
Journal of Arti�
ial Intelligen
e Resear
h 15 (2001) 289-318 Submitted 3/01; published 10/01

EÆ
ient Methods for Qualitative Spatial Reasoning

Jo
hen Renz renz�dbai.tuwien.a
.at

Institut f�ur Informationssysteme, Te
hnis
he Universit�at Wien

Favoritenstr.9, A-1040 Wien, Austria

Bernhard Nebel nebel�informatik.uni-freiburg.de

Institut f�ur Informatik, Albert-Ludwigs-Universit�at

Am Flughafen 17, D-79110 Freiburg, Germany

Abstra
t

The theoreti
al properties of qualitative spatial reasoning in the RCC-8 framework
have been analyzed extensively. However, no empiri
al investigation has been made yet.
Our experiments show that the adaption of the algorithms used for qualitative temporal
reasoning
an solve large RCC-8 instan
es, even if they are in the phase transition region
{ provided that one uses the maximal tra
table subsets of RCC-8 that have been identi�ed
by us. In parti
ular, we demonstrate that the orthogonal
ombination of heuristi
 methods
is su

essful in solving almost all apparently hard instan
es in the phase transition region
up to a
ertain size in reasonable time.

1. Introdu
tion

Representing qualitative spatial information and reasoning with su
h information is an
important subproblem in many appli
ations, su
h as natural language understanding, do
-
ument interpretation, and geographi
al information systems. The RCC-8
al
ulus (Randell,
Cui, & Cohn, 1992b) is well suited for representing topologi
al relationships between spatial
regions. Inferen
e in the full
al
ulus is, however, NP-hard (Grigni, Papadias, & Papadim-
itriou, 1995; Renz & Nebel, 1999). While this means that it is unlikely that very large
instan
es
an be solved in reasonable time, this result does not rule out the possibility that
we
an solve instan
es up to a
ertain size in reasonable time. Re
ently, maximal tra
table
subsets of RCC-8 were identi�ed (Renz & Nebel, 1999; Renz, 1999) whi
h
an be used to
speed up ba
ktra
king sear
h for the general NP-
omplete reasoning problem by redu
ing
the sear
h spa
e
onsiderably.

In this paper we address several questions that emerge from previous theoreti
al results
on RCC-8 (Renz & Nebel, 1999; Renz, 1999): Up to whi
h size is it possible to solve
instan
es in reasonable time? Whi
h heuristi
 is the best? Is it really so mu
h more eÆ
ient
to use the maximal tra
table subsets for solving instan
es of the NP-
omplete
onsisten
y
problem as the theoreti
al savings given by the smaller bran
hing fa
tors indi
ate or is
this e�e
t out-balan
ed by the forward-
he
king power of the interleaved path-
onsisten
y

omputations? This was the
ase for similar temporal problems (pointisable vs. ORD-Horn
relations) (Nebel, 1997). Is it possible to
ombine the di�erent heuristi
s in su
h a way that
more instan
es
an be solved in reasonable time than by ea
h heuristi
 alone?

We treat these questions by randomly generating instan
es and solving them using
di�erent heuristi
s. In doing so, we are parti
ularly interested in the hardest randomly

2001 AI A

ess Foundation and Morgan Kaufmann Publishers. All rights reserved.

Renz & Nebel

generated instan
es whi
h leads to the question of phase-transitions (Cheeseman, Kanefsky,
& Taylor, 1991): Is there a parameter for randomly generating instan
es of the
onsisten
y
problem of RCC-8 that results in a phase-transition behavior? If so, is it the
ase that the
hardest instan
es are mainly lo
ated in the phase-transition region while the instan
es not

ontained in the phase-transition region are easily solvable? In order to generate instan
es
whi
h are harder with a higher probability, we generate two di�erent kinds of instan
es. On
the one hand we generated instan
es whi
h
ontain
onstraints over all RCC-8 relations, on
the other hand we generated instan
es whi
h
ontain only
onstraints over relations whi
h
are not
ontained in any of the maximal tra
table subsets. We expe
t these instan
es to be
harder on average than the former instan
es.

The algorithmi
 te
hniques we use for solving these randomly generated instan
es are
borrowed from similar work on qualitative temporal reasoning (Nebel, 1997; van Beek &
Man
hak, 1996; Ladkin & Reinefeld, 1992). Additionally, we make use of the fragments
of RCC-8, named bH8, Q8, and C8, that permit polynomial-time inferen
es (Renz & Nebel,
1999; Renz, 1999). In the ba
ktra
king algorithm, whi
h is used to solve the reasoning
problem for full RCC-8, we de
ompose every disjun
tive relation into relations of one of
these tra
table subsets instead of de
omposing them into its base relations. This redu
es
the average bran
hing fa
tor of the ba
ktra
king tree from 4.0 for the base relations to
1.4375 for bH8, to 1.523 for C8, and to 1.516 for Q8. Although these theoreti
al savings

annot be observed in our experiments, using the maximal tra
table subsets instead of the
base relations leads to signi�
ant performan
e improvements.

This paper is stru
tured as follows. In Se
tion 2, we give a brief sket
h of the RCC-8

al
ulus and of the algorithms used for solving instan
es of RCC-8. In Se
tion 3 we des
ribe
the pro
edure for randomly generating instan
es, the di�erent heuristi
s we apply for solving
these instan
es, and how we measure the quality of the heuristi
s. In Se
tion 4 we evaluate
di�erent path-
onsisten
y algorithms in order to �nd the most eÆ
ient one to be used for
forward-
he
king in the ba
ktra
king sear
h. In Se
tion 5 we observe a phase-transition
behavior of the randomly generated instan
es and show that the instan
es in the phase-
transition region are harder to solve than the other instan
es. In Se
tion 6 we report on
the out
ome of running the di�erent heuristi
s for solving the instan
es and identify several
hard instan
es whi
h are mainly lo
ated in the phase-transition region. In Se
tion 7 we try
to solve the hard instan
es by orthogonally
ombining the di�erent heuristi
s. This turns
out to be very e�e
tive and leads to a very eÆ
ient solution strategy. Finally, in Se
tion 8
we evaluate this strategy by trying to solve very large instan
es.1

2. The Region Conne
tion Cal
ulus RCC-8

The Region Conne
tion Cal
ulus (RCC) is a �rst-order language for representation of and
reasoning about topologi
al relationships between extended spatial regions (Randell et al.,
1992b). Spatial regions in RCC are non-empty regular subsets of some topologi
al spa
e
whi
h do not have to be internally
onne
ted, i.e., a spatial region may
onsist of di�erent
dis
onne
ted pie
es. Di�erent relationships between spatial regions
an be de�ned based on
one dyadi
 relation, the
onne
ted relation C(a; b) whi
h is true if the topologi
al
losures
of the spatial regions a and b share a
ommon point.

1. The programs are available as an online appendix.

290

Effi
ient Methods for Qualitative Spatial Reasoning

Æ
��
Æ
��
X

Y

DC(X; Y)

Æ
��Æ
��
X

Y

EC(X; Y)

��
��
Æ
��Y X

Æ
��Y��
��
��
��

��
��
Æ
��

��
��

��
��

Æ
����
��

TPP(X; Y) TPP�1(X; Y)

X

Y

X Y

XX YX Y

PO(X; Y) EQ(X; Y) NTPP(X; Y) NTPP�1(X; Y)

Figure 1: Two-dimensional examples for the eight base relations of RCC-8

The Region Conne
tion Cal
ulus RCC-8 is a
onstraint language formed by the eight
jointly exhaustive and pairwise disjoint base relations DC, EC, PO, EQ, TPP, NTPP, TPP�1,
and NTPP�1 de�nable in the RCC-theory and by all possible unions of the base relations|
giving a total number of 28 = 256 di�erent relations. The base relations have the meaning
of DisConne
ted, Externally Conne
ted, Partial Overlap, EQual, Tangential Proper Part,
Non-Tangential Proper Part, and their
onverses. Examples for these relations are shown
in Figure 1. Constraints are written in the form xRy where x; y are variables for spatial
regions and R is an RCC-8 relation. We write the union of base relations as fR;Sg. The
union of all base relations, the universal relation, is written as f�g. Apart from union
([), other operations on relations are de�ned, namely,
onverse (^), interse
tion (\), and

omposition (Æ). The formal de�nitions of these operations are:

8x; y : x(R [S)y $ xRy _ xSy,
8x; y : x(R \ S)y $ xRy ^ xSy,
8x; y : xR^y $ yRx,
8x; y : x(R Æ S)y $ 9z : (xRz ^ zSy):

The
omposition of base relations
an be
omputed from the semanti
s of the relations and is
usually provided as a
omposition table (Randell, Cohn, & Cui, 1992a; Bennett, 1994). The
RCC-8
omposition table
orresponds to the given extensional de�nition of
omposition only
if the universal region is not permitted (Bennett, 1997). Based on this table,
ompositions
of disjun
tive relations
an be easily
omputed. In the following, bS denotes the
losure of
a set of RCC-8 relations S under
omposition, interse
tion, and
onverse.

A �nite set of RCC-8
onstraints � des
ribing the topologi
al relationships of n di�erent
regions
an be represented by an n�nmatrixM , where ea
h entryMij represents the RCC-8
relation holding between region i and region j. Without loss of generality, Mii = fEQg and
Mji = M^

ij
an be assumed. The fundamental reasoning problem (named RSAT) in this
framework is de
iding
onsisten
y of a set of spatial formulas �, i.e., whether there is a
spatial
on�guration where the relations between the regions
an be des
ribed by �. All
other interesting reasoning problem
an be redu
ed to it in polynomial time (Golumbi

& Shamir, 1993). Unfortunately, RSAT is NP-
omplete (Renz & Nebel, 1999), i.e., it is
unlikely that there is any polynomial algorithm for de
iding
onsisten
y. However, it was
shown in Nebel's (1995) paper that there are subsets S of RCC-8 for whi
h the
onsisten
y

291

Renz & Nebel

problem (written RSAT(S))
an be de
ided in polynomial time.2 In parti
ular the set of
eight base relations B was shown to be tra
table. From that it follows that bB
onsisting of
32 relations is also tra
table. An even larger tra
table subset
ontaining all base relations
is bH8 (Renz & Nebel, 1999), whi
h
ontains 148 out of the 256 RCC-8 relations. This set
was also shown to be maximal with respe
t to tra
tability, i.e., if any other RCC-8 relation
is added, the
onsisten
y problem be
omes NP-
omplete. Renz (1999) made a
omplete
analysis of tra
tability of RSAT by identifying all maximal tra
table subsets whi
h
ontain
all base relations, altogether three subsets bH8, Q8 (160 relations), and C8 (158 relations).
NP8 is the set of relations that by themselves result in NP-
ompleteness when
ombined
with the set of base relations. It
ontains the following 76 relations whi
h are not
ontained
in one of bH8;Q8; or C8 (Renz, 1999):

NP8 = fR j fPOg 6� R and (fNTPPg � R or fTPPg � R)

and (fNTPP�1g � R or fTPP�1g � R)g

[ffEC;NTPP;EQg; fDC;EC;NTPP;EQg;

fEC;NTPP�1;EQg; fDC;EC;NTPP�1;EQgg:

The maximal tra
table subsets
ontain the following relations (Renz, 1999):

bH8 = (RCC-8 n NP8) n fR j (fEQ;NTPPg � R and fTPPg 6� R)

or (fEQ;NTPP�1g � R and fTPP�1g 6� R)g

C8 = (RCC-8 n NP8) n fR j fECg � R and fPOg 6� R and

R \ fTPP;NTPP;TPP�1;NTPP�1;EQg 6= ;g

Q8 = (RCC-8 n NP8) n fR j fEQg � R and fPOg 6� R and

R \ fTPP;NTPP;TPP�1;NTPP�1g 6= ;g

All relations of Q8 are
ontained in one of bH8 or C8, i.e., bH8 [C8 = RCC-8 n NP8.
Although bH8 is the smallest of the three maximal tra
table subsets, it best de
omposes the
RCC-8 relations: When de
omposing an RCC-8 relation R into sub-relations Si of one of the
maximal tra
table subsets, i.e., R = S1[: : :[Sk, one needs on average 1.4375 bH8 relations,
1.516 Q8 relations, and 1.523 C8 relations for de
omposing all RCC-8 relations. Renz (2000)
gives a detailed enumeration of the relations of the three sets.

2.1 The Path-Consisten
y Algorithm

As in the area of qualitative temporal reasoning based on Allen's interval
al
ulus (Allen,
1983), the path-
onsisten
y algorithm (Montanari, 1974; Ma
kworth, 1977; Ma
kworth &
Freuder, 1985)
an be used to approximate
onsisten
y and to realize forward-
he
king
(Harali
k & Elliot, 1980) in a ba
ktra
king algorithm.

The path-
onsisten
y algorithm
he
ks the
onsisten
y of all triples of relations and
eliminates relations that are impossible. This is done by iteratively performing the following
operation

Mij Mij \Mik ÆMkj

2. Stri
tly speaking, this applies only to systems of regions that do not require regularity.

292

Effi
ient Methods for Qualitative Spatial Reasoning

Algorithm: Path-
onsisten
y
Input: A set � of binary
onstraints over the variables x1; x2; : : : ; xn of �

represented by an n� n matrix M .
Output: path-
onsistent set equivalent to �; fail, if su
h a set does not

exist.

1. Q := f(i; j; k); (k; i; j) j 1 � i; j; k � n; i < j; k 6= i; k 6= jg;
(i indi
ates the i-th variable of �. Analogously for j and k)

2. while Q 6= ; do
3. sele
t and delete a path (p; r; q) from Q;
4. if revise(p; r; q) then
5. if Mpq = ; then return fail

6. else Q := Q [f(p; q; s); (s; p; q) j 1 � s � n; s 6= p; s 6= qg.

Fun
tion: revise(i; k; j)
Input: three labels i, k and j indi
ating the variables xi; xj ; xk of �
Output: true, if Mij is revised; false otherwise.
Side e�e
ts: Mij and Mji revised using the operations \ and Æ

over the
onstraints involving xi, xk, and xj.

1. oldM := Mij ;
2. Mij := Mij\ (Mik ÆMkj);
3. if (oldM = Mij) then return false;
4. Mji := M^

ij ;

5. return true.

Figure 2: Path-
onsisten
y algorithm.

for all triples of regions i; j; k until a �xed point M is rea
hed. If M ij = ; for a pair
i; j, then we know that M is in
onsistent, otherwise M is path-
onsistent. Computing M

an be done in O(n3) time (see Figure 2). This is a
hieved by using a queue of triples of
regions for whi
h the relations should be re
omputed (Ma
kworth & Freuder, 1985). Path-

onsisten
y does not imply
onsisten
y. For instan
e, the following set of spatial
onstraints
is path-
onsistent but not
onsistent:

l l

l l

-

-

? ?

H
H
H
H
H
H
HHj

�
�
�

�
�
�

���
Z

X Y

W
EQ _ NTPP

TPP _ TPP�1

DC _ TPP EC _ NTPP

EC _ TPP

EC _ TPP

On the other hand,
onsisten
y does not imply path-
onsisten
y, sin
e path-
onsisten
y is
not a form of
onsisten
y (in its logi
al sense), but a form of disjun
tive non-redundan
y.
Nevertheless, path-
onsisten
y
an be enfor
ed to any
onsistent set of
onstraints by ap-

293

Renz & Nebel

Algorithm: Consisten
y
Input: A set � of RCC-8
onstraints over the variables x1; x2; : : : ; xn

and a subset S � RCC-8 that
ontains all base relations
and for whi
h De
ide is a sound and
omplete de
ision
pro
edure.

Output: true, i� � is
onsistent.

1. Path-Consisten
y(�)
2. if �
ontains the empty relation then return false

3. else
hoose an unpro
essed
onstraint xiRxj and
split R into S1; : : : ; Sk 2 S su
h that S1 [: : : [Sk = R

4. if no
onstraint
an be split then return De
ide(�)
5. for all re�nements Sl (1 � l � k) do
6. repla
e xiRxj with xiSlxj in �
7. if Consisten
y(�) then return true

Figure 3: Ba
ktra
king algorithm for de
iding
onsisten
y.

plying a path-
onsisten
y algorithm. If only relations in bH8, Q8, or C8 are used, however,
the path-
onsisten
y algorithm is suÆ
ient for de
iding
onsisten
y, i.e., path-
onsisten
y
de
ides RSAT(bH8), RSAT(Q8), and RSAT(C8), (Renz & Nebel, 1999; Renz, 1999).

2.2 The Ba
ktra
king Algorithm

In order to solve an instan
e � of RSAT, we have to explore the
orresponding sear
h spa
e
using some sort of ba
ktra
king. In our experiments, we used a ba
ktra
king algorithm
employed for solving qualitative temporal reasoning problems (Nebel, 1997), whi
h is based
on the algorithm proposed by Ladkin and Reinefeld (1992). For this algorithm (see Figure 3)
it is ne
essary to have a subset S � RCC-8 for whi
h
onsisten
y
an be de
ided by using a
sound and
omplete (and preferably polynomial) de
ision pro
edure De
ide. If S
ontains
all base relations, then ea
h relation R 2 RCC-8
an be de
omposed into sub-relations
Si 2 S su
h that R =

S
i Si. The size of a parti
ular de
omposition is the minimal number

of sub-relations Si whi
h is used to de
ompose R. The ba
ktra
king algorithm su

essively
sele
ts
onstraints of �, ba
ktra
ks over all sub-relations of the
onstraints a

ording to
their de
omposition and de
ides sub-instan
es whi
h
ontain only
onstraints over S using
De
ide.

The (optional) pro
edure Path-
onsisten
y in line 1 is used for forward-
he
king
and restri
ts the remaining sear
h spa
e. Nebel (1997) showed that this restri
tion does
not e�e
t soundness and
ompleteness of the algorithm. If enfor
ing path-
onsisten
y is
suÆ
ient for de
iding RSAT(S), De
ide(�) in line 5 is not ne
essary. Instead it is possible
to always return true there.

The eÆ
ien
y of the ba
ktra
king algorithm depends on several fa
tors. One of them is,
of
ourse, the size of the sear
h spa
e whi
h has to be explored. A
ommon way of measuring

294

Effi
ient Methods for Qualitative Spatial Reasoning

the size of the sear
h spa
e is the average bran
hing fa
tor b of the sear
h spa
e, i.e., the
average number of bran
hes ea
h node in the sear
h spa
e has (a node is a re
ursive
all of
Consisten
y). Then the average size of the sear
h spa
e
an be
omputed as b(n

2�n)=2,
where (n2 � n)=2 is the number of
onstraints whi
h have to be split when n variables are
given. For the ba
ktra
king algorithm des
ribed in Figure 3 the bran
hing fa
tor depends
on the average number of relations of the split set S into whi
h a relation has to be split.
The less splits on average the better, i.e., it is to be expe
ted that the eÆ
ien
y of the
ba
ktra
king algorithm depends on the split set S and its bran
hing fa
tor. Another fa
tor
is how the sear
h spa
e is explored. The ba
ktra
king algorithm of Figure 3 o�ers two
possibilities for applying heuristi
s. One is in line 3 where the next unpro
essed
onstraint

an be
hosen, the other is in line 5 where the next re�nement
an be
hosen. These two

hoi
es in
uen
e the sear
h spa
e and the path through the sear
h spa
e.

3. Test Instan
es, Heuristi
s, and Measurement

There is no previous work on empiri
al evaluation of algorithms for reasoning with RCC-8

and no ben
hmark problems are known. Therefore we randomly generated our test instan
es
with a given number of regions n, an average label-size l, and an average degree d of
the
onstraint graph. Further, we used two di�erent sets of relations for generating test
instan
es, the set of all RCC-8 relations and the set of hard RCC-8 relations NP8, i.e., those
76 relations whi
h are not
ontained in any of the maximal tra
table subsets bH8, C8, or
Q8. Based on these sets of relations, we used two models to generate instan
es, denoted
by A(n; d; l) and H(n; d; l). The former model uses all relations to generate instan
es, the
latter only the relations in NP8. The instan
es are generated as follows:

1. A
onstraint graph with n nodes and an average degree of d for ea
h node is generated.
This is a

omplished by sele
ting nd=2 out of the n(n � 1)=2 possible edges using a
uniform distribution.

2. If there is no edge between the ith and jth node, we set Mij = Mji to be the universal
relation.

3. Otherwise a non-universal relation is sele
ted a

ording to the parameter l su
h that
the average size of relations for sele
ted edges is l. This is a

omplished by sele
ting
one of the base relations with uniform distribution and out of the remaining 7 relations
ea
h one with probability (l�1)=7.3 If this results in an allowed relation (i.e., a relation
of NP8 for H(n; d; l), any RCC-8 relation for A(n; d; l)), we assign this relation to the
edge. Otherwise we repeat the pro
ess.

The reason for also generating instan
es using only relations of NP8 is that we assume
that these instan
es are diÆ
ult to solve sin
e every relation has to be split during the
ba
ktra
king sear
h, even if we use a maximal tra
table sub
lass as the split set. We only
generated instan
es of average label size l = 4:0, sin
e in this
ase the relations are equally
distributed.

3. This method
ould result in the assignment of a universal
onstraint to a sele
ted link, thereby
hanging
the degree of the node. However, sin
e the probability of getting the universal relation is very low, we
ignore this in the following.

295

Renz & Nebel

This way of generating random instan
es is very similar to the way random CSP in-
stan
es over �nite domains are usually generated (Gent, Ma
Intyre, Prosser, Smith, &
Walsh, 2001). A
hlioptas et al. (1997) found that the standard models for generating
random CSP instan
es over �nite domains lead to trivially
awed instan
es for n ! 1,
i.e., instan
es be
ome lo
ally in
onsistent without having to propagate
onstraints. Sin
e
we are using CSP instan
es over in�nite domains, A
hlioptas et al.'s result does not ne
-
essarily hold for our random instan
es. We, therefore, analyze in the following whether
our instan
es are also trivially
awed for n ! 1. In order to obtain a CSP over a �-
nite domain, we �rst have to transform our
onstraint graph into its dual graph where
ea
h of the n(n � 1)=2 edges Mij of our
onstraint graph
orresponds to a node in the
dual graph. Moreover, ea
h of the n variables of the
onstraint graph
orresponds to
n� 1 edges in the dual graph, i.e., the dual graph
ontains n(n� 1) edges and n(n� 1)=2
nodes. In the dual graph, ea
h node
orresponds to a variable over the eight-valued domain
D = fDC;EC;PO;TPP;TPP�1;NTPP;NTPP�1;EQg. Ternary
onstraints over these vari-
ables are imposed by the
omposition table, i.e., the
omposition rules Mij � Mik ÆMkj

must hold for all
onne
ted triples of nodes Mij;Mik;Mkj of the dual graph (Mij = M^
ji

for all i; j). There are

�
n
3

�
= n(n� 1)(n � 2)=6
onne
ted triples in the dual graph. The

overall number of triples in the dual graph is

�
n(n� 1)=2

3

�
. nd=2 unary
onstraints on

the domain of the variables Mij are given, i.e., there are

�
nd=2
3

�
triples in the dual graph

where all nodes are restri
ted by unary
onstraints. Therefore, the expe
ted number En
CT

of
onne
ted triples for whi
h unary
onstraints are given
an be
omputed as

En
CT =

n
3

!
�

nd=2
3

!

n(n� 1)=2
3

! :

For n!1, the expe
ted number of triples E1CT tends to d3=6. For the instan
es generated
a

ording to the model A(n; d; l), the probability that the unary
onstraints whi
h are
assigned to a triple lead to a lo
al in
onsisten
y is about 0; 0036% (only 58,989 out of the
2553 = 16; 581; 375 possible assignments are in
onsistent). Sin
e one lo
ally in
onsistent
triple makes the whole instan
e in
onsistent, we are interested in the average degree d for
whi
h the expe
ted number En

IT of lo
ally in
onsistent triples is equal to one. For the model
A(n; d; l) this o

urs for a value of d = 11:90, and E1IT = 0:5 for d = 9:44. For n = 100,
the expe
ted number of lo
ally in
onsistent triples is one for d = 13:98, and E100

IT = 0:5 for
d = 11:10. For the model H(n; d; l), none of the possible assignments of the triples leads to
a lo
al in
onsisten
y, i.e., all triples of the randomly generated instan
es of the H(n; d; l)
model are lo
ally
onsistent.4 This analysis shows that
ontrary to what A
hlioptas et
al. found for randomly generated CSP instan
es over �nite domains, the model H(n; d; l),
and the model A(n; d; l) for d small do not su�er from trivial lo
al in
onsisten
ies.

4. This is similar to the result for CSPs over �nite domains that by restri
ting the
onstraint type, e.g., if
only \not-equal"
onstraints as in graph-
oloring are used, it is possible to ensure that problems
annot
be trivially
awed.

296

Effi
ient Methods for Qualitative Spatial Reasoning

We solve the randomly generated instan
es using the ba
ktra
king algorithm des
ribed
in the previous se
tion. The sear
h spa
e on whi
h ba
ktra
king is performed depends on
the split set, i.e., the set of sub-relations that is allowed in the de
ompositions. Choosing the
right split-set in
uen
es the sear
h noti
eably as it in
uen
es the average bran
hing fa
tor
of the sear
h spa
e. We
hoose �ve di�erent split sets, the three maximal tra
table subsetsbH8;Q8; and C8, the set of base relations B and the
losure of this set bB whi
h
onsists of
38 relations. These sets have the following bran
hing fa
tors B: 4.0, bB: 2.50 , bH8: 1.438,
C8: 1.523, Q8: 1.516. This is, of
ourse, a worst
ase measure be
ause the interleaved path-

onsisten
y
omputations redu
e the bran
hing fa
tor
onsiderably (Ladkin & Reinefeld,
1997).

Apart from the
hoi
e of the split set there are other heuristi
s whi
h in
uen
e the eÆ-

ien
y of the sear
h. In general it is the best sear
h strategy to pro
eed with the
onstraint
with the most
onstraining relation (line 3 of Figure 3) and the least
onstraining
hoi
e of
a sub-relation (line 5 of Figure 3). We investigated two di�erent aspe
ts for
hoosing the
next
onstraint to be pro
essed (Nebel, 1997).

stati
/dynami
: Constraints are pro
essed a

ording to a heuristi
 evaluation of their

onstrainedness whi
h is determined stati
ally before the ba
ktra
king starts or dy-
nami
ally during the sear
h.

lo
al/global: The evaluation of the
onstrainedness is based on a lo
al heuristi
 weight

riterion or on a global heuristi

riterion (van Beek & Man
hak, 1996).

This gives us four possibilities we
an
ombine with the �ve di�erent split sets, i.e., a
total number of 20 di�erent heuristi
s. The evaluation of
onstrainedness as well as how
relations are de
omposed into relations of di�erent split sets depends on the restri
tiveness
of relations, whi
h is a heuristi

riterion (van Beek & Man
hak, 1996). Restri
tiveness
of a relation is a measure of how a relation restri
ts its neighborhood. For instan
e, the
universal relation given in a
onstraint network does not restri
t its neighboring relations at
all, the result of the
omposition of any relation with the universal relation is the universal
relation. The identity relation, in
ontrast, restri
ts its neighborhood a lot. In every triple
of variables where one relation is the identity relation, the other two relations must be equal.
Therefore, the universal relation is usually the least restri
ting relation, while the identity
relation is usually the most restri
ting relation. Restri
tiveness of relations is represented
as a weight in the range of 1 to 16 assigned to every relation, where 1 is the value of the
most and 16 the value of the least restri
ting relation. We dis
uss in the following se
tion
in detail how the restri
tiveness and the weight of a relation is determined.

Given the weights assigned to every relation, we
ompute de
ompositions and estimate

onstrainedness as follows. For ea
h split set S and for ea
h RCC-8 relation R we
ompute
the smallest de
omposition of R into sub-relations of S, i.e., the de
omposition whi
h re-
quires the least number of sub-relations of S. If there is more than one possibility, we
hoose
the de
omposition with the least restri
ting sub-relations. In line 5 of the ba
ktra
king al-
gorithm (see Figure 3), the least restri
ting sub-relation of ea
h de
omposition is pro
essed
�rst. For the lo
al strategy, the
onstrainedness of a
onstraint is determined by the size of
its de
omposition (whi
h
an be di�erent for every split set) and by its weight. We
hoose
the
onstraint with the smallest de
omposition larger than one and, if there is more than

297

Renz & Nebel

one su
h
onstraint, the one with the smallest weight. The reason for
hoosing the relation
with the smallest de
omposition is that it is expe
ted that forward-
he
king re�nes rela-
tions with a larger de
omposition into relations with a smaller de
omposition. This redu
es
the ba
ktra
king e�ort. For the global strategy, the
onstrainedness of a
onstraint xRy is
determined by adding the weights of all neighboring relations S; T with xSz and zTy to
the weight of R. The idea behind this strategy is that when re�ning the relation R with
the most restri
ted neighborhood, an in
onsisten
y is dete
ted faster than when re�ning a
relation with a less restri
ted neighborhood.

In order to evaluate the quality of the di�erent heuristi
s, we measured the run-time used
for solving instan
es as well as the number of visited nodes in the sear
h spa
e. Comparing
di�erent approa
hes by their run-time is often not very reliable as it depends on several
fa
tors su
h as the implementation of the algorithms, the used hardware, or the
urrent
load of the used ma
hine whi
h makes results sometimes not reprodu
ible. For this reason,
we ran all our run-time experiments on the same ma
hine, a Sun Ultra 1 with 128 MB of
main memory. Nevertheless, we suggest to use the run-time results mainly for qualitatively

omparing di�erent heuristi
s and for getting a rough idea of the order of magnitude for
whi
h instan
es
an be solved.

In
ontrast to this, the number of visited nodes for solving an instan
e with a parti
ular
heuristi
 is always the same on every ma
hine. This allows
omparing the path through the
sear
h spa
e taken by the single heuristi
s and to judge whi
h heuristi
 makes the better

hoi
es on average. However, this does not take into a

ount the time that is needed to make
a
hoi
e at a single node. Computing the lo
al
onstrainedness of a
onstraint is
ertainly
faster than
omputing its global
onstrainedness. Similarly,
omputing
onstrainedness
stati
ally should be faster than
omputing it dynami
ally. Furthermore, larger instan
es
require more time at the nodes than smaller instan
es, be it for
omputing path-
onsisten
y
or for
omputing the
onstrainedness. Taking running-time and the number of visited nodes
together gives good indi
ations of the quality of the heuristi
s.

A further
hoi
e we make in evaluating our measurements is that of how to aggregate
the measurements of the single instan
es to a total pi
ture. Some possibilities are to use
either the average or di�erent per
entiles su
h as the median, i.e., the 50% per
entile. The
d% per
entile for a value 0 < d < 100 is obtained by sorting the measurements in in
reasing
order and pi
king the measurement of the d% element, i.e., d% of the values are less than
that value. Suppose that most instan
es have a low value (e.g. running time) and only a
few instan
es have a very large value. Then the average might be larger than the values of
almost all instan
es, while in this
ase the median is a better indi
ation of the distribution
of the values. In this
ase the 99% per
entile, for instan
e, gives a good indi
ation of the
value of the hardest among the \normal" instan
es. We have
hosen to use the average
value when the measurements are well distributed and to use both 50% and 99% per
entile
when there are only a few ex
eptional values in the distribution of the measurements.

4. Empiri
al Evaluation of the Path-Consisten
y Algorithm

Sin
e the eÆ
ien
y of the ba
ktra
king algorithm depends on the eÆ
ien
y of the underlying
path-
onsisten
y algorithm, we will �rst
ompare di�erent implementations of the path-

onsisten
y algorithm. In previous empiri
al investigations (van Beek & Man
hak, 1996) of

298

Effi
ient Methods for Qualitative Spatial Reasoning

reasoning with Allen's interval relations (Allen, 1983), di�erent methods for
omputing the

omposition of two relations were evaluated. This was mainly be
ause the full
omposition
table for the interval relations
ontains 213 � 213 = 67108864 entries, whi
h was too large
at that time to be stored in the main memory. In our setting, we simply use a
omposition
table that spe
i�es the
ompositions of all RCC-8 relations, whi
h is a 256 � 256 table

onsuming approximately 128 KB of main memory. This means that the
omposition of
two arbitrary relations is done by a simple table lookup.

Van Beek and Man
hak (1996) also studied the e�e
t of weighting the relations in
the queue a

ording to their restri
tiveness and pro
ess the most restri
ting relation �rst.
Restri
tiveness was measured for ea
h base relation by su

essively
omposing the base
relation with every possible label, summing up the
ardinalities, i.e., the number of base
relations
ontained in the result of the
omposition, and suitably s
aling the result. The
reason for doing so is that the most restri
ting relation restri
ts the other relations on
average most and therefore de
reases the probability that they have to be pro
essed again.
Restri
tiveness of a
omplex relation was approximated by summing up the restri
tiveness
of the involved base relations. Van Beek and Man
hak (1996) found that their method of
weighting the triples in the queue is mu
h more eÆ
ient than randomly pi
king an arbitrary
triple. Be
ause of the relatively small number of RCC-8 relations, we
omputed the exa
t
restri
tiveness by
omposing ea
h relation with every other relation and summing up the

ardinalities of the resulting
ompositions. We s
aled the result into weights from 1 (the
most restri
ting relation) to 16 (the least restri
ting relations).

This gives us three di�erent implementations of the path-
onsisten
y algorithm. One in
whi
h the entries in the queue are not weighted, one with approximated restri
tiveness as
done by van Beek and Man
hak, and one with exa
t restri
tiveness.5 In order to
ompare
these implementations, we randomly generated instan
es with 50 to 1,000 regions. For
ea
h value of the average degree ranging from 8.0 stepping with 0.5 to 11.0 we generated
10 di�erent instan
es. Figure 4 displays the average CPU time of the di�erent methods
for applying the path-
onsisten
y algorithm to the same generated instan
es. It
an be
seen that the positive e�e
t of using a weighted queue is mu
h greater for our problem
than for the temporal problem (about 10� faster than using an ordinary queue without
weights
ompared to only about 2� faster (van Beek & Man
hak, 1996)). Determining the
weights of every relation using their exa
t restri
tiveness does not have mu
h advantage over
approximating their restri
tiveness using the approa
h by van Beek and Man
hak (1996),
however. For our further experiments we always used the \exa
t weights" method be
ause
determining the restri
tiveness amounts to just one table lookup.

As mentioned in the previous se
tion, one way of measuring the quality of the heuristi
s
is to
ount the number of visited nodes in the ba
ktra
k sear
h. In our ba
ktra
king
algorithm, path-
onsisten
y is enfor
ed in every visited node. Note that it is not adequate
to multiply the average running-time for enfor
ing path-
onsisten
y of an instan
e of a
parti
ular size with the number of visited nodes in order to obtain an approximation of
the required running time for that instan
e. The average running-time for enfor
ing path-

onsisten
y as given in Figure 4 holds only when all possible paths are entered into the
queue at the beginning of the
omputation (see line 1 of Figure 2). These are the paths

5. For the weighted versions we sele
t a path (i; k; j) from the queue Q in line 3 of the algorithm of Figure 2
a

ording to the weights of the di�erent paths in Q whi
h are
omputed as spe
i�ed above.

299

Renz & Nebel

0.001

0.01

0.1

1

10

100

1000

100 200 300 400 500 600 700 800 900 1000

C
P

U
 ti

m
e

(s
ec

)

nodes

Average CPU time of PCA using different queue methods for A(n,d,4.0)

"exact" weights
"approx." weights

no weights

Figure 4: Comparing the performan
e of the path-
onsisten
y algorithm using di�erent
methods for weighting the queue (70 instan
es/data point, d = 8:0 � 11:0)

whi
h have to be
he
ked by the algorithm. The path-
onsisten
y
omputation during the
ba
ktra
king sear
h is di�erent, however. There, only the paths involving the
urrently

hanged
onstraint are entered in the queue, sin
e only these paths might result in
hanges
of the
onstraint graph. This is mu
h faster than the full
omputation of path-
onsisten
y
whi
h is only done on
e at the beginning of the ba
ktra
k sear
h.

5. The Phase-Transition of RCC-8

When randomly generating problem instan
es there is usually a problem-dependent param-
eter whi
h determines the solubility of the instan
es. In one parameter range instan
es are
under
onstrained and are therefore soluble with a very high probability. In another range,
problems are over
onstrained and soluble with a very low probability. In between these
ranges is the phase-transition region where the probability of solubility
hanges abruptly
from very high to very low values (Cheeseman et al., 1991). In order to study the quality
of di�erent heuristi
s and algorithms with randomly generated instan
es of an NP-
omplete
problem, it is very important to be aware of the phase-transition behavior of the problem.
This is be
ause instan
es whi
h are not
ontained in the phase-transition region are often
very easily solvable by most algorithms and heuristi
s and are, thus, not very useful for

omparing their quality. Conversely, hard instan
es whi
h are better suited for
omparing
the quality of algorithms and heuristi
s are usually found in the phase-transition region.

In this se
tion we identify the phase-transition region of randomly generated instan
es
of the RSAT problem, both for instan
es using all RCC-8 relations and for instan
es using
only relations of NP8. Similarly to the empiri
al analysis of qualitative temporal reasoning
problems (Nebel, 1997), it turns out that the phase-transition depends most strongly on the
average degree d of the nodes in the
onstraint graph. If all relations are allowed, the phase-

300

Effi
ient Methods for Qualitative Spatial Reasoning

Probability of satisfiability for A(n,d,4.0)

4 6 8 10 12 14 16 18
20

40
60

80
100

50

100

average degree

nodes

Probability (%)

Median CPU time for A(n,d,4.0)

4 6 8 10 12 14 16 18
20

40
60

80
100

0
0.1
0.2
0.3
0.4
0.5
0.6

average degree

nodes

CPU time(s)

Figure 5: Probability of satis�ability and median CPU time for A(n; d; 4:0) using thebH8/stati
/global heuristi
 (500 instan
es per data point)

transition is around d = 8 to d = 10 depending on the instan
e size (see Figure 5). Be
ause
of the result of our theoreti
al analysis of the o

urren
e of trivial
aws (see Se
tion 3), it
an
be expe
ted that for larger instan
e sizes the phase-transition behavior will be overlaid and
mainly determined by the expe
ted number of lo
ally in
onsistent triples whi
h also depends
on the average degree d. Thus, although it seems that the phase-transition shifts towards
larger values of d as the instan
e size in
reases, the phase-transition is asymptoti
ally below
d = 9:44, the theoreti
al value for n ! 1 (see Se
tion 3). Instan
es whi
h are not path-

onsistent
an be solved very fast by just one appli
ation of the path-
onsisten
y algorithm
without further need for ba
ktra
king. When looking at the median CPU times given in
Figure 5, one noti
es that there is a sharp de
line of the median CPU times at the phase
transition. This indi
ates that for values of the average degree whi
h are higher than where
the phase-transition o

urs, at least 50% of the instan
es are not path-
onsistent.

When using only \hard" relations, i.e., relations in NP8, the phase-transition appears
at higher values for d, namely, between d = 10 and d = 15 (see Figure 6). As the median
runtime shows, these instan
es are mu
h harder in the phase-transition than in the former

ase. As in the previous
ase, but even more strongly, it seems that the phase-transition
shifts towards larger values of d as the instan
e size in
reases, and also that the phase-
transition region narrows.

In order to evaluate the quality of the path-
onsisten
y method as an approximation to

onsisten
y, we
ounted the number of instan
es that are in
onsistent but path-
onsistent
(see Figure 7), i.e., those instan
es where the approximation of the path-
onsisten
y algo-
rithm to
onsisten
y is wrong. First of all, one notes that all su
h instan
es are
lose to the
phase transition region. In the general
ase, i.e., when
onstraints over all RCC-8 relations
are employed, only a very low per
entage of instan
es are path-
onsistent but in
onsistent.
Therefore, the �gure looks very errati
. More data points would be required in order to
obtain a smooth
urve. However, a few important observations
an be made from this
�gure, namely, that path-
onsisten
y gives an ex
ellent approximation to
onsisten
y even
for instan
es of a large size. Ex
ept for very few instan
es in the phase-transition region,
almost all instan
es whi
h are path-
onsistent are also
onsistent. This pi
ture
hanges

301

Renz & Nebel

Probability of satisfiability for H(n,d,4.0)

6 8 10 12 14 16 18 20
20

40

60

80
50

100

average degree

nodes

Probability (%)

Median CPU time for H(n,d,4.0)

6 8 10 12 14 16 18 20
20

40

60

80

0

0.5

1

1.5

2

average degree

nodes

CPU time(s)

Figure 6: Probability of satis�ability and median CPU time for H(n; d; 4:0) using thebH8/stati
/global heuristi
 (500 instan
es per data point)

Percentage points of incorrect PCA answers for A(n,d,4.0)

4 6 8 10 12 14 16 18
20

40
60

80
100

0

0.1

0.2

0.3

0.4

0.5

0.6

average degree

nodes

PC-Failures (%)

Percentage points of incorrect PCA answers for H(n,d,4.0)

6 8 10 12 14 16 18 20
20

40

60

80

0
10
20
30
40
50
60
70
80

average degree

nodes

PC-Failures (%)

Figure 7: Per
entage points of in
orre
t answers of the path-
onsisten
y algorithm for
A(n; d; 4:0) and H(n; d; 4:0)

when looking at the H(n; d; 4:0)
ase. Here almost all instan
es in the phase-transition
region and many instan
es in the mostly insoluble region are path-
onsistent, though only
a few of them are
onsistent.

For the following evaluation of the di�erent heuristi
s we will randomly generate in-
stan
es with an average degree between d = 2 and d = 18 in the A(n; d; 4:0)
ase and
between d = 4 and d = 20 in the H(n; d; 4:0)
ase. This
overs a large area around the
phase-transition. We expe
t the instan
es in the phase-transition region of H(n; d; 4:0) to
be parti
ularly hard whi
h makes them very interesting for
omparing the quality of the
di�erent heuristi
s.

6. Empiri
al Evaluation of the Heuristi
s

In this se
tion we
ompare the di�erent heuristi
s by running them on the same randomly
generated instan
es. For the instan
es of A(n; d; 4:0) we ran all 20 di�erent heuristi
s

302

Effi
ient Methods for Qualitative Spatial Reasoning

Number of hard instances for A(n,d,4.0)

4 6 8 10 12 14 16 18 20
20

40
60

80
100

0
1
2
3
4
5
6
7
8
9

10

average degree

nodes

#Hard Instances

Number of hard instances for H(n,d,4.0)

6 8 10 12 14 16 18 20
20

40

60

80

0
50

100
150
200
250
300
350
400
450

average degree

nodes

#Hard Instances

Figure 8: Number of instan
es using more than 10,000 visited nodes for some heuristi
 for
A(n; d; 4:0) and H(n; d; 4:0)

(stati
/dynami
 and lo
al/global
ombined with the �ve split sets B; bB; bH8; C8;Q8) on the
same randomly generated instan
es of size n = 10 up to n = 100. For the instan
es of
H(n; d; 4:0) we restri
ted ourselves to instan
es with up to n = 80 regions be
ause larger
ones appeared to be too diÆ
ult.

In �rst experiments we found that most of the instan
es were solved very fast with
less than 1,000 visited nodes in the sear
h spa
e when using one of the maximal tra
table
subsets for splitting. However, some instan
es turned out to be extremely hard, they
ould
not be solved within our limit of 2 million visited nodes, whi
h is about 1.5 hours of CPU
time. Therefore, we ran all our programs up to a maximal number of 10,000 visited nodes
and stored all instan
es for whi
h at least one of the di�erent heuristi
s used more than
10,000 visited nodes for further experiments (see next se
tion). We
all those instan
es
the hard instan
es. The distribution of the hard instan
es is shown in Figure 8. It turned
out that for the heuristi
s using B as a split set and for the heuristi
s using dynami
 and
global evaluation of the
onstrainedness many more instan
es were hard than for the other

ombinations of heuristi
s. We, therefore, did not in
lude in Figure 8 the hard instan
es
of the B/dynami
/global heuristi
 for A(n; d; 4:0) and the hard instan
es for the heuristi
s
using B as a split set and the bB/dynami
/global heuristi
 for H(n; d; 4:0).

As Figure 8 shows, almost all of the hard instan
es are in the phase-transition region.
For A(n; d; 4:0) only a few of the 500 instan
es per data point are hard while for H(n; d; 4:0)
almost all instan
es in the phase-transition are hard. Altogether there are 788 hard instan
es
for A(n; d; 4:0) (out of a total number of 759,000 generated instan
es) and 75,081 hard
instan
es for H(n; d; 4:0) (out of a total number of 594,000 generated instan
es). Table 1
shows the number of hard instan
es for ea
h heuristi
 ex
ept for those whi
h were ex
luded
as mentioned above. The heuristi
s using bH8 as a split set solve more instan
es than the
heuristi
s using other split sets. Using C8 or Q8 as a split set does not seem to be an
improvement over using bB. Among the di�erent ways of
omputing
onstrainedness, stati

and global appears to be the most e�e
tive
ombination when using one of the maximal
tra
table subsets as a split set. For some split sets, dynami
 and lo
al also seems to be an

303

Renz & Nebel

Heuristi
s A(n; d; 4:0) H(n; d; 4:0) H(80; 14:0; 4:0)bH8/sta/lo
 64 21; 129 331bH8/sta/glo 42 10; 826 227bH8/dyn/lo
 52 9; 967 217bH8/dyn/glo 100 24; 038 345

C8/sta/lo
 81 28; 830 373

C8/sta/glo 58 15; 457 277

C8/dyn/lo
 78 32; 926 412

C8/dyn/glo 108 41; 565 428

Q8/sta/lo
 81 24; 189 346

Q8/sta/glo 54 13; 189 239

Q8/dyn/lo
 74 13; 727 255

Q8/dyn/glo 104 29; 448 368bB/sta/lo
 68 23; 711 344bB/sta/glo 89 13; 831 249bB/dyn/lo
 70 29; 790 379bB/dyn/glo 162 { {

B/sta/lo
 163 { {

B/sta/glo 222 { {

B/dyn/lo
 209 { {

B/dyn/glo (303) { {

total 788 75; 081 486

Table 1: Number of hard instan
es for ea
h heuristi

e�e
tive
ombination while
ombining dynami
 and global is in all
ases the worst
hoi
e
with respe
t to the number of solved instan
es.

In Figure 9 we
ompare the 50% and 99% per
entiles of the di�erent heuristi
s on
A(n; d; 4:0). We do not give the average run times sin
e we ran all heuristi
s only up to at
most 10,000 visited nodes whi
h redu
es the real average run time values. Ea
h data point
is the average of the values for d = 8 to d = 10. We took the average of the di�erent degrees
in order to
over the whole phase-transition region whi
h is about d = 8 for instan
es of
size n = 10 and d = 10 for instan
es of size n = 100. For all di�erent
ombinations of

omputing
onstrainedness, the ordering of the run times is the same for the di�erent split
sets: B � bB > C8; bH8;Q8. The run times of using stati
/lo
al, stati
/global, or dynami
/lo
al
for
omputing
onstrainedness are almost the same when
ombined with the same split set
while they are longer for all split sets when using dynami
/global (about 3 times longer
when using bB as a split set and about 1.5 times longer when using the other split sets).
The 99% per
entile run times are only about 1.5 times longer than the 50% per
entile run
times. Thus, even the harder among the \normal" instan
es
an be solved easily, i.e., apart
from a few hard instan
es, most instan
es
an be solved eÆ
iently within the size range
we analyzed. The errati
 behavior of the median
urves results from an aggregation of the
e�e
t whi
h
an be observed in Figure 5, namely, that some of the median elements in the
phase-transition are in
onsistent and easily solvable.

304

Effi
ient Methods for Qualitative Spatial Reasoning

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using STATIC,LOCAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using STATIC,LOCAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using STATIC,GLOBAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using STATIC,GLOBAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using DYNAMIC,LOCAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using DYNAMIC,LOCAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using DYNAMIC,GLOBAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using DYNAMIC,GLOBAL for A(n,d,4.0)

B-split
B^-split
C-split

H^8-split
Q-split

Figure 9: Per
entile 50% and 99% CPU time of the di�erent heuristi
s for solving
A(n; d; 4:0) (d = 8:0 to d = 10:0, 2,500 instan
es per data point)

305

Renz & Nebel

For the runtime studies for H(n; d; 4:0) we noti
ed that there are many hard instan
es
for n > 40 (see Figure 8), for n = 80 almost all instan
es in the phase-transition region are
hard (see last
olumn of Table 1). Also, as Table 1 shows, the number of hard instan
es
varies a lot for the di�erent heuristi
s. Therefore, it is not possible to
ompare the per
entile
running times of the di�erent heuristi
s for n > 40. For n = 80 and d = 14 (see last
olumn
of Table 1), for instan
e, the 50% and 99% per
entile element of the C8/dynami
/global
heuristi
 is element no.36 and element no.72, while it is element no.141 and element no.280
of the bH8/dynami
/lo
al heuristi
 (out of the 500 sorted elements), respe
tively.

For this reason we show the results only up to a size of n = 40 (see Figure 10). Again, we
took the average of the di�erent degrees from d = 10 to d = 15 in order to
over the whole
phase-transition region. The order of the run times is the same for di�erent
ombinations
of
omputing
onstrainedness: B � bB; C8 � Q8; bH8, while bH8 is in most
ases the fastest.
As for the A(n; d; 4:0) instan
es, the run times for dynami
/global were mu
h longer than
the other
ombinations. The 99% per
entile run times of the stati
/global
ombination
and for bH8 and Q8 of the dynami
/lo
al
ombination are faster than those of the other

ombinations. Although the median CPU times are about the same as for A(n; d; 4:0) for
n < 40, the per
entile 99% CPU times are mu
h longer. As it was already shown in Figure 7
and 8, this is further eviden
e that there are very hard instan
es in the phase-transition
region of H(n; d; 4:0).

7. Orthogonal Combination of the Heuristi
s

In the previous se
tion we studied the quality of di�erent heuristi
s for solving randomly
generated RSAT instan
es. We found that several instan
es whi
h are mainly lo
ated in the
phase-transition region
ould not be solved by some heuristi
s within our limit of 10,000
visited nodes in the sear
h spa
e. Sin
e the di�erent heuristi
s have a di�erent sear
h spa
e
(depending on the split set) and use a di�erent path through the sear
h spa
e (determined
by the di�erent possibilities of
omputing
onstrainedness), it is possible that instan
es are
hard for some heuristi
s but easily solvable for other heuristi
s. Nebel (1997) observed that
running di�erent heuristi
s in parallel
an solve more instan
es of a parti
ular hard set of
temporal reasoning instan
es proposed by van Beek and Man
hak (1996) than any single
heuristi
 alone
an solve, when using altogether the same number of visited nodes as for
ea
h heuristi
 alone. An open question of Nebel's investigation (Nebel, 1997) was whether
this is also the
ase for the hard instan
es in the phase-transition region.

In this se
tion we evaluate the power of \orthogonally
ombining" the di�erent heuristi
s
for solving RSAT instan
es, i.e., running the di�erent heuristi
s for ea
h instan
e in parallel
until one of the heuristi
s solves the instan
e. There are di�erent ways for simulating
this parallel pro
essing on a single pro
essor ma
hine. One is to use time sli
ing between
the di�erent heuristi
s, another is to run the heuristi
s in a �xed or random order until
a
ertain number of nodes in the sear
h spa
e is visited and if unsu

essful try the next
heuristi
 (
f. Huberman, Lukose, & Hogg, 1997). Whi
h possibility is
hosen and with
whi
h parameters (e.g., the order in whi
h the heuristi
s are run and the number of visited
nodes whi
h is spent for ea
h heuristi
) determines the eÆ
ien
y of the single pro
essor
simulation of the orthogonal
ombination. In order to �nd the best parameters, we ran all
heuristi
s using at most 10,000 visited nodes for ea
h heuristi
 on the set of hard instan
es

306

Effi
ient Methods for Qualitative Spatial Reasoning

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using STATIC,LOCAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

1

2

3

4

5

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using STATIC,LOCAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using STATIC,GLOBAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

1

2

3

4

5

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using STATIC,GLOBAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using DYNAMIC,LOCAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

1

2

3

4

5

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using DYNAMIC,LOCAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

Median CPU time using DYNAMIC,GLOBAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

0

1

2

3

4

5

10 15 20 25 30 35 40

C
P

U
 ti

m
e

(s
ec

)

nodes

99%-Percentile CPU time using DYNAMIC,GLOBAL for H(n,d,4.0)

B-split
C-split

B^-split
Q-split

H^8-split

Figure 10: Per
entile 50% and 99% CPU time of the di�erent heuristi
s for solving
H(n; d; 4:0) (d = 10:0 to d = 15:0, 5,500 instan
es per data point)

307

Renz & Nebel

A(n; d; 4:0) H(n; d; 4:0)

Heuristi
s Solved Instan
es 1. Response Solved Instan
es 1. ResponsebH8/sta/lo
 91:88% 19:80% 71:86% 6:92%bH8/sta/glo 94:67% 12:56% 85:58% 14:26%bH8/dyn/lo
 93:40% 24:37% 86:73% 22:28%bH8/dyn/glo 87:31% 13:58% 67:98% 15:00%

C8/sta/lo
 89:72% 6:35% 61:60% 1:47%

C8/sta/glo 92:64% 5:20% 79:41% 5:04%

C8/dyn/lo
 90:10% 5:96% 56:15% 2:26%

C8/dyn/glo 86:63% 6:60% 44:64% 2:40%

Q8/sta/lo
 89:72% 9:77% 67:78% 1:63%

Q8/sta/glo 93:15% 12:06% 82:43% 3:61%

Q8/dyn/lo
 90:61% 10:15% 81:72% 1:83%

Q8/dyn/glo 86:80% 12:82% 60:78% 4:61%bB/sta/lo
 91:37% 1:40% 68:42% 1:84%bB/sta/glo 88:71% 1:27% 81:58% 5:22%bB/dyn/lo
 91:12% 0:89% 60:32% 2:56%bB/dyn/glo 79:44% 0:89% { 1:83%

B/sta/lo
 79:31% 0:51% { 1:67%

B/sta/glo 71:83% 0:25% { 1:13%

B/dyn/lo
 73:48% 0:51% { 0:42%

B/dyn/glo { 0:13% { 0:49%

ombined 99:87% 96:48%

Table 2: Per
entage of solved hard instan
es for ea
h heuristi
 and per
entage of �rst re-
sponse when orthogonally running all heuristi
s. Note that sometimes di�erent
heuristi
s are equally fast. Therefore the sum is more than 100%.

identi�ed in the previous se
tion (those instan
es for whi
h at least one heuristi
 required
more than 10,000 visited nodes) and
ompared their behavior. Sin
e we ran all heuristi
s
on all instan
es already for the experiments of the previous se
tion, we only had to evaluate
their out
omes. This led to a very surprising result for the A(n; d; 4:0) instan
es, namely, all
of the 788 hard instan
es ex
ept for a single one were solved by at least one of the heuristi
s
using less than 10,000 visited nodes. In Table 2 we list the per
entage of hard instan
es
that
ould be solved by the di�erent heuristi
s and the per
entage of �rst response by ea
h
of them when running the heuristi
s in parallel (i.e., whi
h heuristi
 required the smallest
number of visited nodes for solving the instan
e). It turns out that the heuristi
s using bH8

as a split set did not only solve more instan
es than the other heuristi
s, they were also
more often the fastest in �nding a solution. Although the heuristi
s using the other two
maximal tra
table subsets Q8 and C8 as a split set did not solve signi�
antly more instan
es
than the heuristi
s using bB, they were mu
h faster in �nding a solution. Despite solving
the least number of instan
es, the heuristi
s using B as a split set were in some
ases the
fastest in produ
ing a solution.

308

Effi
ient Methods for Qualitative Spatial Reasoning

0

5

10

15

20

1 10 100 1000 10000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Minimal number of visited nodes

First Response for Solving the Hard Instances of A(n,d,4.0)

inconsistent
consistent

0

100

200

300

400

500

600

700

1 10 100 1000 10000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Minimal number of visited nodes

First Response for Solving the Hard Instances of H(n,d,4.0)

inconsistent
consistent

Figure 11: Fastest solution of the hard instan
es when running all heuristi
s in parallel

When
omparing the minimal number of visited nodes of all the heuristi
s for all the
hard instan
es, we found that only �ve of them (whi
h were all in
onsistent) required
more than 150 visited nodes. This is parti
ularly remarkable as all these instan
es are
from the phase-transition region of an NP-hard problem, i.e., instan
es whi
h are usually

onsidered to be the most diÆ
ult ones. Further note that about 15% (120) of the 788 (path-

onsistent) instan
es were in
onsistent, whi
h is mu
h higher than usual (
f. Figure 7).
Interestingly, most of those in
onsistent instan
es were solved faster than the
onsistent
instan
es. At this point, it should be noted that
ombining heuristi
s orthogonally is very
similar to randomized sear
h te
hniques with restarts (Selman, Levesque, & Mit
hell, 1992).
However, in
ontrast to randomized sear
h, our method
an also determine whether an
instan
e is in
onsistent. In Figure 11 we
hart the number of hard instan
es solved with the
smallest number of visited nodes with respe
t to their solubility. Due to the low number
of hard instan
es of A(n; d; 4:0), the �gure on the left looks a bit ugly but one
an at least
approximate the behavior of the
urves when
omparing it with the se
ond �gure on the
right whi
h is the same
urve for H(n; d; 4:0) (see below). The os
illating behavior of the
in
onsistent instan
es (more instan
es are solved with an odd than with an even number
of visited nodes) might be due to the sizes of the instan
es|we generated instan
es with
an even number of nodes only. The most diÆ
ult instan
e (n = 56; d = 10) was solved
as in
onsistent with the bB/stati
/global heuristi
 using about 91,000 visited nodes while all
heuristi
s using one of the maximal tra
table subsets as a split set failed to solve it even
when ea
h was allowed to visit 20,000,000 nodes in the sear
h spa
e.

We did the same examination for the set of 75,081 hard instan
es of H(n; d; 4:0). 2,640 of
these instan
es
ould not be solved by any of the 20 di�erent heuristi
s using 10,000 visited
nodes ea
h. Their distribution is shown in Figure 12(a). Similar to the hard instan
es
of A(n; d; 4:0), the heuristi
s using bH8 as a split set were the most su

essful ones for
solving the hard instan
es of H(n; d; 4:0), as shown in Table 2. They solved more of the
hard instan
es than any other heuristi
s and produ
ed the fastest response of more than
50% of the hard instan
es. There is no signi�
ant di�eren
e between using C8;Q8; or bB
as a split set, neither in the number of solved instan
es nor in the per
entage of �rst
response. Like in the previous
ase,
omputing
onstrainedness using the stati
/global or the
dynami
/lo
al heuristi
s resulted in more su

essful paths through the sear
h spa
e by whi
h

309

Renz & Nebel

Number of hard instances for H(n,d,4.0) using orthogonal combination

6 8 10 12 14 16 18 20
20

40

60

80

0
20
40
60
80

100

average degree

nodes

#Hard Instances

0

20

40

60

80

100

20000 40000 60000 80000 100000

N
um

be
r

of
 s

ol
ve

d
in

st
an

ce
s

Number of visited nodes

First Response for Solving the Hard Instances of H(n,d,4.0)

inconsistent
consistent

(a) (b)

Figure 12: Hard instan
es using orthogonal
ombination of all heuristi
 for H(n; d; 4:0),
(a) shows their distribution, (b) shows their fastest solution when using up to
100,000 visited nodes per heuristi

more instan
es were solved within 10,000 visited nodes than by the other
ombinations. On
average they produ
ed faster solutions than the other
ombinations.

The same observations as for A(n; d; 4:0)
an be made when
harting the fastest solutions
of the hard instan
es of H(n; d; 4:0) (see Figure 11). About 29% (21,307) of the solved
instan
es are in
onsistent. Most of them were, again, solved faster than the
onsistent
instan
es. More than 75% of the hard instan
es
an be solved with at most 150 visited nodes.
90%
an be solved with at most 1,300 visited nodes. Sin
e the bH8/dynami
/lo
al heuristi

alone solves more than 86% of the instan
es, it seems diÆ
ult to
ombine di�erent heuristi
s
in a way that more hard instan
es
an be solved while using not more than 10,000 visited
nodes altogether. However, when orthogonally
ombining the two best performing heuristi
s
(bH8/dynami
/lo
al and bH8/stati
/global) allowing ea
h of them a maximal number of 5,000
visitable nodes, we
an solve 92% (69,056) of the hard instan
es.

We tried to solve the 2,640 hard instan
es of H(n; d; 4:0) whi
h are not solvable using
orthogonal
ombination of heuristi
s with at most 10,000 visited nodes by using a maximal
number of 100,000 visited nodes. 471 of these instan
es are still not solvable, more than
75% of the solved instan
es are in
onsistent. The fastest response for the solved instan
es
is
harted in Figure 12(b). The most su

essful heuristi
s in giving the fastest response
are bH8/dynami
/lo
al (42.5%) and bH8/stati
/global (26.6%). The three heuristi
s using
stati
/global
omputation of
onstrainedness
ombined with using Q8; C8; and bB as a split
set gave the fastest response for 15.9% of the solved instan
es where the bB strategy was by
far the best among the three (9.4%).

8. Combining Heuristi
s for Solving Large Instan
es

In the previous se
tion we found that
ombining di�erent heuristi
s orthogonally
an solve
more instan
es using the same amount of visited nodes than any heuristi
 alone
an solve. In
this se
tion we use these results in order to identify the size of randomly generated instan
es

310

Effi
ient Methods for Qualitative Spatial Reasoning

up to whi
h almost all of them, espe
ially those in the phase-transition region,
an still be
solved in a

eptable time. Sin
e many instan
es of H(n; d; 4:0) are already too diÆ
ult for
a size of n = 80 (see Figure 12), we restri
t our analysis to the instan
es of A(n; d; 4:0) and
study randomly generated instan
es with a size of more than n = 100 nodes.

For instan
es of a large size allowing a maximal number of 10,000 visited nodes in
the sear
h spa
e is too mu
h for obtaining an a

eptable runtime. 10,000 visited nodes for
instan
es of size n = 100
orresponds to a runtime of more than 10 se
onds on a Sun Ultra1,
for larger instan
es it gets mu
h slower. Therefore, we have to restri
t the maximal number
of visited nodes in order to a
hieve an a

eptable runtime. Given a multi-pro
essor ma
hine,
the di�erent heuristi
s
an be run orthogonally on di�erent pro
essors using the maximal
number of visited nodes ea
h. If the orthogonal
ombination of the di�erent heuristi
s is
simulated on a single-pro
essor ma
hine, the maximal number of nodes has to be divided
by the number of used heuristi
s to obtain the available number of visitable nodes for ea
h
heuristi
. Thus, the more di�erent heuristi
s we use, the less visitable nodes are available
for ea
h heuristi
. Therefore, in order to a
hieve the best performan
e, we have to �nd
the
ombination of heuristi
s that solves most instan
es within a given number of visitable
nodes. The
hosen heuristi
s should not only solve many instan
es alone, they should also

omplement ea
h other well, i.e., instan
es whi
h
annot be solved by one heuristi
 should
be solvable by the other heuristi
.

We started by �nding the optimal
ombination of heuristi
s for the set of 788 hard
instan
es of A(n; d; 4:0). From our empiri
al evaluation given in Se
tion 6 we know how
many visited nodes ea
h heuristi
 needs in order to solve ea
h of the 788 hard instan
es.
Therefore, we
omputed the number of solved instan
es for all 220 possible
ombinations
of the heuristi
s using an in
reasing maximal number of visitable nodes for all heuristi
s
together. Sin
e we only tried to �nd the
ombination whi
h solves the most instan
es,
this
an be
omputed quite fast. The results are given in Table 3. They show that a
good performan
e
an be obtained with a maximal number of 600 visited nodes. In this

ase four heuristi
s were involved, i.e., 150 visitable nodes are spent on ea
h of the four
heuristi
s. Sin
e the same
ombination of heuristi
s (bH8/stati
/global, bH8/dynami
/lo
al,
C8/dynami
/lo
al, bB/stati
/lo
al) is also the best for up to 1,000 visitable nodes, we
hoose
this
ombination for our further analysis. We
hoose the order in whi
h they are pro
essed to
be 1. bH8/dynami
/lo
al, 2. bH8/stati
/global, 3. C8/dynami
/lo
al, 4. bB/stati
/lo
al a

ording
to their �rst response behavior given in Table 2. Note that although the two heuristi
s
C8/dynami
/lo
al and bB/stati
/lo
al do not show a parti
ularly good performan
e when
running them alone (see Table 2), they seem to best
omplement the other two heuristi
s.

What we have to �nd next is the maximal number of visitable nodes we spend for the
heuristi
s. For this we ran the best performing heuristi
 (bH8/dynami
/lo
al) on instan
es
of the phase-transition region of varying sizes. It turned out that for almost all
onsistent
instan
es the number of visited nodes required for solving them was slightly less than twi
e
the size of the instan
es while most in
onsistent instan
es are also not path-
onsistent and,
thus, solvable with only one visited node. Therefore, we ran the four heuristi
s in the
following allowing 2n visited nodes ea
h, where n is the size of the instan
e, i.e., together
we allow at most 8n visitable nodes. We randomly generated test instan
es a

ording to
the A(n; d; 4:0) model for a size of n = 110 regions up to a size of n = 500 regions with
a step of 10 regions and 100 instan
es for ea
h size and ea
h average degree ranging from

311

Renz & Nebel

Max Nodes Solved Instan
es Combination of Heuristi
s

100 516 bH8-d-l

200 705 bH8-s-g

300 759 bH8-s-g, bH8-d-l

400 769 bH8-s-g, C8-d-l

500 774 bH8-s-g, bH8-d-l, C8-d-l

600 778 bH8-s-g, bH8-d-l, C8-d-l, bB-s-l
700 780 bH8-s-g, bH8-d-l, C8-d-l, bB-s-l
800 783 bH8-s-g, bH8-d-l, C8-d-l, bB-s-l
900 784 bH8-s-g, bH8-d-l, C8-d-l, bB-s-l
1100 785 bH8-s-g, bH8-d-l, C8-d-l, bB-s-l, bB-s-g
1300 786 bH8-s-g, bH8-d-l, bB-s-l, bB-s-g
3900 787 bH8-s-g, bH8-d-l, bB-d-l

Table 3: Best performan
e of
ombining di�erent heuristi
s for solving the 787 solvable hard
instan
es of A(n; d; 4:0) with a �xed maximal number of visited nodes

Probability of satisfiability for A(n,d,4.0)

4 6 8 10 12 14 16 18
150

200
250

300
350

400
450

500
50

100

average degree

nodes

Probability (%)

Average number of visited nodes for A(n,d,4.0)

4 6 8 10 12 14 16 18
150

200
250

300
350

400
450

500

100
200
300
400
500
600
700
800
900

1000

average degree

nodes

Visited nodes

Figure 13: Probability of satis�ability for A(n; d; 4:0) (100 instan
es per data point) and
average number of visited nodes of the path-
onsistent instan
es when using
orthogonal
ombination of the four sele
ted heuristi
s

d = 2:0 to d = 18:0 with a step of 0.5, a total number of 132,000 instan
es. Sin
e solving
large instan
es using ba
ktra
king requires a lot of memory, we solved the instan
es on a
Sun Ultra60 with 1GB of main memory.

The generated instan
es display a phase-transition behavior whi
h
ontinues the one
given in Figure 5. The phase-transition ranges from d = 10:0 for n = 110 to d = 10:5
for n = 500 (see Figure 13). Apart from 112 instan
es, all other instan
es we gen-
erated were solvable by orthogonal
ombination of the four heuristi
s (bH8/stati
/global,bH8/dynami
/lo
al, C8/dynami
/lo
al, bB/stati
/lo
al) spending less than 2n visited nodes

312

Effi
ient Methods for Qualitative Spatial Reasoning

Percentile 70% CPU time using orthogonal combination for A(n,d,4.0)

4 6 8 10 12 14 16 18
150

200
250

300
350

400
450

500

0
5

10
15
20
25

average degree

nodes

CPU time (s)

Percentile 99% CPU time using orthogonal combination for A(n,d,4.0)

4 6 8 10 12 14 16 18
150

200
250

300
350

400
450

500

0

20

40

60

80

100

average degree

nodes

CPU time (s)

Figure 14: Per
entile 70% and 99% CPU time of the orthogonal
ombination of four di�er-
ent heuristi
s for solving large randomly generated instan
es of A(n; d; 4:0)

ea
h. In Figure 13 we give the average number of visited nodes of the path-
onsistent
instan
es. It
an be seen that for our test instan
es the average number of visited nodes
is linear in the size of the instan
es. The per
entile 70% CPU time for instan
es of the
phase-transition with a size of n = 500 regions is about 20 se
onds, the per
entile 99% CPU
time is about 90 se
onds. Up to a size of n = 400 regions, the per
entile 99% CPU time is
less than a minute (see Figure 14).

131,240 of our test instan
es were already solved by the bH8/stati
/global heuristi
,
for 71 instan
es the bH8/dynami
/lo
al heuristi
 was required and for 577 instan
es the
C8/dynami
/lo
al heuristi
 produ
ed the solution. None of the 112 instan
es whi
h were
not solved by one of those three heuristi
s were solved by the bB/stati
/lo
al heuristi
. We
tried to solve these instan
es using the other heuristi
s, again using a maximal number of 2n
visited nodes ea
h. The best performing among those heuristi
s was the C8/dynami
/global
heuristi
 whi
h solved 87 of the 112 instan
es followed by the C8/stati
/global heuristi
 (83)
and the Q8/dynami
/global heuristi
 (63). 7 instan
es were not solved by any heuristi

within a maximal number of 2n visited nodes.

9. Dis
ussion

We empiri
ally studied the behavior of solving randomly generated RSAT instan
es using
di�erent ba
ktra
king heuristi
s some of whi
h make use of the maximal tra
table subsets
identi�ed in previous work. We generated instan
es a

ording to two di�erent models of
whi
h the \general model" A allows all 256 RCC-8 relations to be used while the \hard
model" H allows only relations whi
h are not
ontained in any of the maximal tra
table
subsets. A theoreti
al analysis of the two models showed that the model H and the model
A for a small average degree of the nodes in the
onstraint graph do not su�er from trivial
lo
al in
onsisten
ies as it is the
ase for similar generation pro
edures for CSPs with �nite
domains (A
hlioptas et al., 1997). It turned out that randomly generated instan
es of
both models show a phase-transition behavior whi
h depends most strongly on the average
degree of the instan
es. While most instan
es outside the phase-transition region
an be

313

Renz & Nebel

solved eÆ
iently by ea
h of our heuristi
s, instan
es in the phase-transition region
an be
extremely hard. For the instan
es of the general model, most path-
onsistent instan
es
are also
onsistent. Conversely, path-
onsisten
y is a bad approximation to
onsisten
y for
instan
es of the hard model. These instan
es are also mu
h harder to solve than instan
es
of the general model.

When
omparing the di�erent heuristi
s, we found that the heuristi
s using one of the
maximal tra
table subsets as a split set are not as mu
h faster in de
iding
onsisten
y of
RSAT instan
es as their theoreti
al advantage given by the redu
ed average bran
hing fa
tor
and the resulting exponentially smaller size of the sear
h spa
e indi
ates. This is be
ause
using path-
onsisten
y as a forward
he
king method
onsiderably redu
es the sear
h spa
e
in all
ases. Nevertheless, using one of the maximal tra
table subsets as a split set, in
parti
ular bH8, still leads to a mu
h faster solution and solves more instan
es in reasonable
time than the other heuristi
s. Although the two maximal tra
table subsets Q8 and C8

ontain more relations than bH8, their average bran
hing fa
tor is lower, i.e., when usingbH8 one has to de
ompose more relations (256 � 148 = 108) than when using the other two
sets (96 and 98 relations, respe
tively), but bH8 splits the relations better than the other
two sets. Most relations
an be de
omposed into only two bH8 sub-relations, while many
relations must be de
omposed into three C8 sub-relations or into three Q8 sub-relations.
This explains the superior performan
e of heuristi
s involving bH8 for de
omposition.

Among the instan
es we generated, we stored those whi
h
ould not be solved by all
heuristi
s within a maximum number of 10,000 visited nodes in the sear
h spa
e in order to
�nd out how the di�erent heuristi
s perform on these hard instan
es. We found that almost
all hard instan
es are lo
ated in the phase-transition region and that there are many more
hard instan
es in the hard model than in the general model. We orthogonally
ombined all
heuristi
s and ran them on all hard instan
es. This turned out to be very su

essful. Apart
from one instan
e, all hard instan
es of the general model
ould be solved, most of them
with a very low number of visited nodes. The hard instan
es of the hard model were mu
h
more diÆ
ult: many of them
ould not be solved by any of the heuristi
s. Nevertheless,
many more instan
es were solved by orthogonally
ombining the heuristi
s than by ea
h
heuristi
 alone. Again, most of them were solved using a low number of visited nodes.

Based on our observations on orthogonally
ombining di�erent heuristi
s, we tried to
identify the
ombination of heuristi
s whi
h is most su

essful in eÆ
iently solving many
instan
es and used this
ombination for solving very large instan
es. It turned out that
the best
ombination involves only heuristi
s whi
h use maximal tra
table subsets for de-

omposition. With this
ombination we were able to solve almost all randomly generated
instan
es of the phase-transition region of the general model up to a size of n = 500 regions
very eÆ
iently. This seems to be impossible when
onsidering the enormous size of the
sear
h spa
e, whi
h is on average 1039323 for instan
es of size n = 500 when using bH8 as a
split set.

Our results show that despite its NP-hardness, we were able to solve almost all ran-
domly generated RSAT instan
es of the general model eÆ
iently. This is neither due to the
low number of di�erent RCC-8 relations (instan
es generated a

ording to the hard model
are very hard in the phase-transition region) nor to our generation pro
edure for random
instan
es whi
h does not lead to trivially
awed instan
es asymptoti
ally. It is mainly due
to the maximal tra
table subsets whi
h
over a large fra
tion of RCC-8 and whi
h lead

314

Effi
ient Methods for Qualitative Spatial Reasoning

to extremely low bran
hing fa
tors. Sin
e there are di�erent maximal tra
table subsets,
they allow
hoosing between many di�erent ba
ktra
king heuristi
s whi
h further in
reases
eÆ
ien
y: some instan
es
an be solved easily by one heuristi
, other instan
es by other
heuristi
s. Heuristi
s involving maximal tra
table sub
lasses showed the best behavior but
some instan
es
an be solved faster when other tra
table subsets are used. The full
lassi-
�
ation of tra
table subsets gives the possibility of generating hard instan
es with a high
probability. Many randomly generated instan
es of the phase-transition region are very
hard when using only relations whi
h are not
ontained in any of the tra
table subsets
and
onsist of more than n = 60 regions. The next step in developing eÆ
ient reasoning
methods for RCC-8 is to �nd methods whi
h are also su

essful in solving most of the hard
instan
es of the hard model.

The results of our empiri
al evaluation of reasoning with RCC-8 suggest that analyzing
the
omputational properties of a reasoning problem and identifying tra
table sub
lasses of
the problem is an ex
ellent way for a
hieving eÆ
ient reasoning me
hanisms. In parti
ular
maximal tra
table sub
lasses
an be used to develop more eÆ
ient methods for solving
the full problem sin
e their average bran
hing fa
tor is the lowest. Using the re�nement
method developed in Renz's (1999) paper, tra
table sub
lasses of a set of relations forming
a relation algebra
an be identi�ed almost automati
ally. This method makes it very easy
to develop eÆ
ient algorithms. A further indi
ation of our empiri
al evaluation is that it

an be mu
h more e�e
tive (even and espe
ially for hard instan
es of the phase-transition
region) to orthogonally
ombine di�erent heuristi
s than to try to get the �nal epsilon out of
a single heuristi
. This answers a question raised by Nebel (1997) of whether the orthogonal

ombination of heuristi
s is also useful in the phase-transition region. In our experiments
this lead to mu
h better results even when simulating the orthogonal
ombination of di�erent
heuristi
s on a single pro
essor ma
hine and spending altogether the same resour
es as
for any one heuristi
 alone. In
ontrast to the method of time sli
ing between di�erent
heuristi
s, we started a new heuristi
 only if the previous heuristi
 failed after a
ertain
number of visited nodes in the sear
h spa
e. The order in whi
h we ran the heuristi
s
depended on their performan
e and on how well they
omplemented ea
h other, more
su

essful heuristi
s were used �rst. This is similar to using algorithm portfolios as proposed
by Huberman et al. (1997). Whi
h heuristi
s perform better and whi
h
ombination is the
most su

essful one is a matter of empiri
al evaluation and depends on the parti
ular
problem. Heuristi
s depending on maximal tra
table sub
lasses, however, should lead to
the best performan
e.

For CSPs with �nite domains there are many theoreti
al results about lo
alizing the
phase-transition behavior and about predi
ting where hard instan
es are lo
ated. In
on-
trast to this, there are basi
ally no su
h theoreti
al results for CSPs with in�nite domains
as used in spatial and temporal reasoning. As our initial theoreti
al analysis shows, theo-
reti
al results on CSPs with �nite domains do not ne
essarily extend to CSPs with in�nite
domains. It would be very interesting to develop a more general theory for CSPs with
in�nite domains, possibly similar to Williams and Hogg's \Deep Stru
ture" (Williams &
Hogg, 1994) or Gent et al.'s \Kappa" theory (Gent, Ma
Intyre, Prosser, & Walsh, 1996).

315

Renz & Nebel

A
knowledgments

We would like to thank Ronny Fehling for his assistan
e in developing the programs, Malte
Helmert for proof reading the paper, and the three anonymous reviewers for their very
helpful
omments.
This resear
h has been supported by DFG as part of the proje
t fast-qual-spa
e, whi
h
is part of the DFG spe
ial resear
h e�ort on \Spatial Cognition". The �rst author has been
partially supported by a Marie Curie Fellowship of the European Community programme
\Improving Human Potential" under
ontra
t number HPMF-CT-2000-00667. A prelimi-
nary version of this paper appeared in the Pro
eedings of the 13th European Conferen
e on
Arti�
ial Intelligen
e (Renz & Nebel, 1998).

Referen
es

A
hlioptas, D., Kirousis, L., Kranakis, E., Krizan
, D., Molloy, M., & Stamatiou, Y. (1997).
Random
onstraint satisfa
tion: a more a

urate pi
ture. In 3rd Conferen
e on the
Prin
iples and Pra
ti
e of Constraint Programming (CP'97), Vol. 1330 of LNCS, pp.
107{120. Springer-Verlag.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communi
ations of
the ACM, 26 (11), 832{843.

Bennett, B. (1994). Spatial reasoning with propositional logi
. In Doyle, J., Sandewall,
E., & Torasso, P. (Eds.), Prin
iples of Knowledge Representation and Reasoning:
Pro
eedings of the 4th International Conferen
e, pp. 51{62, Bonn, Germany. Morgan
Kaufmann.

Bennett, B. (1997). Logi
al Representations for Automated Reasoning about Spatial Rela-
tionships. Ph.D. thesis, S
hool of Computer Studies, The University of Leeds.

Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). Where the really hard problems are.
In Pro
eedings of the 12th International Joint Conferen
e on Arti�
ial Intelligen
e,
pp. 331{337, Sydney, Australia. Morgan Kaufmann.

Gent, I., Ma
Intyre, E., Prosser, P., Smith, B., & Walsh, T. (2001). Random
onstraint
satisfa
tion: Flaws and stru
ture. CONSTRAINTS, 6 (4), 345{372.

Gent, I., Ma
Intyre, E., Prosser, P., & Walsh, T. (1996). The
onstrainedness of sear
h. In
Pro
eedings of the 13th National Conferen
e on AI (AAAI'96), pp. 246{252.

Golumbi
, M. C., & Shamir, R. (1993). Complexity and algorithms for reasoning about time:
A graph-theoreti
 approa
h. Journal of the Asso
iation for Computing Ma
hinery,
40 (5), 1128{1133.

Grigni, M., Papadias, D., & Papadimitriou, C. (1995). Topologi
al inferen
e. In Pro
eedings
of the 14th International Joint Conferen
e on Arti�
ial Intelligen
e, pp. 901{906,
Montreal, Canada.

316

Effi
ient Methods for Qualitative Spatial Reasoning

Harali
k, R. M., & Elliot, G. L. (1980). In
reasing tree sear
h eÆ
ien
y for
onstraint
satisfa
tion problems. Arti�
ial Intelligen
e, 14, 263{313.

Huberman, B., Lukose, R., & Hogg, T. (1997). An e
onomi
s approa
h to hard
omputa-
tional problems. S
ien
e, 275, 51{54.

Ladkin, P. B., & Reinefeld, A. (1992). E�e
tive solution of qualitative interval
onstraint
problems. Arti�
ial Intelligen
e, 57 (1), 105{124.

Ladkin, P. B., & Reinefeld, A. (1997). Fast algebrai
 methods for interval
onstraint prob-
lems. Annals of Mathemati
s and Arti�
ial Intelligen
e, 19 (3,4).

Ma
kworth, A. K. (1977). Consisten
y in networks of relations. Arti�
ial Intelligen
e, 8,
99{118.

Ma
kworth, A. K., & Freuder, E. C. (1985). The
omplexity of some polynomial network

onsisten
y algorithms for
onstraint satisfa
tion problems. Arti�
ial Intelligen
e, 25,
65{73.

Montanari, U. (1974). Networks of
onstraints: fundamental properties and appli
ations to
pi
ture pro
essing. Information S
ien
e, 7, 95{132.

Nebel, B. (1995). Computational properties of qualitative spatial reasoning: First results. In
Wa
hsmuth, I., Rollinger, C.-R., & Brauer, W. (Eds.), KI-95: Advan
es in Arti�
ial
Intelligen
e, Vol. 981 of Le
ture Notes in Arti�
ial Intelligen
e, pp. 233{244, Bielefeld,
Germany. Springer-Verlag.

Nebel, B. (1997). Solving hard qualitative temporal reasoning problems: Evaluating the
eÆ
ien
y of using the ORD-Horn
lass. CONSTRAINTS, 3 (1), 175{190.

Randell, D. A., Cohn, A. G., & Cui, Z. (1992a). Computing transitivity tables: A
hallenge
for automated theorem provers. In Pro
eedings of the 11th CADE. Springer-Verlag.

Randell, D. A., Cui, Z., & Cohn, A. G. (1992b). A spatial logi
 based on regions and

onne
tion. In Nebel, B., Swartout, W., & Ri
h, C. (Eds.), Prin
iples of Knowledge
Representation and Reasoning: Pro
eedings of the 3rd International Conferen
e, pp.
165{176, Cambridge, MA. Morgan Kaufmann.

Renz, J. (1999). Maximal tra
table fragments of the Region Conne
tion Cal
ulus: A
om-
plete analysis. In Pro
eedings of the 16th International Joint Conferen
e on Arti�
ial
Intelligen
e, pp. 448{454, Sto
kholm, Sweden.

Renz, J. (2000). Qualitative Spatial Reasoning with Topologi
al Information. Ph.D. thesis,
Institut f�ur Informatik, Albert-Ludwigs-Universit�at Freiburg.

Renz, J., & Nebel, B. (1998). EÆ
ient methods for qualitative spatial reasoning. In Pro-

eedings of the 13th European Conferen
e on Arti�
ial Intelligen
e, pp. 562{566, Am-
sterdam, The Netherlands. Wiley.

317

Renz & Nebel

Renz, J., & Nebel, B. (1999). On the
omplexity of qualitative spatial reasoning: A maximal
tra
table fragment of the Region Conne
tion Cal
ulus. Arti�
ial Intelligen
e, 108 (1-
2), 69{123.

Selman, B., Levesque, H. J., & Mit
hell, D. (1992). A new method for solving hard sat-
is�ability problems. In Pro
eedings of the 10th National Conferen
e of the Ameri
an
Asso
iation for Arti�
ial Intelligen
e, pp. 440{446, San Jose, CA. MIT Press.

van Beek, P., & Man
hak, D. W. (1996). The design and experimental analysis of algorithms
for temporal reasoning. Journal of Arti�
ial Intelligen
e Resear
h, 4, 1{18.

Williams, C. P., & Hogg, T. (1994). Exploiting the deep stru
ture of
onstraint problems.
Arti�
ial Intelligen
e, 70, 73{117.

318

