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Abstract

Latent Dirichlet allocation (LDA) is a pop-
ular topic modeling technique for explor-
ing hidden topics in text corpora. Increas-
ingly, topic modeling needs to scale to
larger topic spaces and use richer forms
of prior knowledge, such as word correla-
tions or document labels. However, infer-
ence is cumbersome for LDA models with
prior knowledge. As a result, LDA mod-
els that use prior knowledge only work
in small-scale scenarios. In this work,
we propose a factor graph framework,
Sparse Constrained LDA (SC-LDA), for
efficiently incorporating prior knowledge
into LDA. We evaluate SC-LDA’s ability
to incorporate word correlation knowledge
and document label knowledge on three
benchmark datasets. Compared to several
baseline methods, SC-LDA achieves com-
parable performance but is significantly
faster.

1 Challenge: Leveraging Prior
Knowledge in Large-scale Topic
Models

Topic models, such as Latent Dirichlet Alloca-
tion (Blei et al., 2003, LDA), have been success-
fully used for discovering hidden topics in text col-
lections. LDA is an unsupervised model—it re-
quires no annotation—and discovers, without any
supervision, the thematic trends in a text collec-
tion. However, LDA’s lack of supervision can
lead to disappointing results. Often, the hidden
topics learned by LDA fail to make sense to end
users. Part of the problem is that the objective
function of topic models does not always corre-
late with human judgments of topic quality (Chang
et al., 2009). Therefore, it’s often necessary to
incorporate prior knowledge into topic models to

improve the model’s performance. Recent work
has also shown that by interactive human feedback
can improve the quality and stability of topics (Hu
and Boyd-Graber, 2012; Yang et al., 2015). In-
formation about documents (Ramage et al., 2009)
or words (Boyd-Graber et al., 2007) can improve
LDA’s topics.

In addition to its occasional inscrutability, scal-
ability can also hamper LDA’s adoption. Conven-
tional Gibbs sampling—the most widely used in-
ference for LDA—scales linearly with the num-
ber of topics. Moreover, accurate training usu-
ally takes many sampling passes over the dataset.
Therefore, for large datasets with millions or even
billions of tokens, conventional Gibbs sampling
takes too long to finish. For standard LDA, re-
cently introduced fast sampling methods (Yao et
al., 2009; Li et al., 2014; Yuan et al., 2015) en-
able industrial applications of topic modeling to
search engines and online advertising, where cap-
turing the “long tail” of infrequently used topics
requires large topic spaces. For example, while
typical LDA models in academic papers have up
to 103 topics, industrial applications with 105–106

topics are common (Wang et al., 2014). Moreover,
scaling topic models to many topics can also re-
veal the hierarchical structure of topics (Downey
et al., 2015).

Thus, there is a need for topic models that can
both benefit from rich prior information and that
can scale to large datasets. However, existing
methods for improving scalability focus on topic
models without prior information. To rectify this,
we propose a factor graph model that encodes a
potential function over the hidden topic variables,
encouraging topics consistent with prior knowl-
edge. The factor model representation admits an
efficient sampling algorithm that takes advantage
of the model’s sparsity. We show that our method
achieves comparable performance but runs signifi-
cantly faster than baseline methods, enabling mod-



els to discover models with many topics enriched
by prior knowledge.

2 Efficient Algorithm for Incorporating
Knowledge into LDA

In this section, we introduce the factor model for
incorporating prior knowledge and show how to
efficiently use Gibbs sampling for inference.

2.1 Background: LDA and SparseLDA

A statistical topic model represents words in doc-
uments in a collection D as mixtures of T top-
ics, which are multinomials over a vocabulary of
size V . In LDA, each document d is associated
with a multinomial distribution over topics, θd.
The probability of a word type w given topic z
is φw|z . The multinomial distributions θd and φz
are drawn from Dirichlet distributions: α and β
are the hyperparameters for θ and φ. We represent
the document collection D as a sequence of words
w, and topic assignments as z. We use symmetric
priors α and β in the model and experiment, but
asymmetric priors are easily encoded in the mod-
els (Wallach et al., 2009).

Discovering the latent topic assignments z from
observed words w requires inferring the the pos-
terior distribution P (z|w). Griffiths and Steyvers
(2004) propose using collapsed Gibbs sampling.
The probability of a topic assignment z = t in
document d given an observed word type w and
the other topic assignments z− is

P (z = t|z−, w) ∝ (nd,t + α)
nw,t + β

nt + V β
(1)

where z− are the topic assignments of all other
tokens. This conditional probability is based on
cumulative counts of topic assignments: nd,t is the
number of times topic t is used in document d,
nw,t is the number of times word type w is used in
topic t, and nt is the marginal count of the number
of tokens assigned to topic t.

Unfortunately, explicitly computing the condi-
tional probability is quite for models with many
topics. The time complexity of drawing a sample
by Equation 1 is linear to the number of topics.
Yao et al. (2009) propose a clever factorization of
Equation 1 so that the complexity is typically sub-
linear by breaking the conditional probability into

three “buckets”:

∑

t

P (z = t|z−, w) =
∑

t

αβ

nt + V β
︸ ︷︷ ︸

s

(2)

+
∑

t,nd,t>0

nd,tβ

nt + V β

︸ ︷︷ ︸
r

+
∑

t,nw,t>0

(nd,t + α)nw,t
nt + V β

︸ ︷︷ ︸
q

.

The first term s is the “smoothing only”
bucket—constant for all documents. The second
term r is the “document only” bucket that is shared
by a document’s tokens. Both s and r have simple
constant time updates. The last term q has to be
computed specifically for each token, only for the
few types with non-zero counts in a topic, due to
the sparsity of word-topic count. Since q often has
the largest mass and few non-zero terms, we start
the sampling from bucket q.

2.2 A Factor Model for Incorporating Prior
Knowledge

With SparseLDA, inferring LDA models over
large topic spaces becomes tractable. However,
existing methods for incorporating prior knowl-
edge use conventional Gibbs sampling, which hin-
ders inference. We address this limitation in this
section by adding a factor graph to encode prior
knowledge.

LDA assumes that the hidden topic assignment
of a word is independent from other hidden top-
ics, given the document’s topic distribution θ.
While this assumption facilitates computational
efficiency, it loses the rich correlation between
words. In many scenarios, users have external
knowledge regarding word correlation, document
labels, or document relations, which can reshape
topic models and improve coherence.

Prior knowledge can constrain what models dis-
cover. A correlation between two words v and w
indicates that they have a similar topic distribu-
tion, i.e., p(z|v) ≈ p(z|w).1 Therefore, the poste-
rior topic assignments v and w will be correlated.
In contrast, if v and w are uncorrelated, nothing—
other than the Dirichlet’s rich get richer effect—
prevents the topics from diverging. Similarly, if
two documents share a label, then it is reasonable

1In (Andrzejewski et al., 2009) two correlated words are
taken to indicate that p(v|z) ≈ p(w|z). However, for word
types that have very different frequencies, these two quan-
tities would never be close, and thus p(z|v) ≈ p(z|w) is a
more intuitive constraint.
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to assume that they are more likely than two ran-
dom documents to share topics.

We denote the set of prior knowledge as M .
Each prior knowledge m ∈ M defines a potential
function fm(z, w, d) of the hidden topic z of word
type w in document d with which m is associated.
Therefore, the complete prior knowledge M de-
fines a score on the current topic assignments z:

ψ(z,M) =
∏

z∈z
exp fm(z, w, d) (3)

If m is knowledge about word type w, then
fm(z, w, d) applies to all hidden topics of word
w. If m is knowledge about document d, then
fm(z, w, d) applies to all topics that are in docu-
ment d. The potential function assigns large values
to the topics that accord with prior knowledge but
penalizes the topic assignments that disagree with
the prior knowledge. In an extreme case, if a prior
knowledge m says word type w in document d is
Topic 3, then the potential function fm(z, w, d) is
zero for all topics but Topic 3.

Since the potential function ψ is a function of
z, and it is only a real-value score of current topic
assignments, the potential can be factored out of
the marginalized joint:

P (w, z|α, β,M) = P (w|z, β)P (z|α)ψ(z,M) (4)

=

∫

θ

∫

φ

p(w|z, φ)p(φ|β)p(z|θ)p(θ|α)ψ(z,M)dθdφ

= ψ(z,M)

∫

θ

∫

φ

p(w|z, φ)p(φ|β)p(z|θ)p(θ|α)dθdφ.

Given the joint likelihood and observed data, the
goal is evaluate the posterior P (z|w). Com-
puting P (z|w) involves evaluating a probabil-
ity distribution on a large discrete state space:
P (z|w) = P (z,w)/

∑
z P (z,w). Griffiths and

Steyvers (2004)—mirroring the original inspira-
tions for Gibbs sampling (Geman and Geman,
1990)—draw an analogy to statistical physics,
viewing standard LDA as a system that favors con-
figurations z that compromise between having few
topics per document and having few words per
topic, with the terms of this compromise being set
by the hyperparameters α and β. Our factor model
representation of prior knowledge adds a further
constraint that asks the model to also consider en-
sembles of topic assignments z that are compatible
with a standard LDA model and the given prior
knowledge.

The collapsed Gibbs Sampling for inferring

topic assignment z of word w in document d is:

P (z = t|w, z−,M) (5)

=
P (w, z−, z = t|α, β,M)

P (w, z−|α, β,M)

=
P (w, z−, z = t)

P (w, z−)
ψ(z−, z = t,M)

ψ(z−,M)

∝
{
(nd,t + α)

nw,t + β

nt +Wβ

}
ψ(z−, z = t,M)

ψ(z−,M)

∝
{
(nd,t + α)

nw,t + β

nt +Wβ

}
exp fm(z = t, w, d).

The first term is identical to standard LDA, and
admits efficient computation using SparseLDA.
However, if the second term, exp fm(z, w, d), is
dense, we still need to compute it explicitly T
times (once for each topic) because we need the
summation of P (z = t) for sampling. There-
fore, the critical part of speeding up the sampler is
finding a sparse representation of the second term.
In the following sections, we show that natural,
sparse prior knowledge representations are possi-
ble. We first present an efficient sparse representa-
tion of word correlation prior knowledge and then
one for document-label knowledge.

2.3 Word Correlation Prior Knowledge
We now illustrate how we can encode word cor-
relation knowledge as a set of sparse constraints
fm(z, w, d) in our model. In previous work (An-
drzejewski et al., 2009; Hu et al., 2011; Xie et al.,
2015), word correlation prior knowledge is repre-
sented as word must-link constraints and cannot-
link constraints. A must-link relation between two
words indicates that the two words tend to be re-
lated to the same topics, i.e. their topic probabil-
ities are correlated. In contrast, a cannot-link re-
lation between two words indicates that these two
words are not topically similar, and they should
not both be prominent within the same topic. For
example, “quarterback” and “fumble” are both re-
lated to American football, so they can share a
must-link relation. But “fumble” and “bank” im-
ply two different topics, so they share a cannot-
link.

Let us say word w is associated with a set
of prior knowledge correlations Mw. Each prior
knowledge m ∈ Mw is a word pair (w,w′), and
it has “topic preference” of w given its correla-
tion word w′. The must-link set of w is Mm

w ,
and the cannot-link set of w is M c

w, i.e., Mw =
M c
w

⋃
Mm
w . In the example above, Mm

fumble =
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{quarterback}, and M c
fumble = {bank}, so

Mfumble = {quarterback, bank}. The topic as-
signment of word “fumble” has higher conditional
probability for the same topics as “quarterback”
but lower probability for topics containing “bank”.

The potential score of sampling topic t for word
type w—if Mw is not empty—is

fm(z, w, d) =
∑

u∈Mm
w

logmax(λ, nu,z)+

∑

v∈Mc
w

log
1

max(λ, nv,z)
.

(6)

where λ is a hyperparameter, which we call the
correlation strength. The intuitive explanation of
Equation 6 is that the prior knowledge about the
word type w will make an impact on the condi-
tional probability of sampling the hidden topic z.
Unlike standard LDA where every word’s hidden
topic is independent of other words given θ, Equa-
tion 6 instead increases the probability that a word
w will be drawn from the same topics as those of
w’s must-link word set, and decreases its probabil-
ity of being drawn from the same topics as those
of w’s cannot-link word set.

The hyperparameter λ controls the strength of
each piece of prior knowledge. The smaller λ is,
the stronger this correlation is. For large λ, the
constraint is inactive for topics except those with
the large counts. As λ decreases, the constraint
becomes active for topics with lesser counts. We
can adjust the value of λ for each piece of prior
knowledge based on our confidence. In our exper-
iments, for simplicity, we use the same value λ for
all knowledge and set λ = 1.

From Equation 6 and Equation 5, the condi-
tional probability of a topic z in document d given
an observed word type w is:

P (z = t|w, z−,M)

∝
{

αβ

nt + V β
+

nd,tβ

nt + V β
+

(nd,t + α)nw,t
nt + V β

}

{ ∏

u∈Mm
w

max(λ, nu,t)
∏

v∈Mc
w

1

max(λ, nv,t)

}

(7)

As explained above, λ controls the “strength” of
the prior knowledge term. If λ is large, the prior
knowledge has little impact on the conditional
probability of topic assignments.

Let’s return to the question whether Equation 6
is sparse, allowing efficient computation of Equa-
tion 7. Fortunately, nu,t and nv,t, which are the

Figure 1: Histogram of nonzero topic counts for
word types in NYT-News dataset after inference.
81.9% word types have fewer than 50 topics with
nonzero counts. This sparsity allows our sparse
constraints to speed inference.

topic counts for must-link word u and cannot-
link word v, are often sparse. For example, in
a 100-topic model trained on the NIPS dataset,
87.2% of word types have fewer than ten top-
ics with nonzero counts. In a 500-topic model
trained on a larger dataset like the New York Times
News (Sandhaus, 2008), 81.9% of word types
have fewer than 50 topics with nonzero counts.
Moreover, the model becomes increasingly sparse
with additional Gibbs iterations. Figure 1 shows
the word frequency histogram of nonzero topic
counts of NYT-News dataset.

Therefore, the computational cost of Equation 7
can be reduced. SparseLDA efficiently computes
the s, r, q bins as in Equation 3. Then for words
that are associated with prior knowledge, we up-
date s, r, q with an additional potential term. We
only need to compute the potential term for the
topics whose counts are greater than λ. The col-
lapsed Gibbs sampling procedure is summarized
in Algorithm 1.

Algorithm 1 Gibbs Sampling for word type w in
document d, given w’s correlation set Mw

1: compute st, rt, qt with SparseLDA, (see Eq.
3)

2: for t← 0 to T do
3: update st, rt, qt. ∀u ∈Mw if nu,t > λ
4: end for
5: p(t) = st + rt + qt
6: sample new topic assignment for w from p(t)
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2.4 Other Types of Prior Knowledge
The factor model framework can also handle other
types of prior knowledge, such as document la-
bels, sentence labels, and document link relations.
We briefly describe document labels here.

Ramage et al. (2009) propose Labeled-LDA,
which improves LDA with document labels. It as-
sumes that there is a one-to-one mapping between
topics and labels, and it restricts each document’s
topics to be sampled only from those allowed by
the documents label set. Therefore, Labeled-LDA
can be expressed in our model. We define

fm(z, w, d) =

{
1, if z ∈ md

−∞, else
(8)

where md specifies document d’s label set con-
verted to corresponding topic labels. Since
fm(z, w, d) is sparse, we can speed up the train-
ing as well. Sentence-level prior knowledge (e.g.,
for sentiment or aspect models (Paul and Girju,
2010)) can be defined in a similar way.

Documents can be associated with other useful
metadata. For example, a scientific paper and the
prior work it cites might have similar topics (Di-
etz et al., 2007) or friends in a social network
might talk about the same topics (Chang and Blei,
2009). To model link relations, we can use Equa-
tion 6 and replace the word-topic counts nv,z with
document-topic counts nd,z . By doing so, we en-
courage related documents to have similar topic
structures. Moreover, the document-topic count is
also sparse, which fits into the efficient learning
framework.

Therefore, for different types of prior knowl-
edge, as long as we can define ψ(z,M) appropri-
ately so that f(z, w, d) are sparse, we are able to
speed up learning.

3 Experiments

In this section, we demonstrate the effectiveness of
our SC-LDA by comparing it with several baseline
methods on three benchmark datasets. We first
evaluate the convergence rate of each method and
then evaluate the learned model parameter φ—the
topic-word distribution—in terms of topic coher-
ence. We show that SC-LDA can achieve results
comparable to the baseline models but is signifi-
cantly faster. We set up all experiments on a 8-
Core 2.8GHz CPU, 16GB RAM machine.2

2Our implementation of SC-LDA is avail-
able at https://github.com/yya518/

DATASET DOCS TYPE TOKEN(APPROX)
NIPS 1,500 12,419 1,900,000
NYT-NEWS 3,000,000 102,660 100,000,000
20NG 18,828 21,514 1,946,000

Table 1: Characteristics of benchmark datasets.
We use NIPS and NYT for word correlation exper-
iments and 20NG for document label experiments.

3.1 Dataset

We use the NIPS and NYT-News datasets from
the UCI bag of words data collections.3 These
two datasets have no document labels, and we use
them for word correlation experiments. We also
use the 20Newsgroup (20NG) dataset,4 which has
document labels, for document label experiments.
Table 1 shows the characteristics of each dataset.
Since NIPS and NYT-News have already been pre-
processed, to ensure repeatability, we use the data
“as they are” from the sources. For 20NG, we
perform tokenization and stopword removal using
Mallet (McCallum, 2002) and remove words that
appear fewer than 10 times.

3.2 Prior Knowledge Generation

Word Correlation Prior Knowledge Previous
work proposes two methods to automatically gen-
erate prior word correlation knowledge from ex-
ternal sources. Hu and Boyd-Graber (2012) use
WordNet 3.0 to obtain synsets for word types, and
then if a synset is also in the vocabulary, they
add a must-link correlation between the word type
and the synset. Xie et al. (2015) use a different
method that takes advantage of an existing pre-
trained word embedding. Each word embedding is
a real-valued vector capturing the word’s semantic
meaning based on distributional similarity. If the
similarity between the embeddings of two word
types in the vocabulary exceeds a threshold, they
generate a must-link between the two words.

In our experiments, we adopt a hybrid method
that combines the above two methods. For a noun
word type, we first obtain its synsets from Word-
Net 3.0. We also obtain the embeddings of each
word from word2vec (Mikolov et al., 2013). If the
synset is also in the vocabulary, and the similar-
ity between the synset and the word is higher than
a threshold, which in our experiment is 0.2, we
generate a must-link between thee words. Empir-

sparse-constrained-lda.
3https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
4http://qwone.com/ jason/20Newsgroups/

5



ically, this hybrid method is able to obtain high
quality correlated words. For example, for the
NIPS dataset, the must-links we obtain for ran-
domness are {noise, entropy, stochasticity}.

Document Label Prior Knowledge Since doc-
uments in the 20NG dataset are associated with
labels, we use the labels directly as prior knowl-
edge.

3.3 Baselines

The baseline methods for incorporating word cor-
relation prior knowledge in our experiments are as
follows:
DF-LDA: incorporates word must-links and
cannot-links using a Dirichlet Forest prior in LDA
(Andrzejewski et al., 2009). Here we use Hu
and Boyd-Graber (2012)’s efficient implementa-
tion FAST-RB-SDW for DF-LDA.
Logic-LDA: encodes general domain knowledge
as first-order logic and incorporates it in LDA (An-
drzejewski et al., 2011). Logic-LDA has been
used for word correlations and document label
knowledge.
MRF-LDA: encodes word correlations in LDA as
a Markov random field (Xie et al., 2015).

We also use Mallet’s SparseLDA implementa-
tion for vanilla LDA in the topic coherence exper-
iment. We use a symmetric Dirichlet prior for all
models. We set α = 1.0, β = 0.01. For DF-LDA,
η = 100. For Logic-LDA, we use the default pa-
rameter setting in the package: a sample rate of
1.0 and step rate of 10.0. For MRF-LDA, we use
the default setting with γ = 1.0. (Parameter se-
mantics can be found in the original papers.)

3.4 Convergence

The main advantage of our method over other ex-
isting methods is efficiency. In this experiment,
we show the change of our model’s log likelihood
over time. In topic models, the log likelihood
change is a good indicator of whether a model has
converged or not. Figure 2 shows the log like-
lihood change over time for SC-LDA and three
baseline methods on NIPS and NYT-News dataset.
SC-LDA converges faster than all the other meth-
ods.

We also conduct experiments on SC-LDA with
varying numbers of word correlations. Table 2
shows the Gibbs sampling iteration time on the
1st, 50th, 100th and the 200th iteration. We also
incorporate different numbers of word correlations

Figure 2: Models’ log likelihood convergence on
NIPS dataset (above) and NYT-News dataset (be-
low). For NIPS, a 100-topic model with 100
must-links is trained. For NYT-News, a 500-
topic model with 100 must-links is trained. SC-
LDA reaches likelihood convergence much more
rapidly than the other methods.

# Word Correlations
round C0 C100 C500 C1000
1st iteration 2.02 2.14 2.30 2.50
50th iteration 0.53 0.56 0.58 0.62
100th iteration 0.48 0.50 0.53 0.56
200th iteration 0.48 0.49 0.52 0.56

Table 2: SC-LDA runtime (in seconds) in the
1st, 50th, 100th, and 200th iteration with different
numbers of correlations.

in SC-LDA. SC-LDA runs faster as sampling pro-
ceeds as the sparsity increases, but additional cor-
relations slow the model.

3.5 Topic Coherence

Topic models are often evaluated using perplex-
ity on held-out test data, but this evaluation is of-
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ten at odds with human evaluations (Chang et al.,
2009). Following Mimno et al. (2011), we em-
ploy Topic Coherence—a metric that is consis-
tent with human judgment—to measure a topic
model’s quality. Topic t’s coherence is defined

as C(t : V (t)) =
∑M

m=2

∑m−1
l=1 log

F (v
(t)
m ,v

(t)
l )+ε

F (v
(t)
l )

,

where F (v) is the document frequency of word
type v, F (v, v′) is the co-document frequency of
word type v and v′, and V (t) = (v

(t)
1 , ..., v

(t)
M ) is

a list of the M most probable words in topic t.
In our experiments, we choose the ten words with
highest probability in the topic to compute topic
coherence, i.e., M = 10. Mimno et al. (2011) use
ε = 1, but Röder et al. (2015) show smaller ε (such
as 10−12) improves coherence stability, so we set
ε = 10−12. Larger topic coherence scores imply
more coherent topics.

We train a 500-topic model on the NIPS dataset
with different methods and compare the average
topic coherence score and the average of the top
twenty topic coherence scores. Since the topics
learned by topic model often contain “bad” top-
ics (Mimno et al., 2011) which do not make sense
to end users, evaluating the top twenty topics re-
flects the model’s performance. We let each model
train for one hour. Figure 3 shows the topic co-
herence of each method. SC-LDA has about the
same average topic coherence with LDA but has
higher coherence score (-36.6) for the top 20 top-
ics than LDA (-39.1). This is because incorporat-
ing word correlation knowledge encourages cor-
related words to have high probability under the
same topic, thus improving the coherence score.
For the other methods, however, because they can-
not converge within an hour, their topic coherence
scores are much worse than SC-LDA and LDA.
This again demonstrates the efficiency of SC-LDA
over other baselines.

3.6 Document Label Prior Knowledge
SC-LDA can also handle other types of prior
knowledge. We compare it with Labeled-LDA
(Ramage et al., 2009). Labeled-LDA also uses
Gibbs sampling for inference, allowing direct
computation time comparisons.

Table 3 shows the average running time per it-
eration for Labeled-LDA and SC-LDA. Because
document labels apply sparsity to the document-
topic counts, the average running time per itera-
tion decreases as the number of labeled document
increases. SC-LDA exhibits greater speedup with

Figure 3: Average topic coherence and average top
20 topic coherence. The models are trained on
NIPS dataset with 500-topic and 100 word corre-
lations. SC-LDA achieves higher topic coherence
than other methods.

# Topics
T50 T100 T200 T500

Labeled-LDA 0.93 1.89 3.60 8.05
SC-LDA 0.38 0.45 0.51 0.72

# Labeled Documents
C500 C1000 C2000 C5000

Labeled-LDA 1.95 1.88 1.75 1.48
SC-LDA 0.51 0.45 0.41 0.31

Table 3: The average running time per iteration
over 100 iterations, averaged over 5 seeds, on
20NG dataset. Experiments begin with 100 top-
ics, 1000 labeled documents, and then vary one
dimension: number of topics (top), or number of
labeled documents (bottom).

more topics; when T = 500,5 SC-LDA runs more
than ten times faster than Labeled-LDA.

4 Related Work

This works brings together two lines of research:
incorporating rich knowledge into probabilistic
models and efficient inference of probabilistic
models on large datasets. Both are common ar-
eas of interest across many machine learning for-
malisms: probabilistic logic (Bach et al., 2015),
graph algorithms (Low et al., 2012), and proba-
bilistic grammars (Cohen et al., 2008). However,
our focus in this paper is the intersection of these
lines of research with topic models.

5For 20NG dataset, it may overfit the data with 500 topics,
but here we use it to demonstrate the scalability.
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Adding knowledge and metadata to topic mod-
els makes the models richer, more understandable,
and more domain-specific. A common distinc-
tion is upstream (conditioning on metadata) vs.
downstream models (conditioning on variables al-
ready present in a topic model to predict meta-
data) (Mimno et al., 2008). Downstream models
are typically better at prediction tasks such as pre-
dicting sentiment (Blei and McAuliffe, 2007), ide-
ology (Nguyen et al., 2014a), or links in a social
network (Chang and Blei, 2009). In contrast, our
approach—an upstream model—is often easier to
implement and leads to more interpretable topics.
Upstream models at the document level have been
used to understand the labels in large document
collections (Ramage et al., 2009; Nguyen et al.,
2014b) and capture relationships in document net-
works using Markov random fields (Daumé III,
2009). At the word level, Xie et al. (2015) in-
corporate word correlation to LDA by building a
Markov Random Field regularization, similar to
Newman et al. (2011), who use regularization to
improve topic coherence. However, despite these
exciting applications, the experiments in the above
work are typically on small datasets.

In contrast, there is a huge interest in improving
the scalability of topic models to large numbers
of documents, numbers of topics, and vocabular-
ies. Attempts to scale inference for topic mod-
els have started from both variational inference
and Gibbs sampling—two popular learning infer-
ence techniques for topic modeling. Gibbs sam-
pling is a popular technique because of its sim-
plicitly and low latency. However, for large num-
bers of topics, Gibbs sampling can become un-
wieldy. Porteous et al. (2008) address this issue by
creating an upper bound approximation that pro-
duces accurate results, while SparseLDA (Yao et
al., 2009) present an effective factorization that
speeds inference without sacrificing accuracy. Just
as our model builds on SparseLDA’s insights,
SparseLDA has been incorporated into commer-
cial deployments (Wang et al., 2014) and im-
proved using alias tables (Li et al., 2014). Yuan
et al. (2015) also presents an efficient constant
time sampling algorithm for building big topic
models. Variational inference can easily be paral-
lelized (Nallapati et al., 2007; Zhai et al., 2012),
but has high latency, which has been addressed
by performing online updates (Hoffman et al.,
2010) and taking stochastic gradients estimated by

MCMC inference (Mimno et al., 2012). In this
paper, we only focus on single-processor learning,
but existing parallelization techniques (Newman et
al., 2009) are applicable to our model.

At the intersection lies models that improve the
scalability of upstream topic model inference. In
addition to our SC-LDA, Hu and Boyd-Graber
(2012) speed Gibbs sampling in tree-based topic
models using SparseLDA’s factorization strategy,
and Hu et al. (2014) extend this approach by paral-
lelizing global parameter updates using variational
inference. Our work is more general (also encom-
passing document-based constraints) and is faster.
In contrast to these upstream models, Zhu et al.
(2013) and Nguyen et al. (2015) improve inference
of downstream models.

5 Conclusion

We present a factor graph framework for incorpo-
rating prior knowledge into topic models. By ex-
pressing the prior knowledge as sparse constraints
on the hidden topic variables, we are able to take
advantage of the sparsity to speed up training. We
demonstrate in experiments that our model runs
significantly faster than the other alternative mod-
els and achieves comparable performance in terms
of topic coherence. Efficient algorithms for incor-
porating prior knowledge with large topic models
will benefit several downstream applications. For
example, interactive topic modeling becomes fea-
sible because fast model updates reduce the user’s
waiting time and thus improve the user experience.
Personalized topic modeling is also an interesting
future direction in which the model will generate
a personalized topic structure based on the user’s
preferences or interests. For all these applications,
an efficient learning algorithm is a crucial prereq-
uisite.
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