction problems.

Definition 2 (Dynamic-VCG mechanism). In the dynamic VCG mechanism, each
agent reports (perhaps untruthfully) its type tℓi = (sℓ

i , τi, ri) in each period ℓ, and
the mechanism selects action aℓ = π∗(sℓ) for the policy π∗ that is efficient given
reported types. Each agent i receives a transfer:

xi(t
ℓ) = r−i(s

ℓ, aℓ) + γEtℓ+1

[
V−i(t

ℓ+1, π∗
−i) | tℓ, aℓ

]
− V−i(t

ℓ, π∗
−i), (12)

in each period ℓ, where π∗
−i is the policy that is efficient for the agents without i

given reported types.

The expression Etℓ+1[V−i(t
ℓ+1, π∗

−i) | tℓ, aℓ] is the expected optimal flow value to
agents 6= i forward from period ℓ + 1, given the current (reported) type profile
and given that action aℓ is taken in period ℓ, where the expectation is taken over
possible next type profiles. The transfer to every agent in each period is its “flow
marginal contribution,” i.e., the positive impact that i has on the ability for the
other agents to obtain value in the current time-step. The first two terms reflect the
value to the other agents in the current period together with the expected future
value these agents would receive under the efficient policy to agents 6= i in future
periods. The final term reflects the optimal flow value these other agents could
receive from the current period forward, adopt the efficient policy to these other
agents in this current period as well.

To establish the incentive compatibility of the dynamic VCG mechanism we show
that it belongs to the family of dynamic Groves mechanisms.16

Theorem 1. [Bergemann and Välimäki, 2008] The dynamic VCG mechanism is
efficient and w.p. EPIC in an environment with a fixed, accessible population,
dynamic type, independent type transitions and private values.

Proof. Property (i) in Lemma 1 holds for the dynamic VCG mechanism by construc-
tion. Let π∗ denote this efficient policy. Now fix some agent i, strategy σi, history

16We provide the proof for a finite number of periods, K. A simple limiting argument extends
the result to allow for an infinite number of periods, with the summation of Eq. (15) and (16)
yielding an additional term γK+1−ℓ

E
t
K+1
σ

[V−i(bsK+1
σ , π∗

−i)], which tends to 0 as K → ∞.
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hℓ−1, and current type profile tℓ. Adopt notation tkσ and sk
σ to denote the type and

state profiles in period k given strategy σi, and t̂kσ = (t̂kσ,i, t
k
σ,−i) and ŝk

σ = (ŝk
σ,i, s

k
σ,−i)

to denote the reported type and state profiles. Distributions on sk
σ, t̂kσ and ŝk

σ are
all induced by distributions on tkσ. Let ak

σ denote the action taken in period k.

To establish property (ii) for the flow transfer, observe that the first term in
the dynamic VCG transfer provides flow transfer Etkσ

[
∑K

k=ℓ γk−ℓr−i(ŝ
k
σ, π∗(t̂kσ)] =

Etkσ
[
∑K

k=ℓ γk−ℓr−i(s
k
σ, π∗(t̂kσ)] = V−i(h

ℓ−1, tℓσ, π∗, σi) = V−i(h
ℓ−1, tℓ, π∗, σi), where

the first equality holds because of private values and the second because the strategy
forward from period ℓ does not affect the current type profile tℓ but only its report.
The second term in the dynamic VCG transfer provides flow transfer

γ Etkσ ,ak
σ

[
K∑

k=ℓ

γk−ℓ
Et′

[
V−i(t

′, π∗
−i)|t̂

k
σ, ak

σ

] ]

, (13)

where t′ ∈ T is the next type profile given reported types t̂kσ and action ak
σ. Focusing

on the inner expectation, we have

Et′

[
V−i(t

′, π∗
−i)|t̂

k
σ, ak

σ

]
= E

tk+1
σ

[
V−i((t

′′
i , t

k+1
σ,−i), π

∗
−i)

]
= E

tk+1
σ

[
V−i(t̂

k+1
σ , π∗

−i)
]
, (14)

where t′′i ∈ Ti is any type of agent i, and the first equality holds because of the
private values and transition independence. This expectation can then be taken
with respect to the actual distribution on types induced by the mechanism, and we
can simplify Eq. (13) as,

γ Etkσ

[
K∑

k=ℓ

γk−ℓ V−i(t̂
k+1
σ , π∗

−i)

]
(15)

Finally, the third term in the dynamic VCG transfer provides flow transfer,

−V−i(t̂
ℓ
σ, π∗

−i) − γEtkσ

[
K∑

k=ℓ

γk−ℓV−i(t̂
k+1
σ , π∗

−i)

]
, (16)

where we use V−i(t̂
K+1, π∗

−i) = 0. Summing this with Eq. (15), the expectations can-

cel and we obtain −V−i(t̂
ℓ
σ, π∗

−i) = −V−i(t
ℓ
σ, π∗

−i) = −V−i(t
ℓ, π∗

−i), where the first
equality holds because of private values and transition independence. This com-
pletes the proof, because −V−i(t

ℓ, π∗
−i) is independent of agent i’s strategy forward

form this period.

The dynamic VCG mechanism is within period ex post individual rational, with
agent i’s flow payoff forward from any type profile tℓ just V (tℓ, π∗) − V−i(t

ℓ, π∗
−i)

and non-negative.17 An agent will have non-negative payoff in expectation forward
from any period, as long as other agents follow the equilibrium play in the future.

17We have V (t, π∗) ≥ V (t−i, π
∗

−i), for all type profiles t because of the private values model and
since the feasible actions A(s) in a state are independent (conditioned on earlier actions) of the
private types of agents. This precludes, for example, environments in which the mere presence of
an agent can block the selection of certain alternatives.
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We now give a simple auction example to illustrate the mechanism. The center
has a single item to allocate, and in each period can either allocate the item to
one of the agents or wait. Each agent receives a reward that depends on its cur-
rent state and the action of the center. In the figures, nodes represent states and
transitions by directed edges annotated with a probability (p = 0.x) where there is
non-determinism and rewards (in bold) where there is a non-zero reward. Terminal
states are denoted → 1 or → 2 to indicate that the item is allocated to agent 1 or
2 respectively.

Example 1. Consider the simple two agent example portrayed in Figure 1. As-
sume discount factor γ = 1 (i.e., no discounting). The efficient policy allocates to
agent 1 in state BE, to agent 2 in states {CG,CH}, and makes no allocation in
states {AD,BF}. Because of the special structure of this domain, the VCG pay-
ment to agent i with type sℓ is −V ∗

−i(t
ℓ
−i) when it is allocated the item, because

r−i(s
ℓ
−i, π

∗(tℓ)) + γE[V−i(τ(tℓ−i, π
∗(tℓ)))] = 0 since the other agent cannot get the

item. In other cases, the payments are always 0 except when the presence of agent
i with a particular type precludes the other agent from being allocated immediately.
In such a case, the payment is the cost (if any) of a delay in the decision. To be
concrete, consider (true) state BE. If agent 2 reports E (“low value”) agent 1 is
allocated the item and receives payment −4; agent 2’s payoff is 0. If agent 2 reports
F (“high value”) its payment is −6 (the externality it imposes on agent 1). Con-
tinuing, the (true) next state after BE must be CG. Whether agent 2 reports G or
H it will be allocated the item (achieving value 4) and its payment will be −2, for
a net payoff over the two time-steps of −6 + 4 − 2 = −4. The deviation has had
a mal effect for agent 2. The up-shot is that agent 2 is best-off truthfully reporting
states E and F when they occur, and the center gains the information it needs to
determine whether or not to allocate to agent 1 in period 1.

3 Dynamic Types and Periodic Inaccessibility

We consider now an environment with a fixed population of agents that are
periodically-inaccessible by the center. This inaccessibility is an endogenous prop-
erty that is private to an agent and can depend on the actions of the center. To be
inaccessible means that an agent cannot send messages to the center, or receive or
make payments. On the other hand, an inaccessible agent can continue to undergo
type transitions and receive value in a way that depends on actions taken by the
center. For example, the center can continue to allocate resources based on the
estimated needs of an agent and these can lead to type transitions. Whether or
not an agent transitions to an inaccessible state can also depend on both the action
taken and the agent’s current type.

This model of periodic inaccessibility applies, for instance, to environments in which
an agent might periodically lose contact with the center due to faulty or limited com-
munication, or because of bounded attention where an agent needs to periodically
attend to other decisions or apply full attention to utilizing a resource just assigned

15



→ 1 → 1

A B C → 2

ℓ = 1 ℓ = 2 ℓ = 3

8 2

(a) Agent 1’s Type.

→ 1 → 1

E G → 2

D → 1 → 1

F H → 2

ℓ = 1 ℓ = 2 ℓ = 3

p = 0.2

4

p = 0.8 20

(b) Agent 2’s Type.

Figure 1: Two-agent, 3 time-step problem with a single item to allocate. Initial joint
state is AD. Decisions ({allocate to 1, allocate to 2, don’t allocate}) are implicit in the
state transitions. Agent 1’s type has deterministic transitions, while agent 2’s type has
non-determinism only in the first period.

by the center. We will see in Section 4 that it also generalizes earlier arrival-
departure models of online mechanism design, in which an agent is inaccessible and
then accessible and then inaccessible again.

Efficiency is constrained by the communication constraints, which preclude a social
planner from knowing the private type of an agent while an agent is inaccessible.
Moreover, inaccessible agents have no opportunity to misreport their type to the
center, and therefore incentive-compatibility requirements will also be modified so
that they need hold only while an agent is accessible.

We introduce the dymamic VCG# mechanism, which is communication-restricted
w.p. EPIC and efficient. The mechanism is incentive compatible for an accessible
agent that is restricted to making the same inferences about inaccessible agent type
as the center; i.e., accessible agents are subject to the same communication restric-
tions with inaccessible agents as the center. The dynamic VCG# mechanism traces
beliefs about the type of inaccessible agents, and collects transfers when an agent
becomes accessible to “catch-up” for missed transfers. To achieve commuication-
restricted w.p. EPIC we require that an inaccessible agent must eventually become
accessible again, in order to undergo these catch-up transfers. This requirement
can be dropped for the arrival-departure special case because inaccessible agents
are never pivotal.

To gain some intuition, we can consider a simple mechanism in which the decision
policy is defined in a way that simply ignores inaccessible agents, and selects the
action in each period that is efficient as though the population consists of only
accessible agents. In addition, suppose the mechanism makes a payment to each
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accessible agents in every period that is equal to the (reported) value obtained by
the other accessible agents in the period. The following example shows that such a
simple mechanism is not incentive-compatible for this environment.

Example 2. Consider again the problem in Figure 1, but now extended with the
following periodic-inaccessibility dynamics: with very high probability agent 1 is
accessible in all periods; agent 2 is definitely inaccessible in period 0, but will become
accessible in periods 1 or 2 or, with negligible probability ε > 0, not at all. In the
simple mechanism described above, if agent 2 is not accessible in period 1, then
agent 1 should pretend to be inaccessible to avoid receiving the item. It is likely that
agent 2 will become accessible in period 2, be allocated the item, and obtain a higher
(expected) value than agent 1’s value, which agent 1 would then benefit from via a
payment from the center.

To extend the dynamic VCG mechanism to this environment, an efficient policy
must consider the impact of actions on both inaccessible and accessible agents.
For example, not only might inaccessible agents have value for the allocation of
resources while being unable to communicate, or make transfers, with the center,
but inaccessible agents might also have high value for resources when they are again
accessible and thus the center should retain the option to allocate to such an agent.

Consider first the view point of a social planner and put aside incentive consider-
ations. To model the inaccessibility of agents, define the planner’s belief state (or
simply belief state) for agent i, ωℓ

i ∈ Ωi = ∆(Si), to define a probability distribution
on the state sℓ

i ∈ Si of agent i in period ℓ. For an agent that is accessible in period
ℓ, the belief state ωℓ

i assigns probability 1 to the agent’s state sℓ
i . For an inaccessible

agent, the belief state is derived by using Bayes rule from i’s state in the last period
it was accessible and the sequence of actions forward from that period.18 We will
assume that every agent is always accessible at time 0. This can be relaxed by
assuming a prior on agent types.

Let ωℓ = (sℓ
0, ω

ℓ
1, . . . , ω

ℓ
n) ∈ Ω = S0 × Ω1 × . . . Ωn, denote the belief state profile,

where we again include here state sℓ
0 ∈ S0 for the center to allow the set of feasible

actions to depend on past actions. The reward and transition functions can be
extended to this setting in the natural way. Let r̃i(ω

ℓ
i , a) = Esℓ

i

[
ri(s

ℓ
i , a) |ωℓ

i

]
denote

the expected reward to an agent given the distribution on possible states, with
r̃(ωℓ, a) =

∑
i r̃i(ω

ℓ
i , a). Let τ̃i : Ωi × A → Ωi extend the stochastic transition

function from states to belief states, so that τ̃i(ω
ℓ
i , a) simply transitions to the belief

state corresponding to the agent’s state sℓ+1
i as induced by τi(s

ℓ
i , a) when the agent

is accessible, and is otherwise defined according to Bayes rule when agent i remains
inaccessible. Altogether, this defines a belief type, bt i = (ωi, τi, ri) ∈ BT i, with joint
belief type space, BT = (T0 × BT 1 × . . . × BTn).

Note that r̃i(ω
l
i, a) and τ̃i(ω

l
i, a) retain conditional independence of the belief states

of other agents given the action of the center. Let τ̃ : Ω × A → Ω, with τ̃ =

18For example, consider agent 2 from Figure 1. If the agent is inaccessible in period 1, then ω1
2

assigns probabilities 0.2 and 0.8 to states E and F , respectively.
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(τ0, τ̃1, . . . , τ̃n) and τ0 : s0 × A → s0, define the joint transition function. The
reward function and transition functions are also extended to belief types in the
natural way. Given a decision policy, π̃ : BT → A, then

Ṽ (bt ℓ, π̃) = Eωk

[
K∑

k=ℓ

γk−ℓ r̃(ωk, π̃(btk)) | bt ℓ, π̃

]
, (17)

denotes the expected total discounted reward given policy π̃ and belief type profile
bt ℓ, with analogous variants for Ṽi and Ṽ−i. The efficient policy π̃∗ solves π̃∗ ∈
arg maxπ̃∈Π̃ Ṽ (bt ℓ, π̃), ∀btℓ ∈ BT , where Π̃ denotes the space of feasible policies.
The efficient policy tracks the distribution on possible states of inaccessible agents
and selects actions to maximize expected, discounted value.19 Let π̃∗

−i denote the
policy that is efficient for agents j 6= i.

3.1 Extending the Dynamic-VCG Mechanism

A dynamic mechanism M = (π̃, x̃) in this environment is defined by a decision policy
π̃ : BT → A and a transfer policy x̃ : BT → Rn (with x̃i(bt

ℓ) = 0 when agent i

is not accessible.) Given belief type profile btℓ ∈ BT in period ℓ, the mechanism
selects action aℓ = π̃(bt ℓ) and makes transfers x̃i(bt

ℓ) ∈ R to each agent i that is
accessible.

For an accessible agent, strategy σi(h
ℓ−1, ti) ∈ {Ti∪φ} denotes its claim about type,

where φ indicates no report is made and the agent pretends to be inaccessible and
hℓ−1 ∈ Hℓ−1 is the history of reports up to and including period ℓ. Let A(ℓ) and
NA(ℓ) denote the accessible and inaccessible agents in period ℓ. Only accessible

agents, i ∈ A, can submit σi(h
ℓ−1, ti) 6= φ. Let b̆t

ℓ
denote a partially-truthful belief

type profile, which assigns probability 1 to the true type of accessible agents, with
the belief type for each inaccessible agent determined by applying Bayesian updates
given the most recent type report received from the agent and subsequent actions
by the center.20

Fix an accessible agent i in period ℓ, and suppose agents 6= i are truthful going
forward from period ℓ. Let ak

σ denote the action selected by the mechanism in
period k given strategy σi by agent i. Let ωk

σ, btk
σ denote the belief state and belief

type given strategy σi, where this is the true belief state and type except for agents
that are inaccessible in period ℓ and still inaccessible, wherein it is the belief state

19Given that the accessibility of an agent can also depend on actions, such a policy will inherently
factor in considerations about the value-of-information by taking an action that will make an agent
accessible and thus collapse the belief type for such an agent to its actual type. For a computational
approach to solve these belief-state MDP problems, see the survey of algorithms for Partially
Observable MDPs in Kaelbling [1996].

20Given that all agents are assumed to be accessible in period 0, we can allow the mechanism
to further constrain agent strategies so that every agent must report a type in the first period.
This ensures that the belief type profile maintained by the mechanism is always well-defined. In
Section 4 we can dispose of this requirement because the arrival process, known to the center, plays
the role of making sure that belief types are well defined.
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and type consistent with b̆t
ℓ
. The true expected discounted value to accessible agent

i with the same beliefs as the center about inaccessible agents and knowledge of the
types of accessible agents (i.e., its subjective flow value), given strategy σi and that
other agents are truthful going forward from period ℓ, is

Ṽi(h
ℓ−1, b̆t

ℓ
, π̃, σi) = Eωk

σ, ak
σ

[
K∑

k=ℓ

γk−ℓ r̃k
i (ωk

σ,i, a
k
σ) |hℓ−1, b̆t

ℓ
, π̃, σi

]

, (18)

where ωk+1
σ = τ̃(ωk

σ, ak
σ) and ak

σ = π̃(Γk
i (σi(h

k−1, tkσ,i)), bt
k
σ,−i), with Γk

i : {T × φ} →

BT i returning a belief type with probability 1 assigned to t̂i = σi(h
k−1, tkσ,i) if

t̂i 6= φ and with Bayesian updates on the belief type in period k − 1 given action
ak−1

σ otherwise. History hk = (hk−1, (σi(h
k−1, tkσ,i), bt

k
σ,−i)). We can similarly define

the expected discounted transfer to agent i (i.e., its subjective flow transfer), as

X̃i(h
ℓ−1, b̆t

ℓ
, π̃, σi). Let σ∗

i denote the truthful strategy in this environment, i.e.
reporting the true type whenever an agent is accessible.

Definition 3 (communication-restricted w.p. ex post incentive compatible).
Dynamic mechanism (π̃, x̃) in an environment with periodic inaccessibility is
communication-restricted within-period ex post incentive-compatible if, for all times

ℓ, for any accessible agent i ∈ A(ℓ), for any partially-truthful belief-type profile b̆t
ℓ

induced by the true type of accessible agents and most recent report of inaccessible
agents, for any history hℓ−1, and for all σ′

i 6= σ∗
i ,

Ṽi(h
ℓ−1, b̆t

ℓ
, π̃, σ∗

i )+X̃i(h
ℓ−1, b̆t

ℓ
, π̃, σ∗

i ) ≥ Ṽi(h
ℓ−1, b̆t

ℓ
, π̃, σ′

i) + X̃i(h
ℓ−1, b̆t

ℓ
, π̃, σ′

i),
(19)

so that agent i maximizes its subjective flow payoff given b̆t
ℓ

and truthful strategy
σ∗

i , given that all other agents are truthful going forward.

A communication-restricted within-period EPIC (c.r.w.p. EPIC) dynamic mecha-
nism places no incentive-compatibility constraints for agents that are inaccessible
because they cannot make any reports. For accessible agents, then regardless of
the current type of accessible agents, an agent’s best-response is to be truthful
given that other agents are also truthful going forward. This equilibrium concept
is “communication restricted” in the sense that an accessible agent is assumed to
be restricted to the same communication constraints as the center: it cannot know
the true state of an inaccessible agent.21

21This is not a w.p. ex post equilibrium with respect to the belief an agent would hold about
the type of an inaccessible agent if the agent had known the true type of the accessible agent in
the last period in which it was accessible. Thus, this is a slight weakening of w.p. EPIC in the case
of inaccessible agents that played off equilibrium in their last accessible period. But it is stronger
than a Markov-perfect equilibrium because of its ex post characteristic with respect to the type of
accessible agents and reduces to the standard w.p. EPIC definition without periodically-inaccessible
agents.
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Let Ṽj(h
ℓ−1, b̆t

ℓ
, π̃, σi) denote the subjective flow value to agent j given partially-

truthful belief type profile b̆t
ℓ
, and given strategy σi from agent i, with other agents

reporting true types when accessible; this is the subjective view of agent i of agent

j’s expected discounted value, given that i can only adopt belief type b̆t
ℓ

j for an agent

j that is currently inaccessible. Let Ṽ−i(h
ℓ−1, b̆t

ℓ
, π̃, σi) =

∑
j 6=i Ṽj(h

ℓ−1, b̆t
ℓ
, π̃, σi),

and Ṽ (hℓ−1, b̆t
ℓ
, π̃, σi) =

∑
j∈I Ṽj(h

ℓ−1, b̆t
ℓ
, π̃, σi).

We can now state an analogue of Lemma 1, characterizing the set of dynamic Groves
mechanisms for this environment.

Lemma 2. A dynamic mechanism (π̃, x̃) in an environment with a fixed population
of periodically-inaccessible agents is efficient and c.r.w.p. EPIC, if it is a dynamic
Groves mechanism, which requires that:

i) the policy π̃ is efficient with respect to reported belief types,

ii) each accessible agent i’s expected discounted transfer given any partially-

truthful belief type profile, b̆t
ℓ
, induced by the true type of accessible agents

and most recent report of inaccessible agents, for any history hℓ−1 and any σi,
and given that agents 6= i follow a truthful strategy in this period and forward,

is Ṽ−i(h
ℓ−1, b̆t

ℓ
, π̃, σi)−Ci(b̆t

ℓ

−i), where Ci(b̆t
ℓ

−i) is a quantity independent of
agent i’s strategy in this period and forward.

Proof. Let π̃∗ denote the efficient policy in the MDP associated with the (true) social
planner’s problem on belief states. Fix period ℓ, and accessible agent i, and suppose
agents 6= i are truthful in this period and forward. Assume for contradiction that
c.r.w.p. EPIC fails. Then by properties (i) and (ii), there must be some strategy

σi 6= σ∗
i , history hℓ−1, and partially-truthful belief type profile b̆t

ℓ
, for which,

Ṽ (hℓ−1, b̆t
ℓ
, π̃, σi) − Ci(b̆t

ℓ

−i) >Ṽ (bt ℓ, π̃∗) − Ci(b̆t
ℓ

−i), (20)

where the first term on the right-hand side follows from the efficiency of the policy,
given that the other agents are truthful. By the principle of one deviation, we can
consider a strategy σi in which agent i misreports its type in only the current belief

type profile, b̆t
ℓ
. Let b̂t

ℓ

i = Γℓ
i(σi(h

ℓ−1, tℓi)) denote this reported belief type; i.e.,
assigning probability 1 to its reported type if σi(h

ℓ−1, tℓi) 6= φ and using Bayesian
updates on the belief type from period ℓ − 1 otherwise. But now, we can construct
policy π̃′ from π̃∗ by setting π̃′ equal to π̃∗ in every belief type profile except for bt ℓ,

where we define π̃′(bt ℓ) = π̃(b̂t
ℓ

i , b̆t
ℓ

−i). We have Ṽ (bt ℓ, π̃′) = Ṽ (hℓ−1, b̆t
ℓ
, π̃, σi) >

Ṽ (bt ℓ, π̃∗), and a contradiction with the efficiency of π̃∗.

The appropriate dynamic VCG mechanism in this environment adopts belief types
in place of types, and monitors the payments that an inaccessible agent would make
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if it could be charged while inaccessible, collecting a discount-adjusted equivalent
amount when an agent becomes accessible:

Definition 4 (Dynamic-VCG# for periodic inaccessibility). In each period ℓ, each
accessible agent can report (perhaps untruthfully) type tℓ = (sℓ

i , τi, ri), and the mech-
anism adopts into its current belief state ωℓ such reports along with an updated belief
state for agents for which no new report is received, and selects action aℓ = π̃∗(ωℓ)
where π̃∗ is the policy that is efficient given the belief-type profile induced by reports.
Each agent i ∈ I that makes a report in period ℓ, receives a transfer:

x̃
#
i (bt ℓ) =

ℓ∑

k=ℓ−δ(ℓ)

x̃i(bt
k)

γℓ−k
, where (21)

x̃i(bt
k) = r̃−i(ω

k, ak)+γ Ebt
′

[
Ṽ−i(bt

′, π̃∗
−i) | btk, ak

]
− Ṽ−i(bt

k, π̃∗
−i), (22)

where π̃∗
−i is the policy that is efficient to agents j 6= i given the belief-type profile

induced by their reports, ak is the action selected by the mechanism in subsequent
period k, and δ(ℓ) ≥ 0 is the number of successive periods prior to period ℓ that
agent i reported inaccessibility.

The term Ebt
′[Ṽ−i(bt

′, π̃∗
−i)|bt

k, ak] is the expected optimal flow value to agents 6= i

forward from period k + 1, under the policy efficient for those agents, given the
current (perhaps untruthful) belief type btk and given action ak in period k. The
transfer policy makes the mechanism payoff equivalent for accessible agents to a
mechanism in which transfers x̃i(bt

ℓ) can be made directly in every period, irre-
spective of whether or not an agent is accessible. In order to establish c.r.w.p.
incentive compatibility we require the following assumption:

Assumption 1. An agent that is inaccessible will not remain so for all future
periods and must report itself as accessible in some future period.

Thus, this is a model of periodically but not persistently inaccessible agents.22 With
this assumption we can establish the incentive-compatibility of this mechanism:

Theorem 2. The dynamic VCG# mechanism is efficient and c.r.w.p. EPIC for
a fixed population of periodically-inaccessible agents under Assumption 1 and for
private values and independent type transitions.

Proof. Property (i) in Lemma 2 holds for the dynamic VCG# mechanism by con-
struction. Now fix some accessible agent i, strategy σi, history hℓ−1, partially-

truthful belief type profile b̆t
ℓ

induced by the true type of accessible agents and

22To justify the further requirement that an agent that eventually becomes accessible will also
eventually report itself as such (and thus be subject to transfers), we could in addition require
an agent to post a bond that is only returned over time, but only if the agent reports itself as
accessible. We shall not model this aspect explicitly, however.
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most recent report of inaccessible agents. In establishing property (ii) of Lemma 2,

consider first a simplified mechanism in which transfer x̃i(b̆t
ℓ
) can be made di-

rectly, in every period. By making notational substitution into the proof of The-
orem 1, and noting that private values and independent type transitions are re-
tained, one can directly establish that the flow transfer to agent i would then be

Ṽ−i(h
ℓ−1, b̆t

ℓ
, π̃∗, σi)− Ṽ−i(b̆t

ℓ
, π̃∗

−i), where π̃∗ and π̃∗
−i are the efficient policies with

all agents and without agent i respectively, and the second term is independent of
agent i’s strategy in period ℓ and forward.

Left to show is that the expected discounted transfer to an accessible agent i is
equivalent, for any strategy of agent i, to that in this intermediate mechanism in
which the transfers are made in every period. We need to establish that,

E
bt

k
σ

[ K∑

k=ℓ

γk−ℓ x̃i(Γ
k
i (σ

k
i (hk−1, tkσ,i), bt

k
σ,−i))

∣∣∣ hℓ−1, b̆t
ℓ
, σi, π̃

∗
]

=

E
bt

k
σ

[ K∑

k=ℓ

k∈H(σi,bt
k
σ,i)

γk−ℓ x
#
i (Γk

i (σi(h
k−1, tkσ,i), bt

k
σ,−i))

∣∣∣ hℓ−1, b̆t
ℓ
, σi, π̃

∗
]
,

(23)

where the expectation is taken with respect to the distribution on belief types btk
σ

induced by agent i’s strategy. The summation on the RHS restricts to time-periods
k ∈ H(σi, bt

k
σ,i) in which agent i reports a non-null type to the center (and thus

receives a transfer). To establish this equivalence, we show the stronger property of
equivalence for any realization sequence of belief types bt

ℓ
σ, . . . , btK

σ given strategy
σi. For such a realized sequence of belief types, let F (σi, bt

k
σ,i) isolate the time

periods in which agent i first becomes accessible again, after one or more periods of
(reported) inaccessibility. Expanding the definition of transfer x

#
i , we have for the

RHS of Eq. (23):

K∑

k=ℓ

k∈H(σi,bt
k
σ,i)\F (σi,bt

k
σ,i)

γk−ℓ x̃i(Γ
k
i (σi(t

k
σ,i), bt

k
−i) +

K∑

k′=ℓ

k′∈F (σi,bt
k
σ,i)

γk′−ℓ
k′∑

k=k′−δ(k)

x̃i(Γ
k
i (σi(t

k
σ,i), bt

k
−i)

γk′−k
,

=

K∑

k=ℓ

γk−ℓ x̃i(Γ
k
i (σi(t

k
σ,i), bt

k
σ,−i), (24)

where δ(k) > 0 is the number of contiguous periods the agent was reported to be
inaccessible before becoming accessible again given this realization sequence, and
the periods are grouped into those in which the agent is accessible but not first
accessible, and those in which the agent is first accessible. To keep the notation
simple we drop the dependence of strategy σi on history. Eq. (24) follows from
simple algebra, coupled with Assumption 1. This completes the proof.

Example 3. Consider again the problem in Figure 1, in which there is a single
item to allocate, and no discount factor. Assume agent 1 is truthful. First consider
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what would happen in a mechanism in which transfers can be avoided by pretending
to be inaccessible. In this case, if agent 2 is truthful and accessible in period 1,
and in state E, then agent 1 would be allocated the item in period 1 and agent 2’s
payoff would be zero. But by pretending to be inaccessible in period 1, the policy
will delay making an allocation until period 2 because 8 < (0.2)4 + (0.8)20 = 16.8
(ignoring ε). Both agents’ payments in period 1 will be zero (agent 2’s because it is
inaccessible). Agent 2 can then report state G in period 2, receive the item, and make
a payment of −2 for net payoff 4−2 = 2. But under the dynamic VCG# mechanism
the manipulation goes away. Agent 2 can no longer benefit from pretending to be
inaccessible, because it will face a payment of −6 − 2 if it makes itself accessible in
period 2.

4 A Dynamic Population: Arrivals and Departures

We now specialize the environment with periodic inaccessibility and use it to model a
problem in which there are dynamic agent arrivals and departures. As a motivating
example, imagine a family that arrives to New York and is interested in buying
theater tickets for multiple shows during a week; they may also update their value for
future tickets in response to attending earlier shows or observing other unpredictable
events such as the weather. Once the family leaves town at the end of the week,
the actions of the mechanism are no longer relevant and have no ongoing value.

This is a special case of the periodic-inaccessibility model, in which each agent
transitions through a single cycle from inaccessible, to accessible and back to inac-
cessible, and without any value for actions while inaccessible. It will be possible to
drop the use of catch-up transfers, and dispense with Assumption 1 (that agents will
become accessible again in the future) because inaccessible agents are not pivotal
in an arrival-departure model. With this, we recover a suitable generalization of
the dynamic VCG mechanism to this environment, and identify the importance of
a conditional independence property on the arrival process.

Upon a further restriction to static types, modeling dynamic auction problems, we
are in an environment in which the efficient policy can be implemented by the online
VCG mechanism [Parkes and Singh, 2003]. We show that the online VCG mecha-
nism is payoff equivalent to the dynamic VCG mechanism in this environment upon
an agent’s arrival. This is sufficient to achieve incentive compatibility, which only
imposes constraints on the payoff provided by a mechanism in an agent’s arrival pe-
riod in this environment. Moving to static types also breaks the uniqueness of the
dynamic VCG mechanism, allowing a multiplicity of w.p. EPIC and efficient mech-
anisms that satisfy the efficient exit condition of Bergemann and Välimäki [2008].
In particular, the flow payoffs are different under the online VCG and dynamic
VCG mechanisms, and the online VCG mechanism satisfies ex post participation
constraints where the dynamic VCG provides only within-period ex post participa-
tion. If agents are impatient, with decisions made immediately upon arrival, then
the two mechanisms are identical.
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4.1 The Environment: Modeling a Stochastic Arrival Process

The agent arrival process is characterized by a stochastic process z0, z1, . . . ∈ Z,
with the next arrival state zℓ defined by probability function,

g(zℓ|z0, . . . , zℓ−1, a0, . . . , aℓ−1) ∈ [0, 1], (25)

such that
∑

zℓ∈Zℓ g(zℓ|z0, . . . , zℓ−1, a0, . . . , aℓ−1) = 1. Given state zℓ, this defines a
corresponding multi-set, T (zℓ), defining the types of agents that arrive in period ℓ.
For such an agent i, then we refer to type tℓi = (sℓ

i , τi, ri) ∈ T (zℓ) as its arrival type.
Upon arrival, an agent can then undergo stochastic type transitions and receive
rewards as is familiar from the fixed population models.

The social planner’s problem can again be formulated as an MDP, with joint state
profile sℓ = (sℓ

∗, s
ℓ
0, {s

ℓ
i |i ∈

⋃
t′≤t I(st′

∗ )}) ∈ S, and where state sℓ
∗ ∈ S∗ is introduced

to model the arrival process, with stochastic transition function τ∗ : S∗×A → S∗.
23

Let I(sℓ
∗) ⊆ I = {1, 2, . . . ,∞} define the set of agents that arrive in period ℓ, given

state sℓ
∗, with an agent i ∈ I(sℓ

∗) that arrives in period ℓ receiving arrival type
(sℓ

i , τi, ri) = Ti(s
ℓ
∗). State sℓ

0 ∈ S0 continues to model the decision-making problem
of the center; e.g., it allows for the dependence of feasible actions on previous actions
to be modeled. Each agent may at some point transition to being inaccessible (to
model its departure), from which point we require that its reward will be zero for
all actions for all future time.

Taken together, agent types and the arrival process define a joint MDP and we can
adopt π∗ : T → A and V (tℓ, π∗) to denote the efficient policy and its total expected
discounted value respectively, with transition and reward functions extended to
types in the natural way.

As a problem of dynamic mechanism design, agents are free to misreport their types,
including delaying a report of an agent’s arrival or announcing an early departure.
While the arrival process, modeled through transition function τ∗, is known to the
center, the state sℓ

∗ ∈ S∗, which defines the arrival types in period ℓ, is private to
agents and unobservable by the center.

The problem can be cast within the fixed population, periodically-inaccessible model
of Section 3 by allowing for a potentially infinite set of agents I = {1, 2, . . . ,∞},
all initially inaccessible, and with the arrival process defining a belief type (known
to the center) for an agent until its arrival. Thus, this problem fits within the
framework of problems solvable via the dynamic VCG# mechanism. Moreover,
the special arrival-departure structure of this problem simplifies the mechanism
description and also its analysis:

• No catch-up transfer is required upon an agent’s arrival because a dynamic
Groves mechanism only needs to align the payoff of an agent that is accessible,

23The dependence of g(zℓ|z0, . . . , zℓ−1, a0, . . . , aℓ−1) on the history of prior arrivals and actions
can be captured within Markovian dynamics by defining an appropriate state space S∗.
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and agents are never accessible before they arrive.

• No catch-up transfer is required after an agent’s departure because a departed
agent is never pivotal (by definition, since a departed agent is required to have
zero value for all subsequent actions by the center), and thus the transfers
tracked by the dynamic VCG# mechanism for an agent that has departed are
always exactly zero.

Moreover, we will not need the Assumption 1 because an agent’s catch-up transfer
is always zero after departure in any case and thus no subsequent transfer is needed
to align incentives. These observations in hand, the dynamic VCG# mechanism
reduces to the dynamic VCG mechanism (suitably generalized to a population with
a known dynamic arrival process):

Definition 5 (Dynamic-VCG mechanism for a dynamic population). Each agent
that is present in period ℓ can report (perhaps untruthfully) its type tℓi = (sℓ

i , τi, ri).
The mechanism tracks the state of the arrival process based on reports, and selects
action aℓ = π∗(sℓ) for the policy π∗ that is efficient given reported types and the
arrival process. Each agent i that makes a report in period ℓ receives a transfer:

xi(t
ℓ) = r−i(s

ℓ, aℓ) + γEt′

[
V−i(t

′, π∗
−i) | tℓ, aℓ

]
− V−i(t

ℓ, π∗
−i), (26)

where π∗
−i is the policy that is efficient for the agents without i given the reported

type profile and the arrival process.

The term Et′ [V−i(t
′, π∗

−i) | tℓ, aℓ] is the expected flow value to agents except i, under
the efficient policy to these agents, forward from the next period given action aℓ in
period ℓ and the type profile tl. But without a restriction on the arrival process, the
dynamic VCG mechanism is not incentive-compatible with dynamic populations,
as illustrated in the following example.

Example 4. Figure 2 depicts a variation on the previous problem, in which there
are now four possible arrival types. Define an arrival process such that a single
agent of type 1 always arrives in period 0, while at most one agent among types
2, 3, or 4 can ever arrive, and it is very likely that a type 4 agent will arrive in
period 2. If an agent of type 2 arrives in period 1, then it will hide and claim to be
inaccessible. The efficient policy will wait to allocate the resource because it is likely
that a type 4 agent will arrive in the next period. In period 2, the type 2 agent can
truthfully report state G (claiming to be a type 3 agent that just arrived), and will
be allocated the item and have to make a payment of 2. This causes an efficiency
loss because the item should have been allocated to agent 1 in period 1.

Lemma 2 continues to hold in this environment, but the earlier proof that the dy-
namic VCG# mechanism is a dynamic Groves mechanism fails because the require-
ment of independent type transitions is not satisfied by a general arrival process g in
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→ 1 → 1

A B C 9 1

ℓ = 1 ℓ = 2 ℓ = 3

8 2

(a) Type 1.

9 2 9 2

E G → 2

ℓ = 1 ℓ = 2 ℓ = 3

4

(b) Type 2.

9 3

G → 3

ℓ = 1 ℓ = 2 ℓ = 3

4

(c) Type 3.

9 4

H → 4

ℓ = 1 ℓ = 2 ℓ = 3

20

(d) Type 4.

Figure 2: An example with a dynamic agent population. One type 1 agent arrives
in period 1, and at most one agent of types 2, 3, or 4 will arrive (in periods 2 or 3,
depending on their type).
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which new agent arrival types may depend on previous arrival types. When model-
ing such an arrival process within the periodic-inaccessibility model, this translates
into a dependency in which the belief state transition of an agent that is currently
inaccessible and has not arrived may depend on the state (and thus arrival type) of
another agent.

We require the following conditional independence property in the arrival process.

Assumption 2 (CIA property). An arrival process is satisfies the conditional-
independence on arrivals (CIA) property when the arrival process,

g(zℓ|z0, . . . , zℓ−1, a0, . . . , aℓ−1) = g(zℓ|a0, . . . , aℓ−1), (27)

so that future agent arrival types are independent of past arrivals, conditioned on
the history of actions.

With this in place, the local type dynamics of each inaccessible agent (modeling
the arrival process) are independent of the states of other agents and the incen-
tive compatiblity of the dynamic VCG# mechanism is recovered. Under this CIA
property, future arrivals can depend on the actions of the center; e.g., types may
be “censored” because all good resources are already sold or affected via marketing
decisions within the remit of the mechanism. The assumption allows, for example,
an environment in which whether or not a high type arrives in period ℓ+1 depends
on whether or not an item is allocated in the current period. But it does not allow
environments in which exactly one high type will arrive, and therefore if a high
type does not arrive in period ℓ then it is more likely that a high type will arrive in
period ℓ + 1, and vice versa.24

Theorem 3. The dynamic VCG mechanism for a dynamic population with arrivals
and departures, and allowing dynamic types, is efficient and w.p. EPIC given private
values, independent type transitions, the CIA property, and a center with a correct
model of agent arrivals.

Proof. Interpreting the requirements of Lemma 2 in this environment, we need (i)
that the policy π followed by the mechanism is efficient with respect to reported
types and the center’s model of the arrival process, and (ii) the flow transfer to an
accessible agent i forward from any type profile tℓ, for any history hℓ−1 and any σi,
and given that agents 6= i follow a truthful strategy in this period and forward and
the center’s model of the arrival process is correct, is V−i(h

ℓ−1, tℓ, π, σi) − Ci(t
ℓ
−i),

where Ci(t
ℓ
−i) is a quantity independent of agent i’s strategy in this period and

forward. Property (i) holds by construction. To establish property (ii), consider
a modified dynamic VCG mechanism in which the transfer in Eq. (26) is collected
in every period. Given this, the flow transfer to an agent forward from some pe-
riod ℓ in which it is accessible is V−i(h

ℓ−1, tℓ, π∗, σi) − V−i(t
ℓ, π∗

−i), where π∗ and

24Example 4 is precluded by the assumption because whether an agent of types 3 or 4 arrives
must now be independent of the arrival of an agent of type 2.
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π∗
−i are the efficient policy for all agents and without agent i respectively, by nota-

tional substitution into the proof of Theorem 1, and observing that the independent
type transitions property continues to hold because of the CIA property. This sat-
isfies property (ii), and thus would be a dynamic Groves mechanism, with term
V−i(t

ℓ, π∗
−i) agent-independent because of the CIA property. Now, the transfer in

Eq. (26) would be zero in any period before an agent reports its arrival because no
agent is pivotal before it reports its arrival because of the CIA property. In addition,
the transfer in Eq. (26) would be zero in any period after an agent’s reported de-
parture because agents have no value for any actions in any period after departure.
This completes the proof, because the flow transfer forward from an agent’s arrival
by collecting transfers only during an agent’s reported arrival-departure interval is
the same as when transfers can be collected in every period. Note that c.r.w.p.
EPIC is equivalent to w.p. EPIC in this environment, because reports by agents
that are now inaccessible are irrelevant. Such an agent must have now reported its
departure, in which case it is no longer pivotal and its last report before becoming
inaccessible is irrelevant.

The w.p. EPIC property provides that truthful reporting is optimal for an agent,
whatever the current type profile and whatever the arrival process, as long as other
agents are truthful forward from the current period and the center’s model of the
arrival process is correct. It must be common knowledge that the center has a
correct model of the arrival process, although the arrival process itself does not
need to be common knowledge.

4.2 Specializing to Dynamic Arrivals but Static Types

An interesting special case is to a dynamic population of agents, each of which has
a fixed valuation for different sequences of actions; i.e., agents arrive with a private,
but known valuation function on sequences of actions and no uncertainty. This
models, for example, dynamic auction problems in which an agent can describe upon
arrival a valuation function over any possible sequence of allocation decisions. This
setting includes combinatorial auction problems, with substitutes and complements
valuations on sets of distinct items.

In the language of this paper, we say that each agent has a static type; i.e., an
agent is able to completely describe its private information with a single report
upon arrival into the environment. Given the MDP preference model, this static
type requirement corresponds to agents with a transition function τi : Si × A → Si

that is restricted to be deterministic; the MDP local to an agent becomes a finite
state automaton. Given a single report of a type θℓ

i = (sℓ
i , τi, ri), the state of the

agent, and thus its value for subsequent actions, can then be inferred by an observer.
Figure 3 depicts MDP representations of some example static types.

We are interested in establishing a connection between the dynamic VCG mecha-
nism and the online VCG mechanism [Parkes and Singh, 2003] in this environment.
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. . . .5

→ 1

5

→ 1

5

→ 1

no alloc no alloc no alloc

(a) linear

. . . .
→ 1 → 1

100

→ 1

no alloc no alloc no alloc

(b) must get all

. .5

→ 1

no alloc no alloc

(c) unit demand

Figure 3: Examples of MDP representations of static types in a problem with 1
item to allocate in each of 3 periods. In (a) the agent obtains value 5 upon each
allocation of an item; in (b) the agent obtains value 100 only if allocated all items;
in (c) the agent obtains value 5 for any one item.

To make progress, consider a modification to the rules of dynamic mechanisms to
insist that an agent makes only a single type report. We refer to such a mechanism
as a report-once dynamic mechanism. Given this, we can specialize w.p. EPIC so
that it only needs to hold in an agent’s arrival period. For this, define a partially-
truthful type profile, t̆ℓ, which combines earlier reports received from agents with
the current type of agents that either arrive in period ℓ or are already present but
did not yet submit a report to the mechanism. We adopt standard notation from
earlier in the paper, for example with Vi(h

ℓ−1, t̆ℓ, π, σi) to denote the flow value to
agent i under strategy σi given knowledge of t̆ℓ.

Definition 6 (within-period ex post incentive compatible). A report-once dynamic
mechanism, m = (π, x), is within-period ex post incentive-compatible in the dynamic
population, static type environment if, for any period ℓ, and any agent i arriving in
period ℓ, any partially-truthful type t̆ℓ ∈ T induced by earlier reports and the true
types of agents arriving in period ℓ, for any history hℓ−1, and for all σ′

i 6= σ∗
i ,

Vi(h
ℓ−1, t̆ℓ, π, σ∗

i )+Xi(h
ℓ−1, t̆ℓ, π, σ∗

i ) ≥ Vi(h
ℓ−1, t̆ℓ, π, σ′

i) + Xi(h
ℓ−1, t̆ℓ, π, σ′

i), (28)

so that agent i maximizes its expected discounted payoff with truthful strategy σ∗
i

given that all other agents are truthful forward from this period.

The new thing here is that the incentive-compatibility constraint need only be
satisfied in the arrival period of an agent. Given this, the equilibrium strategy of
an agent is to be truthful in its arrival period, from which point forward the agent
has no additional strategic decisions. The equilibrium is robust, in that truthful
reporting is a best-response for an agent whatever the reported types up until this
period and whatever the types of agents arriving in this period, as long as other
agents are truthful in the future and the center has a correct probabilistic model of
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agent arrivals. As a consequence, a dynamic Groves mechanism in this environment
need only align an agent’s flow transfer with the flow value to the other agents in
an agent’s arrival period:

Lemma 3. A report-once dynamic mechanism (π, x) in an environment with a
dynamic population and static type is efficient and w.p. EPIC, if it is a dynamic
Groves mechanism, which requires that:

i) policy π is efficient for the correct arrival process,

ii) the expected discounted transfer to any agent i that arrives in period ℓ, given
any partially-truthful type profile t̆ℓ, history hℓ−1, policy π, and strategy σi, is
V−i(h

ℓ−1, t̆ℓ, π, σi) − Ci(t̆
ℓ
−i), where Ci(t̆

ℓ
−i) is a quantity that is independent

of agent i’s own strategy in this period and forward.

The proof of this lemma follows the same outline as earlier: suppose that the mech-
anism is not w.p. EPIC, and establish a contradiction with the efficiency of the
policy by showing that the center could instead adopt the actions taken given agent
i’s misreports and obtain a policy with greater total expected, discounted value.
We now define the online VCG mechanism25 for this environment:

Definition 7 (online VCG mechanism [Parkes and Singh, 2003]). In the online
VCG mechanism, each agent can make a single report (perhaps untruthfully) about
its type tℓi = (sl

i, τi, ri) in some period ℓ between arrival and departure. The mecha-
nism selects action aℓ = π∗(sℓ) for the policy π∗ that is efficient given reported types
and a correct model of the arrival process. Each agent i that makes a report in period
ℓ (“arrival”) receives transfer xi(t

ℓ) = −ri(s
ℓ, aℓ)+

[
V (tℓ, π∗) − V−i(t

ℓ, π∗
−i)

]
, where

π∗
−i is the policy that is efficient for agents 6= i. Other agents that are accessible

(“not departed”) receive transfer xi(t
ℓ) = −ri(s

ℓ, aℓ).

Theorem 4. The online VCG mechanism and the dynamic VCG mechanism are
payoff equivalent upon arrival for a dynamic population with departures and arrivals
and static types, and are efficient and w.p. EPIC given private values, the CIA
property, and a center with a correct model of agent arrivals.

Proof. The dynamic VCG mechanism, suitably modified so that agents can only
submit a single type report, satisfies the properties of Lemma 3 as a corollary
to Theorem 3. Moreover, each agent has flow transfer of V−i(h

ℓ−1, t̆ℓ, π∗, σi) −
V−i(t̆

ℓ, π∗
−i) upon its arrival.

For the online VCG mechanism, property (i) holds by construction. Let π∗ denote
this efficient policy. Now fix some agent i arriving in period ℓ, strategy σi, history

25The online VCG mechanism was originally proposed by Parkes and Singh [2003] in a setting
without discounting, with a transfer that is zero except upon departure, when an agent’s transfer

is −
Pt

k=t
ri(bsk

i , π∗(bsk)) + V (bst, π∗) − V−i(bst, π∗

−i) where t is the reported arrival period and t is
the reported departure period. The online VCG mechanism presented here is one of many simple
variants that provide the analogous payoffs in a setting with discounting.
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hℓ−1, and partially-truthful type profile t̆ℓ, representing previous reports and the
current true types of agents that arrive in period ℓ or have yet to report. Assume
agents 6= i are truthful going forward. Adopt notation tkσ, and sk

σ to denote the type
profile and state profile in period k ≥ ℓ given strategy σi, and let t̂kσ = (t̂kσ,i, t

k
σ,−i)

and ŝk
σ = (ŝk

σ,i, s
k
σ,−i) denote the reported type and state profiles. Let ak

σ denote the
action taken in period k, π∗

σ denote the optimal policy induced by π∗ given strategy
σi, and k(σ) denote the period in which agent i announces its arrival.

The expected discounted transfer to agent i forward from arrival period ℓ given
strategy σi is:

Etkσ , k(σ)



γk(σ)−ℓ



Vσ(t̂k(σ)
σ , π∗

σ) − V−i(t̂
k(σ)
σ , π∗

−i) −
K∑

k′=k(σ)

r̂i(ŝ
k′

σ , ak′

σ )







 , (29)

where r̂i denotes agent i’s reported reward function under strategy σi, and we adopt
Vσ in place of V because the expected value of policy π∗

σ depends on the reported
reward and transition function, and thus strategy, of agent i. Subtracting the flow
reward to agent i from the first term, Eq. (29) reduces to:

Etkσ , k(σ)

[
γk(σ)−ℓV−i(t̂

k(σ)
σ , π∗

σ)
]

− Etkσ , k(σ)

[
γk(σ)−ℓV−i(t̂

k(σ)
σ , π∗

−i)
]
, (30)

Now, adding the flow value to all agents except i under the actions followed by the
mechanism in periods from ℓ to k(σ) − 1, that is

Etkσ , k(σ)




k(σ)−1∑

k′=ℓ

γk′−ℓr−i(ŝ
k′

σ , ak′

σ )



 , (31)

to the first term in Eq. (30), we obtain Etkσ, k(σ)[
∑k(σ)−1

k′=ℓ γk′−ℓr−i(ŝ
k′

σ , ak′

σ )] +

Etkσ , k(σ)[γ
k(σ)−ℓV−i(t̂

k(σ)
σ , π∗

σ)] = V−i(t̂
ℓ
σ, π∗

σ) = V−i(t
ℓ
σ, π∗

σ) = V−i(t̆
ℓ, π∗

σ) =

V−i(h
ℓ−1, t̆ℓ, π∗, σi), where the second equality is by private values and transition

independence. Now, subtracting Eq. (31) from the second term in Eq. (30) we
obtain,

−Etkσ, k(σ)




k(σ)−1∑

k′=ℓ

γk′−ℓr−i(ŝ
k′

σ , ak′

σ )



 − Etkσ, k(σ)

[
γk(σ)−ℓV−i(t̂

k(σ)
σ , π∗

−i)
]
, (32)

and this is equal to −V−i(t̂
ℓ
σ , π∗

−i) since ak′

σ = π∗
−i(t̂

k′

σ ) in periods k′ before agent
i’s arrival because of the conditional-independence property of the arrival process.
Finally, we have −V−i(t̂

ℓ
σ, π∗

−i) = −V−i(t
ℓ
σ, π∗

−i) = −V−i(t̆
ℓ, π∗

−i) where the first
equality is by private values and transition independence. This completes the proof,
since −V−i(t̆

ℓ, π∗
−i) is independent of agent i’s strategy, and the flow transfer is

V−i(h
ℓ−1, t̆ℓ, π∗, σi) − V−i(t̆

ℓ, π∗
−i) upon its arrival.
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Agent 1 Agent 3

Online VCG Win 0.145 Win v3 − 0.7
Lose 0.145 Lose 0

Dynamic VCG Win 0.6 − v3 Win v3 − 0.7
Lose -0.1 Lose 0

Table 1: Utility to agents 1 and 3 in online VCG and dynamic VCG in Example 5.

The online VCG and dynamic VCG mechanisms are both w.p. EPIC and efficient
in this environment. But the online VCG mechanism provides ex post individual-
rationality whereas the dynamic VCG is only w.p. ex post individual rational. In the
online VCG mechanism, an agent’s total discounted payoff from reporting its true
type, for all type profiles and all strategies of other agents, is equal to the estimated
marginal product it contributes to the system at arrival and non-negative in social
choice and resource allocation problems.

Example 5. Consider a problem with two periods, one item to allocate, and three
agents. In period 1, there is an agent with value $0.7 and arrival-departure (1,2)
so it is patient. Another agent has value $0.6 and is arrival-departure (1,1) so it
is impatient. In period 2, there will be an agent with value v3 ∼ U(0, 1). Suppose
there is no discounting. The efficient policy is to wait until period 2 and then allocate
agent 1 if v3 ≤ 0.7 and agent 3 otherwise.

(a) Online VCG. We have V (s1, π∗) = (0.7)(0.7) + (0.3)(0.85) = 0.745 and
V−1(s

1, π∗) = 0.6. If agent 1 wins, then its total transfer is -0.7 + (0.745-0.6)=-
0.555. If agent 1 loses, then its total transfer is 0+(0.745-0.6)=0.145. Agent 2
makes no transfer because it is not pivotal. Agent 3 receives no transfer if it loses,
and its transfer is −v3 + (v3 − 0.7) = −0.7 if it wins.

(b) Dynamic VCG. We have Es′ [V−1(s
′, π∗

−1)|don’t allocate] = 0.5 (the expected
value to other agents in period 2 given that the item is not allocated in period 1),
and V−1(s

1, π∗
−1) = 0.6. In period 1, agent 1’s transfer is 0 + (0.5-0.6)= -0.1. In

period 2, if agent 1 wins and v3 ≤ 0.7 then its transfer is 0 + (0 − v3); otherwise,
if agent 1 loses then its transfer is 0. Agent 2 makes no transfer because it is not
pivotal. Agent 3’s transfer is 0 in period 1 because it has not arrived. If agent 3
wins, then it receives transfer 0 + (0 − 0.7) = −0.7 and has no transfer if it loses.

The utility to agents 1 and 3 is tabulated in Table 1. Although the expected utility is
the same to both agents in the mechanisms, in the dynamic VCG agent 1’s utility
is negative when it wins and v3 ∈ (0.6, 0.7] and when it loses. The online VCG
mechanism is ex post individual-rational.

On the other hand, while the online VCG and dynamic VCG mechanisms have
the same ex ante flow payment, the dynamic VCG mechanism is ex post no deficit
in economic environments in without positive externalities (e.g., social choice and
one-sided auction problems.) So, the two mechanisms exhibit a tradeoff between
achieving ex post individual-rationality and ex post no deficit.
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Period 2 Agent 1 Other Total
arrivals transfer agents transfer

Online VCG 0 (−2ǫ + ǫ2)100 0 (−2ǫ + ǫ2)100
1 100 + (−2ǫ + ǫ2)100 -100 (−2ǫ + ǫ2)100
2 100 + (−2ǫ + ǫ2)100 0 100 + (−2ǫ + ǫ2)100

Dynamic VCG 0 0 0 0
1 0 -100 -100
2 0 0 0

Table 2: Transfers in the online VCG and dynamic VCG mechanisms in Example 6.

Example 6. Consider a problem with two periods, and two units of an item to
allocate. In period 1, there is a patient agent with value $100 and arrival-departure
(1,2). In period 2, two agents might arrive, each with low probability ǫ > 0 of
arriving and with value $150 for one unit. There is no discounting. The efficient
policy is to wait until period 2 and allocate to agent 1 unless one or both of the high
value agents arrive, in which case they are allocated.

(a) Online VCG. We have V (s1, π∗) = (1 − 2ǫ + ǫ2)(100) + 2ǫ(150) + ǫ2(300) and
V−1(s

1, π∗) = 2ǫ(150) + ǫ2(300). If agent 1 wins, then its total transfer is −100 +
((1 − 2ǫ + ǫ2)(100) + 2ǫ(150) + ǫ2(300)) − (2ǫ(150) + ǫ2(300)) = (−2ǫ + ǫ2)(100). If
agent 1 loses, then its total transfer is 100 + (−2ǫ + ǫ2)(100). If one agent arrives
in period 2, it wins and its transfer is −150 + (150 − 100) = −100. If two agents
arrive in period 2, they each win and have transfer −150 + (300 − 150) = 0.

(b) Dynamic VCG. If agent 1 wins or loses, its transfer is 0. If one agent arrives
in period 2, then it wins and its transfer is 0 + (0 − 100) = −100. If two agents
arrive in period 2, then they each win and have transfer 150 + (0 − 150) = 0.

In Table 2 we summarize the transfers that occur in each mechanism, depending
on the number of agents to arrive in period 2. Whereas the expected transfers are
the same in both mechanisms, the online VCG mechanism incurs a deficit when 2
agents arrive in period 2 of $100 as ǫ → 0. On the other hand, the dynamic VCG
mechanism always runs without a deficit.

5 Dynamic, Interdependent Types

We have assumed until now a private values model and independent type transitions,
with this latter requirement translating into an independence requirement on the
arrival process for an environment with a dynamic population. But many interesting
environments exhibit interdependent type transitions. For example, consider an oil
field that is being explored in parallel by multiple firms, each of which is competing
for future drilling rights. The value that one firm has may depend on the information
available to other firms about the quality of the oil field, as represented by their local
states. In Internet advertising, the value of firm A for advertising to a particular
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demographic might be expected to depend on what another, similar firm B learns
about its conversions in advertising to the same user demographic.

In static problems, implementing the first best (efficient) allocation is impossible
for generic, multi-dimensional value interdependence [Jehiel and Moldovanu, 2001;
Dasgupta and Maskin, 2000]. Similarly, it is impossible to implement efficient poli-
cies in interdependent dynamic problems in which there are constraints on when
transfers are possible [Gershkov and Moldovanu, 2008c]. For this reason, our fo-
cus here is on an environment of persistent, always accessible agents. We retain
private valuations, but model type interdependence through interdependent type
transitions:

si : S1 × . . . × Sn × A → Si (33)

ri : Si × A × Si → R (34)

The next state τi(s, a) ∈ Si can depend on the state of other agents. Whereas
we earlier had reward ri(si, a) ∈ R, we now allow reward ri(si, a, s′i) ∈ R where
s′i = τi(s, a).26 Thus, the interdependence occurs through the effect of one agent’s
current state on another agent’s next state. But agent i’s value is privately realized
by agent i given this state transition. For example, this model allows the reward
received by agent 2 for the allocation of a resource to depend in arbitrary ways on
the private state of agent 1.

Mezzetti [2004] provides a w.p. EPIC mechanism for a single-period version of
this problem by using a second-stage of reports. In period 0, given type profile t0 =
(s0, τ, r), then action a0 ∈ A causes agent i to realize private transition s1

i = τi(s
0, a)

and receive private reward ri(s
0
i , a, s1

i ) (still in in period 0) that depends on its next
state s1

i . Mezzetti’s types have deterministic transitions but this is unnecessary and
they can be dynamic types. In two-step mechanism, each agent makes a report,
t̂0i , about its type and the action a that maximizes the expected total value to all
agents given this report is selected. Having transitioned into a new state, each agent
i then makes a subsequent report r̂i about its received reward. The reward to an
agent depends on its private state transition, which depends in turn on the true
type profile t0. By making a subsequent transfer of

∑
j 6=i r̂j, each agent receives as

a transfer the total value received by other agents and the mechanism is a Groves
mechanism and w.p. EPIC.

We generalize Mezzetti’s observation to a multi-period, dynamic environment with
interdependent types. Just as in Mezzetti [2004], an agent in our model knows
its own value immediately after an action is selected by the center. This precludes
models of “prestige” goods, such as a watch, where the realized value of an allocation
(even after it has been made) may in fact depend on the earlier claims by other
agents about their values. The temporal extent of any informational externality in

26One can think about the earlier use of ri(si, a) as equivalent to the expected reward to agent
i for reward function ri(si, a, s′i), given private state transitions τi(si, a).
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Figure 4: An illustration of the timing of a mechanism implemented in the
interdependent-dynamic framework. The reward and transfers received in the same
period are discounted in the same way.

the current period lasts only until the next period.27 Figure 4 illustrates the timing
of reports, actions, transitions, rewards and transfers in a dynamic mechanism in
this interdependent type environment. Action aℓ = π(t̂ℓ) triggers the start of period
ℓ. Each agent then learns about its state transition sℓ+1

i = τi(s
ℓ, a) and obtains

reward ri(s
ℓ
i , a, sℓ+1

i ). Having received reports t̂ℓ+1 about each agent’s type for the
next period, the center makes transfer xi(t̂

ℓ+1). The value of this transfer to agent
i accrues in period ℓ, along with its received reward ri(s

ℓ
i , a, sℓ+1

i ). The next period
triggers with action aℓ+1 = π(t̂ℓ+1).

Lemma 1, which establishes the w.p. EPIC of dynamic Groves mechanisms, con-
tinues to hold (with the same proof) for this interdependent type environment. All
that is required is to redefine,

Vj(h
ℓ−1, tℓ, π, σi) = Etkσ , ak

σ




K∑

k=ℓ

γk−ℓ




∑

j 6=i

rk
j (sk

j , a
k
σ, sk+1

j )



 | hℓ−1, tℓ, π, σi



 , (35)

so that this correctly reflects the true flow value to agents 6= i given that agent i

follows strategy σi forward from period ℓ. Consider now a naive interdependent-
type, dynamic Groves mechanism, that in each period,

• selects action aℓ at the start of period ℓ according to the policy that is efficient
given agent type reports,

• receives reports tℓ+1 (perhaps untruthful) about the type profile that agents
will adopt in the next period, and

• makes transfer xi(t
ℓ, tℓ+1) =

∑
j 6=i rj(s

ℓ
j, a

ℓ, sl+1
j ) to each agent.

27Athey and Segal [2007] also propose a dynamic team mechanism that can handle interdependent
transitions with private values. Our contribution is to make a structural observation about the
additional difficulty in obtaining a dynamic VCG mechanism that does incur a deficit to the
mechanism while retaining w.p. ex post individual rationality.
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Theorem 5. The interdependent-type, dynamic Groves mechanism is efficient and
w.p. EPIC for a fixed agent population with dynamic, interdependent type but pri-
vate valuations.

The equilibrium in this mechanism is less fragile than Mezzetti’s single period mech-
anism because the type report of an agent in period ℓ (about its type in period ℓ+1)
is used not only to align the incentives of other agents but also affects the subse-
quent action selected by the mechanism. Each agent therefore has strict incentives
to report its true type in each period, except in just the very last period in a problem
with a finite time horizon.

The particular dynamic Groves mechanism (or team mechanism) presented above
still has serious budgetary problems. One can impose an ex ante charge on agents
and achieve a mechanism that is ex ante no-deficit and ex ante individual-rational,
but this would give up on w.p. ex post individual-rationality. To get around this,
we would need to introduce a chargeback transfer that is applied adaptively, in
each period, in order to obtain no deficit without losing w.p. ex post individual-
rationality. One might, for example, think to redefine the transfer as,

xi(t
ℓ, tℓ+1) = r−i(s

ℓ, aℓ, sℓ+1) + γEt′
−i

[
V−i((t

ℓ+1
i , t′−i), π

∗
−i)|t

l
i, t

ℓ
−i, a

ℓ
]

− V−i((t
ℓ
i , t

ℓ
−i), π

∗
−i), (36)

where t
k
i , for k ∈ {0, 1, . . .} is an ex ante fixed sequence of type profiles for agent i

that are independent of agent i’s reports. The second expression,

Et′
−i

[
V−i((t

ℓ+1
i , t′−i), π

∗
−i)|t

l
i, t

ℓ
−i, a

ℓ
]
, (37)

is the estimated flow value to agents other than i forward from period ℓ + 1 given
action aℓ and given type profile (tl

i, t
ℓ
−i) in the current period. Looking back to the

proof of w.p. EPIC for the dynamic VCG mechanism in the private values model,
we required that Eq. (13) reduced to Eq. (15) and canceled with the flow transfer
terms in the next period and forward that occur due to the third component of the
transfer rule. Using the same trick here, then the flow transfer forward from period
ℓ would be V−i((t

ℓ
i , t

ℓ
−i), π

∗
−i) and independent of agent i’s strategy as required for

w.p. EPIC. But whereas the next state distribution in Eq. (14) is the same (in
equilibrium) as that actually traversed due to the actions taken by the mechanism,
this is not the case for the next-type distribution in Eq. (37) because the state
transitions to the agents 6= i are conditioned on t

ℓ
i rather than agent i’s actual

type, tℓi . It does not seem likely, to us, that it will be possible to find a suitable
modification to the transfer terms of dynamic VCG to achieve w.p. EPIC along with
no deficit and w.p. ex post individual rationality in this dynamic, interdependent
type setting.
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6 Conclusions

In this paper we have extended the dynamic VCG mechanism [Bergemann and
Välimäki, 2008] to environments in which agents are periodically-inaccessible and
used this extension to derive a mechanism that is w.p. EPIC and efficient for
problems with dynamic populations and dynamic agent type. We require private
values and type transitions that are conditionally independent of the type of other
agents, when conditioned on actions by the center. Similarly, agent arrivals must
be conditionally-independent of earlier arrivals, when conditioned on actions of the
center. This generalizes existing results, which offered a truthful implementation ei-
ther for a static population with dynamic type or a dynamic population with static
type. For the special case of dynamic population and static type, we show that
the dynamic VCG mechanism is payoff equivalent upon arrival to the online VCG
mechanism [Parkes and Singh, 2003], which is ex post individual-rational where
the dynamic VCG mechanism is only within-period ex post individual-rational. Fi-
nally, we observe a structural difficulty in extending dynamic VCG mechanisms to
environments in which agents have interdependent type transitions.
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[Crémer et al., 2009] Jacques Crémer, Yossi Spiegel, and Charles Z. Zheng. Auc-
tions with costly information acquisition. Economic Theory, 38:41–72, 2009.

[Dasgupta and Maskin, 2000] Partha Dasgupta and Eric Maskin. Efficient auctions.
The Quarterly Journal of Economics, 115(2):341–388, 2000.

[d’Aspermont and Gérard-Varet, 1979] C. d’Aspermont and L.A. Gérard-Varet. In-
centives and incomplete information. Journal of Public Economics, 11:25–45,
1979.

38



[Dizdar et al., 2009] Deniz Dizdar, Alex Gershkov, and Benny Moldovanu. Revenue
maximization in the dynamic knapsack problem. Working paper, University of
Bonn, 2009.

[Dolan, 1978] Robert J Dolan. Incentive mechainsms for priority queuing problem.
Bell Journal of Economics, 9:421–436, 1978.

[Freixas et al., 1985] Xavier Freixas, Roger Guesnerie, and Jean Tirole. Planning
under incomplete information and the ratchet effect. The Review of Economic
Studies, 52:173–191, 1985.

[Friedman and Parkes, 2003] E. Friedman and D. C. Parkes. Pricing WiFi at
Starbucks– issues in online mechanism design. In Proc. Fourth ACM Confer-
ence on Electronic Commerce (EC’03), pages 240–241, 2003.

[Gallego and van Ryzin, 1994] Guillermo Gallego and Garrett van Ryzin. Optimal
dynamic pricing of inventories with stochastic demand over finite horizons. Man-
agement Science, 40:999–1020, 1994.

[Gallien, 2003] Jeremie Gallien. Dynamic mechanism design for online commerce.
Operations Research, 54:291–310, 2003.

[Gershkov and Moldovanu, 2008a] Alex Gershkov and Benny Moldovanu. Dynamic
revenue maximization with heterogeneous objects: A mechanism design ap-
proach. American Economic Journal: Microeconomics, 2008. To appear.

[Gershkov and Moldovanu, 2008b] Alex Gershkov and Benny Moldovanu. Efficient
sequential assignment with incomplete information. Games and Economic Be-
havior, 2008. To appear.

[Gershkov and Moldovanu, 2008c] Alex Gershkov and Benny Moldovanu. Learning
about the future and dynamic efficiency. American Economic Review, 2008. To
appear.

[Gershkov and Moldovanu, 2009] Alex Gershkov and Benny Moldovanu. Optimal
search, learning and implementation. Working paper, University of Bonn, 2009.

[Hajiaghayi et al., 2004] Mohammad T. Hajiaghayi, Robert Kleinberg, and
David C. Parkes. Adaptive limited-supply online auctions. In Proc. ACM Conf.
on Electronic Commerce, pages 71–80, 2004.

[Hajiaghayi et al., 2005] Mohammad T. Hajiaghayi, Robert Kleinberg, Mohammad
Mahdian, and David C. Parkes. Online auctions with re-usable goods. In Proc.
ACM Conf. on Electronic Commerce, pages 165–174, 2005.

[Jehiel and Moldovanu, 2001] Philippe Jehiel and Benny Moldovanu. Efficient de-
sign with interdependent valuations. Econometrica, 69:1237–1259, 2001.

[Juda and Parkes, 2009] Adam I. Juda and David C. Parkes. An options-based
solution to the sequential auction problem. Artificial Intelligence, 173:876–899,
2009. Early version at AMEC workshop (2004) and ACMEC (2006).

39



[Kaelbling et al., 1996] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W.
Moore. Reinforcement learning: A survey. Journal of Artificial Intelligence Re-
search, 4:237–285, 1996.

[Kincaid and Darling, 1963] Wilfred M. Kincaid and Donald A. Darling. An in-
ventory pricing problem. Journal of Mathematical Analysis and Applications,
7:183–208, 1963.

[Lavi and Nisan, 2004] Ron Lavi and Noam Nisan. Competitive analysis of incen-
tive compatible on-line auctions. Theoretical Computer Science, 310:159–180,
2004. Earlier version in ACMEC 2000.

[Lavi and Nisan, 2005] Ron Lavi and Noam Nisan. Online ascending auctions for
gradually expiring goods. In Proc. of the Sixteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 1146–1155, 2005.

[Lavi and Segev, 2008] R. Lavi and E. Segev. Efficiency levels in sequential auctions
with dynamic arrivals. Working paper, The Technion, 2008.

[Levin, 2003] J. Levin. Relational incentive constraints. Americn Economic Review,
93:835–857, 2003.

[Mahdian and Saberi, 2006] M. Mahdian and A. Saberi. Multi-unit auctions with
unknown supply. In Proc. ACM conference on Electronic Commerce (EC), pages
243–249, 2006.

[McAfee and te Velde, 2008] R. Preston McAfee and Vera te Velde. Dynamic pric-
ing with constant demand elasticity. Production and Operations Management,
17:432–438, 2008.

[McAfee, 1992] R. Preston McAfee. A dominant strategy double auction. Journal
of Economic Theory, 56:434–450, 1992.

[Mezzetti, 2004] Claudio Mezzetti. Mechanism design with interdependent valua-
tions: Efficiency. Econometrica, 72(5):1617–1626, 2004.

[Mierendorff, 2008] Konrad Mierendorff. Efficient intertemporal auction. Working
paper, University of Bonn, 2008.

[Mierendorff, 2009] Konrad Mierendorff. Optimal dynamic mechanism design with
deadlines. Working paper, University of Bonn, 2009.

[Myerson, 1986] Roger Myerson. Multistage games with communication. Econo-
metrica, 54(2):323–358, 1986.

[Ng et al., 2003] Chaki Ng, David C. Parkes, and Margo Seltzer. Virtual Worlds:
Fast and Strategyproof Auctions for Dynamic Resource Allocation. In Proc.
Fourth ACM Conf. on Electronic Commerce (EC’03), pages 238–239, 2003.

[Pai and Vohra, 2008] Mallesh Pai and Rakesh Vohra. Optimal dynamic auctions.
Working paper, MEDS Department, Kellogg School of Management, 2008.

40



[Parkes and Singh, 2003] David C. Parkes and Satinder Singh. An MDP-based ap-
proach to Online Mechanism Design. In Proc. 17th Annual Conf. on Neural
Information Processing Systems (NIPS’03), 2003.

[Parkes et al., 2004] David C. Parkes, Satinder Singh, and Dimah Yanovsky. Ap-
proximately efficient online mechanism design. In Proc. 18th Annual Conf. on
Neural Information Processing Systems (NIPS’04), 2004.

[Parkes, 2007] David C Parkes. On-line mechanisms. In Noam Nisan, Tim Rough-
garden, Eva Tardos, and Vijay Vazirani, editors, Algorithmic Game Theory, chap-
ter 16. Cambridge University Press, 2007.

[Pavan et al., 2009] Alessandro Pavan, Ilya Segal, and Jusso Toikka. Dynamic
mechanism design: Incentive compatibility, profit maximization and information
disclosure. Working paper, Northwestern University, 2009.

[Porter, 2004] Ryan Porter. Mechanism design for online real-time scheduling. In
Proc. ACM Conf. on Electronic Commerce (EC’04), pages 61–70, 2004.

[Riley and Zeckhauser, 1983] John Riley and Richard Zeckhauser. Optimal selling
strategies: When to haggle, when to hold firm. The Quarterly Journal of Eco-
nomics, 98:267–289, 1983.

[Said, 2009] Maher Said. Auctions with dynamic populations: Efficiency and rev-
enue maximization. Working paper, Yale University, 2009.

[Seuken et al., 2008] Sven Seuken, Ruggiero Cavallo, and David C. Parkes.
Partially-synchronized DEC-MDPs in dynamic mechanism design. In Proc. 23rd
National Conference on Arti

cial Intelligence (AAAI’08), pages 162–169, 2008.

[Vulcano et al., 2002] G. Vulcano, Garret van Ryzin, and C. Maglaras. Optimal
dynamic auctions for revenue management. Management Science, 48:1388–1407,
2002.

[Wang, 1995] Cheng Wang. Dynamic insurance with private information and bal-
anced budgets. The Review of Economic Studies, 62:577–595, 1995.

41


