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Efficient microwave-to-optical conversion using Rydberg atoms
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We demonstrate microwave-to-optical conversion using six-wave mixing in cold 87Rb atoms where the
microwave field couples to two Rydberg states and propagates collinearly with the converted optical field. Our
experiment is performed with a free-space microwave field, and we achieve a conversion efficiency of about 5%
for the microwave photons entering the conversion medium. In addition, we theoretically investigate all-resonant
six-wave mixing and outline a realistic experimental scheme for reaching an efficiency close to 70%.
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I. INTRODUCTION

Rydberg atoms feature a quasicontinuum of narrow and
strong dipole transitions coupling to microwave and terahertz
(THz) radiation [1]. Moreover, they can be easily excited
and manipulated with laser light. These two properties endow
Rydberg atoms with tremendous potential for applications
combining optical light with microwaves or THz waves in pre-
cision spectroscopy, quantum sensing, and information pro-
cessing. For example, real-time THz field imaging has been
achieved by THz-induced optical fluorescence in Rydberg
atoms [2]. Sensitive detection of free-space microwave fields
based on dressed electromagnetically induced transparency
involving a Rydberg state (EIT) is being actively pursued
[3,4]. Rydberg EIT can also be used to transfer digital infor-
mation encoded in a microwave field onto an optical carrier,
with applications in radio-over-fiber technologies [5,6].

Recently, microwave-to-optical conversion has been
demonstrated employing frequency mixing via Rydberg states
[7]. The good coherence of the underlying process, character-
ized in Ref. [7], makes it a solid candidate for the transfer of
quantum information between superconducting and photonic
qubits. Among the different technologies being developed
for this application [8–13], the highest microwave-optical
photon conversion efficiency obtained so far is nearly 50% but
with a relatively narrow bandwidth of ∼12 kHz [12]. While
the bandwidth of the converter using frequency mixing in
Rydberg atoms demonstrated in [7] was as large as 4 MHz,
the photon conversion efficiency was limited to 0.3%. It thus
remains to be shown that much higher efficiencies can be
achieved with this approach.

In this paper, we demonstrate six-wave mixing in a cold
rubidium (Rb) gas where all the waves are near resonant
with atomic transitions and propagate along a single axis.
We show that the response of our converter is linear for a
wide range of microwave input powers. Most importantly, the
chosen configuration, with collinear propagation of the waves,
enables us to enhance the conversion efficiency by a factor
of 17 compared to that in [7]. Moreover, we theoretically

analyze all-resonant collinear six-wave mixing within the
framework of Maxwell-Bloch equations and identify condi-
tions for achieving near-unit efficiencies.

The paper is organized as follows. We describe the ex-
perimental setup in Sec. II and present our experimental
results in Sec. III. In Sec. IV, we show that our data are
in good agreement with a numerical simulation based on
Maxwell-Bloch equations. Finally, in Sec. V we derive an
approximate, analytical description of all-resonant six-wave
mixing and propose an optimized configuration which reaches
an efficiency of nearly 70%.

II. EXPERIMENTAL SETUP

A cloud of cold polarized 87Rb atoms is illuminated by
four auxiliary electromagnetic fields as well as the microwave
field M to be converted, as shown in Fig. 1(a). By non-
linear frequency mixing of the six waves in the atomic
medium, the field M is converted into the optical field L.
The chosen configuration of energy levels is displayed in
Fig. 1(b). The six waves P, C, A, M, R, and L are near
resonant with the atomic transitions shown in the figure, where
|1〉 ≡ |5S1/2, F = 2, mF = 2〉, |2〉 ≡ |5P3/2, F = 3, mF = 3〉,
|3〉 ≡ |30D3/2, mJ = 1/2〉, |4〉 ≡ |31P3/2, mJ = −1/2〉, |5〉 ≡
|30D5/2, mJ = 1/2〉, and |6〉 ≡ |5P3/2, F = 2, mF = 1〉 [14].
In the absence of the microwave field M, the system is in the
configuration of microwave dressed Rydberg EIT formed by
the two optical waves P and C, and the auxiliary microwave
field A. Once the M and R fields are added, the coherence
induced between the ground state |1〉 and the intermediate
state |6〉 triggers the generation of the converted optical
field L.

In our setup, the fields P, M, and A are copropagating
along the quantization axis z and counterpropagating with the
fields C and R. The frequency differences between transitions
|1〉 ↔ |2〉 vs |1〉 ↔ |6〉, |2〉 ↔ |3〉 vs |6〉 ↔ |5〉, and |4〉 ↔
|3〉 vs |4〉 ↔ |5〉 are 0.27, 0.73, and 0.45 GHz, respectively,
including the Zeeman shifts due to the 6.1-G bias magnetic
field applied along the z axis [15,16]. These differences are
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FIG. 1. (a) Experimental setup. The frequency mixing is per-
formed with collinearly propagating fields in a Gaussian-distributed
atomic sample. The laser beams are focused on the atomic ensemble,
whereas the microwave fields are emitted from a horn antenna.
(b) Energy-level diagram and coupled transitions. The polarization
of the fields are indicated inside parentheses.

small compared to the frequencies of the fields, and to a
good approximation their wave vectors obey kC ≈ kR and
kA ≈ kM , resulting in kL ≈ kP due to phase matching. Con-
sequently, the L and P optical fields are copropagating, and
all the fields are collinear. Moreover, the L and P fields are of
opposite polarization and are separated before simultaneous
photodetection.

In more detail, the atomic cloud is obtained by loading a
magneto-optical trap from a Zeeman-slowed atomic beam for
10 s, followed by polarization gradient cooling, optical pump-
ing into state |1〉, and a time of flight of 3 ms. The final cloud
is Gaussian distributed, with 1/e2 radius wz = 1.85 mm,
peak atomic density nat,0 ∼ 2 × 1010 cm−3, and temperature
T ∼ 70 μK. The optical beams P, C, and R are focused on the
atomic cloud with beam waists wP, wC , and wR of 25, 54, and
45 μm, respectively. The frequencies of the C and R fields are
maintained on resonance, and only that of field P is varied to
acquire spectra as a function of the frequency detuning �P.
The microwaves are combined with a magic tee, and emitted
out of a horn antenna with linear transverse polarization. The
σ+ polarization components of the microwaves form the M
and A fields, and are kept on resonance with frequencies of
νM = 84.18 GHz and νA = 83.72 GHz, respectively. The σ−
polarization components are off-resonant due to the Zeeman
shifts and hence play a negligible role in this experiment.
The electric dipole matrix elements of the atomic transi-
tions in Fig. 1(b) are, in Hartree atomic units, |d21| = 2.99,
|d61| = 1.22, |d32| = 0.00914, |d34| = 211, |d54| = 387, and

FIG. 2. Spectra of the generated light power PL (a) and of the
transmitted P field power PP (b). The dashed lines are simulated
results obtained using Maxwell-Bloch equations (see text).

|d56| = 0.0138. The latter four dipole matrix elements
are obtained by numerical integration using the Numerov
algorithm [17].

III. EXPERIMENTAL RESULTS

Typical spectra of the measured powers PL and PP of the
L and P fields vs �P are shown in Fig. 2. The peak Rabi
frequencies of the incoming fields are �P0/2π = 1.0 MHz,
�C0/2π = 9.5 MHz, �R0/2π = 6.3 MHz, �A0/2π =
2.9 MHz, and �M0/2π = 1.4 MHz. The data obtained for
each �P are averages of the signals recorded in steady-state
condition over 10 μs after the application of the fields. The
conversion is most efficient at around �P = 0 [Fig. 2(a)],
which is consistent with the nonlinearity responsible for the
frequency mixing being maximum close to resonance. The
spectra of the L and P fields in Fig. 2 are approximately
symmetric. The double-peak shape of the spectrum of PP

occurs mostly due to the large A field and is likely an effect
of microwave dressed EIT on |1〉 → |2〉 → |3〉 → |4〉 [18].
We attribute the small reduction of PL at the center of the
spectrum in Fig. 2(a) to the strong absorption of the P field
around �P = 0, which tends to reduce the effective volume of
the medium where the conversion occurs. We have observed
a disappearance of the dip in the L field spectrum at lower
microwave A power, consistent with this interpretation.
Indeed, when the microwave A power is reduced, the two EIT
peaks in the spectrum of the P field tend to overlap, which
leads to less attenuation of PP at �P = 0.

The behavior of the measured power PL for �P = 0 is
approximately linear as a function of the input intensity IM

of field M [see Fig. 3(a)]. The expected signal due to the con-
version of blackbody radiation is several orders of magnitude
smaller than the technical noise due to the detectors and hence
has a negligible effect on the data of Fig. 3(a). Given PL ≈
αIM , a linear fit to the data yields the slope α = 0.45 mm2.
The photon conversion efficiency of the process is calculated
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FIG. 3. The linearity of the converter. (a) The power of the
generated light is plotted vs IM in the range of 0–50 pW/mm2.
The solid line is the result of a linear fit to the data. (b) The power of
the generated light is plotted vs IM in the range of 0–1200 pW/mm2.
The dashed line is the numerically simulated result (see text).

as

η ≈ PL/νL

IMSM/νM
, (1)

where SM = πw2
P and νL ≈ 384.228 THz, yielding η = 0.051

for the data shown in Fig. 3(a). For this calculation, we only
consider the microwave photons incident on the conversion
medium, whose transverse size is determined by the probe
beam waist wP. This conversion efficiency is 17 times larger
than that reported in Ref. [7] using a perpendicular configu-
ration, where the microwave fields propagated at right angles
to the optical fields. The physical reason for this enhancement
is that the conversion occurs over a much longer distance in
the collinear configuration (∼2wz) than in the perpendicular
geometry (∼2wP). Note that the change of geometry implies
a change of polarization of the microwave fields. As a con-
sequence, |d54| has been reduced by a factor of

√
2 because

the microwave field M drives a different atomic transition.
Furthermore, we use a larger A field, which can be shown to
increase the linear range of the converter but tends to reduce
the efficiency. Because of these two reasons, the measured
efficiency is lower than that predicted in Ref. [7].

IV. NUMERICAL SIMULATION

Next, we numerically simulate the interaction of the laser
and microwave fields with the atomic ensemble within the
framework of coupled Maxwell-Bloch equations. We restrict
the problem to the calculation of one-dimensional solutions
for the fields in the slowly varying envelope approximation,
and in steady state. With these assumptions, the field ampli-
tudes satisfy the following differential equations:

∂z�X = i
nat|d ji|2νX

h ε0 c
� ji. (2)

In this set of equations, the complex amplitudes EX of each
field X (X ∈ {P, C, A, M, R, L}) have been rescaled using the
definition of the Rabi frequency �X = 2EX d ji/h̄, where h̄
is the reduced Planck constant and d ji is the dipole matrix
element of the transition |i〉 ↔ | j〉 driven by field X. More-
over, � ji is the corresponding steady-state atomic coherence,
written in a suitable rotating frame removing fast temporal and
spatial oscillations, νX is the frequency of field X, nat is the
atomic density, ε0 is the free-space permittivity, and c is the
speed of light in vacuum. The atomic coherences are given by
the steady-state solution � of the following Markovian master
equation:

∂tρ = − i

h̄
[H, ρ] + Lρ + Ldephρ , (3)

where

H = − h̄

2

(
�P |2〉〈2| +

∑
X

�X | j〉〈i| + H.c.

)
(4)

is the interaction Hamiltonian between a single atom and
the fields and ρ(t ) is the (time-dependent) density matrix of
the atom. The Lindblad term Lρ accounts for spontaneous
emission from the intermediate states |2〉 and |6〉 with rate
 = 2π × 6.067 MHz and from the Rydberg states. The term
Ldephρ accounts for additional dephasing mechanisms and
may be written as

Ldephρ =
∑

j∈{3,4,5}
γ j (2PjρPj − Pjρ − ρPj ), (5)

where Pj is the projection operator on state | j〉, and γ j is the
dephasing rate associated with state | j〉. These rates include
the effects of atomic collisions, dipole-dipole interactions
between Rydberg atoms, and finite laser linewidths. The de-
phasing rates γ1, γ2, and γ6 are neglected since they are much
smaller than .

For solving Eq. (2), the input Gaussian fields are assumed
to be collimated, with transverse 1/e radii given by the waist
of the beams in absence of the atoms. The output intensity
profiles obtained from these solutions are integrated radially
to calculate the total output powers of the P and L fields.
In deriving Eq. (2), we have neglected transverse terms in
Maxwell equations that account for diffraction and lensing
effects. This approximation yields relatively accurate results
for our experimental parameters. Note that including these
transverse terms would likely account for the slight asymme-
try of the spectrum of PP observed in Fig. 2(b) [7,20].

The results of our numerical simulation are shown in
Figs. 2(a), 2(b), and 3(b). They are calculated for γ3 = 2π ×
50 kHz, γ4 = 2π× 300 kHz, and γ5 = 2π× 400 kHz, while
the other input parameters are obtained from experimental
calibrations. The good agreement with the data further asserts
the validity of the model of Refs. [7,19] and allows us to
extrapolate the conversion process to larger input microwave
intensities, as shown in Fig. 3(b). While PL is linear at small
IM , it starts to saturate when �M0 becomes of the order
of �A0.
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V. ANALYTICAL INSIGHTS AND OPTIMIZED
CONFIGURATION

To present a clear pathway to improving the efficiency,
we will take a closer look at Eq. (3) in the case of all-
resonant fields. We obtain the analytical steady-state solution
of Eq. (3) as an expansion of � up to third order in the weak
fields �P, �M , �L and small dephasing rates γ j , as shown
in the Appendix. In keeping only the dominant terms, the
coherences �21, �61, and �54 take the following simple form:

�21 = i
�P


, (6)

�61 = i
�P�C�M

�A�R
, (7)

�54 = −i
�R�L�A�∗

C�∗
P − |�C |2|�P|2�M

|�A|2 |�R|2 , (8)

when the conditions |�A|2/|�C |2 � γ4, |�R|2/ � γ5, and
|�C�R�M�P|/|�A�L| � γ5 are fulfilled.

Equations (6)–(8) do not depend on the dephasing rates.
Therefore the conditions in the latter inequalities ensure that
our system is robust against interaction-induced dephasing,
and realizing them experimentally will lead to high efficien-
cies. In this regime, and taking the large Rabi frequencies
�A, �C , and �R as constants, we find from the system of
Eqs. (6)–(8) and Eq. (2) that �L satisfies the following dif-
ferential equation:

∂2
v �L + a2(1 − v)∂v�L + a2

1 �L = 0, (9)

where v is defined as v(z) = 1 − e−u(z)/2, with

u(z) =
∫ z

−∞
dz′ 2nat |d21|2νP/(hε0c) (10)

being the optical depth vs z for the P field. Taking νP ≈ νL,
we have a1 = c1|d61/d21|2 and a2 = c2

1|d61/d21|2, where

c1 =
∣∣∣∣d54

d61

∣∣∣∣
√

νM

νL

�C �P(z = −∞)

�R �A
. (11)

The analytical solution to Eq. (9) can be expressed in terms
of a hypergeometric function and a Hermite polynomial.
Equation (9) is very similar to that of a damped harmonic
oscillator, with the damping term linearly depending on v,
as a2(1 − v), where 0 � v < 1. By analogy, when a2 � a1

the solution takes the simple form �L(v) ≈ �L0 sin (a1 v),
where

�L0 =
√

νL

νM

∣∣∣∣d61

d54

∣∣∣∣�M (z = −∞) (12)

corresponds to 100% conversion efficiency. Therefore opti-
mizing the efficiency implies to fulfill the two conditions
a1v(+∞) = π/2 and a2 � a1. For a large enough atomic
cloud, this can be achieved by decreasing |d21| and in-
creasing |d61|. Physically, the idea is to minimize the ab-
sorption of the P field while maximizing the converted L
field.

Based on this analytical derivation, we select a more favor-
able configuration of energy levels where |d21| is reduced by
a factor of

√
15, and |d61| increased by

√
6. The new configu-

ration is such that |1′〉 ≡ |1〉, |2′〉 ≡ |5P3/2, F = 3, mF = 1〉,

FIG. 4. Optimizing the converted field L. The dashed red line
represents the analytical solution of the L field Rabi frequency
�L vs position z inside a Gaussian-distributed atomic sample. The
calculation is based on the result of Eq. (9), with a1 v(+∞) = π/2
(see text). The dotted blue line is a full numerical simulation of �L

vs z, without considering dephasing rates. The solid black line is the
full numerical simulation of �L vs z, including the dephasing rates
γ3, γ4, and γ5. For all three curves, �L is rescaled with the Rabi
frequency �L0 corresponding to 100% efficiency.

|3′〉 ≡ |3〉, |4′〉 ≡ |31P3/2, mJ = 3/2〉, |5′〉 ≡ |30D5/2, mJ =
5/2〉, and |6′〉 ≡ |5P3/2, F = 3, mF = 3〉, and we keep the
fields as denominated in Fig. 1 but with modified polariza-
tions and strengths. We consider extended input fields of
Rabi frequencies �P0/2π = 1.0 MHz, �C0/2π = 13.5 MHz,
�R0/2π = 29 MHz, �A0/2π = 9.2 MHz, and a Gaussian-
distributed atomic cloud with nat,0 = 2 × 1010 cm−3 and
wz = 3.7 mm, such that a1 v(+∞) ≈ π/2. Figure 4 compares
the analytical solution of Eq. (9) to the numerical simulation
of �L given by Eqs. (2) and (3) without dephasing (Ldeph = 0)
as a function of the position z along the atomic cloud. The two
curves are in good agreement, and the remaining discrepancy
would vanish for �P0/2π < 0.5 MHz. Moreover, the intro-
duction of finite dephasing rates similar to those measured in
our experiment [see Eq. (5)] only moderately affects the nu-
merical simulation, as expected from our initial assumptions
and shown in Fig. 4 as well. The efficiency η, deduced directly
from these solutions, is of about 69% if the dephasing rates
are taken into account, in comparison to about 80% without
dephasing. This system would likely require a larger bias mag-
netic field and active optical pumping to compensate for the
depumping effect of the σ−-polarized P field, which drives an
open transition. A possible approach to further improving η is
to rely on a higher-lying state |2〉 such that |d21| is significantly
reduced.

An important feature of our scheme is its large conversion
bandwidth. We have numerically simulated the spectrum of
PL vs microwave field detuning for the parameters used in
Fig. 4 and extracted a full width at half maximum of nearly
15 MHz, which is large and very promising for applications
that require large conversion rates. This width is about 3 times
wider than the one calculated with the parameters of Fig. 3.
This increase is mostly due to the larger Rabi frequency �R

used in the improved configuration of Fig. 4.
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VI. CONCLUSION

In conclusion, we have experimentally realized
microwave-to-optical conversion using all-resonant,
free-space, and collinear six-wave mixing via Rydberg states.
At low microwave powers, the converter is linear and has a
photon conversion efficiency of about 5%. Moreover, we have
derived an analytical solution to all-resonant six-wave mixing.
This solution was used to identify a range of experimental
parameters where the conversion process is approximately
insensitive to interaction-induced dephasing and where high
conversion efficiencies are reachable with cold atom clouds.

This conversion method using Rydberg atoms is promising
for the sensitive detection of microwave or THz photons,
since these photons could be very efficiently transferred into
optical photons before photodetection. It is also promising
for quantum state transfer. Converting microwave fields in a
frequency range suitable for circuit quantum electrodynamics
experiments should be possible by using higher n states and/or
different atomic species such as caesium.

To reach a high fidelity for quantum state transfer, one may
consider stimulated Raman adiabatic passage, a technique
which may be applicable to our system [21]. Another option
that in theory achieves near-unit conversion efficiency is to
tune two of the fields off-resonance to realize an effective two-
photon transition, for example, fields C and A in our system
[19,22]. Eventually, the realization of microwave-to-optical
conversion at the single photon level for sensing or quantum
applications will require a tightly focused or confined mi-
crowave field and integration of the system into a noise-free
environment [23–25].
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APPENDIX

Here we describe how to derive the analytical expressions
of the steady-state coherences � ji in Eqs. (6)–(8) using per-
turbation theory [19,26]. To this end, we assume that , �A,
�C , and �R are much larger than �P, �M , �L, and the
dephasing rates γ j ( j ∈ {3, 4, 5}), and assume that the steady-
state density matrix � can be expanded in a perturbation series
of the form

� =
∞∑

k=0

�(k). (A1)

Moreover, we restrict the problem to �P = 0 and neglect the
decay rates of the Rydberg states, which are much smaller
than all the other decay rates of interest in our experiment [27].
The master equation, Eq. (3), may be rewritten as

∂tρ = L0ρ + L1ρ + Lρ + Ldephρ, (A2)

where

L0ρ = 1
2 [i(�A|3〉〈4| + �C |3〉〈2| + �R|5〉〈6|) + H.c., ρ]

(A3)
and

L1ρ = 1
2 [i(�L|6〉〈1| + �M |5〉〈4| + �P|2〉〈1|) + H.c., ρ].

(A4)
The zeroth-order solution in steady state, �(0), is obtained after
keeping only the zeroth-order terms in Eq. (A2), i.e., solving
the equation

L0�
(0) + L�(0) = 0. (A5)

Inserting the expansion of Eq. (A1) into Eq. (A2) leads in
steady state to a set of differential equations relating the
kth-order solution �(k) to �(k−1) as

L0�
(k) + L�(k) + L1�

(k−1) + Ldeph�
(k−1) = 0. (A6)

Starting from the result of Eq. (A5), Eq. (A6) can be solved
iteratively to yield all the orders �(k), k > 0 under the con-
straints Tr(�(0) ) = 1 and Tr(�(k) ) = 0 (k > 0). The atomic
coherences of interest are given below up to third order:

�
(0)
21 = �

(0)
61 = �

(0)
54 = �

(0)
43 = �

(1)
61 = �

(1)
54 = �

(1)
43 = 0, (A7)

�
(1)
21 = i

�P


, (A8)

�
(2)
21 = i

�P


(C1 − C2), (A9)

�
(2)
61 = i

�P�C�M

�A�R
(1 + C3), (A10)

�
(2)
54 = −i

�L�∗
C�∗

P

�∗
A �∗

R

, (A11)

�
(2)
43 = 0 (A12)

�
(3)
61 = i

�P�C�M

�A�R

(
C1 − C2 − C4 − C3C4 − C3

|�2
P|

2γ5

)
(A13)

�
(3)
54 = i

|�C |2|�P|2�M

|�A|2 |�R|2 + i�(2)
54 (C∗

1 − C2 − C4), (A14)

�
(3)
43 = −i

�∗
L�M�P�C

�2
A�R

, (A15)

where we have omitted �
(3)
21 since �21 is already nonzero at

first order. The correction coefficients C1, C2, C3, and C4 are
defined for comparison with the dominant terms as

C1 = �L�∗
M�∗

C

�P�∗
A�∗

R

, (A16)

C2 = 2γ4|�c|2
|�A|2 , (A17)

C3 = 2γ5�L�A

�C�∗
R�M�P

, (A18)

C4 = 2γ5

|�R|2 . (A19)

023832-5



VOGT, GROSS, HAN, PAL, LAM, KIFFNER, AND LI PHYSICAL REVIEW A 99, 023832 (2019)

These coefficients have to be significantly smaller than
1 to recover Eqs. (6)–(8). For the optimized configuration
discussed in Sec. V and shown in Fig. 3, these coefficients take

the maximum values of C1,max ≈ 0.18×10−3, C2,max ≈ 0.21,
C3,max ≈ 0.28, and C4,max ≈ 0.58×10−2. Furthermore, we find
that C3 �C3,max on a large portion of the conversion medium.
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