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Abstract：An efficient meshfree method based on a stabilized conforming nodal integration 

method is developed for elastoplastic contact analysis of metal forming processes. In this 

approach, strain smoothing stabilization is introduced to eliminate spatial instability in 

Galerkin meshfree methods when the weak form is integrated by a nodal integration. The 

gradient matrix associated with strain smoothing satisfies the integration constraint for 

linear exactness in the Galerkin approximation. Strain smoothing formulation and 

numerical procedures for path-dependent problems are introduced. Applications of metal 

forming analysis are presented, from which the computational efficiency has been 

improved significantly without loss of accuracy.
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1. Introduction
Meshfree methods can be classified 

collectively as a Galerkin meshfree 

method[1-5], a Petrov-Galerkin meshfree 

method[6-7], or a collocation meshfree 

method[8-10]. Gauss integration is 

commonly used in Galerkin meshfree 

methods for integration of weak form. Due 

to the complexity involved in Gauss 

integration for Galerkin meshfree 

methods, attempts have been made to 

develop nodal integration methods for 

meshfree computation.

 The objective of this study is to develop 

a stabilized conforming nodal integration 

(SCNI) for the Galerkin meshfree method 

to achieve higher efficiency with desired 

accuracy and convergent properties. A 

strain smoothing stabilization is used to 

compute nodal strain by a divergence 

counterpart of a spatial averaging of 

strain. This strain smoothing avoids 

evaluating derivatives of meshfree shape 

functions at nodes and thus eliminates 

spurious modes. That is, in this study, a 

strain smoothing stabilization is 

implemented as a means to meet 

integration constraints and to provide a 

stabilization for nodal integration. SCNI 

not only yields a significant reduction in 

computational cost, it can also achieve a 

higher accuracy[1] due to the satisfaction 

of integration constraints. In this paper, 

the history-dependent problems with 
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applications to metal forming problems 

are investigated and also several metal 

forming problems are demonstrated. 

2. Stabilized conforming nodal 

integration
2.1 Meshfree shape function

 The approximation methods most widely 

used in meshfree methods are the moving 

least-squares(MLS) approximation, partition 

of unity method (PUM), and the reproducing 

kernel (RK) approximation[7]. Without loss 

of generality, the MLS and RK 

approximation for construction of the 

meshfree shape function is introduced in 

this section. The reproducing MLS-RK 

approximation of a variable u(x), denoted 

by , is

 ∑    (1)

 
 (2)

 ∑   
(3)

where  is a kernel function with 

compact support “”, dI is the coefficient 

of approximation(generally not a nodal 

value),            


 is the vector of monomial basis, NP 

is the number of particles, and   is 

the meshfree shape function. A meshfree 

shape function and domain discretization 

is illustrated in Figure 1. This meshfree 

shape function was constructed based on 

reproducing conditions and therefore is 

capable of exactly representing nth order 

monomials (th order consistency):

∑        ≤ ≤(4)

 The meshfree Galerkin approximation is 

formulated by introducing meshfree shape 

functions, e.g., Eq. (2), into the weak 

form. Gauss integration is usually used 

in the integration of the weak form. It 

has become apparent that shortcomings 

exist with respect to Gauss integration 

for Galerkin meshfree methods. 

 Using Gauss integration, domain 

partitioning must match the shape 

function supports to minimize integration 

error[2]. The higher order Gauss 

integration required for meshfree computation 

is computationally inefficient. Further, 

Gauss integration does not meet linear 

exactness in the Galerkin meshfree 

approximation[1], as discussed in the 

following.

Figure 1: Meshfree discretization and shape function.
 

2.2 Integration constraints and strain smoothing 

stabilization

 To obtain linear exactness in the 

Galerkin approximation, a discrete linear 

displacement must exactly satisfy the 

discrete equilibrium equation of a 

boundary value problem in which the 

solution is linear. Linear exactness in 

Galerkin approximation first requires 

linear consistency in the MLS-RK 

approximation. Second, numerical integration 

of stiffness and force must meet the 

following condition for interior nodes[1].
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




  

for all interior nodes {  ∩} (5)

where  is the gradient matrix 

associated with node I,  is the total 

boundary,  is the integration point,  is 

the weight, and NIT is the number of 

integration points. For shape functions 

intersect with essential boundary, flux 

equilibrium is required[3]. Strain 

smoothing stabilization has been proposed 

[1] to achieve two objectives: (1) to avoid 

taking derivatives at nodal points for 

stability, and (2) to construct a modified 

gradient matrix that satisfies the 

integration constraints in Eq. (5). A 

strain smoothing equation has been 

proposed by[1] as:

 
  

 





 












 





 (6)

Introducing shape function for 

displacement into Eq. (6) leads to

   ∈
 (7)                   

Figure 2: Voronoi diagram.
 

where  
  is the smoothed strain,  

  is 

the strain obtained from displacement by 

compatibility,  
  

 
 ,  and   

are the representative domain and 

boundary, respectively, of node L 

obtained from, for example, the Voronoi 

diagram in Figure 2, and  is the area 

(or volume) of . It can be shown that 

the smoothed gradient matrix  satisfies 

the integration constraints in Eq. (5). 

Introducing nodal integration in the weak 

form using the assumed strain field based 

on strain smoothing stabilization of Eq. 

(7) is called the stabilized conforming 

nodal integration (SCNI) [1].

 

3. Strain smoothing stabilization for 

path-dependent problems
  Elastoplasticity and frictional contact 

conditions involved in metal forming 

analysis are path dependent. A 

Lagrangian approach is considered for 

meshfree discretization, by referencing 

meshfree shape functions to the material 

coordinate , and transforming the 

variational equation from the current 

domain  to the initial domain . The 

transformation and linearization of the 

internal energy are given as:












 (8)




 







 





  (9)

where   is the spatial coordinate,  is 

the material coordinate,  is the Cauchy 

stress, (․) ≡, (․)  is the 

deformation gradient,   det  is 
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the material response tensor, and  is 

the initial stress tensor. To employ a 

stabilized conforming nodal integration in 

the evaluation of stiffness and internal 

force, the deformation gradient is 

smoothed by

 







 



≡

  (10a)

  


 



 (10b)

where , 
 and 

 are the surface 

normal, the nodal representative domain 

and boundary at node L, respectively, at 

the initial configuration, and 




. 

Introducing a Lagrangian shape function  

 for displacement 
  ∑    

into Eq. (10) yields 

  ∑  , (11)

Where

 




 


 (12)

 For path-dependent problems, the 

computation of spatial derivatives of 

displacement is required for stress 

update. Using the Lagrangian approach, 

stress update is computed using a 

smoothed strain increment

  
 


 (13)

where  is the inverse of  

computed by Eq. (10). To introduce 

smoothed deformation gradient as an 

independent variable, the mixed 

variational equation is formulated by an 

assumed strain method:

∏ 


 

 
 

(14)

Applying similar procedures to the 

incremental variational equation of Eq. 

(9), the resulting stiffness matrix and 

force vector can be obtained as:





 

 

      

 (15)


int ∑  


  

(16)

  











 
 

  


 
 

  


 (17)
















 




 


 



 

 
 



 (18)













 
 
 

 (19)

   det (20)

Where  is the gradient matrix 

associated with the smoothed deformation 

gradient given in Eqs. (10a)-(10b), and  

  is the Cauchy stress calculated using 

the smoothed strain. Using the 

Lagrangian approach, the value of  

evaluated at the material integration 

point  does not change with the 
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material deformation, and can therefore 

be stored and reused for computing 


  and int in each load 

step. For contact problems, contact 

constraints are introduced through a 

penalty-type perturbed Lagrangian 

formulation [5]. Collocation is employed 

in the boundary integration of contact 

stiffness and force terms. A smooth 

contact surface representation is 

introduced to generate a smooth contact 

surface through the nodal locations of the 

set of contact surface nodes. The smooth 

surface representation is incorporated 

into the meshfree formulation to yield a 

consistent tangent operator for frictional 

contact problems.

 

4. Numerical examples
4.1 Necking

An axisymmetric elastoplastic bar is 

subjected to an axial prescribed 

displacement as shown in Figure 3. A 

geometric imperfection at the center of 

the rod is introduced, for which a quarter 

of the geometry is modeled. The 

displacement solution from direct nodal 

integration exhibits spatial oscillation in 

both the axial and transverse directions.  

Non-physical necking deformation occurs 

near the interface of the regions that 

Figure 3: Necking analysis results after (a) direct 
nodal integration and (b)stabilized conforming nodal 
integration.

exhibit substantial difference in nodal 

density (Figure 3(a)). Spatial instability 

and non-physical necking are suppressed 

and corrected by the SCNI (Figure 3(b)). 

4.2 Stretch forming

The problem is described as shown in 

Figure 4. A plane-strain sheet metal is 

stretched by a cylindrical punch. Because 

of symmetry, only half of the total 

geometry is modeled. When direct nodal 

integration is used without stabilization, 

spurious modes occur in both membrane 

and transverse directions, as shown in 

Figure 5(a). These unstable modes are 

eliminated in the SCNI technique, as 

illustrated in Figure 5(b). 

 

Figure 4: Cylindrical punch problem.

Figure 5: The four modes of stiffness constructed 
using direct and SC nodal integrations (a) direct 
nodal integration and (b) stabilized conforming nodal 
integration
 

4.3 Extrusion

A 3D elastoplastic cylindrical billet is 

extruded through a rigid circular die as 

shown in Figure 6. Extrusion is achieved 
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by prescribing displacements at the top 

end of the billet. Because of symmetry, 

only one quarter of the total billet is 

modeled by 711 particles. Both the Gauss 

integration method and the proposed 

stabilized conforming nodal integration 

were used in the analysis for comparison. 

The SCNI method yields results very 

similar to that of the Gauss integration, 

and therefore only the deformation 

obtained by SCNI is shown in Figure 7. 

The CPU time for SCNI is only 10% of 

that required in the Gauss integration 

method.

 

Figure 6: Geometry of extrusion problem.
 

Figure 7: Extrusion processes modeled by stabilized 
conforming nodal integration.
 

4.4 Beam subjected to a shear load

The accuracy and convergence in 

regular and irregular discretization of a 

beam problem using integration methods 

are studied. The problem statement and 

boundary conditions of the beam problem 

are given in Figure 8.

 

Figure 8: Problem statement of beam subjected to a 
shear load.

Three regularly refined meshfree 

discretizations for a half-model 

(anti-symmetry) are shown in Figure 9.

 

Figure 9: Regular discretization and refinement of 
half beam.

 
  Linear basis functions and a normalized 

support size of 2.01 are used in regular 

discretizations. Superior performance of 

the stabilized conforming (SC) nodal 

integration over the direct nodal 

integration and Gauss integration 

methods is presented in the accuracy 

comparison of tip displacements in 

Table1. The direct nodal integration 

method displays a poor performance in 

the coarse model. SC nodal integration is 

particularly advantageous when a coarse 

model is used. 

 

Table 1: Comparison of tip displacement accuracy(%).
Discrete
model 5×5 Gauss int. Direct

nodal int SC nodal int.

63 nodes
124 nodes
205 nodes

93.4256
96.9630
98.2768

83.6453
91.9689
95.3838

97.3410
99.0507
99.5141
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The solution of the direct nodal 

integration presents lower accuracy than 

that obtained from Gauss integration. SC 

nodal integration not only enhances 

accuracy of the direct nodal integration; 

the method performs better than the 

Gauss integration method. Larger error 

near the boundary is observed in the 

solution of the direct nodal integration, 

whereas Gauss integration and SC nodal 

integration methods generate similar 

results. In Figure 10, several refinements 

of an irregular model are constructed to 

study the performance of integration 

methods in irregular discretization. A 

Voronoi diagram for nodal integration 

methods is also plotted in Figure 10. 

 

Figure 10: Irregular discretization, refinement, and 
Voronoi diagram.
 

The shape function support size in this 

study is increased slightly so that a 

normalized support size with respect to 

the maximum nodal distance is 2.01 in 

each model. Note that since support size 

is kept constant for all shape functions, 

the normalized support sizes in dense 

areas are higher than 2.01. Due to the 

slight irregularity in the discretization, 

the tip displacement accuracy of direct 

nodal integration methods reduces 

slightly. Surprisingly, the accuracy of SC 

nodal integration increases slightly 

compared to that of the regular case. 

This is probably due to the small increase 

in normalized support size in the dense 

areas compared to the regular model. The 

displacement distribution further confirms 

the effectiveness of SC nodal integration. 

 

5. Conclusions 
A stabilization technique for nodally 

integrated Galerkin meshfree methods for 

path-dependent problems has been 

developed to enhance computational 

efficiency in meshfree analysis. The 

proposed strain smoothing in the 

deformation gradient results in a 

smoothed gradient matrix that meets the 

linear exactness in the Galerkin 

approximation and it also serves as a 

stabilization mechanism. It has shown 

that a severe oscillation in displacement 

occurs in the solution using the direct 

nodal integration which was effectively 

suppressed with using of the proposed 

stabilized conforming nodal integration. 

In this approach, the formation of the 

discrete equations was accelerated by an 

order of magnitude compared to the 

Gauss integration method. Particularly, 

substantial memory savings were 

achieved particularly, for path-dependent 

materials. Several metal forming 

problems were analyzed to examine the 

effectiveness of the proposed method.

  Also in this study, although a Voronoi 

diagram is used for obtaining 

representative nodal domain and the 

associated weights for the stabilized 

conforming nodal integration, other 

methods can also be used for this 

purpose.
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