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a b s t r a c t

In this work we propose a new type of microfluidic rectifier, which is able to operate efficiently under

creeping flow conditions. The flow of Newtonian and non-Newtonian fluids was investigated experi-

mentally in different microchannels with triangular (nozzle/diffuser) and hyperbolic shapes in order to

achieve high anisotropic flow resistance between the two flow directions. The Newtonian fluid used was

de-ionized water and the viscoelastic fluids were aqueous solutions of polyacrylamide and polyethy-

lene oxide with different molecular weights. Pressure drop measurements were performed in addition

to visualizations of the flow patterns by streak line photography for a wide range of flow rates. For the

Newtonian flows, inertia leads to the appearance of recirculations for both flow directions, but no signif-

icant rectification effects appear. For the viscoelastic fluids, two distinct behaviors are identified: at low

flow rates, the pressure drops are similar in both flow directions; above a critical flow rate (or Deborah

number), the flow patterns become quite different, leading to different flow rates in the forward and

backward flow directions for the same pressure drop, i.e., rectification effects emerge. In particular, the

viscoelastic fluid flow becomes unsteady in the forward direction, due to the presence of elastic instabil-

ities, which leads to a significant increase in the flow resistance. Flow resistance ratios greater than three

were achieved for the hyperbolic rectifier, clearly in excess of the value for the triangular-shaped rectifier

and for other geometries proposed in the literature for operation in creeping flow conditions. This high

diodicity is associated with the distinct nature of the extensional flows in the forward and backward

directions of the hyperbolic-type microgeometry.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Today, the lab-on-a-chip concept has widespread application in
science and technology, as in biology, medicine and engineering.
Miniaturized systems for dispensing therapeutic agents, analysis
of drugs or DNA molecules, microchemical reactors or inkjet print-
ing heads are just a few examples of microfluidics applications.
These devices handle small-sized samples, making portability a
relevant characteristic of these miniaturized laboratories. In micro
total analysis systems (�TAS), small and precise fluid volumes with
well defined fluid properties and flow characteristics (i.e. viscosity,
density, pH, temperature, etc.) must be pumped, transported, con-
trolled or handled using external devices such as pumps, valves or
other actuators.

Positive displacement pumps are the primary selection in
microfluidics given their typical low Reynolds numbers flows.
These devices require valves at the inlet and outlet and also
between chambers in multi-chamber pumps, which poses a com-
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plex challenge in the miniaturization of pumping systems [1] and
an increase in their effective cost and risk of failure [2]. These valves
may also have detrimental effect upon cells, molecules and other
entities sensitive to damage, which in some cases must be avoided.
Therefore, and as an alternative to the use of active or passive valves,
microchannels with a fixed geometry and direction-dependent
flow resistance are used. These so-called flow rectifiers are the fluid
mechanics equivalent of electronic diodes; pumps equipped with
such devices are frequently encountered in microfluidics, where
they are called valveless micropumps, also known as no-moving
parts (NMP) or fixed geometry micropumps, and have received
broad attention and various optimized geometries have been devel-
oped and tested when operating with Newtonian fluids [3]. Note
also that in some micropumps the actuator is placed in the middle
of the flow rectifier.

One of the earliest reciprocating displacement micropumps was
developed by Jan Smits in the 1980s for controlled delivery of
insulin to diabetics, as an alternative to classical delivery systems
[4]. Since then, several micropump designs have been developed
and investigated (e.g. [2,5–8]) and the vast majority do contain
some inlet/outlet valves or NMP flow rectifiers.

The first flow rectifier, named “Valvular conduit”, was proposed
and patented by Tesla [9] and consisted of an open main duct
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Table 1

Summary of previous studies regarding no-moving parts micropumps.

Ref. Valve

material/type

Application Exp/Num Fluid �Pmax (kPa) Diodicity/efficiency Remax Notes

[1] Silicon-glass,

diffuser/nozzle,

Tesla-type

Valv. micr. (PZT

actuator)

Exp/Num Newtonian (water) 30.4 1.2 n.r. 2D and 3D simulations; best diodicity for diffuser

valve

[7] Silicon-glass,

diffuser/nozzle

Valv. micr.

(thermopneumatic

actuator)

Exp Newtonian (water) 2.5 n.a. n.r. The maximum flow rate of the micropump is

0.014 ml/min

[8] n.a., diffuser/nozzle Valv. micr. (PZT

actuator)

Num Newtonian (water) n.r. n.r. n.r. Theoretical analysis and numerical simulations;

maximum pump flow rate of 0.08 ml/min

[10] Brass,

diffuser/nozzle

Valv. micr. Exp Newtonian (water) 19.6 2 103 Maximum pump flow rate of 16 ml/min

[11] Brass,

diffuser/nozzle

Valv. micr. (PZT

actuator)

Exp Newtonian (water) 16 2 n.r. Double chamber pump; comparison between

experimental and theoretical results; maximum

net flow rate of 16 ml/min

[12] Silicon-glass,

diffuser/nozzle

Valv. micr. Exp Newtonian

(methanol/water)

100 1.45 ∼200 Different open angles and different dimensions

were studied; maximum efficiency for methanol;

experimental and analytical results are compared

[13] Silicon,

diffuser/nozzle

Valv. micr. Exp/num Newtonian (water) 1 1.5 105 Different open angles and conical structures were

studied; maximum net flow rate of 0.028 ml/min

[14] n.a., diffuser/nozzle Valv. micr. Analytical Newtonian n.a. n.a. n.a. Derivation of a model for the fluid flow;

dimensionless analysis

[15] Silicon,

diffuser/nozzle

Valve Exp Newtonian (water) n.r. 1.725 400 Different opening angles and depths were studied;

max. diodicity for an open angle of 30◦; fixed flow

rate in all experiments

[16] n.a., diffuser/nozzle Valv. micr. Num Newtonian

(water/methanol)

n.r. 1.43 103 Planar, pyramidal and conical geometries studied

[18] Silicon,

diffuser/nozzle

Valve Exp Newtonian (water) 0.6 1.5 22 Best efficiency obtained at an open angle of 30◦

[19] Stainless steel,

diffuser/nozzle

Valv. micr. (PZT

actuator)

Exp Newtonian

(water/water + glycerol)

1.4 n.r. 103 Different opening angles were studied

[20] Epoxy-glass,

diffuser/nozzle

Valv. micr. (PZT

actuator)

Exp/num Newtonian (water) n.r. n.r. n.r. Comparison between experimental and theoretical

results

[21] Aluminium,

diffuser/nozzle

Valv. micr. Exp/num Newtonian (water) n.r. 2 2 × 103 Studied different opening angles (best efficiency at

40◦)

[22] n.a., diffuser/nozzle Valv. micr. acoustic Num Newtonian (water) 10 ∼1.3 51 Pulsating flow; studied different angles; maximum

rectification effect at 60◦

[23] Silicon-glass,

diffuser/nozzle

Valv. micr. (PZT

actuator)

Exp Newtonian

(water/methanol)

7 n.r. 104 Maximum pressure drop for methanol

[24] Silicon,

diffuser/nozzle

Valve Exp Newtonian (water) 80 Diffuser/nozzle

29%

n.r. 3D structures; different open angles and different

dimensions were studied

[25] Micromachined,

diffuser/nozzle

Valv. micr. Exp/num Newtonian (water) ∼200 1.59 (Exp),

3.20 (2D Num)

1350 (Num),

650 (Exp)

Structures with round inlets and sharp outlets; 2D

and 3D simulations; experimental study of various

geometrical dimensions

[27] Silicon,

diffuser/nozzle

Valv. micr. (PZT

actuator)

Exp Newtonian (water) 1.2 n.r. n.r. Diffuser/nozzle structures used as obstacles in a

micropump

[29] n.a., Tesla Valv. micr. Analytical Newtonian n.a. n.a. n.a. Geometry-based model for analysis of no-moving

parts microvalves; Experimental data reported in

the literature is used

[30] Acrylic, Tesla Valv. micr. Exp/num Newtonian 20 1.5 2 × 103 Shape was optimized using CFD tools; experiments

carried out using the optimized geometry.

[31] PMMA,

diffuser/nozzle

Valv. micr.

(electromagnetic

actuator)

Exp/num Newtonian

(water/air)

2 2 27 Studied sharp and round corners; pump flow rate

of 0.4 ml/min and 12 mbar

[34] PDMS, flap Valv. micr. Exp Newtonian (water) 8 3.9 n.r. Flap valve that works as a rectifier

[35] PDMS, flap Valve Exp. Newtonian (water) 14 4.6 30 Different valve heights were studied
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connected to a series of side loop channels at sharp angles. Its
rectification effects were found for Newtonian fluids at moder-
ate Reynolds numbers (Re), when nonlinearities due to inertial
effects became important. Stemme and Stemme [10] proposed
a nozzle/diffuser micropump with a fixed geometry, which con-
sists of a channel with opening angles that work as flow-directing
elements. When Newtonian fluids flow in the diverging wall direc-
tion (diffuser element), enhanced flow-directing properties are
achieved and the pressure drop becomes dependent on the flow
rate. This nozzle/diffuser geometry became a very popular flow
rectifier design. In order to optimize the corresponding valveless
micropumps, Olsson et al. [11] investigated, from a theoretical and
experimental point of view, the planar nozzle/diffuser structure
of a double chamber brass based micropump. Other contributions
to the optimization of the nozzle/diffuser performance have been
carried out numerically and experimentally over the last decade
(e.g. [8,12–22]). Gerlach and Wurmus [23] studied a piezoelec-
trically driven micropump in which a nozzle/diffuser valve was
incorporated and concluded that the device could be used as a
mixer/reactor chamber, in addition to operating as a micropump,
due to the turbulence that was generated during its operation.
Forster et al. [1] tested and compared the efficiency of different
NMP valves, a simple diffuser and a valvular conduit (Tesla-type).
In the end, the Tesla-type valve was found to have the highest differ-
ence between forward and backward flow resistance, an important
flow property called diodicity.

Three-dimensional (3D) nozzle/diffuser microvalves etched in
silicon were investigated by Heschel et al. [24]. Devices with differ-
ent dimensions and shapes were tested and it was found that the
flow behavior within 3D nozzle/diffuser microstructures depends
only weakly on the shape of the geometry, with higher improve-
ments in efficiency brought by rounding the throat. Olsson et al.
[25] reported a numerical and experimental investigation of noz-
zle/diffuser elements for valveless micropumps. The sharpness of
the throat corner edges was explored in their study and the flow-
directing capability of the geometry was demonstrated. At low
Reynolds numbers, the 3D simulations predicted well the differ-
ence between the pressure drops for each flow direction, whereas at
high Reynolds numbers good results could only be achieved using a
two-dimensional numerical code. Nozzle/diffuser geometries were
also used in valveless micropumps embedded as asymmetric obsta-
cles within a piezoelectrical micropump [26,27]. The Tesla-type
valves were used in several studies as a NMP microdevice or cou-
pled in micropumps, similar to the device used by Forster et al. [1].
More recently, the geometry of these valves has been optimized for
high Reynolds number Newtonian flow [28–30].

Micropumps, valves and flow rectifiers can be fabricated in
diverse materials using straightforward and inexpensive methods
[31]. Photocurable polymers, such as hydrogels that can be pho-
topolymerized in situ, were explored [32,33]. Loverich et al. [34]
reported a polymer-based micropump fabricated with transpar-
ent (for optical access), fluid-compatible and economical materials.
This micropump integrated an elastomeric actuator and flap check
valves, made up of PDMS (polydimethylsiloxane), that conditioned
the flow behavior generating a dependency between the pres-
sure drop across the microvalve and the flow rate. More recently,
Loverich et al. [35] reported an improved flap check valve for oper-
ation at low Reynolds number flow having a maximum pressure
drop ratio of 4.6 between the two flow directions and for the same
flow rate. In medical or biological �TAS chips, it is very important
to preserve the characteristics of the fluid that is being pumped
(e.g. biological fluids) and passive or active check valves frequently
are not the best choices. Instead, NMP valves have the lowest detri-
mental effect upon the biological entities in the fluid. A valveless
micropump for pumping fluids, containing beads and living cells,
without damage was developed by Andersson et al. [36].
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Fig. 1. Micrograph of the (a) hyperbolic and (b) triangular-shaped microfluidic rectifiers. (c) Top view of the microchannel used in the experiments.

Fig. 2. Schematic view of the experimental set-up.

All investigations discussed so far refer to Newtonian fluid flow,
usually using water. For Newtonian fluids the rectification effect
of NMP devices is a consequence of the flow inertia. However,
microfluidic flows typically occur under low Reynolds number

flow conditions and as such, the flow resistance is only weakly
dependent, or even independent, of the flow direction due to the
reversibility of creeping flows of Newtonian fluids (i.e. rectification
effects are small). Nevertheless, anisotropic flow resistance can be

Table 2

Geometrical characteristics of the microchannels studied.

Channel D1 (�m) D2 (�m) L (�m) Hencky strain, εH a (�m2) b (�m)

Triangular, T 330 37 230 2.19 – –

Hyperbolic

C1 400 54 128 2.00 4000 20

C2 326 37 230 2.18 4800 29

C3 390 54 382 1.98 11972 61

C4 400 20 382 3.00 4000 20
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Table 3

Properties of the fluids used.

Fluid Mw (g mol−1) Polymer (ppm) Water (%) Sucrose (%) NaCl (%) Glycerol (%) � (kg m−3)

Newtonian – – 100 – – – 998

PEO-2M 2 × 106 1000 99.90 – – – 998

PEO-8M 8 × 106 1000 99.90 – – – 998

PEO-8M + Glyc. 8 × 106 1000 59.90 – – 40.00 1099

PEO-8M 100 8 × 106 100 99.99 – – – 999

PAA 18 × 106 100 85.91 13.06 1.02 – 1059

Table 4

Initial and final aspect ratios used in CaBER experiments and measured relaxation

times (T = 293.2 K).

Fluid �i �f � (ms)

PEO-2M 0.33 1.34 8.2 ± 0.8

PEO-8M 0.50 1.39 73.9 ± 1.0

PEO-8M + Glyc. 0.50 1.63 17.9 ± 0.6

PEO-8M 100 0.33 1.19 2.5 ± 0.2

PAA 0.50 1.50 13.2 ± 0.2

achieved under creeping flow conditions providing other nonlin-
ear mechanisms come to play a role. One possible alternative relies
on adding small amounts of additives that confer viscoelastic rheo-
logical properties to the fluid [37]. Since viscoelastic nonlinearities
can be enhanced at the microscale [38], rectification effects can
be achieved even with dilute polymeric fluids. The elasticity num-
ber, which represents the relative importance of elastic to inertial
effects and is given by the product of relaxation time and kinematic
viscosity divided by the length scale squared, increases as the size
of the geometry is reduced, thus demonstrating the importance
of elastic effects in microfluidics as compared to the macroscale.
A pioneering investigation on viscoelastic flows at the microscale
was undertaken by Groisman et al. [39]. The flow of dilute aque-
ous polyacrylamide (PAA) solutions in a complex nonlinear resistor
was studied, demonstrating the potential for use as a flow stabilizer
(the flow rate across the microfluidic device is approximately con-
stant for a large range of applied pressure drops), due to the elastic
nature of the working fluid.

Somewhat surprisingly, studies that describe microfluidic rec-
tifiers with non-Newtonian fluid flows are scarce. Groisman and
Quake [37] investigated the flow of a 0.01 wt.% aqueous solution of
a high molecular weight PAA, through a microchannel with a noz-
zle/diffuser structure composed of a consecutive number of similar
triangles (cf. Fig. 1b). Anisotropic flow resistance was observed and

Table 5

Coil overlap concentration, dimensionless concentration and Zimm relaxation times

for each fluid used in the experiments.

Fluid c* (g cm−3) c/c* �Zimm (ms)

PEO-2M 8.58 × 10−4 1.16 0.63

PEO-8M 3.48 × 10−4 2.86 10.1

PEO-8M + Glyc. 3.48 × 10−4 3.15 21.8

PEO-8M 100 3.48 × 10−4 0.29 3.36

PAA 5.12 × 10−4 0.21 10.3 ± 0.5

Table 6

Rheological parameters of the PTT model at the reference temperature (T0 = 293.2K),

and parameter �H/R for the fluids used. The relaxation times are presented in

Table 4.

Fluid �0 (mPa s) �s (mPa s) ε (�H/R) (K)

PEO-2M 2.55 1.9 0.05 2.84 × 103

PEO-8M 7.50 3.0 0.04 2.98 × 103

PEO-8M + Glyc. 10.5 6.5 0.04 2.18 × 103

PEO-8M 100 1.15 1.0 0 2.31 × 103

PAA 2.34 2.0 0.1 1.76 × 103

a maximum flow rate ratio of almost 2 was achieved for the same
pressure gradient applied in both flow directions. Nguyen et al. [40]
also investigated the rectification effects at low Re in a similar noz-
zle/diffuser structure using an aqueous solution of polyethylene
oxide (PEO) at 0.1 wt.%. They studied the effect of the opening angle
of the triangular structures on the flow resistance anisotropy and
found a maximum rectification effect characterized by a flow rate
ratio of about 1.8.

A list summarizing relevant investigations on flows of New-
tonian and non-Newtonian fluids in systems including valveless
micropumps or flow rectifiers is presented in Table 1, where the
above referenced works are also listed. This table includes infor-
mation on the type of investigation, materials used, flow geometry,

Fig. 3. Master curves of the steady shear viscosity: (a) PEO solutions; (b) PAA solution. The solid lines represent the PTT model fittings for each fluid. (i) Minimum measurable

shear viscosity calculated from 20× the minimum measurable torque of the rheometer; (ii) onset of secondary flow due to Taylor instabilities (two distinct lines are drawn

in (a) corresponding to different fluid densities).
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Fig. 4. Pressure drop measured with the PEO-8M fluid in the forward and backward flow directions for a range of flow rates in different hyperbolic microchannels: (a) C1 at

292.1 K; (b) C2 at 293.2 K; (c) C3 at 293.2 K; (d) C4 at 298.2 K.

maximum pressure drop across the device, Reynolds number range
and the achieved diodicity, in addition to some relevant comments.

It is clear that there is much to be explored in this area of
flow rectifiers for creeping flows operating with polymer addi-
tives and this paper is one such contribution. Here, we investigate
the performance of microfluidic no-moving parts rectifiers hav-
ing a hyperbolic-like shape, which are able to operate efficiently
under creeping flow conditions using dilute viscoelastic polymeric

Fig. 5. Diodicity obtained for the flow rate range studied in the four microchannels

with hyperbolic shaped elements using PEO-8M fluid. The lines are a guide to the

eye.

solutions. The main objective is to design an efficient micro-
geometry with high rectification effects. Using Newtonian and
non-Newtonian fluids, the performance of the optimized geometry
was compared with that of the nozzle/diffuser structure of Grois-
man and Quake [37] and Nguyen et al. [40] by means of flow rate and
pressure drop measurements, in addition to visualizations of the
flow patterns. The microfluidic rectifiers were fabricated in PDMS
using a low cost soft lithography technique and are composed of
a succession of contractions/expansions with different hyperbolic
and triangular shapes.

The remainder of this paper is organized as follows: Section
2 describes the flow geometries, their fabrication and the exper-
imental techniques used. In Section 3 the working fluids and their
rheology are presented, followed by a discussion of the dimen-
sionless groups that characterize the flow to set the stage for the
experiments, the results of which are presented and discussed in
Section 4. The paper closes with conclusions in Section 5.

2. Experimental techniques

2.1. Microchannels geometry, fabrication and experimental

set-up

The microchannels used in the experiments were fabricated
in PDMS using standard soft lithography techniques [41] and SU-
8 photo-resist molds. PDMS elastomer has been widely used for
the fabrication of microfluidic devices because of its characteris-
tics such as transparency, mechanical behavior, biocompatibility,
rapid prototyping and low cost. In this work, two different types



658 P.C. Sousa et al. / J. Non-Newtonian Fluid Mech. 165 (2010) 652–671

Fig. 6. Flow patterns for Newtonian fluid (de-ionized water at T = 296.2 K) flow. Top images correspond to forward flow and bottom images correspond to backward flow in

microchannel C1 .

of planar microgeometries were used: one composed of triangu-
lar elements, based on the nozzle/diffuser structure reported in
the literature [25,37,40] and another type of microchannels with
hyperbolic shaped elements. Fig. 1 illustrates the layout of two
typical microchannels used in this work.

All microgeometries used consist of a sequence of 42 similar ele-
ments aligned in series. The hyperbolic shape was selected in order
to achieve fluid flows that are primarily extensional, with a nearly
constant strain rate along the centerline, as discussed by Oliveira
et al. [42]. We define the forward direction when the fluid flows
along smooth contractions and abrupt expansions (left to right in
Fig. 1) and backward direction as the opposite one. For the for-
ward flow the fluid is stretched at a nearly constant extensional
rate along the centerline, resulting in a high flow resistance for
fluids that have large extensional viscosities, such as solutions of
high molecular weight polymers, whereas in the backward flow
direction the fluid can relax also at a nearly constant extensional
rate.

The devices used in the present investigation are composed of
two inlets/outlets located at the extremes of the microchannels,
followed by pressure taps on each side of the test section, which
is positioned at the central part of the microchannel, as shown in
Fig. 1c. The pressure taps allow for the measurement of the pres-
sure drop (�P) across the 42 repeating elements of the test section.
Table 2 summarizes the dimensions of the different microgeome-
tries used in the experiments, as well as the values of the Hencky
strain (total deformation) experienced by the fluid, here defined
as εH = ln(D1/D2). The parameters of the hyperbolic function that
describes the shape of the microchannel elements, y = ±a/(x + b),
where 0 ≤ x ≤ L, are also listed in Table 2. At the widest and nar-
rowest parts, the widths of the microgeometries are D1 and D2,
respectively, and the length of each element is L, as sketched in
Fig. 1. The depth of the channels is uniform and was kept constant
for all micro-devices studied, h = 50 �m.

In order to make a direct comparison between the results
obtained with the hyperbolic rectifier proposed in this work and
the triangular rectifier geometry investigated by Groisman and

Quake [37] it is necessary to use microgeometries with similar
aspect ratios. For that purpose the triangular rectifier and the C2

hyperbolic rectifier used in this work have similar dimensions.
The flow behavior of Newtonian and non-Newtonian fluids was

studied at room temperature in the forward and backward direc-
tions (cf. Fig. 1) for a wide range of flow rates, which were imposed
using a syringe pump (PHD2000, Harvard Apparatus). Syringes
(Hamilton) with volumes ranging from 50 �l to 10 ml were used
according to the desired flow rate and connected to the microchan-
nels via Tygon tubing of 0.44 mm internal diameter. The outlet of
the microchannels was connected to Tygon tubing that directs the
fluid to a reservoir open to the atmosphere where the fluid is col-
lected.

Fig. 7. Pressure drop measured as a function of flow rate for the Newtonian fluid (de-

ionized water) flow in the microchannel with a hyperbolic shape, C1 (solid symbols)

at 295.7 K and in the microchannel with a triangular shape, T (open symbols) at

298.5 K.
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2.2. Flow visualization

Visualizations of the flow patterns relied on streak line pho-
tography. For this purpose, the fluids were seeded with 1 �m
fluorescent tracer particles (Nile Red, Molecular Probes, Invitro-
gen, Ex/Em: 520/580 nm) and sodium dodecyl sulfate (0.1 wt.%,
Sigma–Aldrich) was added to the solutions in order to reduce the
adhesion of fluorescent particles to the channel walls. Rheological
measurements confirmed that the rheology of the fluid was not
changed by using such low concentrations of this surfactant agent.
The optical setup is shown schematically in Fig. 2. It consists of an
inverted epi-fluorescence microscope (Leica Microsystems GmbH,
DMI 5000M) equipped with a CCD camera (Leica Microsystems
GmbH, DFC350 FX), a filter cube (Leica Microsystems GmbH, exci-
tation BP 530–545 nm, dichroic 565 nm, barrier filter 610–675 nm)
and a 100 W mercury lamp light source.

The microgeometries were continuously illuminated and path
line images were acquired using a 10× (NA = 0.25) microscope
objective (Leica Microsystems GmbH) and long exposures times
(∼1 s) in order to obtain a visual fingerprint of the flow patterns
in the focused center plane. The depth of field (DOF) for an optical
system can be calculated as [43]:

ız =
n�0

(NA)2
+

ne

(NA)M
(1)

where n is the refractive index, �0 is the wavelength of the light
(in vacuum), NA is the numerical aperture of the objective, e is
the minimum detectable size and M is the total magnification. For
our optical set-up, ız = 12 �m and e/M = 0.65 �m, which is a value
smaller than the particle diameter, dp.

Fig. 8. Effect of elasticity on the flow patterns of the PEO-2M fluid (microchannel C1) at 292.7 K.
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2.3. Pressure drop measurements

Pressure drop measurements were performed using Honeywell
differential pressure sensors (model 26PC series) covering values
up to �P = 200 kPa. The pressure sensors were calibrated using a
static column of water for pressures up to �P = 34 kPa and using a
compressed air line and a manometer (Wika Instrument Corpora-
tion, model 332.50) with an accuracy of ±2 kPa for sensors that are
able to measure higher differential pressures, up to 200 kPa.

The ports of the pressure transducer were connected to two
pressure taps, located upstream and downstream of the test section
(cf. Fig. 1c), respectively. A 12 V DC power supply (Lascar electron-
ics, PSU 206) was used to power the pressure sensors that were
also connected to a computer via a data acquisition card (NI USB-
6218, National Instruments) in order to record the output data
using LabView v7.1. The transient response of the pressure sensors
was continuously recorded until steady-state was reached.

3. Fluids and nondimensional numbers

3.1. Fluid composition and rheology

A Newtonian fluid (de-ionized water) and various viscoelastic
fluids with different rheological behavior were used in the exper-
iments. The polymers used to prepare the viscoelastic fluids were
polyacrylamide with a molecular weight Mw = 18 × 106 g mol−1

(Polysciences) and polyethylene oxide (PEO) with two dif-
ferent molecular weights: Mw = 2 × 106 g mol−1 (PEO-2M) and
Mw = 8 × 106 g mol−1 (PEO-8M), both supplied by Sigma–Aldrich.
Solutions were prepared by mixing the polymer into the sol-
vent (de-ionized water, de-ionized water/glycerol or de-ionized
water/sucrose solutions) at different concentrations, utilizing
magnetic stirrers at low speeds, in order to avoid mechanical degra-
dation of the polymer molecules. To prevent chemical degradation,
all solutions were kept in a refrigerator and additionally PEO solu-

Fig. 9. Effect of elasticity on the flow patterns of the PEO-8M fluid (microchannel C1) at 293.5 K.
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tions were also protected from light using dark bottles [44]. The
density of all solutions prepared was measured at 293.2 K using
calibrated 5 cm3 density flasks.

The composition of all fluids by weight, fluid density (�) and
polymer molecular weight are given in Table 3.

The rheology of the fluids was measured in both extensional
and shear flows. The extensional flow characterization used a cap-
illary break-up extensional rheometer (Haake CaBER 1, Thermo
Scientific) and the characteristic relaxation time of each fluid
was measured. These measurements were performed using circu-
lar plates with a diameter Dp = 6 mm. The initial separation gap
between the two plates was set to hi, which corresponds to an
aspect ratio, �i = hi/Dp. The liquid bridge confined between the two
plates is stretched as the top plate moves linearly (−50 ms ≤ t ≤ 0)
to a final height (hf), which leads to a final aspect ratio, �f = hf/Dp.

In the ensuing liquid filament thinning the relaxation time, �, was
determined by fitting the experimental data of log[D(t)] vs time in
the linear region to the equation resulting from the elasto-capillary
balance [45]: D(t)/D0 ∝ exp[−t/(3�)], where D0 is the radius of the
filament at time t = 0. In Table 4, we present the relaxation times
obtained as well as the initial and final aspect ratios used for each
viscoelastic fluid tested.

The critical overlap concentration, c*, or the concentration at
which adjacent polymer coils overlap, is calculated according to
Graessley [46] as c* = 0.77/[�], where [�] is the intrinsic viscosity.

The intrinsic viscosity for the PEO solutions can be esti-
mated using the Mark–Houwink–Sakurada (MHS) equation,
[�] = 0.072 Mw

0.65 with [�] expressed in cm3/g [47]. The PEO-2M
solution has an intrinsic viscosity, [�] = 897 cm3/g, while for the
other PEO solutions with a molecular weight of 8 × 106 g mol−1

Fig. 10. Effect of elasticity on the flow patterns of PEO-8M + Glyc fluid (microchannel C1) at 298.8 K.
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the intrinsic viscosity is [�] = 2210 cm3 g−1. The intrinsic viscos-
ity of the PAA solution was determined experimentally using a
Cannon-Fenske viscosimeter (Comecta SA, model 1464, size 50)
and various dilute solutions with the same solvent and different
polymer concentrations. The intrinsic viscosity was determined by
means of an extrapolating method, namely using the Huggins equa-
tion, (� − �s)/(�sc) = [�] + KH[�]2c, where � is the solution viscosity,
�s is the solvent viscosity, c is the concentration and KH is the Hug-
gins constant that measures the interaction between polymer and
solvent [48]. The fit to the experimental data yields [�] = 1504 cm3/g
and KH = 8.7.

For a polymer chain in a good solvent, the longest relaxation
time can be calculated according to the Zimm theory [49] as

�Zimm =
1

�(3�)

[�]Mw�s

NAkBT
(2)

where NA is Avogadro’s number, kB the Boltzmann constant, T

the absolute temperature and �(3�) =
∑∞

i=1
(1/i3�) represents the

sum of individual modal contributions to the relaxation time.
For the PEO solutions in water or in water/glycerol, the solvent
quality exponent, �, and the prefactor, 1/�(3�) are 0.55 and 0.46
respectively, as reported elsewhere [45]. On the other hand, to
the best of our knowledge, the solvent quality exponent reported
in the literature for PAA solutions considers only water as the
solvent, rather than water/sucrose. However, using these values
we can obtain a crude estimate of the longest relaxation time
(�Zimm) for comparative purposes. As such, considering water
as the main solvent component, the exponent varies between
� = 0.61 (for 4 × 104 ≤ Mw/g mol−1 ≤ 1.47 × 106) and � = 0.57 (for
4.9 × 105 ≤ Mw/g mol−1 ≤ 3.2 × 106 and a NaCl concentration of 1N)
[48]. Hence, the prefactor 1/�(3�) becomes 0.54 for � = 0.61, and
0.49 for � = 0.57. Consequently, the Zimm relaxation time varies in

Fig. 11. Effect of elasticity on the flow patterns of the PEO-8M 100 fluid (microchannel C1) at 298.4 K.
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the range between 9.8 and 10.8 ms, which is similar to the value
found from the CaBER experiments for the same fluid. For quanti-
tative purposes, in the calculation of the dimensionless numbers,
we will use in all cases the CaBER relaxation time.

Table 5 provides the coil overlap concentration (c*), the dimen-
sionless concentration (c/c*) and the Zimm relaxation time (�Zimm)
obtained at the reference temperature (293.2 K), for each fluid used
in the experiments.

The PEO-8M 100 and PAA solutions are diluted and therefore the
Zimm relaxation time is in reasonable agreement with the mea-
sured values. All the other viscoelastic fluids used in this work
are semi-dilute solutions. For the PEO-2M and PEO-8M fluids in
particular, �Zimm is smaller than the relaxation time found under
capillary break-up extensional measurements which is probably
due to molecular chain interactions during the CaBER experiments
as described in Rodd et al. [50] and Soulages et al. [51].

For the shear flow rheological characterization, a shear rheome-
ter (Anton Paar, model Physica MCR301) was used with a
cone-plate geometry (75 mm diameter and 1◦ angle) operating
in the shear rate range of 1 ≤ 
̇/s−1 ≤ 7 × 103. For all polymer
solutions, the shear viscosity (�) was measured at different temper-
atures ranging from 283.2 K to 303.2 K and the time-temperature
superposition principle was used in order to obtain a master curve.
The corresponding shift factor is defined as [52]:

aT =
�(T)

�(T0)

T0

T

�0

�
(3)

where �(T) is the shear viscosity at a given absolute temperature T,
�(T0) is the shear viscosity at the reference absolute temperature T0

(293.2 K), whereas �0 and � are the fluid densities at the reference
temperature and at temperature T, respectively. For the range of
temperatures used in the measurements, the variation of the fluid

Fig. 12. Effect of elasticity on the flow patterns of the PAA fluid (microchannel C1) at 298.5 K.
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Fig. 13. Flow patterns of the PEO-8M fluid flow in the microchannel with a triangular shape (T) at 298.4 K.

density is negligibly small, hence the shift factor can be calculated
through the following expression [52]:

aT =
�(T)

�(T0)
(4)

The dependency of the shift factor on the temperature can be
described by an Arrhenius equation:

ln(aT ) =
�H

R

(

1

T
−

1

T0

)

(5)

where �H represents the activation energy for flow and R the uni-
versal gas constant.

In order to determine the master curve, the shear viscosity and
the shear rate need to be calculated in the reduced form or trans-
formed to the reference temperature according to:

�r = �(T0) =
�(T)

aT
(6)


̇r = 
̇(T0) = aT 
̇ (7)

The master curves for steady shear flow are shown in Fig. 3a for the
PEO solutions and in Fig. 3b for the PAA solution. In addition, the
fit of the simplified Phan–Thien–Tanner (sPTT) model [53], with a
solvent contribution, which predicts a shear-thinning behavior is

Table 7

Critical conditions for the onset of diodicity in the C1 hyperbolic microchannel, and

average temperature of the experiments.

Fluid Qcrit (ml h−1) T (K) Decrit Wicrit

PEO-2M 0.13 293.1 4.1 0.74

PEO-8M 0.08 292.1 23 4.3

PEO-8M + Glyc. 0.35 295.4 23 4.1

PEO-8M 100 0.80 298.7 6.6 1.2

PAA 0.04 298.8 1.8 0.33

also shown. More details about this viscoelastic model can be found
in Ref. [51] or on the original Ref. [53].

In the PTT model, ε is an extensibility parameter that influences
the extensional viscosity, �P is the zero-shear viscosity of the poly-
mer and �s is the solvent viscosity. The zero-shear viscosity of the
model in shear flow is simply given by: �0 = �P + �s and the sol-
vent viscosity ratio is given by ˇ = �s/�0. Here the parameter of the
model related to the second normal stress difference, �, was kept
equal to zero. Table 6 presents the rheological parameters of the
sPTT model used in this work, including the Arrhenius equation
parameter �H/R (cf. Eq. (5)).

In the fitting of the sPTT model we used the relaxation time
obtained in the CaBER measurements (cf. Table 4). We fitted the

Fig. 14. Flow patterns of the PAA fluid flow in the microchannel with a triangular shape (T) at 298.5 K.
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Fig. 15. Dimensionless pressure drops in the forward and backward directions of microchannel C1 , as a function of the flow rate and Deborah number for: (a) PEO-2M, (b)

PEO-8M, (c) PEO-8M + Glyc., (d) PEO-8M 100 and (e) PAA.

rheological data to this model and report the corresponding values
in Table 6, in order to be possible to perform numerical simulations
of the experiments here presented in future works.

3.2. Relevant dimensionless numbers

In addition to the Hencky strain, defined in Section 2.1 as εH =

ln(D1/D2), other dimensionless numbers are relevant for this work.
The Reynolds number is defined here as

Re =
�V2D2

�0
(8)

where V2 is the mean velocity at the channel throat (with dimension
D2) (cf. Fig. 1).

The flow of the viscoelastic fluids is also characterized using a
Deborah (De) or a Weissenberg (Wi) number:

De = �
̇ =
�V2

D2/2
(9)

Wi = �ε̇ = �
V2 − V1

L
(10)

in which the characteristic shear rate is estimated using the nar-
row dimension of the channels 
̇ = V2/(D2/2). The Weissenberg
number is expressed in terms of the strain rate (ε̇) along the
microchannel, where V2 and V1 correspond to the average velocity
at positions corresponding to D2 and D1, respectively, separated by
a distance L. The corresponding elasticity number is independent
of flow rate and is defined as El = De/Re = 2 ��0/�D2

2, assuming a
constant value for each fluid/geometry combination.
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Fig. 16. Pressure drop as a function of the flow rate for the PEO-8M fluid flow. Comparison with the pressure drop estimated for flow in a rectangular channel and between

two parallel plates.

Fig. 17. Diodicity (in terms of pressure drop ratio) as a function of flow rate (a) and Deborah number (b) for all viscoelastic fluids used. The dashed line in (b) is a guide to the

eye.

The diodicity of the microchannels can be evaluated at a con-
stant flow rate value, here defined as

Di|Q =
�PForward

�PBackward
(11)

where �PForward is the pressure drop in the forward direction and
�PBackward is the pressure drop in the backward direction for the
same flow rate Q. Alternatively, rectification effects can also be
calculated at a constant pressure drop value:

Di|�P =
QBackward

QForward
(12)

where QBackward and QForward are the flow rates in the backward
and forward flow directions for the same total pressure drop, �P,
respectively.

4. Results and discussion

Initially, a preliminary investigation was carried out on the flow
of a single viscoelastic fluid in all hyperbolic microchannels in order
to identify the most efficient rectifier under negligible inertia. Sub-
sequently, the best geometry is investigated more extensively with
all Newtonian and non-Newtonian fluids described in Section 3.1.

Finally, the performance of the chosen geometry is compared with
that of the triangular nozzle/diffuser rectifier proposed by Grois-
man and Quake [37].

4.1. Preliminary study

The flow of a single viscoelastic fluid was studied in the four
hyperbolic microchannels C1, C2, C3 and C4 (cf. Section 2.1) with
the aim of establishing the most efficient microfluidic rectifier.
The non-Newtonian fluid used for comparison purposes was the
0.1 wt.% aqueous solution of PEO-8M. Fig. 4 shows the pressure drop
measured as a function of the flow rate for both flow directions.

The results show a similar qualitative behavior in all micro-
geometries. At low flow rates the flow is quasi-Newtonian and
reversible (negligible diodicity) and the pressure drop increases
linearly with the flow rate. However, above a critical flow rate
value (Qcrit), which is geometry-dependent, the pressure drop
increases nonlinearly with Q (or De). The critical conditions are
Qcrit ∼ 0.08 ml h−1 for channel C1, Qcrit ∼ 0.3 ml h−1 for channel C2,
Qcrit ∼ 0.6 ml h−1 for channel C3 and Qcrit ∼ 0.1 ml h−1 for channel
C4. This is a typical behavior of viscoelastic fluid flows through
contractions at micro or macro-scales (e.g. [50,54–56]). Further-
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Fig. 18. Dimensionless pressure drop measured in the two flow directions of

triangular-shaped channel (T) as a function of the Deborah number for (a) PAA,

(b) PEO-2M and (c) PEO-8M fluids.

more, the flow resistance is different in the two flow directions
and is higher when the fluid flows along the series of hyperbolic
contractions in the forward direction, i.e. when the fluid flows in
a quasi-homogeneous stretching extensional flow, than when it
flows in the backward direction, in a quasi-homogeneous relaxing
extensional flow. As a consequence of this different flow resistance,
rectification effects emerge. The corresponding variation of diodic-
ity is shown in Fig. 5 as a function of flow rate for all microchannels
studied.

Channels C1 and C4 present the highest diodicities at low flow
rates, namely at Q ∼ 0.2 ml h−1 and Q ∼ 0.35 ml h−1, respectively.

The maximum diodicities (Di|Q) are in excess of 3 and 2 for channels
C1 and C4, respectively. For channel C2, the maximum diodicity is
about 2 (at a flow rate, Q ∼ 0.5 ml h−1) while for channel C3, which
has the lowest total Hencky strain, the measured diodicity is the
lowest (maximum diodicity about 1.5 at Q ∼ 1.7 ml h−1).

We anticipated that the highest rectification effects would be
observed for the channel with the highest Hencky strain (channel
C4). However, this trend was not observed in the experiments, pre-
sumably because for geometry C4 shear effects become important
in the narrow part of the channel, with the boundary layer of the
shear flow occupying a significant portion of the duct. This appar-
ent increase in shear effects counteracts the extensional effects
that are necessary for the increase of the local pressure drop in the
forward direction, with the corresponding increase of rectification
effect. Thus, the channel with the best performance corresponds
to a compromise between high extension and low shear and it is
microgeometry C1, which exhibits the highest diodicity. We shall
focus on this microchannel over the next sections.

4.2. Newtonian fluid flow

Fig. 6 shows the effect of inertia on the visualized pathlines for
the Newtonian fluid flow in channel C1 taken at the center plane of
the microgeometry.

At low flow rates (Re � 0.6), there is no significant flow separa-
tion and the flow patterns are similar for the two flow directions,
due to the flow reversibility characteristic of Newtonian creep-
ing flows. In the range 0.6 � Re � 6 recirculations become visible
between the expansion corners and the far corners and increase
in size as Re increases for the forward flow direction. When the
flow inertia increases further (Re � 6), large recirculations are visi-
ble near the far corner in the forward direction, in agreement with
the experimental results of Groisman and Quake [37]. Since the
fluid is flowing through a sequence of abrupt expansions, inertia
is responsible for the appearance and the subsequent growth of
the recirculations, which is in agreement with the results found by
Oliveira et al. [42] and Rodd et al. [50] for planar microchannels.

In the backward direction the recirculations also emerge and
grow in size in the region between the corners, but these events
occurred at Re higher than the corresponding Re in the forward flow
direction. In all cases, the increase of the size of the recirculations
with Re is limited by spatial confinement. For both flow directions,
the fluid in the vicinity of the far corners is essentially stagnant. A
similar behavior was also observed in the experiments of Groisman
and Quake [37].

In order to assess the Newtonian fluid flow anisotropy, we con-
ducted pressure drop measurements using de-ionized water in two
geometries (the hyperbolic C1, and triangle T microchannels) and
for both flow directions. The experiments were carried out for a
wide range of flow rates, Q � 45 ml h−1 (Re � 260) for microchan-
nel C1 and Q � 30 ml h−1 (Re � 180) for microchannel T. The results
are compiled and compared in Fig. 7.

In the range of flow conditions studied, the pressure drop
increases linearly with the flow rate for both microgeometries
and flow directions. Furthermore, no rectification effects are found
since the pressure drop in the two flow directions essentially coin-
cide at the same flow rate, even at the highest Reynolds numbers
measured, which is well inside the nonlinear range where iner-
tial effects are important. Therefore, these microchannels are not
efficient for operation with Newtonian fluids.

4.3. Viscoelastic fluid flow

4.3.1. Flow patterns

The flow patterns for all viscoelastic fluids are qualitatively
similar as can be assessed from observation of Figs. 8–12, where
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representative streak line images are shown to highlight the effects
of the Deborah number and flow direction.

At low flow rates, viscous effects are dominant and the flow
patterns (Figs. 8a, 9a, 10a, 11a and 12a) are similar to those obtained
with the Newtonian fluid (Fig. 6), i.e. they are identical for both
flow directions rendering the flow fully reversible and rectification
effects entirely absent.

Above a certain flow rate (or a critical Deborah number, Decrit),
markedly different flow patterns are observed for the two flow
directions. For the backward flow direction, regions of sepa-
rated flow appear near the far corner in all elements of the
microgeometry with the flow remaining symmetric and steady
(Figs. 8b, c, 9b, 10b, c and 12b, c for backward flow). In this case,
the fluid tends to enter inside the hyperbolic corner and the path-
lines show a bent shape. The existence of upstream recirculations
when a shear-thinning fluid flows through an abrupt contraction
is a well-known phenomenon and the results obtained from flow
visualizations are consistent with the numerical studies for a 2D
channel presented by Alves et al. [57] at the macroscale and the
experimental results of McKinley et al. [56] for a microchannel with
a hyperbolic shape.

For the forward flow direction, recirculations also emerge
near the far corner inside each microchannel element. However,
in this case, elastic instabilities appear and the recircula-
tions are only visible in some elements of the microgeometry
(Figs. 8c, d, 9a, c, 10c and 12b–d for forward flow direction), appear-
ing and disappearing in time without a clearly discernible pattern.
Consequently, due to the onset of this elastic instability, the flow
is now asymmetric and unsteady. These instabilities are elastic in
nature since inertial effects are not important (low Reynolds num-
ber flows). Purely elastic instabilities in microchannels have been
studied by Arratia et al. [58] and Poole et al. [59] in cross-slot
microchannels, by Oliveira et al. [60] in flow focusing geometries
with 3 entrances and by Soulages et al. [51] in T-shaped microge-
ometries. See also Morozov and van Saarloos [61] and papers within
for a discussion on elastic instabilities.

For the backward flow direction, we also observe the onset and
enhancement of elastic instabilities (Fig. 8d for backward flow), but
these occur at higher flow rates. The nonlinear increase of the flow
resistance also occurs above a critical flow rate, but to a smaller
extent than those found in the forward flow direction, at least for
the range of flow rates studied in our experiments.

Another interesting flow characteristic is that the fluids
tend to flow mostly through the central region/portion of the
microchannel and the streamlines are no longer curved (cf.
Figs. 8a, b, 10a, b, 11a and 12a), becoming progressively rectilinear
as the flow rate increases. This phenomenon is observed to some
extent for all viscoelastic fluids studied, especially at high Deborah
numbers (Figs. 10d and 11b–d).

Streak line images obtained in the triangular-shaped
microchannels (inspired by the work of Groisman and Quake
[37]) are shown in Fig. 13 for the PEO-8M fluid and in Fig. 14 for
the PAA solution.

The flow behavior observed for this microgeometry has some
general similarities to that obtained with the hyperbolic geometries
for all viscoelastic fluids studied, but also bears some important dif-
ferences. The forward flows at low De exhibit recirculations near
the far corner, and show small lip vortices emerging in the vicinity
of the throat (Figs. 13a and 14a), whereas in the backward direc-
tion, the recirculations become visible at lower flow rates than in
the forward direction (Figs. 13a and 14a). Increasing De, elastic
effects become important, and instabilities appear in the forward
flow direction (Figs. 13b and 14b, c) leading to unstable flow. When
De is increased further, the pathlines become symmetric, steady
and are similar for the two flow directions (Fig. 13c). These results
are in agreement with the findings of Groisman and Quake [37] in

a geometry with the same shape (the only difference here is the
smaller depth of 50 �m as compared with 100 �m in their study).

4.3.2. Pressure drop

Fig. 15 presents the variation of the dimensionless pressure
drop with flow rate measured in channel C1 for all non-Newtonian
fluids considered. The flow resistance behavior in the two flow
directions is analogous for all viscoelastic fluids and resembles the
preliminary results presented in Section 4.1. At low De, the flow is
quasi-Newtonian and reversible, but above a critical value (Decrit)
the dimensionless pressure drop increases sharply with the flow
rate and starts to differ in the forward and backward directions,
being invariably larger in the former.

The flow rate at the transition point in the pressure drop pro-
file is significantly different for all fluids studied, as illustrated in
Table 7, which stems from the different fluid rheology. In Table 7 the
corresponding critical Deborah numbers, calculated with the relax-
ation time at the temperature of the experiments, are included.
These relaxation times were determined from the values measured
with the CaBER at T = 293.2 K and then corrected to the tempera-
ture of the experiments using the time-temperature superposition
principle (cf. Section 3.1). In Table 7 we also include the estimated
critical Weissenberg number (Wicrit), showing that the critical con-
ditions occur for a Weissenberg number close to the coil-stretch
transition, �ε̇ = 0.5 [62], in particular for the PAA and the lighter
PEO, an indication suggesting that the significant increase in the
pressure drop is related to the strong extensional behavior of the
flow along the forward direction.

Cross analyzing Table 7 with the flow patterns reported in Sec-
tion 4.3.1, we conclude that Decrit corresponds approximately to
the conditions when the flow becomes unsteady in the forward
flow direction, and enhanced flow resistance anisotropy sets in
due to the elastic instability. When the flow is unsteady we report
the average pressure drop, together with the maximum and min-
imum values measured. These extreme values are reported as
horizontal bars (cf. Fig. 15), while the symbols correspond to the
time-averaged values.

For the forward direction, the pressure drop variation with flow
rate shows a sharp increase above Decrit. Thus, the onset of elas-
tic instabilities leads to an enhancement of the flow resistance in
the forward direction and as a consequence rectification effects (or
diodicity) emerge, since the same flow rate generates significantly
different pressure drops in the forward and backward flow direc-
tions. When the flow instabilities in the backward direction also
emerge, at higher flow rates, the difference between the forward
and backward pressure drops decreases, and the rectification effect
is reduced.

To better understand the origin of the enhancement of the
flow resistance we carried out a simple theoretical analysis which
assumes that the main flow occurs primarily in the central region
of the microchannel (as shown in Fig. 9b) when elastic effects are
important. Under this simplified scenario, the measured flow resis-
tance can be compared with two limiting pure shear flow cases: (i)
the flow confined in a rectangular channel with four walls, corre-
sponding to no-slip conditions at the walls and (ii) the flow between
two parallel plates spaced 50 �m apart, which corresponds to the
depth of the microchannel. Case (i) assumes a no-slip condition
at the interface between the main flow and the recirculation, an
assumption that is reasonable when the secondary flow in the
recirculation is weak, and therefore the velocity of the dividing
streamlines (assumed as straight lines) is small. This case corre-
sponds to the flow in a rectangular channel, for which the velocity
profile and pressure drop expressions can be found in White [63]
for a Newtonian fluid under fully developed flow conditions. The
viscoelastic fluids tested have a nearly constant shear viscosity (cf.
Fig. 3a), hence these expressions for a Newtonian fluid are ade-
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Fig. 19. Comparison between the diodicity obtained with the hyperbolic and triangular microgeometries in terms of pressure drop ratio as a function of the flow rate

(left-hand side column) and in terms of flow rate ratio as a function of the pressure drop (right-hand side column). The graphs (a1) and (a2) correspond to the fluid PAA, (b1)

and (b2) to PEO-2M and (c1) and (c2) to PEO-8M. The curves are a guide to the eye.

quate (indeed, they are exact for fluids with constant shear viscosity
and zero second-normal stress difference, either Newtonian or vis-
coelastic). The zero-shear viscosity of the viscoelastic fluids was
used in the analytical solutions, which is a reasonable estimate due
to the weak shear-thinning behavior of the fluids. As an example, for
the PAA fluid the decrease of the shear viscosity is only about 15%,
in a range of two decades of shear rates. Case (ii) assumes full slip at
the dividing streamline, thus the flow field is assumed uniform in
the x–y plane (cf. Fig. 1). The bottom and top walls are planar and set
50 �m apart, thus this ideal case corresponds to the flow between
two infinite parallel plates. Again, we assume fully developed flow
conditions, and Newtonian behavior with a viscosity matching the
zero-shear rate viscosity of the fluids. The predictions of these two

ideal pure shear flows are shown as solid lines in Fig. 16. When
viscoelastic effects are important it is clear that the flow resistance
measured in our microfluidic rectifier is higher than that predicted
for the two limiting conditions, even higher than for the flow in
a rectangular channel, which can be viewed as the upper limit of
flow resistance if only shear effects were at play. This gives further
credit to the hypothesis that enhanced flow resistance is due pri-
marily to the strong extensional flow along the central region of
the microchannel.

In order to compare the diodicity of the flows in the microflu-
idic device C1 for the different viscoelastic fluids studied, we plot in
Fig. 17 the diodicity calculated in terms of the pressure drop ratio.
As can be seen, the 0.1 wt.% aqueous solution of PEO-8M shows the
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highest diodicity, achieving a maximum value around 3.5. This fluid
has the highest concentration of the heaviest polymer used here.
The semi-dilute solution of PEO-2M presents a maximum diodicity
of about 3 and the other fluids have rectification effect values in
excess of 2, which are all significantly higher than values reported
in other studies for viscoelastic fluids in triangular-based geome-
tries [37,40]. When plotted as function of De (or Wi), the diodicity
follows a similar trend for all fluids, as shown in Fig. 17b, exhibiting
less scatter than Fig. 17a.

In order to make a direct comparison between the results
obtained in the hyperbolic rectifier and the triangular geome-
try proposed by Groisman and Quake [37] it is necessary to use
microgeometries with similar aspect ratios and equal depth. This is
achieved here by using the microchannel T of Table 1. In Fig. 18a we
plot the dimensionless pressure drop as a function of De in the two
flow directions for the T microrectifier for the PAA solution, which
is similar to the fluid used by Groisman and Quake [37]. Fig. 18b
and c display the same quantities in the T microchannel, but for the
solutions of PEO-2M and PEO-8M, respectively.

Qualitatively, the variations of the pressure drop with flow rate
are similar to those seen for the hyperbolic rectifier, but the differ-
ence between the forward and backward pressure drops are clearly
smaller. This is better seen in Fig. 19, where the two diodicities
(Di|�P and Di|Q) of all comparable cases are plotted.

Since in the experiments we imposed a value of the flow rate and
the corresponding pressure drop was measured, we can directly
determine the pressure drop ratio for all values of the flow rate
considered (Di|Q). On the other hand, to calculate the diodicity in
terms of flow rate ratio, it was first necessary to fit the experimen-
tal data of �P vs Q, in order to allow for the interpolation of the
data and the determination of the corresponding flow rate ratio.
For this reason, the plot of the Di|Q vs Q has more scatter (pro-
vided from experimental results) than the smoother plot of Di|�P

vs �P calculated from the fits. In all cases there is a clear advantage
of the rectifier with hyperbolic shaped elements both in terms of
the ratio between the forward and backward pressure drop for a
given flow rate, and also in terms of flow rate ratio, as used by Gro-
isman and Quake [37] in their seminal paper on elasticity driven
flow anisotropy under creeping flow conditions.

For the PAA solution, a maximum value of Di|Q ≈ 2 is obtained
for the hyperbolic geometry while for the triangular geometry a
maximum value of approximately 1.6 is observed. In terms of Di|�P,
the hyperbolic rectifier has a maximum diodicity of about 1.8, while
the triangular geometry achieves a maximum value of about 1.5.
However, we should emphasize that the value determined here
is lower than the values reported by Groisman and Quake [37],
due to the difference in channel depth (and consequently of aspect
ratio) between their microchannel (100 �m) and ours (50 �m). For
the other viscoelastic fluids higher values of Di|Q and Di|�P were
obtained for both rectifiers, but always showing higher diodicity
for the hyperbolic shape.

5. Conclusions

The flow of Newtonian and viscoelastic fluids through microflu-
idic channels that are able to operate as microfluidic rectifiers under
creeping flow conditions, was studied. Two different shapes of the
microchannels were compared: the nozzle/diffuser arrangement
based on triangular elements used in the literature [37] and a new
rectifier based on elements with hyperbolic shape [42] that are
especially suitable to generate a nearly purely extensional flow.

For Newtonian fluid flow, the flow patterns for both rectifiers
are qualitatively similar in the two flow directions and the flow
is steady for the wide range of flow rates studied. The pressure
drop through the microchannels is found to increase linearly with

the flow rate and no noticeable rectification effects were observed
even though the maximum Reynolds number achieved for both
flow directions was of the order of 250. However, the secondary
flow that is induced by flow inertia is found to appear at lower Re
for the forward direction, but it has a negligible influence on the
pressure drop.

For the polymeric solutions, the pressure drop is also indepen-
dent of the flow direction at low flow rates, when the flow is
quasi-Newtonian. However, due to the viscoelastic nature of the
fluids used, increasing the flow rate leads to an anisotropic flow
resistance between the two flow directions. At the onset of rec-
tification effects, elastic instabilities emerge in the forward flow
direction as the flow becomes unsteady and the flow resistance
increases sharply with the flow rate. Although this phenomenon
was observed in both types of microgeometries, the hyperbolic
shaped microchannels present a higher diodicity. For channels with
the same depth (50 �m), the triangular-shaped channel presents
a maximum diodicity in terms of pressure drop ratio of about
2.5, whereas the hyperbolic shaped microchannel has a maximum
diodicity of 3.5. The hyperbolic shape of the contraction region for
forward flow leads to a quasi-ideal extension flow that generates
significant increases in pressure drop, thus the maximum diodic-
ity values found for the various viscoelastic fluids are significantly
higher than those achieved with the nozzle/diffuser (triangular)
geometry proposed by Groisman and Quake [37], and also higher
than those reported by Nguyen et al. [40].
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