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Abstract -This paper is probably the first to describe algorithms 
suited to the efficient calculation of both proper and non-proper 
transfer function zeros of linearized dynamic models for large 
interconnected power systems. The paper also describes an 
improvement to the well known AESOPS algorithm, formulating 
it as an exact transfer function zero finding problem which is 
efficiently solved by a Newton-Raphson iterative scheme. Large 
power system results are presented in the paper. 

w: Power System Stability, Low Damped Oscillations, 
Additional Feedback, Excitation Control, Transfer Function 
Zeros, Large Scale Systems, Sparse Eigenanalysis. 

I. INTRODUCTION 

The location of the zeros of the open-loop transfer function of 
a feedback system is closely related to the ease or difficulty with 
which the system is controlled. The movement of zeros following 
system changes is a rather complex subject and little work has 
been done in association with the power system problem [1,2]. 

The use of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaugmented system equations (see Appendix) 
for the smallsignal stability problem has already allowed the 
efficient calculation of eigenvalues, eigenvectors, frequency 
response plots, transfer function residues, participation factors and 
step response plots [2,3,4,5,6,7,8,9] for large scale systems. 

This paper comes in response to the need for efficient 
algorithms for the calculation of transfer function zeros of large 
power system dynamic models [4]. Newton-Raphson, Inverse 
Iteration and Simultaneous Iteration algorithms [3,5,9], applied to  
the augmented system equation, are described. With such 
algorithms an optional facility may be added to  comprehensive 
packages for smallsignal stability analysis enabling engineers to 
carry out controller design with extra valuable information. 

The EPRI software for the analysis of smallsignal stability 
of large scale power systems uses two alternative techniques to  
compute eigenvalues which complement each other [4]: 

2. the Modified Arnoldi method, which has a sound math- 
ematical basis and can find typically up to five 
eigenvalues simultaneously. 

A recent paper [lo] has explained the AESOPS algorithm in 
terms of traditional eigenvalue analysis. The results presented in 
[lo] for the 10-machine New En land system did not, however, 
clearly attested the superiority zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the algorithm proposed by its 
authors over the original AESOPS in the eigensolution of large 
practical power systems. 

The power system eigenvalues were shown in (41 to be equal 
to the zeros of a special transfer function. This fact were not used 
to advanta e in [4] due to  the lack of an exact analytical 
expression 81 such transfer function and of an adequate transfer 
function zero finding method for large scale systems. These two 
obstacles were obviated in the work reported in this paper, leading 
to the improved AESOPS algorithm of sections V and VI. 

All the algorithms of this paper have been implemented 
exploiting the augmented system equations sparse structure. The 
notations adopted in the paper are defined as used. 

. 

II. TRANSFER FUNCTION ZEROS 

Consider the dynamic system equations: 

where A is a state matrix of order n, is the state vector, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU is a 
single input and y is a single output whichhave been specified. 

The objective here is to  find the zeros of the open-loop 
transfer function y(s)/u(s) = ~t (sI-A)-lb. From Root LOCUS 
theory i t  is known that the closed-loop transfer function poles tend 
to the open-loop transfer function zeros as the feedback loop gain 
tends to  infinity [ll]. This concept was used to derive the basic 
algorithm of this paper which is similar to that described in [12]. 

The closed-loop system will be defined here as having a 1. the AESOPS algorithm which is a successful heuristical- 
ly based algorithm and computes one eigenvalue at a control signal uproport ion~ to the output y: 
time; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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u(s) = K d s )  

The poles of the closed-loop system are then the eigenvalues 
of the state equation: 

(3) 

The eigenvalues of matrix A,1 will coincide with the open- 
loop transfer function zeros when the feedback ain K approaches 
infinit . In this case, matrix A,1 differs from by the introduc- 
tion orvery large elements in the locations defined by the product 
-- b ct. Matrix A,1 is of the same order of the whole system, is real 
and unsymmetric and its eigenvalues can be obtained by a stan- 
dard QR routine [13]. As a transfer function normally has less 
zeros than poles, the QR eigensolution will contain extraneous 
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zeros which assume larger values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the feedback gain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK is 
increased. These extraneous zeros should theoretically go to 
infinity with the feedback gain K, but this does not happen due to 
rounding errors. 

The closed-loop system poles, i.e., the eigenvalues of A,1 can 
also be found by solving the generalized eigenvalue problem 
Ag zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A B 4: 

where I is the identity matrix, Qt is a row vector with all elements 
equal to zero and - comprises both x and scalar input U. Note 
that as the value 2 K  tends to infinity, the matrix element 1/K 
tends to zero. A QZ routine [13] for solving the generalized 
eigenproblem of equation (4) directly deals with the case where the 
matrix element 1/K is identical to zero, and therefore the 
extraneous zeros assume such large magnitudes that can easily be 
identified and discarded. The solution of the generalized eigen- 
value problem of equation (4) should therefore be preferred to the 
method of [12] for finding all the transfer function zeros of a 
moderate size system. 

III. CALCULATION OF ZEROS FOR 
LARGE SCALE SYSTEMS 

The use of a QZ routine to solve for all the zeros of the 
specified transfer function is a prohibitively expensive task in large 
scale s stems. The only alternative in large system problems is to 
solve & one zero at a time or for several zeros at a time located 
around a fixed point which can be placed at  will in various parts of 
the complex plane. Efficient algorithms can be developed to 
exploit the sparse structure of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaugmented system equations 
which are described in the Appendix. 

The generalized eigenvalue problem of (4 can be solved, one 
zero at a time, by the inverse iteration algorit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh m [3], whose basic 
scheme is shown below for the case where the matrix element 1/K 
is equal to  zero: 

a. Solve for Ek +I: 

b. Compute the vector Zk+lfor the next iteration: 

Convergence occurs when the change in at any iteration is 
less than some specified tolerance. In this algorithm the subscript 
kis the iteration number, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq the specified a proximate value of the 
desired transfer function zero zi and maJt& is the element of 

largest magnitude in this vector. The vector _Zk has arbitrary 
initial value and corresponds to the zero direction vector at 
convergence. After convergence, the factor ll(2i-q) will be 

dominant in the element maT(c(~~+~) and the correct zero zi is given 
by: 

zi = q + 1/ma.(Ek+J 

Note that the transfer function zero and zero direction 
vector of the matrix in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  form a pair which is analogous 
to the eigenvalueeigenvector pair of the state matrix A. 

Equation ( 5 )  is now expressed in terms of the augmented 
system equations: 

IV. FINDING INVARIANT ZEROS IN THE 
MULTI-INPUT-MULTI-OUTPUT CASE 

The zero finding algorithms described in sections I1 and 111 
can readily be extended to the multi-input-multi-output case. 
When m inputs and m outputs are simultaneously considered, 
vectors _b and t t  of equation (4) become matrices B and C of 
appropriate dimensions. The invariant zeros [15] of a large scale 
system matrix can be calculated by the inverse iteration and 
simultaneous iteration algorithms. The transmission zeros of a 
transfer function matrix are a subset of the system matrix 
invariant zeros [15]. 

A brief result on a 5-machine system is presented in section 
VIII, but further research is needed into this area. 

V. THE AESOPS ALGORITHM FORMULATED 
AS A ZERO FINDING PROBLEM 

The AESOPS algorithm (41 is a heuristically based one-at-a- 
time eigenvalue method designed to compute the electromechan- 
ical modes of oscillation for large power systems. The AESOPS 
algorithm is derived from the linearized equation of motion of a 
chosen generator, to which a complex frequency disturbance in the 
mechanical torque is applied. At every iteration, a corrected value 
for this complex frequency disturbance is applied until the system 
becomes resonant. This iterative process is almost always 
convergent and the converged complex frequency value corre 
sponds to an electromechanical eigenvalue which is dominant at 
the disturbed generator. 

An interesting paper [lo] has suggested improvements to the 
basic AESOPS algorithm, but lacked large scale system results to 
substantiate its claims. In this section, an improved AESOPS 
algorithm is proposed which requires the calculation of the zeros of 
a specially tailored transfer function [4]. 

Consider the block diagram of Figure 1 which describes the 
torqueangle loop dynamics of the disturbed j-th generator in a 
large power system. The mechanical damping constant D. is here 
assumed to be zero for brevity, but was fully considered in the 
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computer al orithm implementation. The variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA6(s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, A d s ) ,  

subscript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj to relate them to the j t h  generator, but this subscript 
was omitted for simplicity. The inertia constant of the j t h  
generator is denoted by Hj. 

ATel(s) a n t  ATm(s) of this section should rigorously 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 have a 
The generalized eigenvalue problem described by equation 

(10) cannot be adequately solved by the inverse iteration 
algorithm since the matrix on the left part of the equation is a 
functional of the Laplace variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs. A more convenient way to 
solve this problem would be by using the Newton-Raphson 
method, as described in the next section. 

I I 

VI. A NEWTON-RAPHSON SOLUTION SCHEME 
FOR THE IMPROVED AESOPS ALGORITHM 

When s is a zero of the transfer function ATm(s)/A6(s) 
described in equation (8) i t  satisfies: 

~~(sI -A, )  -lhs + 4s) = o (12) 

Figure 1. TorqueAngle Loop of Disturbed j t h  Generator 

From the inspection of the Figure 1 one can write: 

By choosing the mechanical torque and rotor angle as output 
and input variables respectively, one gets: 

Equation (8) can be expressed in the form: 

ATm(s) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ x ( s )  + 4s) A6(s) (9) 

in which the output variable ATm(s) depends not only on the 
vector ~ ( s )  but also on the system input A6(s) and its derivatives. 

Let A be the (mn) state matrix of the global multimachine 
power system. The AESOPS al orithm requires the opening of 
the torqueangle loop of the distur%ed j t h  generator. The opening 
of this torqueangle loop implies making zero the A6 and Aw states 
of the j t h  generator and letting the column of the A6 state become 
the input vector 5 to the system. 

The zeros of (9) can therefore be found by solving the 
generalized eigenvalue problem: 

1 

- 
6 

where A' is a matrix of order (n-2) due to the elimination of states 
A6 and Au of the 5th generator. The vector ~ ( s )  used in this 
section and the next is also of order (n-2). The term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4s) is given 
by: 

d(s) = Cs + -+sa 2 H. 

where c6 is a real constant which depends on the system operating 

point. 

(11) 

Transfer function zeros can be found, one at a time, through 
use of an iterative algorithm such as Newton-Raphson. Solving 
equation (12) is equivalent to solving: 

(SI-A') Z(S) - bs = 0 
-ct x(s) + 4s) = 0 

(13) 

which is a non-linear system with (n-1) equations in An-1) 
unknowns. The unknowns are the Laplace variable s an the 
vector x s) which is of order (n-2) since the states A6 and Aw of 
the j t h  disturbed generator were removed. 

The Newton-Raphson algorithm for solving (13) is given by: 

a. provide initial estimates ~ 0 ,  SO 

b. calculate the vector of residues f(Sk,&) 

where the value of the input variable 6(s) is set to unity. 

c. Stop process if change in f(sk,&) is below the specified 

tolerance. 

increments Axk and Ask: 
d. Evaluate the Jacobian of (14) and solve for the new 

= -  

e. Obtain 4 . 1  = 4 + A&+i, Sk+l = Sk + ASk+1 and return 
to step "b". 

For the solution of large scale problems, equations (14) and 
(15) must be expressed in terms of the augmented system equu- 
tiom, described in Appendix. Equation (15) is expressed below in 
the desired form: 
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ ~ l e f ( 8 )  --;c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

where J< - J z ’ ( J ~ ) ‘ ~ J ~ ’  = A’. 

The original AESOPS algorithm has the good characteristic 
of converging to the dominant electromechanical modes of the 
disturbed enerator in spite of bad initial values for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~0 and so. The 
improved XESOPS algorithm described in this section also has the 
same characteristics. This desired robustness was obtained by 
using the augmented initial vector: 

DZ(4 

Static Compensator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SVC(s) 

W. EXTENDING THE AESOPS ALGORITHM CONCEPT 
TO OTHER ACTIVE SYSTEM COMPONENTS 

A ain one can note that the zeros of the transfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A V  ref t k  s /ABY(s) of (18) are equal to the poles of the closed loop 
system of Figure 2. The remaining considerations are similar to 
the material contained in section V of this paper. As the Newton- 
Raphson method is very sensitive to the initial values given, there 
is a need for an initialization vector in order to make this 
algorithm converge to the desired dominant modes of the static 
compensator. 

MII. RESULTS ON TRANSFER FUNCTION ZEROS 

The open loop transfer function zeros of a plant are not 
altered by the addition of a feedback controlrer. Consider the case 
where the system has an unstable pair of poles and that feedback 
stabilization is attempted through an input-output pair whose 
transfer function exhibits an unstable pair of zeros in the 
nei hborhood of the poles to be damped. A root locus branch [ll] 
wifexist between these neighboring pairs of poles and zeros, i r re  
spective of the feedback controller transfer function. Therefore, it 
is not possible in practice to stabilize this system through this 
feedback control loop. 

The knowledge on the location of transfer function zeros 
enables control engineers to carry out controller design more 
effectively. The results presented in this section are intended to 
show the potential of the algorithms developed and estimulate 
power system control en ’neers to further investigate the practical 
application of this extragcility. 
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Cases Studied 

No Description zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 Base Case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 Lower Transfer 
3 No AVR in Gl,GZ,Gs 
4 PSS's in GlrG2,G3 
5 PSS in G I  

This system has a pair of unstable eigenvalues 
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= +0.646 +j5.391 and any attempt to stabilize i t  throu h 
excitation control on G4 is bound to fail. Reference [2] shows t%e 
root locus of the critical ei envalues as the gain of a rotor speed- 
derived stabilizer at the 8 4  generator is varied. The critical 
electromechanical mode is seen to always remain unstable due to 
the presence of an unstable pair of zeros in the Ad(s) /A  Vr4(~) 
transfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = +0.049 +j 5 . 9 0 2  The upperscript 4 

exciter reference voltage. In the small signal stability area the 
complex zeros and poles always occur in complex conjugate pairs. 
A complex conjugate pair (a *j b) is here typed as (a +j b) for 
better readability . 

The 5-machine system has 28 ei envalues (poles and the 

eigenroutine. The three extraneous zeros had magnitudes larger 
than 105. The critical zeros for different transfer functions are 
presented in Table 1 and discussed in the following lines: 

1,2. The critical pair of zeros are identical for 
Ad(s)/AVr4(s) and APt4(s)/A V,~(S), where Pt is the 
generator terminal power. 

3. The symbol R4-8 denotes the apparent resistance of the 
transmission line between buses 4 and 6. This signal, for 
this particular system, is worse then the two previous signals 
since its critical zeros are more unstable. 

4,5,6. The critical pair of zeros for Aw'(s)/A Vr'(S), 
Aw2(s)/AVrZ(s), Aw~(s)/A Vr3(~) transfer functions are 
almost identical and very close to the unstable pair of 
eigenvalues ( A  = +0.646 +j 5.391). This unstable pair of 
eigenvalues is therefore not controllable from the excitation 
systems of GI, G2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG3. 

7. There is no troublesome pair of complex zeros in the 
Ad(s) /A  Vr7(s) transfer function. Problem appears due to 
a real positive zero ( z  = +7.012), which informs in advance 
of the detrimental action that a stabilizer located at the 
synchronous motor G7 would have on the system synchron- 
izing torques. 

8. The possibility of stabilizing the system through the 
function Aw4 s /A Vr'(S is discarded due to the existance of 

here would modulate the reference voltage of the GI  exciter 
and be derived from the rotor speed signal of G4. 

denotes a variable o \ generator G4 and Vr the deviations in the 

A d ( s ) / A  Vr4(s) has 25 finite zeros whici were obtained zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi y the QZ 

a higly unsta v e pair o 2 zeros. The stabilizer to be added Crit. Poles Crit. Zeros 

+.646+j5.391 +.049+j5.908 
+.428+j5.610 -.023+j5.958 
+.667+j5.315 -.242+j5.660 
+.656+j5.380 -.562+j5.044 
+.652+j5.386 -.427+j5.835 

No Transfer Function Critical Zeros 1 1 Considered I 
$0.049 +j  5.908 
+0.049 +j 5.908 
+0.249 +j 6.404 
+0.655 +j 5.379 
+0.650 +j 5.376 
+0.654 +j 5.380 
4 . 3 1 0  +j 5.748* 
+0.899 +j 5.354 

Table 1. Critical Pair of Zeros for Different Transfer 
Functions of the 5-Machine System 

Note: * The function Aw7(s)/A Vr7(s) has another critical zero of 
value z = +7.012 

Table 2 shows the critical pair of poles for the 5-machine 
system together with the critical pair of zeros for the 
Ad(s) /A  Vr4(3) transfer function. The various cases presented 
are descnbed below: 

1. Critical poles and zeros are presented for the base case 
condition described in [2]. 

2. A 10 percent reduction on the power interchange between 
G4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG, machines causes the troublesome pair of zeros to 
move slightly into the left-half plane, but the system 
continues to  present basically the same stabilization 
problem. 

3. The critical pair of zeros become stable when automatic 
excitation control is neglected on the generators GI, G2 and 
Gs. A sin le PSS at G4 can now stabilize the system 
through moiulation of the impedance loads at buses 1, 2, 3 
and 5. The maximum dampin achieved for the electre 
mechanical eigenvalue is about 4 k  since it will coincide with 
z =  4 . 2 4 2  +j 5.660 for infinite gain at the G4 stabilizer. 

4.The power system stabilizers (PSS) in GI, G2 and Ga 
practically do not alter the unstable eigenvalue pair but 
have a strongly positive effect on the critical zeros: 
z =  -0.562 +j 5.044. The stabilizers at GI, G2 and Gt are 
therefore needed not for being able to damp the unstable 
poles but for moving away the troublesome zeros. 

5. The presence of a stabilizer only in G1 also has a highly 
positive effect on Aw4(s /A  V,*(S), since the critical zeros 
become very well damped. 

Result No 5 of Table 2 informs in advance that a PSS in G4 
could stabilize the system if another PSS was already present at 
G1. This result indicates that the transfer function matrix: 

has well damped transmission zeros (see Section IV). This is 
actually the case, since the least damped transmission zeros of the 
matrix, calculated by a QZ routine, are z = -1.839 + j  9.157 and 
z =  -1.273 + j  6.635. 

Results on the Brazilian Interconnected System 

The power system analysed is a 616 bus-50 generator model 
of the South-Southeast Brazilian Interconnected System (8 . The 

system stabilizers, are presented in Table 5 of the next section. 
The reader should refer to [8] for additional information on this 
system model. 

Reference [8) described results showing that the inter-area 
mode (A1= -0.0017 +j 3.511) could be stabilized through a 
properly tuned SVC located at the terminals of the Jacui 
generating plant. The effectiveness of a SVC at this bus in 
damping this interarea mode actually depends on whether its bus 
voltage signal is local or remote. 

There exists a zero z1= -0.03537 +j 3.535 in the transfer 
function A V(s)/A&l(s), where V1 denotes the voltage magnitude 
of the Jacui generator bus. The proximity of zero z1 caused pole A 1  

to be invariably attracted to i t  as the SVC gain was raised. 

least damped eigenvalues of this system, in the absence o t' power 
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~~~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A V1(s)/ABvi(s) 

+0.0111 +j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.355 
-0.0354 +j 3.535 
-1.1970 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+j 2.222 
-2.2556 +j 3.251 
-0.1503 +j 6.099 

Therefore, a local voltage signal is ineffective in damping XI. 

The zero finding algorithms were used to determine which 
voltage magnitude si nal in the interconnected system could be 
effective in damping 81. After the calculation of zeros for many 
different transfer functions, the function A V40(s)/ABvl(s) was 
seen to have no zeros in the vicinity of XI. The bus numbered 549 
is actually in the Southeast area while the Jacui generator is in the 
Southern area. Eigenvalue results confirmed that XI could be 

A V4Q(s)/ABv1(s) 

+0.0325 +j 5.038 
-0.2160 +j 6.474 
-1.1889 +j 2.231 
-2.1770 +j 3.196 
-0.1380 +j 6.055 

effectively dam d-through a feedback loop on the function 
A VO(s)/AB&. 

The roup of converged zeros obtained by the Simultaneous 
Iteration afgorithm with 8 independent trial vectors and complex 
shift g = 0 +j 4.0 are shown in Table 3 for the transfer functions 
A P(s)/ABd(s) and A Wg(s)/A&*(s). The three troublesome 
zeros o these two functions are bold-faced in Table 3 and required 
between 4 to 8 iterations to converge to within a tolerance 10-5. 
Both functions have badly located zeros of frequency around 
5rad/s, indicating that this SVC, controlling either a local or 
remote bus voltage, is ineffective in damping another critical 
system mode: X2= -0.022 +j 5.374. 

' Table 3. Transfer Function Zeros Obtained 
by Simultaneous Iteration 

The order of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaugmented system equations for the 
Brazilian system is 2207. The au mented system matrix is 
factorized in 5.5 seconds on a VAX 117780. Every iteration of the 
Simultaneous Iteration algorithm takes 25 seconds of C.P.U. and 
involves 16 repeat solutions, large vector multiplications and the 
eigensolution of a (8x8) complex matrix. 

M. COMPARATIVE RESULTS ON THE ORIGINAL 
AND IMPROVED AESOPS ALGORITHMS 

convergence in the neighborhood of the solution. The convergence 
criteria used to obtain the results of Table 4 is based on the residue 
vector g = &- X_x. When all elements in & have magnitudes 
below 10-6 the case is considered to be converged. 

bisturb 
Gener. 
at Bus 

30 
30 
30 

31 
31 
31 

32 
32 
32 

33 
33 
33 

34 
34 
34 

35 
35 
35 

36 
36 
36 

37 
37 
37 

38 
38 
38 

39 
39 
39 

Initial 
Eigenval. 
Estimate 

.O +j 4.0 

.O +j 7.5 

.O +j 9.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.O +j 4.0 

.O +j 7.5 

.O +j 9.0 

.O +j 4.0 

.O +j 7.5 

.O +j 9.0 

.O +j 4.0 

.O +j 7.5 

.O +j 9.0 

.O +j 4.0 

.O +j 7.0 

.O +j 9.0 

.O +j 4.0 

.O +j 7.0 

.O +j 9.0 

.O +j 4.0 

.O +j 7.0 

.O +j 9.0 

.O +j 4.0 

.O +j 7.0 

.O +j 9.0 

.O +j 4.0 

.O +j 5.0 

.O +j 7.5 

.O +j 4.0 

.O +j 7.0 

.O +j 9.0 

Converged 
Eigenvalue 
for I.A. 

-.1117 +j 7.094 
-.1117 +j 7.094 
-.1117 +j  7.094 

-.2968 +j  6.956* 
-.2817 +j 7.537 
-.2817 +j 7.537 

-.2817 +j 7.537* 
-.2817 +j 7.537 
-.2817 +j 7.537 

-.2489 +j 3.687 
-.3707 +j 8.613 
-.3707 +j 8.613 

-.2489 +j  3.687 
-.2834 +j 6.282 
-.2968 +j 6.956 

-.2489 +j  3.687 
-.2968 +j 6.956 
-.4670 +j 8.963 

-.2489 +j 3.687 
-.2968 +j 6.956 
-.4670 +j 8.963 

-.4117 +j  8.778 
-.1117 +j 7.094 
-.4117 +j 8.778 

-.2489 +j 3.687 
-.3008 +j 5.793 
-.2834 +j 6.282 

-.2489 +j 3.687 
-.2489 +j 3.687 
-.2489 +j 3.687 

NO of Iter. 

I.A. 

8 
6 
7 

14 
7 
7 

17 
6 
6 

9 
7 
5 

8 
8 

10 

9 
8 
7 

10 
8 
6 

8 
12 
6 

9 
8 

10 

6 
6 
7 

- 
- 
O.A. 

24 
19 
22 

17 
9 
9 

15 
8 

10 

12 
17 
17 

28 
19 
14 

14 
17 
7 

13 
16 
11 

28 
45 
18 

28 
17 
15 

12 
13 
13 

- 

Results on the New England System 

Theoriginal AESOPS algorithm [16] was enhanced in 13) by 
working with the full nodal admittance matrix of the network 
rather than with this matrix reduced to the generator terminal 
buses. The results obtained in (31 for the New England Test 
System using the ori 'nal AESOPS algorithm are here displayed 
together with those oathe improved AESOPS algorithm (Table 4), 
so that their performances can be compaiatively evaluated. The 
eigenvalues shown in Table 4 differ slightly from those of (161, 
since speedgovernor and exciter saturation effects are neglected 
here. 

Table 4 compiles the results of the original and improved 
AESOPS obtained from 30 different program runs, and shows that 
the two algorithms converged to the same system ei envalues 
except for 2 cases. Therefore, the improved AESOPS afgorithm, 
with the initialization proposed in section VI, has the same 
desirable characteristic as the original one, i.e., it converges to an 
electromechanical eigenvalue which is dominant at the disturbed 
kenerator. The difference, however, is that the improved AESOPS 

The original AESOPS algorithm is known to ocasionally 
present problems of slow convergence 17 due to its heuristic 

algorithm since the Newton-Raphson method possess quadratic 

as a much faster convergence rate. 

nature. These problems do not occur wit 6 h  t e improved AESOPS 

Table 4. Eigenvalues for the New England Test System 

Note: Both original and improved AESOPS algorithms converged 
to the same eigenvalues, except for the two cases marked 
by the asterisk (*), where the original AESOPS algorithm 
converged to X = -.2834 +j 6.282. I.A. and O.A. are ab- 
breviations for improved AESOPS and original AESOPS. 

Figure 4 shows the Bode plot for AT )/A6(s) of equation 

pictorial explanation as to why the improved AESOPS algorithm 
applied to: 

a. generator at bus 39 will almost always converge to 
z = -0.2489 +j 3.687; 

b. generator at bus 32 will converge to 
zl = -0.2834 +j 6.282, and 
ZJ = 4.2489 +j 3.687, depending on the chosen initial 
value SO. 

Note that z =  -0.1117 +j 7.094, the lesser damped system 
mode, only caused a very slight magnitude dip in these two Bode 
plots because i t  is not dominant at generators 32 and 39. 

(8) for generators at buses 32 and 39. T mk ese plots provide a 

tz = -0.2817 +j 7.537 
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Jacui 
Itauba 
Itaipu 
LSolt. 
Itumb. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Gen. 39 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
53 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ 

.O +j 3.0 -.0017 +j 3.511 9 27 

.O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+j 3.0 -.0017 +j 3.511 9 13 

.O +j 6.0 -.0810 +j 6.988 7 38 

.O +j 5.0 -.0220 +j 5.374 10 11 

.O +j 5.0 -.0220 +j 5.374 9 9 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ I  

0 " " " " " "  
1 2  3 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 8 9 10 I 1  12 

Frequency in rod/s 

F'igare4. Bode plot of ATm(s)/A6(s) for generators 32 and 39 

Results on the Brazilian Interconnected System 

Table 5 shows some brief results on the original and the 
improved AESOPS algorithms for the Brazilian Interconnected 
System. The superiority of the latter algorithm over the former is 
very dear. 

~~ ~~~ 

p;k& 1 Initial I Converged 
Eigenval. Eigenvalue 

NO of Iter. 

at Bus Estimate 

Table 5. Eigenvalues for the Brazilian System 

X. CONCLUDING COMMENTS 

The work reported in this paper has led to the implementa- 
tion of the following algorithms to a comprehensive package for 
the analysis of smalkignal stability of power systems: 

1. A generalized QZ routine for finding all the zeros of a 
specified transfer function in the power system dynamic 
model. This algorithm has its use limited to moderate 
size systems, having a few hundred state variables. 

2. An inverse iteration algorithm for the calculation of a 
zero which is closest to a given point in the complex 
plane. 

3. A simultaneous iteration algorithm for the calculation of 
a group of zeros which are near to a given point in the 
complex plane. 

4. A Newton-Raphson algorithm to solve for the zeros of 
non-proper transfer functions 1151, i.e, those functions 
which need be expressed in terms of not only the state 

variables but also of the system input and its derivatives. 
This is actually the case of the improved AESOPS 
algorithm which is listed in the item 5 below. 

5. An improved AESOPS algorithm, neatly formulated as a 
transfer function zero finding problem and efficiently 
solved by an exact Newton-Raphson method. 

6. An al orithm based on the same concept as AESOPS to 
find t i e  modes which are dominant at the bus terminals 
of static VAr compensators or HVDC links. 

All these algorithms, except the QZ routine, are applied to 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaugmented system equations to solve large scale system 
problems. 

The original AESOPS algorithm is normally presented 
together with a long technical 'ustification, based on engineering 
considerations and intuition 1161. The formal mathematical 
description provided here for the improved AESOPS algorithm 
obviates the need for such considerations. 

The algorithm described in item 6 produced correct results 
but at this preliminary stage was not found to be advantageous in 
the practical analysis of low frequency oscillation problems. I t  is 
foreseen that such algorithm may find use in studies of higher 
frequenc oscillatory instability problems in systems with HVDC 
links (18701 multiple static compensator applications (191. 

Power system control specialists have recently applied 
Prony analysis [20] to calculate the major poles and zeros of 
specified transfer functions directly from field tests on large power 
systems. The algorithms described in this paper produce results 
which can be cross-checked with those from Prony analysis, 
allowing more effective validation of the power system data and 
computer models utilized. 

The algorithms listed in items 1 to 4 of this section were 
extended to the multi-input-multi-output case to find the 
invariant zeros of the system matrix. A brief result is presented in 
section VIII. 

The algorithms described in items 1 to 4 of this section 
generate a number of extraneous zeros which created no practical 
difficulties to date but are a cause of concern. There is therefore a 
need for more refined algorithms which should operate on matrices 
of the same order as the number of finite zeros of the specified 
transfer function [23]. 
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APPENDIX 

Augmented System Equations 

The power system electromechanical stability problem can 
be modelled by a set of non-linear differential and algebraic 
equations to be solved simultaneously: 

where x is  the state vector and  is a vector of algebraic variables. 

Small-signal stability analysis involves the linearization of 
(A.l) around a system operating point ( s , ~ ~ ) :  

The power system state matrix A can be obtained by 
eliminating the vector of algebraic variables AE in equation (A.2): 

A$ = (51 - J2 Jr-'Js) Az = A Az (A.3) 

The eigenvalues of A provide information on the singular 
point stability of the system. The symbol A signifies an 
incremental chan e from a steadystate value and is often omitted 
along the text of &is paper. 

Matrix A is non sparse in this application and therefore all 
needed computer calculations become prohibitively expensive for 
large order systems. References [2,3,4,5,6,7,8,9,10 presented 

eigenvectors, frequency response plots, transfer function residues 
and step response plots, which do not require the explicit 
formation of the power system state matrix. These algorithms are 
directly applied to the large and highly sparse Jacobian matrix of 
equation (A.2 i  This Jacobian matrix equation will be here 
referred to as t e augmented system equations. 

The statespace description of the system shown in equation 
(1) of section I1 can be expressed in terms of the augmented system 
equations: 

algorithms for the calculation of eigenvalues, rig x t and left 

where: 

J = Jacobian matrix of the system 
sa = augmented state vector 
& = augmented input vector 
p = augmented output vector 

The basic equation relating state matrix, eigenvalues and 
eigenvectors is: 

A r i =  Aizi (A.5) 

where 

X i  = i-th eigenvalue of A 
= right eigenvector associated with Xi 

The equivalent equation in terms of the augmented system 
equations is: 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(st,xit)t is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaugmented eigenvector associated with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX i  and 
is denoted xis. 

For a neater com uter implementation, the Jacobian 
equations in A.2), (A.4f and (AA) should be reordered as 
discussed in [3f. However, for the sake of clarity and brevity, the 
algorithms proposed in this paper will be described using the 
ordering shown in this Appendix. 

Nelson Martins (M'1981) received his B.Sc. degree from the 
University of Brasilia, Brazil, in 1972. He received the M.Sc. and 
Ph.D. degrees, both in electrical engineering, from the University 
of Manchester, UK, in 1974 and 1978 respectively. 

Dr. Martins is presently a senior research engineer at 
CEPEL, the Brazilian electrical energy research center located in 
Rio de Janeiro. He developed new digitalzomputer tools and 
authored many papers in the area of power systems dynamics and 
control. 

Herminio J.C.P. Pinto received his B.Sc. and M.Sc. degrees, both 
in electrical engineering, from the Federal University of Rio de 
Janeiro, Brazil, in 1986 and 1990 respectively. Since 1986 he is 
with CEPEL, in the Systems Department and his current work 
and interests include power system operation and control and 
parallel processing. 

Leonard0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT.G. Lima (M'1990) received his B.Sc. degree in 
electrical engineering from Federal University of Rio de Janeiro, 
Brazil, in 1986. 

MI. Lima worked in CEPEL until 1988 and presently works 
at MARTE Engenharia S.A., an electrical consultant firm in Rio 
de Janeiro. His current work and interests include power system 
dynamics and development of large scale power system analysis 
tools. 

DISCUSSION 

J.C.Castro (Universidade Federal da Paraiba, Jog0 Pessoa, 
Paraiba, Brasil): The authors are commended for their valuable 
contribution in developing algorithms for determination of zeros in 
large power systems. 

The authors' concern on the zeros of a system is timely, since the 
effect of those zeros are usually disregarded on the analysis of 
power systems and design of their controllers. For instance, the 
PSS designs are usually concerned with the eigenvalues located on 
the verge of the instability region, which are the eigenvalues 
associated with the critical electromechanical modes, without 
taking into account the effect of the system zeros and the zeros 
introduced by the PSS. However, the zeros are closely related to 
controlability and observability of the modes. They also have a 
great effect on peaks of the response. 

The authors say that the open loop transfer function zeros of a 
plant are not chan ed by the addition of a feedback controller. 
This is always true for a SISO system but not rigorously true for a 
multivariable system as those studied in the paper. The authors 
themselves show that the troublesome zero of the 5-machine 
system is changed by applying PSS in GI, Gz and GI. That zero 
could be shifted by controlling these generators because it is not a 
zero of their transfer functions. 

The discusser would like to raise the following questions that arose 
from the analysis of the paper: 

1. Does the critical zero pattern change with different models 
representing the generators and the equivalent motor? 

2. Is the effect of the troublesome zero observed on the PSS 
tuning in the field? 

3. Why the South Brazilian Grid was represented by only three 
generators, disregarding, for instance, Salto Ozorio plant? 

Again, I commend the authors and encourage them to continue 
their interest in this field. 

RDoraiswcuui (University of New Brunswick, Fredericton, N.B., 
Canada): The authors are to be commended for proposing an 
efficient algorithm for finding the transfer function zeros of large 
power system dynamic models and for providing an improvement 
to the well known AESOPS algorithm. 

The zeros of the transfer function play an important role in both 
the design of a controller and in identifying the chan es in the 
system. Simplistic algorithms based directly on the deinition of 
zeros are generally non-robust even for lower order systems. The 
authors' algorithm is based on the fact that the eigenvalues 
asymptotically approach the zeros as the feedback gain approaches 
infinity. It was shown by Davison [12] that this root locus 
approach is robust. 

The authors use augmented zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem equations so as to exploit 
sparsity and "one root or a set of roots at a time" approach and 
hence their algorithm can handle large systems. 

The authors have touched upon an important issue, namely the 
role of zeros. The controller design is constrained by the location of 
zeros especially when they are located in the right-half plane. 
Further the zero movements reflect the system changes. 

It would be instructive if the authors could elaborate on this issue 
in the context of the examples considered in the paper. What 
system parameters influence the zero locations? 

Could the authors elaborate on the rationale behind their 
approach of converting the problem of determining the poles of the 
system by findin the zeros of an improper transfer function 
(sections V and VI$? It is an interesting idea! 

To conclude, i t  is an excellent paper. 

Anan M.A.Hamdan (University of Science zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Technology, Irbid, 
Jordan): The authors are to be commended on their efforts to 
work out methods for calculating transfer functions zeros for large 
scale multimachine power systems. I would like to  make the 
following comments: 

In section 8 of the paper, the opening statement has to be 
qualified. System zeros are invariant under a range of state 
and output feedback [A], but they are not invariant under 
dynamic feedback. 

The zeros that are important are those of the return ratio of 
the feedback loop for a SISO system. The excitation loop is 
shown in Figure 1 for a single machine system. With no 
stabilization the position of the zeros of g1(s) in the complex 
plane are important. We have shown that g ~ ( s )  for a single 
machine connected to  an infinite busbar exhibits RHP zeros 
at some loading conditions [B]. The same transfer function 
for a machine connected to a multimachine power system 
can be calculated by the methods developed by the authors. 
Such transfer functions are likely to display RHP zeros for 
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a n-loop system where each machine has an excitation loop 
as in Figure 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAVref AVt 
G (4 

nomial of the return ratio,is @(s) = n2(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb(s) + nl(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 s ) .  [C] A.M.A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHam& & A.M.Elabdalla, "Stability Assessment of 
The roots of d(s) are dfferent than the zeros of the Multimachine Power Systems Using Multivariable 
uncompensated system. The parameters of the stabilizer Frequency Response Methods", Electric Power Systems 
numerator 4s) can be worked out if the desired positions of Research, V01.12, pp.209-218, 1987. 
the roots of $(s) are given [B]. RJ.Fleming, M.A.Mohan & K.Paravatisam, "Selection of 

the Parameters of Stabilizers in Multimachine Power 
Systems", zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE Tram. on Power Apparatus and Systems, 

J.Lu, H.D.Chang & J.Thorp, "Identification of Optimum 
Sites for Power System Stabilizer Application", IEEE 
Trans. on Power Systems, Vo1.5, pp.1302-1308,1990. 

[D] 

V01.100, pp.3017-3046, 1981. 

[E] 

AVt 
g p  

I I 

S.G.Jalali and F.L.Alvarado (The University of Wisconsin- 
Madison): This paper continues on the outstanding task of 
working with augmented matrices established by the authors in 
prior papers. The paper develops tools to calculate the zeros of 
H(s) using feedback theory. 

Figure 1 -Excitation loop with power system stabilizer H(s) = ct (SI - A)-' b 

Figure 2 -Excitation loop of a MMPS 

The system has a transfer function matrix Vt = G(s) Efd, 
where Vt and Efd are n-vectors. G( s) can be obtained from a 
state space representation with n-inputs and n-outputs as 
follows: x = A x  + B U, J = Cx. The zeros of this MIMO 
system can be calculated in many ways. In reference [C] we 
considered a 3-machine system studied in other papers as 
well [D]. The system zeros were calculated as the eigenvalues 
of the matrix N.A.M, where M is a right annihilator of C 
and N is a left annihilator of B. For the operating condition 
which was unstable, we calculated three open loop zeros in 
the RHP at 0.1 j4.59, 0.009 * j7.32 and 0.11 * j8.72. The 
presence of these RHP zeros of the open loop system makes 
i t  impossible to stabilize the system using constant state or 
output feedback. The reason is that these zeros are invariant 
under such feedback and their presence keeps a lot of phase 
lag in the system. The stabilization scheme using speed 
signals from each of the three machines with double phase 
advance units adds more state variables to the system and 
takes a fresh set of outputs, thus reallocating the open loop 
zeros of the stabilized system [C]. Actually, with such a 
stabilization scheme we calculated the open loop zeros of the 
stabilized system and all of them were sbifted to the LHP. If 
a classical representation of the machines is used with no 
field windings the resulting MIMO representation has no 
zeros at all. It is stabilizable by constant state or output 
feedback in a scheme that is called ideal PSS's [E]. 

B.Kouvaritakis & A.G.J.MacFarlane, "Geometric Approach 
to Analysis and Synthesis of System Zeros", Int. J.of 
ContTOl, V01.23, pp.149-166, 1976. 

A.M.A. Hamdm & F.M. Hughes, "Analysis and Design of 
Power System Stabilizers", Int. J.of Control, Vo1.26, 
pp.769-782, 1977. 

The discussers would like offer a more direct way to reach the 
same result. The numerator of H(s) is a sum of the transposed CO- 
factors of (SI - A), weighted according to the nonzero values of _b 
and ~ t .  It can be verified that the same sum of co-factors is 
obtained from the evaluation of the determinant of 

While the co-factors are not the way to perform computations, 
they do provide a very direct proof of the same results in the paper 
without the need to resort to feedback theory and limits. This 
approach can give us additional insight about equation (4). For 
example, if b and Q are singletons, the rows and columns of the A 
matrix which correspond to the non zero elements of _b and st do 
not contribute to the location of the zeros. Therefore, they may be 
set to zero. 

E.E.Pefia and A.S.Silva (Universidade Federal de Santa Catarina, 
Florian6polis, Brasil . The authors are to be complimented for 

The search for zeros of power system transfer functions is an 
interesting topic to be dealt with and a valuable and timely 
contribution to the subject is the paper under discussion. 

Through the analysis of the paper some questions arose that the 
discussers would like to put forward: 

1. In the five machine example presented, one of the 
conclusions that the authors bring about is that the 
undamped or poorly damped poles problem can be solved 
through an appropriate choice of sites for PSS application, 
as shown in reference [I], and that installing PSS on sites 

their continuous WOK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; on the problem of power system dynamics. 
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other than the one chosen would in fact move critical zeros 
to more appropriate locations. Would the authors care to 
comment on how could the concepts of mode controlability 
and observability factors be used so as to determine the PSS 
site for zero relocation? Could this be thought of as a "dual" 
of the poorly damped poles problem? 

2. Can i t  be concluded that the problem of appropriate PSS 
location is now au mented with another problem, that is of 
PSS site for cr i t ic2 zero reallocation? 

3. The discussers feel that the sequential nature of the 
approach presented in the paper creates the situation of 
having to  close other loops so as to  relocate troublesome 
zeros as i t  is suggested in the paper under discussion. Do the 
authors foresee that the same situation would necessarily 
appear if a global, coordinated approach for PSS setting in 
multimachine power system is employed? Our experience 
with a method that presents such global characteristics and 
whose preliminary results are reported in 21 does not seem 

of zeros 
would be a problem if this approach is used. 

Finally the discussers would like to thank the authors for their 
time in answering the above questions. 

to indicate that the identification and reocation I 

Cases Studied 

111 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Martins zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& L.T.G. Lima, "Determination of Suitable 
Locations for Power System Stabilizers and Static VAr 
Compensators for Damping Electromechanical Oscillations 
in Large Scale Power Systems", zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE Trans. on Power zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Systems, vo1.5, no.4, pp.1455-1469, November 1990. 

[2] H.E.Peiia & A.J.A.Sim6ea Costa, "Controle Otimo 
Descentralizado Aplicado a0 Projeto de Estabilizadores de 
Sistemas de Pot&xia", in Proc. of VIII Congress0 Brasdearo 
de Aatomatica, V01.2, pp.762-768, September 1990 (in 
Portuguese). 

Generator Model 

CLOSURE 

Nelson Martins, Herminio J.C.P. Pinto & Leonard0 T.G. Lima: 
We thank the discussers for their valuable comments and 
questions. Many of these constitute contributions to the subject of 
the paper. We failed to make adequate reference to prior research 
on system zeros and references [Cl to  C3] are now included to 
partially fulfill this gap. Reference C2] was suggested to us by Dr. 
G. Verguese, from MIT, as essenti a! ly representing the state of the 
art on computational methods for moderatesjze problems (with no 
sparsity concerns The text of our paper is sometimes imprecise 
and we thank tke discussers for having pointed some of the 
necessary corrections. 

We will answer to each discusser separately, following the order 
suggested in letter by IEEE Service Center. 

4 

5 

Dr. J.C. Castro: 

The authors thank Dr. Castro for his comments on the role of 
system zeros in controller design. 

1) In the five machine system results, the generators were 
represented by six states: (AEdl', AEqll, AE,', Aw, A6, AEfd), 
where AEtd is used to model a f i rstader excitation control 

PSS's in GI,G2,G3 -.562+j5.044 -.283+j5.046 

PSS in G I  -.427+j5.835 -.107+j8.615 
-. 156+j5.661 

The damping of critical system poles is highly dependent on the 
degree of system modeling. The results of Table 2.b show that the 
same is true for the critical zeros. 

4-State 

-. 114+ j8.539 
+.225+j5.693 

1 2 /Lower Transfer I -.023+j5.958 -.111+j8.649 1 1 -.118+i8.525 

I !  1 +.188+35.699 1 
No AVR in GL,G2,G3 -.242+j5.660 -.095+j8.655 

-.093+ $3.543 
+ .064+ j5.552 I I I 

system. Inorder to  analyse the effect of system modeling on 
transfer function zeros, every generator was also represented by 
only four states: (AE,', Aw, Ab, AEfd . The system, in its base 
case configuration (case 1 of Table 21, has 28 eigenvalues (or 
transfer function poles) when considerin the 6state generator 
model. The function Aw4(s)/AVr4(s), for the same case and 
enerator model, has 25 zeros. Table 2.b shows the critical zeros 

for the transfer function Ad(s)/A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV~ ' (S )  obtained with two 
degrees of system modelin Critical zeros are here defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa l l  
those having a damping &tor (( smaller than 5%. When all 

smallest damping factor is printed. 
zeros have damping factors larger t b an this only that one with the 

Dr. R. Doraiswami: 

The authors thank Dr. Doraiswami for his comments on algorithm 
robustness and the role of system zeros. 

1) Dr. Doraiswami asked us to elaborate on the role of zeros in the 
context of the examples in this paper. Part of this answer is given 
in our replies to Dr. Castro, Dr. Hamdan and Messrs. Peiia and 
Silva. Regarding the results of Table 2, one may note that, except 
for case no 2, the critical pole remains practically unchanged while 
the critical zeros experience large changes. The little change 
observed in the critical pole is a result of the cases chosen for 
analysis. Consider now another result, case no 6, which differs 
from the base case by the absence of the AVR model in G7, the 
equivalent motor. The critical pole and zero, for case no 6, are 
X = +0.319 + j  5.279 and z=  -0.072 +j5.884. In this case it is the 
critical pole which suffers the largest change. 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbadly located zero may represent a physical impossibility to 
effective control action. Consider the transfer function 
Aw4(s)/AVr4(s) and note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz =  +0.049 +j5.908 (Case 1) 
changes to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz= 4 . 2 4 2  +j5.66 (Case 3) when removing the tight 
AVR control action from buses 1, 2, 3 (please refer to Figure 3). 
The total impedance load in this area (4631 MW) can only now be 
effectively modulated by the stabilizer at distant G4 to damp the 
unstable oscillations. 

The Bode plot of Figure 4 shows strikingly different polezero 
cancellations in the A T,i(s)/Abi(s) transfer function for 
generators 32 and 39. 

Every solution to a non-linear problem has its domain of attraction 
when using iterative methods such as Newton-Raphson. In low- 
order examples, the domain of attraction may be graphically 
expressed in terms of the problem variables. Regarding the Bode 
plot for generator 39 and considering the only problem variable to 
be the imaginary part of the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzero, one can see the large 
domain of attraction of the solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt = -0.2489 +j3.687. The 
rationale we are able to  offer is however rather simplistic. The 
desired robustness of the improved AESOPS algorithm was 
actually only obtained when initializing the iterative process with 
the augmented initial vector described in Section VI. 

-: 

We regret having left Dr. Hamdan's work unintentionally out of 
our list of references. We have followed Dr. Hamdan's work with 
high interest along the years. His publications [C4,C5] were the 
basis for some of our controller design work through frequency 
response techniques. 

We were not, at  the time, aware of [C , a paper in which Dr. 

We knew of his results OD RHP zeros for single machine infinite 
bus systems from [C4], a reference which we encourage control 
oriented engineers to  read. In this reference, a complex pair of 
RHP zeros of g,(s = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl(s)/D(s) are shown to move to the RHP as 
the torque angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd exceeds the critical value 6,. The critical value 
6, corresponds to an operating point beyond which aperiodic 
stability appears, i.e., the polynomial D(s) shows a real root in the 
RHP. 

Dr. Hamdan favors the use of the return ratio 
s) gl(s) + gas) L(s) ) which is linear with respect to the AVR 

g n , 6 u t  the design of L(s) becomes slightly more laborious. We 
have favored closin the voltage control loop and using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(K(s )  / (1 + K ( 2  gl(sfi) (gz(s) L(s)) as the return ratio. This is 
closer to adopte practices in stabilizer tuning and the return ratio 
becomes linear with respect to the L(s) gain, making simpler the 
stabilizer design. In his approach the zeros of the return ratio are 
given by #(s) = n1 s) b(s) + nZ(s) 4s) while in ours they are given 
by #(s) = nz(s) a($ Note that in his case the return ratio poles 
are the roots of D(s) = 0 while in ours they are the roots of 
d(s) D(s) + k n l ( s )  = 0; where K(s) = k/Iys) .  

Hamdan shows interesting results on mu I timachine system zeros. 

We thank the discussers for their encouraging remarks and 
the alternate proof to reach the results of our paper. We could not 
yet completely verify their proof but already made valuable use of 
the additional insight i t  brings to the problem. By reducing the 
rank of the determinant one can eliminate the generation of 

extraneous zeros. We apparently have found a simple way, based 
on the discussers' comments, to efficiently eliminate the 
extraneous zeros from our eigensolutions. 

Messrs. H.E. Peiia and A.S. Silva: 

1,2) The discussers are quite right. The same concept of transfer 
function residues 11 can be used to determine the PSS site for zero 
reallocation. 
methodology for the determination of the most ef ective set of 
feedback control loops in large scale dynamic systems. This 
methodology is based on the efficient calculation of 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 e have shortly described in C6) a new 

a) dominant poles and transmission zeros; 

b) transfer function residues [l] associated with the dominant 
poles and transmission zeros of the already chosen loops in 
the system. 

The methodology, as suggested by the discussers, is sequential: 
after one loop is chosen, the critical transmission zeros are 
obtained and their transfer function residues calculated. The 
transfer function residue with lar est modulus identifies the next 
control loop which, when close!, will shift most the critical 
transmission zeros. Further details and results on this 
methodology will be provided in a future publication. 

3) The lobal tuning carried out by the discussers in their 
reference f2] employs decentralized optimal control techniques. 
All the generators in their example system have stabilizers. We do 
not expect troublesome transmission zeros in our return ratio 
matrix when all excitation control loops in a system are used for 
stabilization. The troublesome zeros are more prone to appear 
when choosing only a subset of the total number of generators for 
damping control. The methodology described in our answer to the 
previous questions of the discussers will help in identifying the 
most adequate subset of control loops for system stabilization. 

Final Comments: 

We apologize for being unable to  provide satisfactory answers, 
within the brief confines of this closure, to  some of the questions 
raised by the discussers. We thank again the discussers for their 
valuable comments and questions. The discussers' interest in this 
paper reflects the practical importance of knowing better the role 
of system zeros in the design of power system controllers. Much 
work is still needed in this field. 
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